Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a004831 -id:a004831
Displaying 1-10 of 10 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A000583 Fourth powers: a(n) = n^4.
(Formerly M5004 N2154)
+10
399
0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, 14641, 20736, 28561, 38416, 50625, 65536, 83521, 104976, 130321, 160000, 194481, 234256, 279841, 331776, 390625, 456976, 531441, 614656, 707281, 810000, 923521, 1048576, 1185921 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Figurate numbers based on 4-dimensional regular convex polytope called the 4-measure polytope, 4-hypercube or tesseract with Schlaefli symbol {4,3,3}. - Michael J. Welch (mjw1(AT)ntlworld.com), Apr 01 2004
Totally multiplicative sequence with a(p) = p^4 for prime p. - Jaroslav Krizek, Nov 01 2009
The binomial transform yields A058649. The inverse binomial transforms yields the (finite) 0, 1, 14, 36, 24, the 4th row in A019538 and A131689. - R. J. Mathar, Jan 16 2013
Generate Pythagorean triangles with parameters a and b to get sides of lengths x = b^2-a^2, y = 2*a*b, and z = a^2 + b^2. In particular use a=n-1 and b=n for a triangle with sides (x1,y1,z1) and a=n and b=n+1 for another triangle with sides (x2,y2,z2). Then x1*x2 + y1*y2 + z1*z2 = 8*a(n). - J. M. Bergot, Jul 22 2013
For n > 0, a(n) is the largest integer k such that k^4 + n is a multiple of k + n. Also, for n > 0, a(n) is the largest integer k such that k^2 + n^2 is a multiple of k + n^2. - Derek Orr, Sep 04 2014
Does not satisfy Benford's law [Ross, 2012]. - N. J. A. Sloane, Feb 08 2017
a(n+2)/2 is the area of a trapezoid with vertices at (T(n), T(n+1)), (T(n+1), T(n)), (T(n+1), T(n+2)), and (T(n+2), T(n+1)) with T(n)=A000292(n) for n >= 0. - J. M. Bergot, Feb 16 2018
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 255; 2nd. ed., p. 269. Worpitzky's identity (6.37).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ralph Greenberg, Math for Poets.
Sameen Ahmed Khan, Sums of the powers of reciprocals of polygonal numbers, Int'l J. of Appl. Math. (2020) Vol. 33, No. 2, 265-282.
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., Vol. 131, No. 1 (2002), pp. 65-75.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Kenneth A. Ross, First Digits of Squares and Cubes, Math. Mag. 85 (2012) 36-42.
Eric Weisstein's World of Mathematics, Biquadratic Number.
FORMULA
a(n) = A123865(n)+1 = A002523(n)-1.
Multiplicative with a(p^e) = p^(4e). - David W. Wilson, Aug 01 2001
G.f.: x*(1 + 11*x + 11*x^2 + x^3)/(1 - x)^5. More generally, g.f. for n^m is Euler(m, x)/(1-x)^(m+1), where Euler(m, x) is Eulerian polynomial of degree m (cf. A008292).
Dirichlet generating function: zeta(s-4). - Franklin T. Adams-Watters, Sep 11 2005
E.g.f.: (x + 7*x^2 + 6*x^3 + x^4)*e^x. More generally, the general form for the e.g.f. for n^m is phi_m(x)*e^x, where phi_m is the exponential polynomial of order n. - Franklin T. Adams-Watters, Sep 11 2005
Sum_{k>0} 1/a(k) = Pi^4/90 = A013662. - Jaume Oliver Lafont, Sep 20 2009
a(n) = C(n+3,4) + 11*C(n+2,4) + 11*C(n+1,4) + C(n,4). [Worpitzky's identity for powers of 4. See, e.g., Graham et al., eq. (6.37). - Wolfdieter Lang, Jul 17 2019]
a(n) = n*A177342(n) - Sum_{i=1..n-1} A177342(i) - (n - 1), with n > 1. - Bruno Berselli, May 07 2010
a(n) + a(n+1) + 1 = 2*A002061(n+1)^2. - Charlie Marion, Jun 13 2013
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 24. - Ant King, Sep 23 2013
From Amiram Eldar, Jan 20 2021: (Start)
Sum_{n>=1} (-1)^(n+1)/a(n) = 7*Pi^4/720 (A267315).
