Lower Bounds for the Number of Primes in Some Integer Intervals

Ya-Ping Lu

(Drafted on Oct 26, 2020)

Abstract: We showed that there is at least one prime number in the ranges of $(p, p + \pi(p))$, $(p - \pi(p), p)$, $(n, n + \pi(n))$ and $(n - \pi(n), n)$, and there are at least three prime numbers in the range of $(p - \pi(p), p + \pi(p))$.

<u>Theorem 1</u>: There is at least one prime number in the range of $(p, p + \pi(p))$ *, where p is a prime number and* $\pi(p)$ *is the number of primes less than or equal to p.*

Proof: Let N_p be the number of prime numbers in the range of $(p, p + \pi(p))$, or

$$
N_p := \pi(p + \pi(p)) - \pi(p) \tag{1}
$$

To prove Theorem 1, we need to show $N_p \geq 1$.

Dusart [1] showed that the number of prime numbers less than or equal to x is bounded by

$$
\pi(x) \ge \frac{x}{\log x} \left(1 + \frac{1}{\log x} + \frac{2}{\log^2 x} \right) \quad \text{for } x > 88783
$$
 (2a)

and

$$
\pi(x) \le \frac{x}{\log x} \left(1 + \frac{1}{\log x} + \frac{2.334}{\log^2 x} \right) \quad \text{for } x > 2953652287. \tag{2b}
$$

For $p > 2953652287$, a lower bound of N_p can be determined based on Eqs. 2a and 2b.

$$
N_p \ge \pi (p + \pi (p)_{min}) - \pi (p)_{max} \tag{3}
$$

where

$$
\pi(p)_{min} = \frac{p}{\log p} \left(1 + \frac{1}{\log p} + \frac{a}{\log^2 p} \right) \tag{4a}
$$

$$
\pi(p)_{max} = \frac{p}{\log p} \left(1 + \frac{1}{\log p} + \frac{b}{\log^2 p} \right) \tag{4b}
$$

where a=2, b=2.334.

Let $q = p + \pi(p)_{min}$. From Eq. 3, we have

$$
N_p \ge \pi(q) - \pi(p)_{max} \ge \pi(q)_{min} - \pi(p)_{max}
$$
\n⁽⁵⁾

where

$$
\pi(q)_{min} = \frac{q}{\log q} \left(1 + \frac{1}{\log q} + \frac{a}{\log^2 q} \right) \tag{6}
$$

Substituting Eqs. 6 and 4b into Eq. 5 gives

$$
N_p \ge q \left(\frac{1}{\log q} + \frac{1}{\log^2 q} + \frac{a}{\log^3 q} \right) - p \left(\frac{1}{\log p} + \frac{1}{\log^2 p} + \frac{b}{\log^3 p} \right). \tag{7}
$$

Since

$$
q = p + \pi(p)_{min} = p \left(1 + \frac{1}{\log p} + \frac{1}{\log^2 p} + \frac{a}{\log^3 p} \right),\tag{8}
$$

from Eqs. 7 and 8, we have,

$$
\frac{N_p}{p} \ge \left[1 + \left(\frac{1}{\log p} + \frac{1}{\log^2 p} + \frac{a}{\log^3 p}\right)\right] \frac{\log^2 q + \log q + a}{\log^3 q} - \left(\frac{1}{\log p} + \frac{1}{\log^2 p} + \frac{b}{\log^3 p}\right) \tag{9}
$$

in which

$$
\log q = \log p + \log \left(1 + \frac{1}{\log p} + \frac{1}{\log^2 p} + \frac{a}{\log^3 p} \right) < \log p + \frac{1}{\log p} + \frac{1}{\log^2 p} + \frac{a}{\log^3 p} \tag{10}
$$

and thus

$$
\frac{\log^2 q + \log q + a}{\log^3 q} > \frac{\log^2 p + \log p + (a+2) + \frac{3}{\log p} + \frac{2(a+1)}{\log^2 p} + \frac{a+2}{\log^3 p} + \frac{2a+1}{\log^4 p} + \frac{2a}{\log^5 p} + \frac{a^2}{\log^6 p}}{\left(\log p + \frac{1}{\log^2 p} + \frac{1}{\log^2 p} + \frac{a}{\log^3 p}\right)^3} > \frac{\log^2 p + \log p + (a+2)}{\log^3 p} \tag{11}
$$

Substituting Eq. 11 into Eq. 9 we get

$$
\frac{N_p}{p} > \left[1 + \left(\frac{1}{\log p} + \frac{1}{\log^2 p} + \frac{a}{\log^3 p}\right)\right] \frac{\log^2 p + \log p + (a+2)}{\log^3 p} - \left(\frac{1}{\log p} + \frac{1}{\log^2 p} + \frac{b}{\log^3 p}\right)
$$

or

$$
\frac{N_p}{p} > \frac{\log^4 p + (a - b + 4) \log^3 p + 3 \log^2 p + 2 \log p - a(a + 2)}{\log^6 p} > \frac{1}{\log^2 p}
$$
(12)

Thus, for $p > 2953652287$, N_p , the number of prime numbers in the range of $(p, p + \pi(p))$, has a lower bound of $\frac{p}{\log^2 p'}$ which is greater than 1.

$$
N_p > \frac{p}{\log^2 p} > 1\tag{13}
$$

In conclusion, for > 2953652287 , there is at least one prime number in the range of $(p, p + 1)$ $\pi(p)$]. It can be verified that, for $2 \le p \le 2953652287$, $N_p \ge 1$. Therefore, Theorem 1, $\pi(p + \pi(p)) - \pi(p) \geq 1$, is proved.

