Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
login
Search: a054753 -id:a054753
     Sort: relevance | references | number | modified | created      Format: long | short | data
Integers of the form p^2*q in A120806: x+d+1 is prime for all divisors d of x. Both p and q are odd primes, with p and q distinct. See A054753.
+20
3
1859, 331169, 2141399, 4641629, 6633419, 8447039, 10338119, 13526009, 20163059, 21603425, 24099569, 26187119, 26483321, 28226549, 33379569, 33485139, 40790009, 50139819, 52046075, 56152179, 57170075, 59824925, 72541799, 81638579, 104151839, 106624359, 106791269
OFFSET
1,1
LINKS
EXAMPLE
a(1) = 1859 since x = 11*13^2, divisors(x) = {1, 11, 13, 11*13, 13^2, 11*13^2} and x+d+1 = {1861, 1871, 1873, 2003, 2029, 3719} are all primes.
MAPLE
with(numtheory); is3almostprime := proc(n) local L; if n in [0, 1] or isprime(n) then return false fi; L:=ifactors(n)[2]; if nops(L) in [1, 2, 3] and convert(map(z-> z[2], L), `+`) = 3 then return true else return false fi; end; L:=[]: for w to 1 do for k from 1 while nops(L)<=50 do x:=2*k+1; y:=simplify(x^(1/3)); if x mod 6 = 5 and not type(y, integer) #clunky and not issqrfree(x) and is3almostprime(x) and andmap(isprime, [x+2, 2*x+1]) then S:=divisors(x); Q:=map(z-> x+z+1, S); if andmap(isprime, Q) then L:=[op(L), x]; print(nops(L), ifactor(x)); fi; fi; od od;
PROG
(PARI) is(n) = my(f); if(!(n%2), return(0)); f = factor(n); if(f[, 2] != [1, 2]~ && f[, 2] != [2, 1]~, return(0)); fordiv(f, d, if(!isprime(n + d + 1), return(0))); 1; \\ Amiram Eldar, Aug 05 2024
CROSSREFS
Intersection of A054753 and A120806.
KEYWORD
nonn
AUTHOR
Walter Kehowski, Jul 06 2006
EXTENSIONS
a(2) corrected and a(24)-a(27) added by Amiram Eldar, Aug 05 2024
STATUS
approved
a(n) = 1 if n is either 4th power of a prime (A030514), or product of a prime and the square of a different prime (A054753), otherwise 0.
+20
1
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0
OFFSET
1
FORMULA
a(n) = [floor(A101296(n)/2) == 3], where [ ] is the Iverson bracket, giving in this case 1 only if the prime signature class of n (A101296) is either 6 or 7.
a(n) >= A353472(n).
MATHEMATICA
a[n_] := If[MemberQ[{{4}, {1, 2}, {2, 1}}, FactorInteger[n][[;; , 2]]], 1, 0]; Array[a, 100] (* Amiram Eldar, May 13 2022 *)
PROG
(PARI) A353798(n) = { my(f=factor(n)[, 2]~); (f==[4] || f==[2, 1] || f==[1, 2]); }; \\ From function "is" in A080258
CROSSREFS
Characteristic function of A080258.
KEYWORD
nonn
AUTHOR
Antti Karttunen, May 13 2022
STATUS
approved
Hexagonal numbers: a(n) = n*(2*n-1).
(Formerly M4108 N1705)
+10
442
0, 1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, 276, 325, 378, 435, 496, 561, 630, 703, 780, 861, 946, 1035, 1128, 1225, 1326, 1431, 1540, 1653, 1770, 1891, 2016, 2145, 2278, 2415, 2556, 2701, 2850, 3003, 3160, 3321, 3486, 3655, 3828, 4005, 4186, 4371, 4560
OFFSET
0,3
COMMENTS
Number of edges in the join of two complete graphs, each of order n, K_n * K_n. - Roberto E. Martinez II, Jan 07 2002
The power series expansion of the entropy function H(x) = (1+x)log(1+x) + (1-x)log(1-x) has 1/a_i as the coefficient of x^(2i) (the odd terms being zero). - Tommaso Toffoli (tt(AT)bu.edu), May 06 2002
Partial sums of A016813 (4n+1). Also with offset = 0, a(n) = (2n+1)(n+1) = A005408 * A000027 = 2n^2 + 3n + 1, i.e., a(0) = 1. - Jeremy Gardiner, Sep 29 2002
Sequence also gives the greatest semiperimeter of primitive Pythagorean triangles having inradius n-1. Such a triangle has consecutive longer sides, with short leg 2n-1, hypotenuse a(n) - (n-1) = A001844(n), and area (n-1)*a(n) = 6*A000330(n-1). - Lekraj Beedassy, Apr 23 2003
Number of divisors of 12^(n-1), i.e., A000005(A001021(n-1)). - Henry Bottomley, Oct 22 2001
More generally, if p1 and p2 are two arbitrarily chosen distinct primes then a(n) is the number of divisors of (p1^2*p2)^(n-1) or equivalently of any member of A054753^(n-1). - Ant King, Aug 29 2011
Number of standard tableaux of shape (2n-1,1,1) (n>=1). - Emeric Deutsch, May 30 2004
It is well known that for n>0, A014105(n) [0,3,10,21,...] is the first of 2n+1 consecutive integers such that the sum of the squares of the first n+1 such integers is equal to the sum of the squares of the last n; e.g., 10^2 + 11^2 + 12^2 = 13^2 + 14^2.
Less well known is that for n>1, a(n) [0,1,6,15,28,...] is the first of 2n consecutive integers such that sum of the squares of the first n such integers is equal to the sum of the squares of the last n-1 plus n^2; e.g., 15^2 + 16^2 + 17^2 = 19^2 + 20^2 + 3^2. - Charlie Marion, Dec 16 2006
a(n) is also a perfect number A000396 when n is an even superperfect number A061652. - Omar E. Pol, Sep 05 2008
Sequence found by reading the line from 0, in the direction 0, 6, ... and the line from 1, in the direction 1, 15, ..., in the square spiral whose vertices are the generalized hexagonal numbers A000217. - Omar E. Pol, Jan 09 2009
Let Hex(n)=hexagonal number, T(n)=triangular number, then Hex(n)=T(n)+3*T(n-1). - Vincenzo Librandi, Nov 10 2010
For n>=1, 1/a(n) = Sum_{k=0..2*n-1} ((-1)^(k+1)*binomial(2*n-1,k)*binomial(2*n-1+k,k)*H(k)/(k+1)) with H(k) harmonic number of order k.