Product_{n>=2} (1 - 1/a(n)) = sinh(Pi)/(4*Pi). (End)
MAPLE
A000583 := n->n^4: seq(A000583(n), n=0..50);
A000583:=-(z+1)*(z**2+10*z+1)/(z-1)**5; # Simon Plouffe in his 1992 dissertation; gives sequence without initial zero
with (combinat):seq(fibonacci(3, n^2)-1, n=0..33); # Zerinvary Lajos, May 25 2008
MATHEMATICA
Range[0, 100]^4 (* Vladimir Joseph Stephan Orlovsky, Mar 14 2011 *)
PROG
(PARI) A000583(n) = n^4 \\ Michael B. Porter, Nov 09 2009
(Haskell)
a000583 = (^ 4)
a000583_list = scanl (+) 0 a005917_list
-- Reinhard Zumkeller, Nov 13 2014, Nov 11 2012
(Maxima) makelist(n^4, n, 0, 30); /* Martin Ettl, Nov 12 2012 */
(Magma) [n^4 : n in [0..50]]; // Wesley Ivan Hurt, Sep 05 2014
(Python)
def a(n): return n**4
print([a(n) for n in range(34)]) # Michael S. Branicky, Nov 10 2022
CROSSREFS
Cf. A000538, A005917 (first differences), A000332, A014820, A092181, A092182, A092183.
Cf. A002593, A260810. - Bruno Berselli, Jul 31 2015
KEYWORD
nonn,core,easy,nice,mult
AUTHOR
STATUS
approved
A047217 Numbers that are congruent to {0, 1, 2} mod 5. +10
25
0, 1, 2, 5, 6, 7, 10, 11, 12, 15, 16, 17, 20, 21, 22, 25, 26, 27, 30, 31, 32, 35, 36, 37, 40, 41, 42, 45, 46, 47, 50, 51, 52, 55, 56, 57, 60, 61, 62, 65, 66, 67, 70, 71, 72, 75, 76, 77, 80, 81, 82, 85, 86, 87, 90, 91, 92, 95, 96, 97, 100, 101, 102, 105, 106, 107, 110, 111 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Also, the only numbers that are eligible to be the sum of two 4th powers (A004831). - Cino Hilliard, Nov 23 2003
Nonnegative m such that floor(2*m/5) = 2*floor(m/5). - Bruno Berselli, Dec 09 2015
The sequence lists the indices of the multiples of 5 in A007531. - Bruno Berselli, Jan 05 2018
LINKS
Mohammed Yaseen, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Vincenzo Librandi)
FORMULA
a(n+1) = Sum_{k>=0} A030341(n,k)*b(k) with b(0)=1 and b(k)=5*3^(k-1) for k>0. - Philippe Deléham, Oct 22 2011
G.f.: x^2*(1+x+3*x^2)/(1-x)^2/(1+x+x^2). - Colin Barker, Feb 17 2012
a(n) = 5 + a(n-3) for n>3. - Robert Israel, Sep 02 2014
a(n) = floor((5/4)*floor(4*(n-1)/3)). - Bruno Berselli, May 03 2016
From Wesley Ivan Hurt, Jun 14 2016: (Start)
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4.
a(n) = (15*n-21-6*cos(2*n*Pi/3)+2*sqrt(3)*sin(2*n*Pi/3))/9.
