Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a002193 -id:a002193
Displaying 1-10 of 292 results found. page 1 2 3 4 5 6 7 8 9 10 ... 30
     Sort: relevance | references | number | modified | created      Format: long | short | data
A003007 Number of n-level ladder expressions with A002193.
(Formerly M1145)
+20
2
1, 1, 2, 4, 8, 17, 38, 89, 208 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis, Amer. Math. Monthly 80 (8) (1973), 868-876.
R. K. Guy and J. L. Selfridge, The nesting and roosting habits of the laddered parenthesis. (annotated cached copy)
CROSSREFS
Cf. A003008.
KEYWORD
nonn,more
AUTHOR
STATUS
approved
A106537 The decimal digits of sqrt(2) = A002193 split into groups as long as given by the string of digits themselves. +20
1
1, 4142, 1, 3562, 37, 3095048801688, 72420, 969807, 85, 696, 7187537, 694807317667973799073247846210, 703885038, 75343276415727350138462309122970249248360558507372, 1264 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The decimal expansion is divided into chunks of lengths of 1, 4, 1, 4, 2 etc. Where a chunk would start with a leading zero, sizes are increased to have a length determined by 2 or more consecutive digits, as for a(6) which does not contain 1 but 13 digits.
The next chunk of the sequence will have 880 digits.
LINKS
EXAMPLE
1 4142 1 3562 37 3095048801688 72420 969807 85 696 7187537... 1 4 1 4 2 13 5 6 2 3 7
Chunk "3095048801688" could not be divided into chunks of size 1, 3, 5, etc. because of the 0 (zero) in second position.
CROSSREFS
Cf. A106156 (for Pi).
KEYWORD
base,easy,nonn
AUTHOR
Eric Angelini, May 08 2005
STATUS
approved
A167834 Numbers with distinct digits appearing in partition of decimal expansion of square root of 2. (A002193) +20
1
14, 142, 13562, 37, 3095, 48, 8016, 8, 8724, 2096, 9807, 8569, 6718, 753, 769480, 731, 76, 679, 73, 79, 907324, 7846210, 7038, 8503, 87534, 3276415, 72, 73501, 38462, 30912, 2970, 249, 2483605, 58, 5073, 721, 264, 412, 149709 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Start with decimal expansion of sqrt(2): 1.41421356237309504880168872420969807856967187537694807317667... Part the sequence to the sections with distinct digits: S={1,4},{1,4,2},{1,3,5,6,2},{3,7},{3,0,9,5},{0,4,8},{8,0,1,6},... Numbers from digits of s(n), leaving leading zeros: 14,142,13562,37,3095,48,8016,...
LINKS
CROSSREFS
Cf. A104819.
KEYWORD
nonn,base
AUTHOR
Jani Melik, Nov 13 2009
STATUS
approved
A232244 A walk based on the digits of sqrt(2) (A002193). +20
1
1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 2, 3, 4, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
sqrt(2)= 1. 41421354237...
Between 1 and 4 we place 2 and 3.
Between 4 and 1 we place 3 and 2.
Between 1 and 4 we place 2 and 3.
Between 4 and 2 we place 3 and so on.
This gives:
1, 2, 3, 4, 3, 2, 1, 2, 3, 4, 3, 2, 1, 2, 3, ...
This could be called a walk (or promenade) on the digits of sqrt(2).
LINKS
PROG
(Haskell)
a232244 n = a232244_list !! (n-1)
a232244_list = 1 : concat (zipWith w a002193_list $ tail a002193_list)
where w v u | v > u = [v - 1, v - 2 .. u]
| v < u = [v + 1 .. u]
| otherwise = [v]
-- Reinhard Zumkeller, Nov 22 2013
CROSSREFS
Cf. A002193.
KEYWORD
nonn,easy,base
AUTHOR
Philippe Deléham, Nov 20 2013 at the suggestion of N. J. A. Sloane
STATUS
approved
A167835 Length of sections with distinct digits in decimal expansion of square root of 2. (A002193) +20
0
2, 3, 5, 2, 4, 3, 4, 1, 4, 4, 4, 4, 4, 3, 6, 3, 2, 3, 2, 2, 6, 7, 4, 4, 5, 7, 2, 5, 5, 5, 4, 3, 7, 2, 4, 3, 3, 3, 5, 1, 1, 4, 3, 3, 1, 2, 5, 2, 1, 4, 1, 3, 1, 3, 3, 5, 3, 5, 3, 3, 2, 6, 4, 4, 5, 6, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
LINKS
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Jani Melik, Nov 13 2009
EXTENSIONS
Corrected and extended by D. S. McNeil, Nov 22 2010
STATUS
approved
A280546 Index in A002193 of start of first occurrence of at least n consecutive equal digits in the decimal expansion of sqrt(2) after the decimal point. +20
0
2, 19, 150, 953, 2708, 32414, 158810, 4602784, 472173970, 472173970 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
We index the digits of sqrt(2) = 1.4142135... starting with 1 (for the 1), 2 (for the 4), 3 (for the second 1), 4 (for the second 4), 5 (for the 2), and so on.