The number of possible distinct colorings of any 2 colors chosen from n colors of a square divided into quadrants. - Paul Cleary, Dec 21 2010
Central terms of the triangle in A051173. - Reinhard Zumkeller, Apr 23 2011
For n>0, a(n-1) is the number of triples (w,x,y) with all terms in {0,...,n} and max(|w-x|,|x-y|) = |w-y|. - Clark Kimberling, Jun 12 2012
a(n) is the number of positions of one domino in an even pyramidal board with base 2n. - César Eliud Lozada, Sep 26 2012
Partial sums give A002412. - Omar E. Pol, Jan 12 2013
Let a triangle have T(0,0) = 0 and T(r,c) = |r^2 - c^2|. The sum of the differences of the terms in row(n) and row(n-1) is a(n). - J. M. Bergot, Jun 17 2013
a(n+1) = A128918(2*n+1). - Reinhard Zumkeller, Oct 13 2013
With T_(i+1,i)=a(i+1) and all other elements of the lower triangular matrix T zero, T is the infinitesimal generator for A176230, analogous to A132440 for the Pascal matrix. - Tom Copeland, Dec 11 2013
a(n) is the number of length 2n binary sequences that have exactly two 1's. a(2) = 6 because we have: {0,0,1,1}, {0,1,0,1}, {0,1,1,0}, {1,0,0,1}, {1,0,1,0}, {1,1,0,0}. The ordinary generating function with interpolated zeros is: (x^2 + 3*x^4)/(1-x^2)^3. - Geoffrey Critzer, Jan 02 2014
For n > 0, a(n) is the largest integer k such that k^2 + n^2 is a multiple of k + n. More generally, for m > 0 and n > 0, the largest integer k such that k^(2*m) + n^(2*m) is a multiple of k + n is given by k = 2*n^(2*m) - n. - Derek Orr, Sep 04 2014
Binomial transform of (0, 1, 4, 0, 0, 0, ...) and second partial sum of (0, 1, 4, 4, 4, ...). - Gary W. Adamson, Oct 05 2015
a(n) also gives the dimension of the simple Lie algebras D_n, for n >= 4. - Wolfdieter Lang, Oct 21 2015
For n > 0, a(n) equals the number of compositions of n+11 into n parts avoiding parts 2, 3, 4. - Milan Janjic, Jan 07 2016
Also the number of minimum dominating sets and maximal irredundant sets in the n-cocktail party graph. - Eric W. Weisstein, Jun 29 and Aug 17 2017
As Beedassy's formula shows, this Hexagonal number sequence is the odd bisection of the Triangle number sequence. Both of these sequences are figurative number sequences. For A000384, a(n) can be found by multiplying its triangle number by its hexagonal number. For example let's use the number 153. 153 is said to be the 17th triangle number but is also said to be the 9th hexagonal number. Triangle(17) Hexagonal(9). 17*9=153. Because the Hexagonal number sequence is a subset of the Triangle number sequence, the Hexagonal number sequence will always have both a triangle number and a hexagonal number. n* (2*n-1) because (2*n-1) renders the triangle number. - Bruce J. Nicholson, Nov 05 2017
Also numbers k with the property that in the symmetric representation of sigma(k) the smallest Dyck path has a central valley and the largest Dyck path has a central peak, n >= 1. Thus all hexagonal numbers > 0 have middle divisors. (Cf. A237593.) - Omar E. Pol, Aug 28 2018
k^a(n-1) mod n = 1 for prime n and k=2..n-1. - Joseph M. Shunia, Feb 10 2019
Consider all Pythagorean triples (X, Y, Z=Y+1) ordered by increasing Z: a(n+1) gives the semiperimeter of related triangles; A005408, A046092 and A001844 give the X, Y and Z values. - Ralf Steiner, Feb 25 2020
See A002939(n) = 2*a(n) for the corresponding perimeters. - M. F. Hasler, Mar 09 2020
It appears that these are the numbers k with the property that the smallest subpart in the symmetric representation of sigma(k) is 1. - Omar E. Pol, Aug 28 2021
The above conjecture is true. See A280851 for a proof. - Hartmut F. W. Hoft, Feb 02 2022
The n-th hexagonal number equals the sum of the n consecutive integers with the same parity starting at 2*n-1; for example, 1, 2+4, 3+5+7, 4+6+8+10, etc. In general, the n-th 2k-gonal number is the sum of the n consecutive integers with the same parity starting at (k-2)*n - (k-3). When k = 1 and 2, this result generates the positive integers, A000027, and the squares, A000290, respectively. - Charlie Marion, Mar 02 2022
Conjecture: For n>0, min{k such that there exist subsets A,B of {0,1,2,...,a(n)} such that |A|=|B|=k and A+B={0,1,2,...,2*a(n)}} = 2*n. - Michael Chu, Mar 09 2022
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 189.
Louis Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77-78. (In the integral formula on p. 77 a left bracket is missing for the cosine argument.)
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 6.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 2.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See pp. 122-123.
LINKS
Daniel Mondot, Table of n, a(n) for n = 0..10000 (first 1000 terms by T. D. Noe)
C. K. Cook and M. R. Bacon, Some polygonal number summation formulas, Fib. Q., 52 (2014), 336-343.
Elena Deza and Michel Deza, Figurate Numbers: presentation of a book, 3rd Montreal-Toronto Workshop in Number Theory, October 7-9, 2011.
Anicius Manlius Severinus Boethius, De institutione arithmetica, Book 2, section 15.
Jonathan M. Borwein, Dirk Nuyens, Armin Straub and James Wan, Random Walk Integrals, The Ramanujan Journal, October 2011, 26:109. DOI: 10.1007/s11139-011-9325-y.
Cesar Ceballos and Viviane Pons, The s-weak order and s-permutahedra II: The combinatorial complex of pure intervals, arXiv:2309.14261 [math.CO], 2023. See p. 41.
Paul Cooijmans, Odds.
Tomislav Došlić and Luka Podrug, Sweet division problems: from chocolate bars to honeycomb strips and back, arXiv:2304.12121 [math.CO], 2023.
Jose Manuel Garcia Calcines, Luis Javier Hernandez Paricio, and Maria Teresa Rivas Rodriguez, Semi-simplicial combinatorics of cyclinders and subdivisions, arXiv:2307.13749 [math.CO], 2023. See p. 32.