a(3*k) = 5*k-3, a(3*k-1) = 5*k-4, a(3*k-2) = 5*k-5. (End)
a(n) = n - 1 + 2*floor((n-1)/3). - Bruno Berselli, Feb 06 2017
Sum_{n>=2} (-1)^n/a(n) = sqrt(1-2/sqrt(5))*Pi/5 + 3*log(2)/5. - Amiram Eldar, Dec 10 2021
MAPLE
seq(op([5*i, 5*i+1, 5*i+2]), i=0..100); # Robert Israel, Sep 02 2014
MATHEMATICA
Select[Range[0, 120], MemberQ[{0, 1, 2}, Mod[#, 5]]&] (* Harvey P. Dale, Jan 20 2012 *)
PROG
(PARI) a(n)=n--\3*5+n%3 \\ Charles R Greathouse IV, Oct 22 2011
(PARI) concat(0, Vec(x^2*(1+x+3*x^2)/(1-x)^2/(1+x+x^2) + O(x^100))) \\ Altug Alkan, Dec 09 2015
(PARI) is(n) = n%5 < 3 \\ Felix Fröhlich, Jan 05 2018
(Magma) I:=[0, 1, 2, 5]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]: // Vincenzo Librandi, Apr 25 2012
(Magma) &cat [[5*n, 5*n+1, 5*n+2]: n in [0..30]]; // Bruno Berselli, Dec 09 2015
CROSSREFS
Cf. A007531, A030341, A004831 (two 4th powers).
Cf. similar sequences with formula n+i*floor(n/3) listed in A281899.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
A002645 Quartan primes: primes of the form x^4 + y^4, x > 0, y > 0.
(Formerly M5042 N2178)
+10
23
2, 17, 97, 257, 337, 641, 881, 1297, 2417, 2657, 3697, 4177, 4721, 6577, 10657, 12401, 14657, 14897, 15937, 16561, 28817, 38561, 39041, 49297, 54721, 65537, 65617, 66161, 66977, 80177, 83537, 83777, 89041, 105601, 107377, 119617, 121937 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The largest known quartan prime is currently the largest known generalized Fermat prime: The 1353265-digit 145310^262144 + 1 = (145310^65536)^4 + 1^4, found by Ricky L Hubbard. - Jens Kruse Andersen, Mar 20 2011
Primes of the form (a^2 + b^2)/2 such that |a^2 - b^2| is a square. - Thomas Ordowski, Feb 22 2017
REFERENCES
A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929; see Vol. 1, pp. 245-259.
N. D. Elkies, Primes of the form a^4 + b^4, Mathematical Buds, Ed. H. D. Ruderman Vol. 3 Chap. 3 pp. 22-8 Mu Alpha Theta 1984.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Zak Seidov, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
A. J. C. Cunningham, High quartan factorisations and primes, Messenger of Mathematics 36 (1907), pp. 145-174.
A. J. C. Cunningham, Binomial Factorisations, Vols. 1-9, Hodgson, London, 1923-1929. [Annotated scans of a few pages from Volumes 1 and 2]
Ernest G. Hibbs, Component Interactions of the Prime Numbers, Ph. D. Thesis, Capitol Technology Univ. (2022), see p. 33.
FORMULA
A000040 INTERSECTION A003336. - Jonathan Vos Post, Sep 23 2006
A256852(A049084(a(n))) > 1 for n > 1. - Reinhard Zumkeller, Apr 11 2015
EXAMPLE
a(1) = 2 = 1^4 + 1^4.
a(2) = 17 = 1^4 + 2^4.
a(3) = 97 = 2^4 + 3^4.
a(4) = 257 = 1^4 + 4^4.
MATHEMATICA
nn = 100000; Sort[Reap[Do[n = a^4 + b^4; If[n <= nn && PrimeQ[n], Sow[n]], {a, nn^(1/4)}, {b, a}]][[2, 1]]]
With[{nn=20}, Select[Union[Flatten[Table[x^4+y^4, {x, nn}, {y, nn}]]], PrimeQ[ #] && #<=nn^4+1&]] (* Harvey P. Dale, Aug 10 2021 *)
PROG
(PARI) upto(lim)=my(v=List(2), t); forstep(x=1, lim^.25, 2, forstep(y=2, (lim-x^4)^.25, 2, if(isprime(t=x^4+y^4), listput(v, t)))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 05 2011
(PARI) list(lim)=my(v=List([2]), x4, t); for(x=1, sqrtnint(lim\=1, 4), x4=x^4; forstep(y=1+x%2, min(sqrtnint(lim-x4, 4), x-1), 2, if(isprime(t=x4+y^4), listput(v, t)))); Set(v) \\ Charles R Greathouse IV, Aug 20 2017
(Haskell)
a002645 n = a002645_list !! (n-1)
a002645_list = 2 : (map a000040 $ filter ((> 1) . a256852) [1..])