Find the index of the first digit of a run of n consecutive equal digits after the decimal point: this is a(n). For example, the "88" here 1414213562373095048801.. begins at the 19th digit, so a(2) = 19. - N. J. A. Sloane, Mar 20 2023
LINKS
Irrational Numbers Search Engine (searches initial 2 x 10^9 digits of sqrt(2))
MATHEMATICA
Module[{nn=160000, s2}, s2=RealDigits[Sqrt[2], 10, nn][[1]]; Flatten[Table[ SequencePosition[ s2, PadRight[{}, k, x_], 1], {k, 7}], 1]][[;; , 1]] (* Harvey P. Dale, Mar 20 2023 *)
PROG
(PARI) string(n) = default(realprecision, n+10); my(x=sqrt(2)); floor(x*10^n)
digit(n) = string(n)-10*string(n-1)
searchstrpos(n) = my(x=1, i=1); while(1, my(y=x+1); while(digit(y)==digit(x), y++; i++); if(i >= n, return(x+1)); i=1; x++)
a(n) = searchstrpos(n)
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Felix Fröhlich, Jan 05 2017
STATUS
approved
A332969 a(n) = [x^n] (Sum_{j>=0} A002193(1-j) * x^j)^2. +20
0
1, 8, 18, 16, 37, 26, 34, 52, 70, 90, 87, 116, 127, 112, 157, 212, 158, 192, 252, 252, 249, 272, 349, 276, 287, 478, 482, 334, 407, 478, 465, 488, 544, 698, 562, 504, 682, 698, 738, 736, 742, 880, 907, 826, 944, 848, 998, 1110, 976, 1106, 1217, 1112, 1060 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
G.f.: (Sum_{j>=0} A002193(1-j) * x^j)^2.
Sum_{k>=0} a(k)/10^k = 2.
a(n) = Sum_{j=0..n} A002193(1-j)*A002193(j-n+1).
EXAMPLE
a(1) = 8 because the coefficient of x^1 in (1 + 4x + ... )^2 is 8.
PROG
(PARI) seq(n)={Vec(Ser(digits(sqrtint(2*100^n)))^2)} \\ Andrew Howroyd, Mar 04 2020
CROSSREFS
Cf. A002193.
KEYWORD
nonn,base,easy
AUTHOR
Andrew Slattery, Mar 04 2020
STATUS
approved
A040000 a(0)=1; a(n)=2 for n >= 1. +10
193
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Continued fraction expansion of sqrt(2) is 1 + 1/(2 + 1/(2 + 1/(2 + ...))).
Inverse binomial transform of Mersenne numbers A000225(n+1) = 2^(n+1) - 1. - Paul Barry, Feb 28 2003
A Chebyshev transform of 2^n: if A(x) is the g.f. of a sequence, map it to ((1-x^2)/(1+x^2))A(x/(1+x^2)). - Paul Barry, Oct 31 2004
An inverse Catalan transform of A068875 under the mapping g(x)->g(x(1-x)). A068875 can be retrieved using the mapping g(x)->g(xc(x)), where c(x) is the g.f. of A000108. A040000 and A068875 may be described as a Catalan pair. - Paul Barry, Nov 14 2004
Sequence of electron arrangement in the 1s 2s and 3s atomic subshells. Cf. A001105, A016825. - Jeremy Gardiner, Dec 19 2004
Binomial transform of A165326. - Philippe Deléham, Sep 16 2009
Let m=2. We observe that a(n) = Sum_{k=0..floor(n/2)} binomial(m,n-2*k). Then there is a link with A113311 and A115291: it is the same formula with respectively m=3 and m=4. We can generalize this result with the sequence whose g.f. is given by (1+z)^(m-1)/(1-z). - Richard Choulet, Dec 08 2009
With offset 1: number of permutations where |p(i) - p(i+1)| <= 1 for n=1,2,...,n-1. This is the identical permutation and (for n>1) its reversal.