Pakawut Jiradilok and Elchanan Mossel, Gaussian Broadcast on Grids, arXiv:2402.11990 [cs.IT], 2024. See p. 27.
Sameen Ahmed Khan, Sums of the powers of reciprocals of polygonal numbers, Int'l J. of Appl. Math. (2020) Vol. 33, No. 2, 265-282.
Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., 131 (2002), 65-75.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Amelia Carolina Sparavigna, The groupoid of the Triangular Numbers and the generation of related integer sequences, Politecnico di Torino, Italy (2019).
J. C. Su, On some properties of two simultaneous polygonal sequences, JIS 10 (2007) 07.10.4, example 4.6.
Michel Waldschmidt, Continued fractions, Ecole de recherche CIMPA-Oujda, Théorie des Nombres et ses Applications, 18 - 29 mai 2015: Oujda (Maroc).
Eric Weisstein's World of Mathematics, Cocktail Party Graph.
Eric Weisstein's World of Mathematics, Dominating Set.
Eric Weisstein's World of Mathematics, Hexagonal Number.
Eric Weisstein's World of Mathematics, Maximal Irredundant Set.
Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, vol. 8 (2008), pp. 45-52.
FORMULA
a(n) = Sum_{k=1..n} tan^2((k - 1/2)*Pi/(2n)). - Ignacio Larrosa Cañestro, Apr 17 2001
E.g.f.: exp(x)*(x+2x^2). - Paul Barry, Jun 09 2003
G.f.: x*(1+3*x)/(1-x)^3. - Simon Plouffe in his 1992 dissertation, dropping the initial zero
a(n) = A000217(2*n-1) = A014105(-n).
a(n) = 4*A000217(n-1) + n. - Lekraj Beedassy, Jun 03 2004
a(n) = right term of M^n * [1,0,0], where M = the 3 X 3 matrix [1,0,0; 1,1,0; 1,4,1]. Example: a(5) = 45 since M^5 *[1,0,0] = [1,5,45]. - Gary W. Adamson, Dec 24 2006
Row sums of triangle A131914. - Gary W. Adamson, Jul 27 2007
Row sums of n-th row, triangle A134234 starting (1, 6, 15, 28, ...). - Gary W. Adamson, Oct 14 2007
Starting with offset 1, = binomial transform of [1, 5, 4, 0, 0, 0, ...]. Also, A004736 * [1, 4, 4, 4, ...]. - Gary W. Adamson, Oct 25 2007
a(n)^2 + (a(n)+1)^2 + ... + (a(n)+n-1)^2 = (a(n)+n+1)^2 + ... + (a(n)+2n-1)^2 + n^2; e.g., 6^2 + 7^2 = 9^2 + 2^2; 28^2 + 29^2 + 30^2 + 31^2 = 33^2 + 34^2 + 35^2 + 4^2. - Charlie Marion, Nov 10 2007
a(n) = binomial(n+1,2) + 3*binomial(n,2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0)=0, a(1)=1, a(2)=6. - Jaume Oliver Lafont, Dec 02 2008
a(n) = a(n-1) + 4*n - 3 (with a(0)=0). - Vincenzo Librandi, Nov 20 2010
a(n) = A007606(A000290(n)). - Reinhard Zumkeller, Feb 12 2011
a(n) = 2*a(n-1) - a(n-2) + 4. - Ant King, Aug 26 2011
a(n+1) = A045896(2*n). - Reinhard Zumkeller, Dec 12 2011
a(2^n) = 2^(2n+1) - 2^n. - Ivan N. Ianakiev, Apr 13 2013
a(n) = binomial(2*n,2). - Gary Detlefs, Jul 28 2013
a(4*a(n)+7*n+1) = a(4*a(n)+7*n) + a(4*n+1). - Vladimir Shevelev, Jan 24 2014
Sum_{n>=1} 1/a(n) = 2*log(2) = 1.38629436111989...= A016627. - Vaclav Kotesovec, Apr 27 2016
Sum_{n>=1} (-1)^n/a(n) = log(2) - Pi/2. - Vaclav Kotesovec, Apr 20 2018
a(n+1) = trinomial(2*n+1, 2) = trinomial(2*n+1, 4*n), for n >= 0, with the trinomial irregular triangle A027907. a(n+1) = (n+1)*(2*n+1) = (1/Pi)*Integral_{x=0..2} (1/sqrt(4 - x^2))*(x^2 - 1)^(2*n+1)*R(4*n-2, x) with the R polynomial coefficients given in A127672. [Comtet, p. 77, the integral formula for q=3, n -> 2*n+1, k = 2, rewritten with x = 2*cos(phi)]. - Wolfdieter Lang, Apr 19 2018
Sum_{n>=1} 1/(a(n))^2 = 2*Pi^2/3-8*log(2) = 1.0345588... = 10*A182448 - A257872. - R. J. Mathar, Sep 12 2019
a(n) = (A005408(n-1) + A046092(n-1) + A001844(n-1))/2. - Ralf Steiner, Feb 27 2020
Product_{n>=2} (1 - 1/a(n)) = 2/3. - Amiram Eldar, Jan 21 2021
a(n) = floor(Sum_{k=(n-1)^2..n^2} sqrt(k)), for n >= 1. - Amrit Awasthi, Jun 13 2021
a(n+1) = A084265(2*n), n>=0. - Hartmut F. W. Hoft, Feb 02 2022
a(n) = A000290(n) + A002378(n-1). - Charles Kusniec, Sep 11 2022
MAPLE
A000384:=n->n*(2*n-1); seq(A000384(k), k=0..100); # Wesley Ivan Hurt, Sep 27 2013
MATHEMATICA
Table[n*(2 n - 1), {n, 0, 100}] (* Wesley Ivan Hurt, Sep 27 2013 *)
LinearRecurrence[{3, -3, 1}, {0, 1, 6}, 50] (* Harvey P. Dale, Sep 10 2015 *)
Join[{0}, Accumulate[Range[1, 312, 4]]] (* Harvey P. Dale, Mar 26 2016 *)
(* For Mathematica 10.4+ *) Table[PolygonalNumber[RegularPolygon[6], n], {n, 0, 48}] (* Arkadiusz Wesolowski, Aug 27 2016 *)
PolygonalNumber[6, Range[0, 20]] (* Eric W. Weisstein, Aug 17 2017 *)
CoefficientList[Series[x*(1 + 3*x)/(1 - x)^3 , {x, 0, 100}], x] (* Stefano Spezia, Sep 02 2018 *)
PROG
(PARI) a(n)=n*(2*n-1)
(PARI) a(n) = binomial(2*n, 2) \\ Altug Alkan, Oct 06 2015
(Haskell)
a000384 n = n * (2 * n - 1)
a000384_list = scanl (+) 0 a016813_list
-- Reinhard Zumkeller, Dec 16 2012
(Python) # Intended to compute the initial segment of the sequence, not isolated terms.
def aList():
x, y = 1, 1
yield 0
while True:
yield x
x, y = x + y + 4, y + 4
A000384 = aList()
print([next(A000384) for i in range(49)]) # Peter Luschny, Aug 04 2019
CROSSREFS
a(n)= A093561(n+1, 2), (4, 1)-Pascal column.
a(n) = A100345(n, n-1) for n>0.