-- Reinhard Zumkeller, Apr 11 2015
CROSSREFS
Subsequence of A002313 and of A028916.
Intersection of A004831 and A000040.
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Victoria A Sapko (vsapko(AT)canes.gsw.edu), Nov 07 2002
STATUS
approved
A018786 Numbers that are the sum of two 4th powers in more than one way. +10
10
635318657, 3262811042, 8657437697, 10165098512, 51460811217, 52204976672, 68899596497, 86409838577, 138519003152, 160961094577, 162641576192, 264287694402, 397074160625, 701252453457, 823372979472, 835279626752 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Since 4th powers are squares, this is a subsequence of A024508, the analog for squares. Sequence A001235 is the analog for third powers (taxicab numbers). Sequence A255351 lists max {a,b,c,d} where a^4 + b^4 = c^4 + d^4 = a(n), while A255352 lists the whole quadruples (a,b,c,d). - M. F. Hasler, Feb 21 2015
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, D1.
LINKS
Mia Muessig, Table of n, a(n) for n = 1..30000 (terms 1..111 from Vincenzo Librandi, terms 112..4359 from Sean A. Irvine)
J. Leech, Some solutions of Diophantine equations, Proc. Camb. Phil. Soc., 53 (1957), 778-780.
Eric Weisstein's World of Mathematics, Biquadratic Number.
Eric Weisstein's World of Mathematics, Diophantine Equation.
FORMULA
A weak lower bound: a(n) >> n^2. - Charles R Greathouse IV, Jul 12 2024
EXAMPLE
a(1) = 59^4 + 158^4 = 133^4 + 134^4.
a(2) = 7^4 + 239^4 = 157^4 + 227^4. Note the remarkable coincidence that here all of {7, 239, 157, 227} are primes. The next larger solution with this property is 17472238301875630082 = 62047^4 + 40351^4 = 59693^4 + 46747^4. - M. F. Hasler, Feb 21 2015
MATHEMATICA
Select[ Split[ Sort[ Flatten[ Table[x^4 + y^4, {x, 1, 1000}, {y, 1, x}]]]], Length[#] > 1 & ][[All, 1]] (* Jean-François Alcover, Jul 26 2011 *)
PROG
(PARI) n=4; L=[]; for(b=1, 999, for(a=1, b, t=a^n+b^n; for(c=a+1, sqrtn(t\2, n), ispower(t-c^n, n)||next; print1(t", ")))) \\ M. F. Hasler, Feb 21 2015
(PARI) list(lim)=my(v=List()); for(a=134, sqrtnint(lim, 4)-1, my(a4=a^4); for(b=sqrtnint((4*a^2 + 6*a + 4)*a, 4)+1, min(sqrtnint(lim-a4, 4), a), my(t=a4+b^4); for(c=a+1, sqrtnint(lim, 4), if(ispower(t-c^4, 4), listput(v, t); break)))); Set(v) \\ Charles R Greathouse IV, Jul 12 2024
CROSSREFS
Subsequence of A003336 (and hence A004831) and A024508 (and hence A001481).
KEYWORD
nonn
AUTHOR
STATUS
approved
A351306 Least positive integer m such that m^4*n = u^4 + v^4 - (x^4 + y^4) for some nonnegative integers u,v,x,y with x^4 + y^4 <= m^4*n^2. +10
5
1, 1, 1, 10, 2, 2, 2, 4, 6, 4, 2, 2, 4, 8, 1, 1, 1, 1, 2, 2, 2, 2, 10, 2, 2, 2, 2, 10, 10, 2, 1, 1, 1, 2, 2, 2, 2, 8, 2, 2, 2, 2, 2, 10, 2, 2, 1, 1, 5, 1, 1, 4, 10, 10, 2, 2, 6, 10, 4, 4, 2, 4, 1, 3, 1, 1, 1, 10, 2, 2, 2, 2, 2, 2, 4, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 4, 10, 2, 2, 4, 6, 6, 1, 1, 1, 1, 5, 2, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Conjecture: Each n >= 0 can be written as u^4 + v^4 - (x^4 + y^4), where u,v,x,y are rational numbers with x^4 + y^4 <= n^2. In other words, a(n) exists for any nonnegative integer n.