Equals INVERT transform of bar(1, 1, -1, -1, ...).
Eventual period is (2). - Zak Seidov, Mar 05 2011
Also decimal expansion of 11/90. - Vincenzo Librandi, Sep 24 2011
a(n) = 3 - A054977(n); right edge of the triangle in A182579. - Reinhard Zumkeller, May 07 2012
With offset 1: minimum cardinality of the range of a periodic sequence with (least) period n. Of course the range's maximum cardinality for a purely periodic sequence with (least) period n is n. - Rick L. Shepherd, Dec 08 2014
With offset 1: n*a(1) + (n-1)*a(2) + ... + 2*a(n-1) + a(n) = n^2. - Warren Breslow, Dec 12 2014
With offset 1: decimal expansion of gamma(4) = 11/9 where gamma(n) = Cp(n)/Cv(n) is the n-th Poisson's constant. For the definition of Cp and Cv see A272002. - Natan Arie Consigli, Sep 11 2016
a(n) equals the number of binary sequences of length n where no two consecutive terms differ. Also equals the number of binary sequences of length n where no two consecutive terms are the same. - David Nacin, May 31 2017
a(n) is the period of the continued fractions for sqrt((n+2)/(n+1)) and sqrt((n+1)/(n+2)). - A.H.M. Smeets, Dec 05 2017
Also, number of self-avoiding walks and coordination sequence for the one-dimensional lattice Z. - Sean A. Irvine, Jul 27 2020
REFERENCES
A. Beiser, Concepts of Modern Physics, 2nd Ed., McGraw-Hill, 1973.
LINKS
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
Bruce Fang, Pamela E. Harris, Brian M. Kamau, and David Wang, Vacillating parking functions, arXiv:2402.02538 [math.CO], 2024.
Kshitij Education, Molar specific heat
Narad Rampersad and Max Wiebe, Sums of products of binomial coefficients mod 2 and 2-regular sequences, arXiv:2309.04012 [math.NT], 2023.
Eric Weisstein's World of Mathematics, Square root
Eric Weisstein's World of Mathematics, Pythagoras's Constant
G. Xiao, Contfrac
FORMULA
G.f.: (1+x)/(1-x). - Paul Barry, Feb 28 2003
a(n) = 2 - 0^n; a(n) = Sum_{k=0..n} binomial(1, k). - Paul Barry, Oct 16 2004
a(n) = n*Sum_{k=0..floor(n/2)} (-1)^k*binomial(n-k, k)*2^(n-2*k)/(n-k). - Paul Barry, Oct 31 2004
A040000(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*(-1)^k*A068875(n-k). - Paul Barry, Nov 14 2004
Euler transform of length 2 sequence [2, -1]. - Michael Somos, Apr 16 2007
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = (u-v)*(u+v) - 2*v*(u-w). - Michael Somos, Apr 16 2007
E.g.f.: 2*exp(x) - 1. - Michael Somos, Apr 16 2007
a(n) = a(-n) for all n in Z (one possible extension to n<0). - Michael Somos, Apr 16 2007
G.f.: (1-x^2)/(1-x)^2. - Jaume Oliver Lafont, Mar 26 2009
G.f.: exp(2*atanh(x)). - Jaume Oliver Lafont, Oct 20 2009
a(n) = Sum_{k=0..n} A108561(n,k)*(-1)^k. - Philippe Deléham, Nov 17 2013
a(n) = 1 + sign(n). - Wesley Ivan Hurt, Apr 16 2014
10 * 11/90 = 11/9 = (11/2 R)/(9/2 R) = Cp(4)/Cv(4) = A272005/A272004, with R = A081822 (or A070064). - Natan Arie Consigli, Sep 11 2016
a(n) = A001227(A000040(n+1)). - Omar E. Pol, Feb 28 2018
EXAMPLE
sqrt(2) = 1.41421356237309504... = 1 + 1/(2 + 1/(2 + 1/(2 + 1/(2 + ...)))). - Harry J. Smith, Apr 21 2009
G.f. = 1 + 2*x + 2*x^2 + 2*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 2*x^8 + ...