Cf. A002939 (twice a(n): sums of Pythagorean triples (X, Y, Z=Y+1)).
Cf. A280851.
KEYWORD
nonn,easy,nice
EXTENSIONS
Partially edited by Joerg Arndt, Mar 11 2010
STATUS
approved
Number of Abelian groups of order n; number of factorizations of n into prime powers.
(Formerly M0064 N0020)
+10
130
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 7, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 5, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 11, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 5, 5, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 7, 1, 2, 2, 4, 1, 1, 1, 3, 1, 1, 1
OFFSET
1,4
COMMENTS
Equivalently, number of Abelian groups with n conjugacy classes. - Michael Somos, Aug 10 2010
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24 = 2^3*3 and 375 = 3*5^3 both have prime signature (3, 1).
Also number of rings with n elements that are the direct product of fields; these are the commutative rings with n elements having no nilpotents; likewise the commutative rings where for every element x there is a k > 0 such that x^(k+1) = x. - Franklin T. Adams-Watters, Oct 20 2006
Range is A033637.
a(n) = 1 if and only if n is from A005117 (squarefree numbers). See the Ahmed Fares comment there, and the formula for n>=2 below. - Wolfdieter Lang, Sep 09 2012
Also, from a theorem of Molnár (see [Molnár]), the number of (non-isomorphic) abelian groups of order 2*n + 1 is equal to the number of non-congruent lattice Z-tilings of R^n by crosses, where a "cross" is a unit cube in R^n for which at each facet is attached another unit cube (Z, R are the integers and reals, respectively). (Cf. [Horak].) - L. Edson Jeffery, Nov 29 2012
Zeta(k*s) is the Dirichlet generating function of the characteristic function of numbers which are k-th powers (k=1 in A000012, k=2 in A010052, k=3 in A010057, see arXiv:1106.4038 Section 3.1). The infinite product over k (here) is the number of representations n=product_i (b_i)^(e_i) where all exponents e_i are distinct and >=1. Examples: a(n=4)=2: 4^1 = 2^2. a(n=8)=3: 8^1 = 2^1*2^2 = 2^3. a(n=9)=2: 9^1 = 3^2. a(n=12)=2: 12^1 = 3*2^2. a(n=16)=5: 16^1 = 2*2^3 = 4^2 = 2^2*4^1 = 2^4. If the e_i are the set {1,2} we get A046951, the number of representations as a product of a number and a square. - R. J. Mathar, Nov 05 2016
See A060689 for the number of non-abelian groups of order n. - M. F. Hasler, Oct 24 2017
Kendall & Rankin prove that the density of {n: a(n) = m} exists for each m. - Charles R Greathouse IV, Jul 14 2024
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 274-278.
D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIII.12, p. 468.
J. S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 7.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
A. Speiser, Die Theorie der Gruppen von endlicher Ordnung, 4. Auflage, Birkhäuser, 1956.
LINKS
Tak-Shing T. Chan, and Y.-H. Yang, Polar n-Complex and n-Bicomplex Singular Value Decomposition and Principal Component Pursuit, IEEE Transactions on Signal Processing ( Volume: 64, Issue: 24, Dec.15, 15 2016 ); DOI: 10.1109/TSP.2016.2612171.
I. G. Connell, A number theory problem concerning finite groups and rings, Canad. Math. Bull, 7 (1964), 23-34.
Steven R. Finch, Abelian Group Enumeration Constants [Broken link]
Steven R. Finch, Abelian Group Enumeration Constants [broken link?] [From the Wayback machine]
P. Horak, Error-correcting codes and Minkowski's conjecture, Tatra Mt. Math. Publ., 45 (2010), p. 40.
B. Horvat, G. Jaklic and T. Pisanski, On the number of Hamiltonian groups, arXiv:math/0503183 [math.CO], 2005.
D. G. Kendall, R. A. Rankin, On the number of Abelian groups of a given order, Q. J. Math. 18 (1947) 197-208.
Nobushige Kurokawa and Masato Wakayama, Zeta extensions. Proc. Japan Acad. Ser. A Math. Sci. 78 (2002), no. 7, 126--130. MR1930216 (2003h:11112).
E. Molnár, Sui mosaici dello spazio di dimensione n, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat. 51 (1971), 177-185.
H.-E. Richert, Über die Anzahl Abelscher Gruppen gegebener Ordnung I, Math. Zeitschr. 56 (1952) 21-32.
Marko Riedel, Counting Abelian Groups, Mathematics Stack Exchange, October 2014.
Laszlo Toth, A note on the number of abelian groups of a given order, arXiv:1203.6473 [math.NT], (2012).
