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Let F(n) = /A000045(n)| denote the n-th Fibonacci number. The purpose of
this note is to show that A) the sequence {F (22")} converges in the ring of
2-adic integers Zo to A341603, the expansion of the 2-adic integer sqrt(—3/5)
that is = 3 (mod 4) and B) the sequence {F (22"*1)} converges in Z, to
A341602, the expansion of the 2-adic integer sqrt(—3/5) that is =1 (mod 4).

A) In Zy, lim_{n — oo} F(22") = A341603.

In Proposition 2 below, we will establish the following congruence property for
the Fibonacci numbers:

F (2°77?) = F (2°") (mod 2*"*'), n > 0. (1)
Assuming this for the moment, it follows that the sequence {F (22")} is a

Cauchy sequence in Zs, which therefore converges to some 2-adic integer, call
it . We aim to prove that 502 + 3 = 0 with o = 3 (mod 4).

Now by Proposition 1, equation (4) below, F (22") = 3 (mod 4) for n > 1, and
hence in the limit we also have a = 3 (mod 4) .

For notational convenience, let A(n) = F(22"). The recurrence equation
A(n+1)2 = A(n)? (5A(n)* +2)° (5A(n)* + 4) (2)
holds with the initial condition A(1) = 3.

Proof. Let u(n) = F(2"). The recurrence u(n)? = u(n — 1)? (5u(n — 1) 4 4)
may be verified using the Binet formula for the Fibonacci numbers:

F(n) = \}g(éﬁn —(=1/¢)"), where ¢ = L+v5

straightforward to check that u(2n) = F (22") satisfies (2). O

is the golden ratio. Then it is

Taking the 2-adic limit of (2) as n — oo gives a® = o? (502 + 2)2 (502 +4), so
that o is a root of the polynomial equation 502 (502 + 3) (5a* + 502 + 1) = 0.
Since o = 3 (mod 4), we find that a? =1 (mod 4) and 5a* 4+ 502 + 1 =

3 (mod 4), so it must be the case that 5a% + 3 = 0 in Zy (a ring without zero
divisors). Therefore « is the 2-adic integer sqrt(—3/5) with & = 3 (mod 4).
Thus oo =|A341603.
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https://oeis.org/A341603
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https://oeis.org/A341603
https://oeis.org/A341603

B) In Zy, lim_{n — oo} F(22"~1) = A341602.

In Proposition 3 below, we establish the following congruence property for the
Fibonacci numbers:

F (2>"*1) =F (2°"') (mod 2%") for n > 1.

It follows that the sequence {F (22"~!)} is a Cauchy sequence in Zy, which
therefore converges to some 2-adic integer, call it 5. From Proposition 4 below,
we have

lim_{n — oo} (F(2*" )+ F(2*"")) =a+8=0.
Thus 8 = —a is the other root in Zsy of 522 +3 =0 and 8 =1 (mod 4).
Therefore, 8 = lim_{n — oo} F(22"~1) = A341602. O

Remark. Just as in (2), one can show that B(n) := F(22"71) satisfies the
recurrence equation

B(n+1)> = B(n)? (5B(n)? +2)° (5B(n)® + 4) , (3)
the same as for A(n), but with the initial condition B(1) = 1.

It remains to prove the four Propositions concerning Fibonacci numbers used
in the above proofs.

Proposition 1.
F(2*") =3 (mod 4) forn>1 (4)

F(2°""') =1 (mod 4) for n > 0. (5)

Proof. Recall the Binet formulas for the Fibonacci numbers and Lucas
numbers L(n) = A000032(n):

1

(6" = (=1/¢)") and L(n)=¢" +(-1/)",

where ¢ = is the golden ratio. A consequence of Binet’s formula for

the Lucas numbers is the recurrence equation

L") =L(2" ) -2 (6)

An induction argument then shows that
L(2")=3 (mod 4) forn>1. (7)

A well-known identity connecting the Fibonacci and Lucas numbers, which
follows immediately from the Binet formulas, is

F(2n) = F(n)L(n).


https://oeis.org/A341602
https://oeis.org/A000032

Hence
F(2") = F(2" HL2" ). (8)
Using (7) and (8), a straightforward induction argument with base cases

F(2) =1 and F(4) = 3 completes the proof of (4) and (5). O

Proposition 2. The congruence
F (22"1?) = F (2°") (mod 2°"*1)

holds for n > 0.

Proof. The case n = 0 is easily checked. Assume now that n > 1. The Lucas
numbers L(n) are known to satisfy the |Gauss congruences

L (mp") =L (mp"™"') (mod p") (9)
for all primes p and all positive integers m and r.

Using the Binet formulas it is easy to show that the Fibonacci and Lucas
numbers are related by

5F (k)% 4 2(—1)% = L(2k).

Hence
5F (2°") % +2 =1L (2*"*) (10)

and
5F (22712)2 42 =L (2°"19). (11)

Subtracting (10) from (11) gives

BF (227+2)7 —5F (22")” = L (22"+3) — L (22"+)
= (L@"7) —L(27%)) + (L (2°77%) —L (2*"7))

0 (mod 22””)

by (9 ). It follows that
(F (2*2) —F (2°")) (F (2*""2) + F (2°")) = 0 (mod 2°"*?). (12)

Now by Proposition 1, equation (4), F (22"”) +F (22") has the form
2(2N + 3) for n > 1. Hence from (12) we conclude that

F (2°"7?) —F (2°") =0 (mod 2°"1)

foralln > 0.0


https://arminstraub.com/downloads/slides/2018gausscongruences-icomas.pdf

Proposition 3. The congruence
F (22n+1) =F (22n71) (mod 22n)

holds for n > 1.

Sketch proof. Following a similar argument to that used in Proposition 2, we
arrive at the congruence

(F (2>t —F (2" ) (F (2*"*!) + F (2°"7!)) =0 (mod 2°"*").  (13)

By (5), F (22"*!) =1 (mod 4) . Thus the second factor F (22"F1) + F (227~1)
on the left side of (13) is = 2 (mod 4), that is, F (22"7!) + F (2?") is twice an
odd number. It now follows from (13) that

F(2*"*1) — F (2°"7") =0 (mod 2°") .0

Proposition 4. The congruence
F (2*""1) + F (2°*) =0 (mod 2°"*1)

holds for n > 1.

Sketch proof. Following a similar argument to that used in Proposition 2, we
arrive at the congruence

(F (2*"*1) = F (2*")) (F (2°"™") + F (2°")) = 0 (mod 2°"*?). (14)

By (4) and (5), F (22") = 3 (mod 4) and F (2*"*1) =1 (mod 4) . Thus the
first factor F (22"1) — F (22") on the left side of (14) is = 2 (mod 4), that is,
F (227F1) — F (22") is twice an odd number. It follows from (14) that

F (2*"*1) + F (2°") =0 (mod 2°"*1) . O