A known result of R. Norrie states that any rational number can be written as u^4 + v^4 - (x^4 + y^4) with u,v,x,y rational numbers.
LINKS
Zhi-Wei Sun, Sums of four rational squares with certain restrictions, arXiv:2010.05775 [math.NT], 2020-2022.
EXAMPLE
a(3) = 10 with 10^4*3 = 8^4 + 13^4 - (4^4 + 7^4) and 4^4 + 7^4 <= 10^4*3^2.
a(242) = 15 with 15^4*242 = 73^4 + 153^4 - (36^4 + 154^4) and 36^4 + 154^4 <= 15^4*242^2.
a(248) = 28 with 28^4*248 = 95^4 + 270^4 - (52^4 + 269^4) and 52^4 + 269^4 <= 28^4*248^2.
a(313) = 30 with 30^4*313 = 37^4 + 128^4 - (7^4 + 64^4) and 7^4 + 64^4 <= 30^4*313^2.
MATHEMATICA
QQ[n_]:=QQ[n]=IntegerQ[n^(1/4)];
tab={}; Do[m=1; Label[bb]; k=m^4; Do[If[QQ[k*n+x^4+y^4-z^4], tab=Append[tab, m]; Goto[aa]],
{x, 0, m*(n^2/2)^(1/4)}, {y, x, (k*n^2-x^4)^(1/4)}, {z, 0, ((k*n+x^4+y^4)/2)^(1/4)}]; m=m+1; Goto[bb]; Label[aa], {n, 0, 100}]; Print[tab]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 06 2022
STATUS
approved
A351341 Least nonnegative integer m such that n = x^4 + y^4 - (z^3 + m^3) for some nonnegative integers x,y,z with z <= m. +10
4
0, 0, 0, 63, 3, 3, 4, 2, 2, 2, 4, 21, 37, 6, 1, 1, 0, 0, 4, 11, 7, 14, 5, 2, 2, 4, 8, 3, 3, 5, 1, 1, 0, 4, 4, 45, 5, 5, 11, 6, 6, 6, 32, 3, 7, 11, 3, 3, 6, 8, 8, 48, 13, 3, 3, 3, 6, 6, 31, 20, 93, 55, 3, 49, 33, 2, 2, 5, 5, 3, 3, 4, 2, 2, 2, 69, 17, 29, 11, 1, 1, 0, 0, 5, 61, 29, 8, 5, 2, 2, 4, 21, 29, 51, 6, 1, 1, 0, 4, 85, 13 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Conjecture 1: Let k be 4 or 5. Then each integer can be written as x^k + y^k - (z^3 + w^3) with x,y,z,w nonnegative integers.
Two examples for k = 5: -4 = 58^5 + 76^5 - (775^3 + 1397^3) and 14 = 40^5 + 67^5 - (125^3 + 1132^3).
Conjecture 2: Let k be among 4, 5, 6 and 7. Then any integer can be written as x^k + y^k - (z^2 + w^2) with x,y,z,w nonnegative integers.
Examples for k = 6, 7: 170 = 9^6 + 15^6 - (2114^2 + 2730^2) and 469 = 7^7 + 8^7 - (1001^2 + 1385^2).
Conjecture 3: For any integer k > 3, there are no nonnegative integers x,y,z,w such that x^k + y^k - (z^k + w^k) = 3.
See also another similar conjecture in A351338.
LINKS
EXAMPLE
a(60) = 93 with 60 = 25^4 + 27^4 - (49^3 + 93^3).
a(527) = 527 with 527 = 29^4 + 110^4 - (91^3 + 527^3).
a(2198) = 1704 with 2198 = 85^4 + 304^4 - (1539^3 + 1704^3).
a(4843) = 1965 with 4843 = 142^4 + 338^4 - (1804^3 + 1965^3).