Eric Weisstein's World of Mathematics, Abelian Group
Eric Weisstein's World of Mathematics, Finite Group
Eric Weisstein's World of Mathematics, Kronecker Decomposition Theorem
FORMULA
Multiplicative with a(p^k) = number of partitions of k = A000041(k); a(mn) = a(m)a(n) if (m, n) = 1.
a(2n) = A101872(n).
a(n) = Product_{j = 1..N(n)} A000041(e(j)), n >= 2, if
n = Product_{j = 1..N(n)} prime(j)^e(j), N(n) = A001221(n). See the Richert reference, quoting A. Speiser's book on finite groups (in German, p. 51 in words). - Wolfdieter Lang, Jul 23 2011
In terms of the cycle index of the symmetric group: Product_{q=1..m} [z^{v_q}] Z(S_v) 1/(1-z) where v is the maximum exponent of any prime in the prime factorization of n, v_q are the exponents of the prime factors, and Z(S_v) is the cycle index of the symmetric group on v elements. - Marko Riedel, Oct 03 2014
Dirichlet g.f.: Sum_{n >= 1} a(n)/n^s = Product_{k >= 1} zeta(ks) [Kendall]. - Álvar Ibeas, Nov 05 2014
a(n)=2 for all n in A054753 and for all n in A085987. a(n)=3 for all n in A030078 and for all n in A065036. a(n)=4 for all n in A085986. a(n)=5 for all n in A030514 and for all n in A178739. a(n)=6 for all n in A143610. - R. J. Mathar, Nov 05 2016
A050360(n) = a(A025487(n)). a(n) = A050360(A101296(n)). - R. J. Mathar, May 26 2017
a(n) = A000001(n) - A060689(n). - M. F. Hasler, Oct 24 2017
From Amiram Eldar, Nov 01 2020: (Start)
a(n) = a(A057521(n)).
Asymptotic mean: lim_{n->oo} (1/n) * Sum_{k=1..n} a(k) = A021002. (End)
a(n) = A005361(n) except when n is a term of A046101, since A000041(x) = x for x <= 3. - Miles Englezou, Feb 17 2024
EXAMPLE
a(1) = 1 since the trivial group {e} is the only group of order 1, and it is Abelian; alternatively, since the only factorization of 1 into prime powers is the empty product.
a(p) = 1 for any prime p, since the only factorization into prime powers is p = p^1, and (in view of Lagrange's theorem) there is only one group of prime order p; it is isomorphic to (Z/pZ,+) and thus Abelian.
From Wolfdieter Lang, Jul 22 2011: (Start)
a(8) = 3 because 8 = 2^3, hence a(8) = pa(3) = A000041(3) = 3 from the partitions (3), (2, 1) and (1, 1, 1), leading to the 3 factorizations of 8: 8, 4*2 and 2*2*2.
a(36) = 4 because 36 = 2^2*3^2, hence a(36) = pa(2)*pa(2) = 4 from the partitions (2) and (1, 1), leading to the 4 factorizations of 36: 2^2*3^2, 2^2*3^1*3^1, 2^1*2^1*3^2 and 2^1*2^1*3^1*3^1.
(End)
MAPLE
with(combinat): readlib(ifactors): for n from 1 to 120 do ans := 1: for i from 1 to nops(ifactors(n)[2]) do ans := ans*numbpart(ifactors(n)[2][i][2]) od: printf(`%d, `, ans): od: # James A. Sellers, Dec 07 2000
MATHEMATICA
f[n_] := Times @@ PartitionsP /@ Last /@ FactorInteger@n; Array[f, 107] (* Robert G. Wilson v, Sep 22 2006 *)
Table[FiniteAbelianGroupCount[n], {n, 200}] (* Requires version 7.0 or later. - Vladimir Joseph Stephan Orlovsky, Jul 01 2011 *)
PROG
(PARI) A000688(n)=local(f); f=factor(n); prod(i=1, matsize(f)[1], numbpart(f[i, 2])) \\ Michael B. Porter, Feb 08 2010
(PARI) a(n)=my(f=factor(n)[, 2]); prod(i=1, #f, numbpart(f[i])) \\ Charles R Greathouse IV, Apr 16 2015
(Sage)
def a(n):
F=factor(n)
return prod([number_of_partitions(F[i][1]) for i in range(len(F))])
# Ralf Stephan, Jun 21 2014
(Haskell)
a000688 = product . map a000041 . a124010_row
-- Reinhard Zumkeller, Aug 28 2014
(Python)
from sympy import factorint, npartitions
from math import prod
def A000688(n): return prod(map(npartitions, factorint(n).values())) # Chai Wah Wu, Jan 14 2022
CROSSREFS
Cf. A080729 (Dgf at s=2), A369634 (Dgf at s=3).
KEYWORD
nonn,core,easy,nice,mult
STATUS
approved
n has the a(n)-th distinct prime signature.
+10
109
1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 5, 6, 2, 9, 2, 10, 4, 4, 4, 11, 2, 4, 4, 8, 2, 9, 2, 6, 6, 4, 2, 12, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 13, 2, 4, 6, 14, 4, 9, 2, 6, 4, 9, 2, 15, 2, 4, 6, 6, 4, 9, 2, 12, 7, 4, 2, 13, 4, 4, 4, 8, 2, 13, 4, 6, 4, 4, 4, 16, 2, 6, 6, 11, 2, 9, 2, 8, 9, 4, 2, 15, 2, 9, 4, 12, 2, 9, 4, 6, 6, 4, 4, 17
OFFSET
1,2
COMMENTS
From Antti Karttunen, May 12 2017: (Start)
Restricted growth sequence transform of A046523, the least representative of each prime signature. Thus this partitions the natural numbers to the same equivalence classes as A046523, i.e., for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j), and for that reason satisfies in that respect all the same conditions as A046523. For example, we have, for all i, j: if a(i) = a(j), then:
A000005(i) = A000005(j), A008683(i) = A008683(j), A286605(i) = A286605(j).
So, this sequence (instead of A046523) can be used for finding sequences where a(n)'s value is dependent only on the prime signature of n, that is, only on the multiset of prime exponents in the factorization of n. (End)
This is also the restricted growth sequence transform of many other sequences, for example, that of A181819. See further comments there. - Antti Karttunen, Apr 30 2022
LINKS
Michel Marcus (terms 1..10000) & Antti Karttunen, Table of n, a(n) for n = 1..100000
FORMULA
A025487(a(n)) = A046523(n).