11/90 = 0.1222222222222222222... - Natan Arie Consigli, Sep 11 2016
MAPLE
Digits := 100: convert(evalf(sqrt(2)), confrac, 90, 'cvgts'):
MATHEMATICA
ContinuedFraction[Sqrt[2], 300] (* Vladimir Joseph Stephan Orlovsky, Mar 04 2011 *)
a[ n_] := 2 - Boole[n == 0]; (* Michael Somos, Dec 28 2014 *)
PROG
(PARI) {a(n) = 2-!n}; /* Michael Somos, Apr 16 2007 */
(PARI) a(n)=1+sign(n) \\ Jaume Oliver Lafont, Mar 26 2009
(PARI) allocatemem(932245000); default(realprecision, 21000); x=contfrac(sqrt(2)); for (n=0, 20000, write("b040000.txt", n, " ", x[n+1])); \\ Harry J. Smith, Apr 21 2009
(Haskell)
a040000 0 = 1; a040000 n = 2
a040000_list = 1 : repeat 2 -- Reinhard Zumkeller, May 07 2012
CROSSREFS
Convolution square is A008574.
See A003945 etc. for (1+x)/(1-k*x).
From Jaume Oliver Lafont, Mar 26 2009: (Start)
Sum_{0<=k<=n} a(k) = A005408(n).
Prod_{0<=k<=n} a(k) = A000079(n). (End)
Cf. A000674 (boustrophedon transform).
Cf. A001333/A000129 (continued fraction convergents).
Cf. A000122, A002193 (sqrt(2) decimal expansion), A006487 (Egyptian fraction).
Cf. Other continued fractions for sqrt(a^2+1) = (a, 2a, 2a, 2a....): A040002 (contfrac(sqrt(5)) = (2,4,4,...)), A040006, A040012, A040020, A040030, A040042, A040056, A040072, A040090, A040110 (contfrac(sqrt(122)) = (11,22,22,...)), A040132, A040156, A040182, A040210, A040240, A040272, A040306, A040342, A040380, A040420 (contfrac(sqrt(442)) = (21,42,42,...)), A040462, A040506, A040552, A040600, A040650, A040702, A040756, A040812, A040870, A040930 (contfrac(sqrt(962)) = (31,62,62,...)).
KEYWORD
nonn,cofr,easy,cons
AUTHOR
N. J. A. Sloane, Dec 11 1999
STATUS
approved
A156035 Decimal expansion of 3 + 2*sqrt(2). +10
134
5, 8, 2, 8, 4, 2, 7, 1, 2, 4, 7, 4, 6, 1, 9, 0, 0, 9, 7, 6, 0, 3, 3, 7, 7, 4, 4, 8, 4, 1, 9, 3, 9, 6, 1, 5, 7, 1, 3, 9, 3, 4, 3, 7, 5, 0, 7, 5, 3, 8, 9, 6, 1, 4, 6, 3, 5, 3, 3, 5, 9, 4, 7, 5, 9, 8, 1, 4, 6, 4, 9, 5, 6, 9, 2, 4, 2, 1, 4, 0, 7, 7, 7, 0, 0, 7, 7, 5, 0, 6, 8, 6, 5, 5, 2, 8, 3, 1, 4, 5, 4, 7, 0, 0, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Limit_{n -> oo} b(n+1)/b(n) = 3+2*sqrt(2) for b = A155464, A155465, A155466.
Limit_{n -> oo} b(n)/b(n-1) = 3+2*sqrt(2) for b = A001652, A001653, A002315, A156156, A156157, A156158. - Klaus Brockhaus, Sep 23 2009
From Richard R. Forberg, Aug 14 2013: (Start)
Ratios b(n+1)/b(n) for all sequences of the form b(n) = 6*b(n-1) - b(n-2), for any initial values of b(0) and b(1), converge to this ratio.
Ratios b(n+1)/b(n) for all sequences of the form b(n) = 5*b(n-1) + 5*b(n-2) + b(n-3), for all b(0), b(1) and b(2) also converge to 3 + 2*sqrt(2). For example see A084158 (Pell Triangles).
Ratios of alternating values, b(n+2)/b(n), for all sequences of the form b(n) = 2*b(n-1) + b(n-2), also converge to 3 + 2*sqrt(2). These include A000129 (Pell Numbers). Also see A014176. (End)
Let ABCD be a square inscribed in a circle. When P is the midpoint of the arc AB, then the ratio (PC*PD)/(PA*PB) is equal to 3+2*sqrt(2). See the Mathematical Reflections link. - Michel Marcus, Jan 10 2017
Limit of ratios of successive terms of A001652 when n-> infinity. - Harvey P. Dale, Jun 16 2017; improved by Bernard Schott, Feb 28 2022
A quadratic integer with minimal polynomial x^2 - 6x + 1. - Charles R Greathouse IV, Jul 11 2020
Ratio between radii of the large circumscribed circle R and the small internal circle r drawn on the Sangaku tablet at Isaniwa Jinjya shrine in Ehime Prefecture (pictures in links). - Bernard Schott, Feb 25 2022
REFERENCES
Diogo Queiros-Condé and Michel Feidt, Fractal and Trans-scale Nature of Entropy, Iste Press and Elsevier, 2018, page 45.