MATHEMATICA
QQ[n_]:=IntegerQ[n^(1/4)];
tab={}; Do[m=0; Label[bb]; k=m^3; Do[If[QQ[n+k+x^3-y^4], tab=Append[tab, m]; Goto[aa]], {x, 0, m}, {y, 0, ((n+k+x^3)/2)^(1/4)}]; m=m+1; Goto[bb]; Label[aa], {n, 0, 100}]; Print[tab]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Feb 08 2022
STATUS
approved
A347824 Number of ways to write n as x^4 + y^4 + (z^2 + 23*w^2)/16, where x,y,z,w are nonnegative integers with x <= y. +10
3
1, 2, 3, 3, 3, 2, 2, 1, 2, 3, 3, 2, 2, 3, 3, 1, 3, 4, 6, 4, 4, 1, 1, 2, 4, 7, 6, 4, 5, 6, 2, 2, 5, 5, 4, 3, 4, 3, 4, 3, 6, 8, 3, 4, 4, 2, 2, 3, 8, 5, 6, 2, 6, 5, 5, 6, 7, 2, 3, 4, 2, 2, 2, 4, 7, 5, 4, 1, 5, 3, 4, 7, 4, 6, 5, 4, 2, 1, 5, 5, 7, 7, 7, 6, 5, 3, 5, 4, 7, 7, 5, 4, 2, 5, 11, 7, 6, 9, 11, 5, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Conjecture: a(n) > 0 for all n = 0,1,2,....
This has been verified for n up to 2*10^6. See also A347827 for a further refinement.
It seems that a(n) = 1 only for n = 0, 7, 15, 21, 22, 67, 77, 137, 252, 291, 437, 471, 477, 597, 1161, 4692, 7107.
For m = 32, 48, we also conjecture that every n = 0,1,2,... can be written as x^4 + y^4 + (z^2 + 23*w^2)/m, where x,y,z,w are nonnegative integers.
LINKS
Zhi-Wei Sun, Sums of four rational squares with certain restrictions, arXiv:2010.05775 [math.NT], 2020-2022.
EXAMPLE
a(7) = 1 with 7 = 0^4 + 1^4 + (2^2 + 23*2^2)/16.
a(15) = 1 with 15 = 1^4 + 1^4 + (1^2 + 23*3^2)/16.
a(67) = 1 with 67 = 1^4 + 2^4 + (15^2 + 23*5^2)/16.
a(477) = 1 with 477 = 0^4 + 2^4 + (27^2 + 23*17^2)/16.
a(597) = 1 with 597 = 2^4 + 4^4 + (5^2 + 23*15^2)/16.
a(1161) = 1 with 1161 = 2^4 + 2^4 + (89^2 + 23*21^2)/16.
a(4692) = 1 with 4692 = 2^4 + 5^4 + (248^2 + 23*12^2)/16.
a(7107) = 1 with 7107 = 1^4 + 5^4 + (239^2 + 23*45^2)/16.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
tab={}; Do[r=0; Do[If[SQ[16(n-x^4-y^4)-23z^2], r=r+1], {x, 0, (n/2)^(1/4)}, {y, x, (n-x^4)^(1/4)}, {z, 0, Sqrt[16(n-x^4-y^4)/23]}]; tab=Append[tab, r], {n, 0, 100}]; Print[tab]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 23 2022
STATUS
approved
A175372 Number of integer pairs (x,y) satisfying x^4 + y^4 = n. +10
2
1, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
A 4th-power variant of A004018 and A175362.
a(n) is nonzero when n appears in A004831. a(n) > 8 when n appears in A003824. - Mason Korb, Oct 06 2018
LINKS
FORMULA
G.f.: (1 + 2*Sum_{j>=1} x^(j^4))^2.