Indices of records give A025487. - Michel Marcus, Nov 16 2015
From David A. Corneth, May 12 2017: (Start) [Corresponding characteristic function in brackets]
a(A000012(n)) = 1 (sig.: ()). [A063524]
a(A000040(n)) = 2 (sig.: (1)). [A010051]
a(A001248(n)) = 3 (sig.: (2)). [A302048]
a(A006881(n)) = 4 (sig.: (1,1)). [A280710]
a(A030078(n)) = 5 (sig.: (3)).
a(A054753(n)) = 6 (sig.: (1,2)). [A353472]
a(A030514(n)) = 7 (sig.: (4)).
a(A065036(n)) = 8 (sig.: (1,3)).
a(A007304(n)) = 9 (sig.: (1,1,1)). [A354926]
a(A050997(n)) = 10 (sig.: (5)).
a(A085986(n)) = 11 (sig.: (2,2)).
a(A178739(n)) = 12 (sig.: (1,4)).
a(A085987(n)) = 13 (sig.: (1,1,2)).
a(A030516(n)) = 14 (sig.: (6)).
a(A143610(n)) = 15 (sig.: (2,3)).
a(A178740(n)) = 16 (sig.: (1,5)).
a(A189975(n)) = 17 (sig.: (1,1,3)).
a(A092759(n)) = 18 (sig.: (7)).
a(A189988(n)) = 19 (sig.: (2,4)).
a(A179643(n)) = 20 (sig.: (1,2,2)).
a(A189987(n)) = 21 (sig.: (1,6)).
a(A046386(n)) = 22 (sig.: (1,1,1,1)).
a(A162142(n)) = 23 (sig.: (2,2,2)).
a(A179644(n)) = 24 (sig.: (1,1,4)).
a(A179645(n)) = 25 (sig.: (8)).
a(A179646(n)) = 26 (sig.: (2,5)).
a(A163569(n)) = 27 (sig.: (1,2,3)).
a(A179664(n)) = 28 (sig.: (1,7)).
a(A189982(n)) = 29 (sig.: (1,1,1,2)).
a(A179666(n)) = 30 (sig.: (3,4)).
a(A179667(n)) = 31 (sig.: (1,1,5)).
a(A179665(n)) = 32 (sig.: (9)).
a(A189990(n)) = 33 (sig.: (2,6)).
a(A179669(n)) = 34 (sig.: (1,2,4)).
a(A179668(n)) = 35 (sig.: (1,8)).
a(A179670(n)) = 36 (sig.: (1,1,1,3)).
a(A179671(n)) = 37 (sig.: (3,5)).
a(A162143(n)) = 38 (sig.: (2,2,2)).
a(A179672(n)) = 39 (sig.: (1,1,6)).
a(A030629(n)) = 40 (sig.: (10)).
a(A179688(n)) = 41 (sig.: (1,3,3)).
a(A179689(n)) = 42 (sig.: (2,7)).
a(A179690(n)) = 43 (sig.: (1,1,2,2)).
a(A189991(n)) = 44 (sig.: (4,4)).
a(A179691(n)) = 45 (sig.: (1,2,5)).
a(A179692(n)) = 46 (sig.: (1,9)).
a(A179693(n)) = 47 (sig.: (1,1,1,4)).
a(A179694(n)) = 48 (sig.: (3,6)).
a(A179695(n)) = 49 (sig.: (2,2,3)).
a(A179696(n)) = 50 (sig.: (1,1,7)).
(End)
EXAMPLE
From David A. Corneth, May 12 2017: (Start)
1 has prime signature (), the first distinct prime signature. Therefore, a(1) = 1.
2 has prime signature (1), the second distinct prime signature after (1). Therefore, a(2) = 2.
3 has prime signature (1), as does 2. Therefore, a(3) = a(2) = 2.
4 has prime signature (2), the third distinct prime signature after () and (1). Therefore, a(4) = 3. (End)
From Antti Karttunen, May 12 2017: (Start)
Construction of restricted growth sequences: In this case we start with a(1) = 1 for A046523(1) = 1, and thereafter, for all n > 1, we use the least so far unused natural number k for a(n) if A046523(n) has not been encountered before, otherwise [whenever A046523(n) = A046523(m), for some m < n], we set a(n) = a(m).
For n = 2, A046523(2) = 2, which has not been encountered before (first prime), thus we allot for a(2) the least so far unused number, which is 2, thus a(2) = 2.
For n = 3, A046523(2) = 2, which was already encountered as A046523(1), thus we set a(3) = a(2) = 2.
For n = 4, A046523(4) = 4, not encountered before (first square of prime), thus we allot for a(4) the least so far unused number, which is 3, thus a(4) = 3.
For n = 5, A046523(5) = 2, as for the first time encountered at n = 2, thus we set a(5) = a(2) = 2.
For n = 6, A046523(6) = 6, not encountered before (first semiprime pq with distinct p and q), thus we allot for a(6) the least so far unused number, which is 4, thus a(6) = 4.
For n = 8, A046523(8) = 8, not encountered before (first cube of a prime), thus we allot for a(8) the least so far unused number, which is 5, thus a(8) = 5.
For n = 9, A046523(9) = 4, as for the first time encountered at n = 4, thus a(9) = 3.
(End)
From David A. Corneth, May 12 2017: (Start)
(Rough) description of an algorithm of computing the sequence:
Suppose we want to compute a(n) for n in [1..20].
We set up a vector of 20 elements, values 0, and a number m = 1, the minimum number we haven't checked and c = 0, the number of distinct prime signatures we've found so far.