LINKS
Mathematical Reflections, Solution to Problem J286, Issue 1, 2014, p. 5.
Bernard Schott, Sangaku at Isaniwa Jinya, The six circles.
Terakoya Suzu, Sangaku (mathematics tablet) II, Sangaku at Isaniwa Jinya shrine.
Wikipedia, Sangaku.
Bernard Ycart, Les Sangakus, Sangaku du Temple Isaniwa Jinya (in French).
FORMULA
Equals 1 + A090488 = 3 + A010466. - R. J. Mathar, Feb 19 2009
Equals exp(arccosh(3)), since arccosh(x) = log(x+sqrt(x^2-1)). - Stanislav Sykora, Nov 01 2013
Equals (1+sqrt(2))^2, that is, A014176^2. - Michel Marcus, May 08 2016
The periodic continued fraction is [5; [1, 4]]. - Stefano Spezia, Mar 17 2024
EXAMPLE
3 + 2*sqrt(2) = 5.828427124746190097603377448...
MATHEMATICA
RealDigits[N[3+2*Sqrt[2], 200]][[1]] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2011 *)
PROG
(PARI) 3+sqrt(8) \\ Charles R Greathouse IV, Jun 10 2011
(Magma) SetDefaultRealField(RealField(100)); 3 + 2*Sqrt(2); // G. C. Greubel, Aug 21 2018
CROSSREFS
Cf. A002193 (sqrt(2)), A090488, A010466, A014176.
Cf. A104178 (decimal expansion of log_10(3+2*sqrt(2))).
Cf. A242412 (sangaku).
KEYWORD
cons,easy,nonn
AUTHOR
Klaus Brockhaus, Feb 02 2009
STATUS
approved
A014176 Decimal expansion of the silver mean, 1+sqrt(2). +10
54
2, 4, 1, 4, 2, 1, 3, 5, 6, 2, 3, 7, 3, 0, 9, 5, 0, 4, 8, 8, 0, 1, 6, 8, 8, 7, 2, 4, 2, 0, 9, 6, 9, 8, 0, 7, 8, 5, 6, 9, 6, 7, 1, 8, 7, 5, 3, 7, 6, 9, 4, 8, 0, 7, 3, 1, 7, 6, 6, 7, 9, 7, 3, 7, 9, 9, 0, 7, 3, 2, 4, 7, 8, 4, 6, 2, 1, 0, 7, 0, 3, 8, 8, 5, 0, 3, 8, 7, 5, 3, 4, 3, 2, 7, 6, 4, 1, 5, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
From Hieronymus Fischer, Jan 02 2009: (Start)
Set c:=1+sqrt(2). Then the fractional part of c^n equals 1/c^n, if n odd. For even n, the fractional part of c^n is equal to 1-(1/c^n).
c:=1+sqrt(2) satisfies c-c^(-1)=floor(c)=2, hence c^n + (-c)^(-n) = round(c^n) for n>0, which follows from the general formula of A001622.
1/c = sqrt(2)-1.
See A001622 for a general formula concerning the fractional parts of powers of numbers x>1, which satisfy x-x^(-1)=floor(x).
Other examples of constants x satisfying the relation x-x^(-1)=floor(x) include A001622 (the golden ratio: where floor(x)=1) and A098316 (the "bronze" ratio: where floor(x)=3). (End)
In terms of continued fractions the constant c can be described by c=[2;2,2,2,...]. - Hieronymus Fischer, Oct 20 2010
Side length of smallest square containing five circles of diameter 1. - Charles R Greathouse IV, Apr 05, 2011
Largest radius of four circles tangent to a circle of radius 1. - Charles R Greathouse IV, Jan 14 2013
An analog of Fermat theorem: for prime p, round(c^p) == 2 (mod p). - Vladimir Shevelev, Mar 02 2013
n*(1+sqrt(2)) is the perimeter of a 45-45-90 triangle with hypotenuse n. - Wesley Ivan Hurt, Apr 09 2016
This algebraic integer of degree 2, with minimal polynomial x^2 - 2*x - 1, is also the length ratio diagonal/side of the second largest diagonal in the regular octagon (not counting the side). The other two diagonal/side ratios are A179260 and A121601. - Wolfdieter Lang, Oct 28 2020
c^n = A001333(n) + A000129(n) * sqrt(2). - Gary W. Adamson, Apr 26 2023
c^n = c * A000129(n) + A000129(n-1), where c = 1 + sqrt(2). - Gary W. Adamson, Aug 30 2023
