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Let F(n) = A000045(n) denote the n-th Fibonacci number. The purpose of
this note is to show that A) the sequence

{
F
(
22n

)}
converges in the ring of

2-adic integers Z2 to A341603, the expansion of the 2-adic integer sqrt(−3/5)
that is ≡ 3 (mod 4) and B) the sequence

{
F
(
22n+1

)}
converges in Z2 to

A341602, the expansion of the 2-adic integer sqrt(−3/5) that is ≡ 1 (mod 4) .

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

A) In Z2, lim_{n→∞} F(22n) = A341603.

In Proposition 2 below, we will establish the following congruence property for
the Fibonacci numbers:

F
(
22n+2

)
≡ F

(
22n

) (
mod 22n+1

)
, n ≥ 0. (1)

Assuming this for the moment, it follows that the sequence
{
F
(
22n

)}
is a

Cauchy sequence in Z2, which therefore converges to some 2-adic integer, call
it α. We aim to prove that 5α2 + 3 = 0 with α ≡ 3 (mod 4) .

Now by Proposition 1, equation (4) below, F
(
22n

)
≡ 3 (mod 4) for n ≥ 1, and

hence in the limit we also have α ≡ 3 (mod 4) .

For notational convenience, let A(n) = F(22n). The recurrence equation

A(n+ 1)2 = A(n)2
(
5A(n)2 + 2

)2 (
5A(n)2 + 4

)
(2)

holds with the initial condition A(1) = 3.

Proof. Let u(n) = F(2n). The recurrence u(n)2 = u(n− 1)2
(
5u(n− 1)2 + 4

)
may be veri�ed using the Binet formula for the Fibonacci numbers:

F(n) =
1
√
5
(φn − (−1/φ)n) , where φ =

1 +
√
5

2
is the golden ratio. Then it is

straightforward to check that u(2n) = F
(
22n

)
satis�es (2).�

Taking the 2-adic limit of (2) as n→∞ gives α2 = α2
(
5α2 + 2

)2(
5α2 + 4

)
, so

that α is a root of the polynomial equation 5α2
(
5α2 + 3

) (
5α4 + 5α2 + 1

)
= 0.

Since α ≡ 3 (mod 4) , we �nd that α2 ≡ 1 (mod 4) and 5α4 + 5α2 + 1 ≡
3 (mod 4), so it must be the case that 5α2 + 3 = 0 in Z2 (a ring without zero
divisors). Therefore α is the 2-adic integer sqrt(−3/5) with α ≡ 3 (mod 4).
Thus α = A341603.
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B) In Z2, lim_{n→∞} F(22n−1) = A341602.

In Proposition 3 below, we establish the following congruence property for the
Fibonacci numbers:

F
(
22n+1

)
≡ F

(
22n−1

) (
mod 22n

)
for n ≥ 1.

It follows that the sequence
{
F
(
22n−1

)}
is a Cauchy sequence in Z2, which

therefore converges to some 2-adic integer, call it β. From Proposition 4 below,
we have

lim_{n→∞}
(
F
(
22n−2

)
+ F

(
22n−1

))
= α+ β = 0.

Thus β = −α is the other root in Z2 of 5x2 + 3 = 0 and β ≡ 1 (mod 4).
Therefore, β = lim_{n→∞} F(22n−1) = A341602.�

Remark. Just as in (2), one can show that B(n) := F(22n−1) satis�es the
recurrence equation

B(n+ 1)2 = B(n)2
(
5B(n)2 + 2

)2 (
5B(n)2 + 4

)
, (3)

the same as for A(n), but with the initial condition B(1) = 1.

It remains to prove the four Propositions concerning Fibonacci numbers used
in the above proofs.