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
We check the prime signature of m and see that it's (). We increase c with 1 and set all elements up to 20 with prime signature () to 1. In the process, we adjust m. This gives:
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. The least number we haven't checked is m = 2. 2 has prime signature (1). We increase c with 1 and set all elements up to 20 with prime signature (1) to 2. In the process, we adjust m. This gives:
[1, 2, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0]
We check the prime signature of m = 4 and see that its prime signature is (2). We increase c with 1 and set all numbers up to 20 with prime signature (2) to 3. This gives:
[1, 2, 2, 3, 2, 0, 2, 0, 3, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0]
Similarily, after m = 6, we get
[1, 2, 2, 3, 2, 4, 2, 0, 3, 4, 2, 0, 2, 4, 4, 0, 2, 0, 2, 0], after m = 8 we get:
[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 0, 2, 4, 4, 0, 2, 0, 2, 0], after m = 12 we get:
[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 0, 2, 6, 2, 0], after m = 16 we get:
[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 0], after m = 20 we get:
[1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 8]. Now, m > 20 so we stop. (End)
The above method is inefficient, because the step "set all elements a(n) up to n = Nmax with prime signature s(n) = S[c] to c" requires factoring all integers up to Nmax (or at least comparing their signature, once computed, with S[c]) again and again. It is much more efficient to run only once over each m = 1..Nmax, compute its prime signature s(m), add it to an ordered list in case it did not occur earlier, together with its "rank" (= new size of the list), and assign that rank to a(m). The list of prime signatures is much shorter than [1..Nmax]. One can also use m'(m) := the smallest n with the prime signature of m (which is faster to compute than to search for the signature) as representative for s(m), and set a(m) := a(m'(m)). Then it is sufficient to have just one counter (number of prime signatures seen so far) as auxiliary variable, in addition to the sequence to be computed. - M. F. Hasler, Jul 18 2019
MAPLE
A101296 := proc(n)
local a046523, a;
a046523 := A046523(n) ;
for a from 1 do
if A025487(a) = a046523 then
return a;
elif A025487(a) > a046523 then
return -1 ;
end if;
end do:
end proc: # R. J. Mathar, May 26 2017
MATHEMATICA
With[{nn = 120}, Function[s, Table[Position[Keys@s, k_ /; MemberQ[k, n]][[1, 1]], {n, nn}]]@ Map[#1 -> #2 & @@ # &, Transpose@ {Values@ #, Keys@ #}] &@ PositionIndex@ Table[Times @@ MapIndexed[Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]] - Boole[n == 1], {n, nn}] ] (* Michael De Vlieger, May 12 2017, Version 10 *)
PROG
(PARI) find(ps, vps) = {for (k=1, #vps, if (vps[k] == ps, return(k)); ); }
lisps(nn) = {vps = []; for (n=1, nn, ps = vecsort(factor(n)[, 2]); ips = find(ps, vps); if (! ips, vps = concat(vps, ps); ips = #vps); print1(ips, ", "); ); } \\ Michel Marcus, Nov 15 2015; edited by M. F. Hasler, Jul 16 2019
(PARI)
rgs_transform(invec) = { my(occurrences = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(occurrences, invec[i]), my(pp = mapget(occurrences, invec[i])); outvec[i] = outvec[pp] , mapput(occurrences, invec[i], i); outvec[i] = u; u++ )); outvec; };
write_to_bfile(start_offset, vec, bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
write_to_bfile(1, rgs_transform(vector(100000, n, A046523(n))), "b101296.txt");
\\ Antti Karttunen, May 12 2017
CROSSREFS
Cf. A025487, A046523, A064839 (ordinal transform of this sequence), A181819, and arrays A095904, A179216.
Sequences that are unions of finite number (>= 2) of equivalence classes determined by the values that this sequence obtains (i.e., sequences mentioned in David A. Corneth's May 12 2017 formula): A001358 (A001248 U A006881, values 3 & 4), A007422 (values 1, 4, 5), A007964 (2, 3, 4, 5), A014612 (5, 6, 9), A030513 (4, 5), A037143 (1, 2, 3, 4), A037144 (1, 2, 3, 4, 5, 6, 9), A080258 (6, 7), A084116 (2, 4, 5), A167171 (2, 4), A217856 (6, 9).
Cf. also A077462, A305897 (stricter variants, with finer partitioning) and A254524, A286603, A286605, A286610, A286619, A286621, A286622, A286626, A286378 for other similarly constructed sequences.
KEYWORD
easy,nonn
AUTHOR
David Wasserman, Dec 21 2004
EXTENSIONS
Data section extended to 120 terms by Antti Karttunen, May 12 2017
Minor edits/corrections by M. F. Hasler, Jul 18 2019
STATUS
approved
Squares of the squarefree semiprimes (p^2*q^2).
+10
45
36, 100, 196, 225, 441, 484, 676, 1089, 1156, 1225, 1444, 1521, 2116, 2601, 3025, 3249, 3364, 3844, 4225, 4761, 5476, 5929, 6724, 7225, 7396, 7569, 8281, 8649, 8836, 9025, 11236, 12321, 13225, 13924, 14161, 14884, 15129, 16641, 17689, 17956, 19881
OFFSET
1,1
COMMENTS
This sequence is a member of a family of sequences directly related to A025487. First terms and known sequences are listed below: 1, A000007; 2, A000040; 4, A001248; 6, A006881; 8, A030078; 12, A054753; 16, A030514; 24, A065036; 30, A007304; 32, A050997; 36, this sequence; 48, ?; 60, ?; 64, ?; ....
Subsequence of A077448. The numbers in A077448 but not in here are 1, the squares of A046386, the squares of A067885, etc. - R. J. Mathar, Sep 12 2008
a(4)-a(3)=29 and a(3)+a(4)=421 are both prime. There are no other cases where the sum and difference of two members of this sequence are both prime. - Robert Israel and J. M. Bergot, Oct 25 2019
FORMULA
a(n) = A006881(n)^2.
Sum_{n>=1} 1/a(n) = (P(2)^2 - P(4))/2 = (A085548^2 - A085964)/2 = 0.063767..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020
EXAMPLE
A006881 begins 6 10 14 15 ... so this sequence begins 36 100 196 225 ...
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={2, 2}; Select[Range[20000], f] (* Vladimir Joseph Stephan Orlovsky, Aug 14 2009 *)
Select[Range[200], PrimeOmega[#]==2&&SquareFreeQ[#]&]^2 (* Harvey P. Dale, Mar 07 2013 *)
PROG
(PARI) list(lim)=my(v=List(), x=sqrtint(lim\=1), t); forprime(p=2, x\2, t=p; forprime(q=2, min(x\t, p-1), listput(v, (t*q)^2))); Set(v) \\ Charles R Greathouse IV, Sep 22 2015
(PARI) is(n)=factor(n)[, 2]==[2, 2]~ \\ Charles R Greathouse IV, Oct 19 2015
(Magma) [k^2:k in [1..150]| IsSquarefree(k) and #PrimeDivisors(k) eq 2]; // Marius A. Burtea, Oct 24 2019
(Python)
from math import isqrt
from sympy import primepi, primerange
def A085986(n):
def f(x): return int(n+x+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m**2 # Chai Wah Wu, Aug 18 2024
CROSSREFS
Subsequence of A036785 and of A077448.
Subsequence of A062503.
Cf. A025487.
KEYWORD
easy,nonn
AUTHOR
Alford Arnold, Jul 06 2003
STATUS
approved
Product of the cube of a prime (A030078) and a different prime.
+10
41
24, 40, 54, 56, 88, 104, 135, 136, 152, 184, 189, 232, 248, 250, 296, 297, 328, 344, 351, 375, 376, 424, 459, 472, 488, 513, 536, 568, 584, 621, 632, 664, 686, 712, 776, 783, 808, 824, 837, 856, 872, 875, 904, 999, 1016, 1029, 1048, 1096, 1107, 1112
OFFSET
1,1
COMMENTS
This sequence appears on row 8 of the list illustrated in A064839 and is similar to A054753 which appears on row 6. Previous rows are generated by A000007, A000040, A001248, A006881, A030078 respectively.