Corollary 1: There is at least one prime number in the range of $(n, n + \pi(n))$ *, where n is an integer greater than or equal to 2 and* $\pi(n)$ *is the number of primes less than or equal to n.*

Proof: Let *n* be an integer such that

$$
p_m \le n < p_{m+1} \tag{14}
$$

where p_m is the m-th prime number with $m \geq 1$ and p_{m+1} the next prime number flowing p_m . By the definition of n,

$$
\pi(n) = m \tag{15}
$$

where $n \geq 2$. Theorem 1 tells us there exists at least one prime number in the range of $(p_m, p_m + m]$ and, by definition, there is exactly one prime number in the range $(p_m, p_{m+1}]$. Thus, $p_{m+1} \le p_m + m$. Combining with Eq. 14, we have

$$
p_m \le n < p_{m+1} \le p_m + m \tag{16}
$$

Since $n \ge p_m$, adding *n* on both sides of Eq. 15 gives

$$
n + \pi(n) = n + m \ge p_m + m \tag{17}
$$

As there is at least one prime number in the range of $(p_m, p_m + m]$ and $p_m + m \le n + \pi(n)$, there must be at least one prime number in the range of $(p_m, n + \pi(n))$.

By the definition of *n*, there is no prime number in the range of $(p_m, n]$. It can be concluded that there is at least one prime number in the range of $(n, n + \pi(n))$, where $n \ge 2$.

Corollary 2: There is at least one prime number between $p - \pi(p)$ *and p*, *where p is a prime number greater than or equal to 3 and* $\pi(p)$ *is the number of primes less than or equal to .*

Proof: Let *k* be the number of prime numbers less than or equal to $p_m - m$, or

$$
k = \pi (p_m - m). \tag{18}
$$

where $m \geq 2$. Since

$$
p_k \le p_m - m < p_m \tag{19}
$$

which means p_k < p_m and, thus, k < m. So, we have

$$
p_k + k \le p_m - m + k < p_m \tag{20}
$$

According to Theorem 1, there is at least one prime number in the range of $(p_k, p_k + k]$ and, by the definition of k, there is no prime number in the range of $(p_k, p_m - m]$. Thus, there must be at least one prime number in the range of $(p_m - m, p_k + k]$.

Since $p_k + k < p_m$, there must be at least one prime number in the range of $(p_m - m, p_m)$. Let $p = p_m$ with $m \ge 2$. We have $m = \pi(p)$. Therefore, it can be concluded that there is at least one prime number between $p - \pi(p)$ and p, where $p \ge 3$.

Corollary 3: There is at least one prime number between $\mathbf{n} - \pi(\mathbf{n})$ *and* \mathbf{n} *, where n is an integer greater than or equal to 3 and* $\pi(n)$ *is the number of primes less than or equal to n.*

Proof: Let *n* be an integer such that

$$
p_{m-1} < n < p_m \tag{21}
$$

in which p_m is the m-th prime number with m > 2 and p_{m-1} the previous prime number. By the definition of n,

$$
\pi(n) = m - 1 \tag{22}
$$

where $n \geq 3$. Since

$$
n - \pi(n) = n - (m - 1) = (n + 1) - m < (p_m + 1) - m \le p_m - m \tag{23}
$$

According to Corollary 2, there is at least one prime number in the range of $(p_m - m, p_m)$. So, there must be at least one prime number in the range of $(n - \pi(n), p_m)$.

By the definition of *n*, there is no prime number in the range of $[n, p_m)$. It can be concluded that there is at least one prime number between $n - \pi(n)$ and n , where $n \ge 3$. □

Corollary 4: There are at least three prime numbers in the range of $((p - \pi(p), p + \pi(p))$ *, where p is a prime number greater than or equal to 3 and* $\pi(p)$ *is the number of primes less than or equal to .*

Proof: From Corollary 2 and Theorem 1, we know that there is at least one prime number in the range of $(p - \pi(p), p)$ and $(p, p + \pi(p))$. Since p is a prime number, there must be at least three prime numbers in the range of $(p - π(p), p + π(p))$.

References

[1] P. Dusart, Estimates of some functions over primes without RH, arXiv:1002.0442v1 [math.NT] 2 Feb 2010.