REFERENCES
B. C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag, p. 140, Entry 25.
LINKS
Nicholas R. Beaton, Mireille Bousquet-Mélou, Jan de Gier, Hugo Duminil-Copin, and Anthony J. Guttmann, The critical fugacity for surface adsorption of self-avoiding walks on the honeycomb lattice is 1+sqrt(2), arXiv:1109.0358 [math-ph], 2011-2013.
Eric Weisstein's World of Mathematics, Silver Ratio
Wikipedia, Metallic mean
Wikipedia, Silver ratio
FORMULA
Conjecture: 1+sqrt(2) = lim_{n->oo} A179807(n+1)/A179807(n).
Equals cot(Pi/8) = tan(Pi*3/8). - Bruno Berselli, Dec 13 2012, and M. F. Hasler, Jul 08 2016
Silver mean = 2 + Sum_{n>=0} (-1)^n/(P(n-1)*P(n)), where P(n) is the n-th Pell number (A000129). - Vladimir Shevelev, Feb 22 2013
Equals exp(arcsinh(1)) which is exp(A091648). - Stanislav Sykora, Nov 01 2013
Limit_{n->oo} exp(asinh(cos(Pi/n))) = sqrt(2) + 1. - Geoffrey Caveney, Apr 23 2014
exp(asinh(cos(Pi/2 - log(sqrt(2)+1)*i))) = exp(asinh(sin(log(sqrt(2)+1)*i))) = i. - Geoffrey Caveney, Apr 23 2014
Equals Product_{k>=1} A047621(k) / A047522(k) = (3/1) * (5/7) * (11/9) * (13/15) * (19/17) * (21/23) * ... . - Dimitris Valianatos, Mar 27 2019
From Wolfdieter Lang, Nov 10 2023:(Start)
Equals lim_{n->oo} A000129(n+1)/A000129(n) (see A000129, Pell).
Equals lim_{n->oo} S(n+1, 2*sqrt(2))/S(n, 2*sqrt(2)), with the Chebyshev S(n,x) polynomial (see A049310). (End)
From Peter Bala, Mar 24 2024: (Start)
An infinite family of continued fraction expansions for this constant can be obtained from Berndt, Entry 25, by setting n = 1/2 and x = 8*k + 6 for k >= 0.
For example, taking k = 0 and k = 1 yields
sqrt(2) + 1 = 15/(6 + (1*3)/(12 + (5*7)/(12 + (9*11)/(12 + (13*15)/(12 + ... + (4*n + 1)*(4*n + 3)/(12 + ... )))))) and
sqrt(2) + 1 = (715/21) * 1/(14 + (1*3)/(28 + (5*7)/(28 + (9*11)/(28 + (13*15)/(28 + ... + (4*n + 1)*(4*n + 3)/(28 + ... )))))). (End)
EXAMPLE
2.414213562373095...
MAPLE
Digits:=100: evalf(1+sqrt(2)); # Wesley Ivan Hurt, Apr 09 2016
MATHEMATICA
RealDigits[1 + Sqrt@ 2, 10, 111] (* Or *)
RealDigits[Exp@ ArcSinh@ 1, 10, 111][[1]] (* Robert G. Wilson v, Aug 17 2011 *)
Circs[n_] := With[{r = Sin[Pi/n]/(1 - Sin[Pi/n])}, Graphics[Append[
Table[Circle[(r + 1) {Sin[2 Pi k/n], Cos[2 Pi k/n]}, r], {k, n}], {Blue, Circle[{0, 0}, 1]}]]] Circs[4] (* Charles R Greathouse IV, Jan 14 2013 *)
PROG
(PARI) 1+sqrt(2) \\ Charles R Greathouse IV, Jan 14 2013
CROSSREFS
Apart from initial digit the same as A002193.
See A098316 for [3;3,3,...]; A098317 for [4;4,4,...]; A098318 for [5;5,5,...]. - Hieronymus Fischer, Oct 20 2010
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved
page 1 2 3 4 5 6 7 8 9 10 ... 30

Search completed in 0.111 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 17 17:00 EDT 2024. Contains 375227 sequences. (Running on oeis4.)