Proposition 1.
F
(
22n

)
≡ 3 (mod 4) for n ≥ 1 (4)

F
(
22n+1

)
≡ 1 (mod 4) for n ≥ 0. (5)

Proof. Recall the Binet formulas for the Fibonacci numbers and Lucas
numbers L(n) = A000032(n):

F(n) =
1
√
5
(φn − (−1/φ)n) and L(n) = φn + (−1/φ)n,

where φ =
1 +
√
5

2
is the golden ratio. A consequence of Binet's formula for

the Lucas numbers is the recurrence equation

L (2n) = L
(
2n−1

)2 − 2. (6)

An induction argument then shows that

L (2n) ≡ 3 (mod 4) for n ≥ 1. (7)

A well-known identity connecting the Fibonacci and Lucas numbers, which
follows immediately from the Binet formulas, is

F(2n) = F(n)L(n).
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Hence
F(2n) = F(2n−1)L(2n−1). (8)

Using (7) and (8), a straightforward induction argument with base cases
F (2) = 1 and F (4) = 3 completes the proof of (4) and (5).�

Proposition 2. The congruence

F
(
22n+2

)
≡ F

(
22n

) (
mod 22n+1

)
holds for n ≥ 0.

Proof. The case n = 0 is easily checked. Assume now that n ≥ 1. The Lucas
numbers L(n) are known to satisfy the Gauss congruences

L (mpr) ≡ L
(
mpr−1

)
(mod pr) (9)

for all primes p and all positive integers m and r.

Using the Binet formulas it is easy to show that the Fibonacci and Lucas
numbers are related by

5F(k)2 + 2(−1)k = L(2k).

Hence
5F

(
22n

)
2 + 2 = L

(
22n+1

)
(10)

and
5F

(
22n+2

)
2 + 2 = L

(
22n+3

)
. (11)

Subtracting (10) from (11) gives

5F
(
22n+2

)2 − 5F
(
22n

)2
= L

(
22n+3

)
− L

(
22n+1

)
=

(
L
(
22n+3

)
− L

(
22n+2

))
+

(
L
(
22n+2

)
− L

(
22n+1

))
≡ 0

(
mod 22n+2

)
by (9 ). It follows that(

F
(
22n+2

)
− F

(
22n

)) (
F
(
22n+2

)
+ F

(
22n

))
≡ 0

(
mod 22n+2

)
. (12)

Now by Proposition 1, equation (4), F
(
22n+2

)
+ F

(
22n

)
has the form

2(2N + 3) for n ≥ 1. Hence from (12) we conclude that

F
(
22n+2

)
− F

(
22n

)
≡ 0

(
mod 22n+1

)
for all n ≥ 0.�
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Proposition 3. The congruence

F
(
22n+1

)
≡ F

(
22n−1

) (
mod 22n

)
holds for n ≥ 1.

Sketch proof. Following a similar argument to that used in Proposition 2, we
arrive at the congruence(

F
(
22n+1

)
− F

(
22n−1

)) (
F
(
22n+1

)
+ F

(
22n−1

))
≡ 0

(
mod 22n+1

)
. (13)

By (5), F
(
22n+1

)
≡ 1 (mod 4) . Thus the second factor F

(
22n+1

)
+ F

(
22n−1

)
on the left side of (13) is ≡ 2 (mod 4), that is, F

(
22n+1

)
+ F

(
22n

)
is twice an

odd number. It now follows from (13) that

F
(
22n+1

)
− F

(
22n−1

)
≡ 0

(
mod 22n

)
.�

Proposition 4. The congruence

F
(
22n+1

)
+ F

(
22n

)
≡ 0

(
mod 22n+1

)
holds for n ≥ 1.

Sketch proof. Following a similar argument to that used in Proposition 2, we
arrive at the congruence(

F
(
22n+1

)
− F

(
22n

)) (
F
(
22n+1

)
+ F

(
22n

))
≡ 0

(
mod 22n+2

)
. (14)

By (4) and (5), F
(
22n

)
≡ 3 (mod 4) and F

(
22n+1

)
≡ 1 (mod 4) . Thus the

�rst factor F
(
22n+1

)
− F

(
22n

)
on the left side of (14) is ≡ 2 (mod 4), that is,

F
(
22n+1

)
− F

(
22n

)
is twice an odd number. It follows from (14) that

F
(
22n+1

)
+ F

(
22n

)
≡ 0

(
mod 22n+1

)
.�
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