MAPLE
seq(coeff(series((1+2*add(x^(j^4), j=1..n))^2, x, n+1), x, n), n = 0 .. 120); # Muniru A Asiru, Oct 07 2018
MATHEMATICA
CoefficientList[Series[(1 + 2*Sum[x^(j^4), {j, 1, 100}])^2, {x, 0, 120}], x] (* G. C. Greubel, Oct 06 2018 *)
PROG
(PARI) x='x+O('x^120); Vec((1+2*sum(j=1, 50, x^(j^4)))^2) \\ G. C. Greubel, Oct 06 2018
(Magma) m:=120; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*(&+[x^(j^4): j in [1..50]]))^2)); // G. C. Greubel, Oct 06 2018
CROSSREFS
Cf. A003824, A004831 (where a(n) is nonzero).
KEYWORD
nonn
AUTHOR
R. J. Mathar, Apr 24 2010
STATUS
approved
A216280 Number of nonnegative solutions to the equation x^4 + y^4 = n. +10
2
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,635318657
COMMENTS
The first n with a(n) > 1 is 635318657 = 41 * 113 * 241 * 569, with a(635318657) = 2. Izadi, Khoshnam, & Nabardi show that for any n with a(n) > 1, the elliptic curve y^2 = x^3 - nx has rank at least 3. According to gp, y^2 = x^3 - 635318657x has analytic rank 4 (and first nonzero derivative around 35741.7839). - Charles R Greathouse IV, Jan 12 2017
LINKS
F. A. Izadi, F. Khoshnam, K. Nabardi, Sums of two biquadrates and elliptic curves of rank ≥4 (2012). arXiv:1202.5676 [math.NT], 2012.
F. A. Izadi, F. Khoshnam, K. Nabardi, Sums of two biquadrates and elliptic curves of rank ≥ 4, Math. J. Okayama Univ. 56 (2014), 51-63.
MATHEMATICA
Reap[For[n = 1, n <= 1000, n++, r = Reduce[0 <= x <= y && x^4 + y^4 == n, {x, y}, Integers]; sols = Which[r === False, 0, r[[0]] == And, 1, r[[0]] == Or, Length[r], True, Print[n, " ", r]]; If[sols != 0, Print[n, " ", sols, " ", r]]; Sow[sols]]][[2, 1]] (* Jean-François Alcover, Feb 22 2019 *)
PROG
(PARI) a(n)=my(t=thue(thueinit('x^4+1, 1), n)); sum(i=1, #t, t[i][1]>=0 && t[i][2]>=t[i][1]) \\ Charles R Greathouse IV, Jan 12 2017
(PARI) first(n)=my(T=thueinit('x^4+1, 1), v=vector(n), t); for(k=1, n, t=thue(T, k); v[k]=sum(i=1, #t, t[i][1]>=0 && t[i][2]>=t[i][1])); v \\ Charles R Greathouse IV, Jan 12 2017
CROSSREFS
Cf. A004831 (positions of nonzero terms).
KEYWORD
nonn
AUTHOR
V. Raman, Sep 03 2012
EXTENSIONS
Offset added by Charles R Greathouse IV, Jan 12 2017
STATUS
approved
A247099 Numbers which are the sum or difference of two fifth powers. +10
2
0, 1, 2, 31, 32, 33, 64, 211, 242, 243, 244, 275, 486, 781, 992, 1023, 1024, 1025, 1056, 1267, 2048, 2101, 2882, 3093, 3124, 3125, 3126, 3157, 3368, 4149, 4651, 6250, 6752, 7533, 7744, 7775, 7776, 7777, 7808, 8019, 8800, 9031, 10901, 13682, 15552, 15783, 15961 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) << n^(5/2). Can this be improved?
EXAMPLE
31 = 2^5 - 1^5, 32 = 2^5 + 0^5, 33 = 2^5 + 1^5.
MATHEMATICA
Union[Flatten[{Total[#], Abs[#[[2]]-#[[1]]]}&/@Tuples[Range[0, 10]^5, 2]]] (* Harvey P. Dale, Mar 30 2015 *)
PROG
(PARI) T=thueinit('z^5+1);
is(n)=n==0 || #thue(T, n)>0
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved
page 1

Search completed in 0.010 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 9 10:11 EDT 2024. Contains 375764 sequences. (Running on oeis4.)