Or, the numbers n such that 20=number of perfect partitions of n. - Juri-Stepan Gerasimov, Sep 26 2009
A089233(a(n)) = 3. - Reinhard Zumkeller, Sep 04 2013
FORMULA
A002033(a(n)) = 20. - Juri-Stepan Gerasimov, Sep 26 2009
A000005(a(n)) = 8. - Altug Alkan, Nov 11 2015
EXAMPLE
a(4)= 56 since 56 = 2*2*2*7.
MATHEMATICA
Select[ Range[1500], Sort[ Transpose[ FactorInteger[ # ]] [[2]]] == {1, 3} & ]
Module[{upto=1200}, Select[(Union[Flatten[{#[[1]]^3 #[[2]], #[[1]]#[[2]]^3}&/@Subsets[Prime[Range[upto/8]], {2}]]]), #<=upto&]] (* Harvey P. Dale, May 23 2015 *)
PROG
(PARI) list(lim)=my(v=List(), t); forprime(p=2, (lim\2)^(1/3), t=p^3; forprime(q=2, lim\t, if(p==q, next); listput(v, t*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 20 2011
(PARI) is(n)=my(f=factor(n)[, 2]); f==[3, 1]~||f==[1, 3]~ \\ Charles R Greathouse IV, Oct 15 2015
KEYWORD
easy,nonn
AUTHOR
Alford Arnold, Nov 04 2001
STATUS
approved
Product of exactly four primes, three of which are distinct (p^2*q*r).
+10
33
60, 84, 90, 126, 132, 140, 150, 156, 198, 204, 220, 228, 234, 260, 276, 294, 306, 308, 315, 340, 342, 348, 350, 364, 372, 380, 414, 444, 460, 476, 490, 492, 495, 516, 522, 525, 532, 550, 558, 564, 572, 580, 585, 620, 636, 644, 650, 666, 693, 708, 726
OFFSET
1,1
COMMENTS
A014613 is completely determined by A030514, A065036, A085986, A085987 and A046386 since p(4) = 5. (cf. A000041). More generally, the first term of sequences which completely determine the k-almost primes can be found in A036035 (a resorted version of A025487).
A050326(a(n)) = 4. - Reinhard Zumkeller, May 03 2013
EXAMPLE
a(1) = 60 since 60 = 2*2*3*5 and has three distinct prime factors.
MATHEMATICA
f[n_]:=Sort[Last/@FactorInteger[n]]=={1, 1, 2}; Select[Range[2000], f] (* Vladimir Joseph Stephan Orlovsky, May 03 2011 *)
pefp[{a_, b_, c_}]:={a^2 b c, a b^2 c, a b c^2}; Module[{upto=800}, Select[ Flatten[ pefp/@Subsets[Prime[Range[PrimePi[upto/6]]], {3}]]//Union, #<= upto&]] (* Harvey P. Dale, Oct 02 2018 *)
PROG
(PARI) list(lim)=my(v=List(), t, x, y, z); forprime(p=2, lim^(1/4), t=lim\p^2; forprime(q=p+1, sqrtint(t), forprime(r=q+1, t\q, x=p^2*q*r; y=p*q^2*r; listput(v, x); if(y<=lim, listput(v, y); z=p*q*r^2; if(z<=lim, listput(v, z)))))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Jul 15 2011
(PARI) is(n)=vecsort(factor(n)[, 2]~)==[1, 1, 2] \\ Charles R Greathouse IV, Oct 19 2015
KEYWORD
nonn
AUTHOR
Alford Arnold, Jul 08 2003
EXTENSIONS
More terms from Reinhard Zumkeller, Jul 25 2003
STATUS
approved
Number of factorizations of n with alternating product < 1.
+10
22
0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 4, 0, 1, 1, 2, 0, 3, 0, 3, 1, 1, 1, 3, 0, 1, 1, 4, 0, 3, 0, 2, 2, 1, 0, 6, 0, 2, 1, 2, 0, 4, 1, 4, 1, 1, 0, 6, 0, 1, 2, 3, 1, 3, 0, 2, 1, 3, 0, 8, 0, 1, 2, 2, 1, 3, 0, 6, 1, 1, 0, 6, 1, 1, 1
OFFSET
1,12
COMMENTS
All such factorizations have even length and alternating sum < 0, so partitions of this type are counted by A344608.
Also the number of factorizations of n with alternating sum < 0.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
FORMULA
a(2^n) = A344608(n).
a(n) = A339846(n) - A347438(n).
EXAMPLE
The a(n) factorizations for n = 6, 12, 24, 30, 48, 72, 96, 120:
2*3 2*6 3*8 5*6 6*8 8*9 2*48 2*60
3*4 4*6 2*15 2*24 2*36 3*32 3*40
2*12 3*10 3*16 3*24 4*24 4*30
2*2*2*3 4*12 4*18 6*16 5*24
2*2*2*6 6*12 8*12 6*20
2*2*3*4 2*2*2*9 2*2*3*8 8*15
2*2*3*6 2*2*4*6 10*12
2*3*3*4 2*3*4*4 2*2*5*6
2*2*2*12 2*3*4*5
2*2*2*2*2*3 2*2*2*15
2*2*3*10
MATHEMATICA
facs[n_]:=If[n<=1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@#>=d&]], {d, Rest[Divisors[n]]}]];
altprod[q_]:=Product[q[[i]]^(-1)^(i-1), {i, Length[q]}];
Table[Length[Select[facs[n], altprod[#]<1&]], {n, 100}]
CROSSREFS
Positions of 0's are A000430.
Positions of 2's are A054753.
Positions of non-0's are A080257.
Positions of 1's are A332269.
The weak version (<= 1 instead of < 1) is A339846, ranked by A028982.
The reciprocal version is A339890.
The additive version is A344608, ranked by A119899.
The even-sum additive version is A344743, ranked by A119899 /\ A300061.
Allowing any integer alternating product gives A347437, additive A347446.
The equal version (= 1 instead of < 1) is A347438.
Allowing any integer reciprocal alternating product gives A347439.
The complement (>= 1 instead of < 1) is counted by A347456.
A038548 counts possible reverse-alternating products of factorizations.
A046099 counts factorizations with no alternating permutations.
A071321 gives the alternating sum of prime factors (reverse: A071322).
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A347460 counts possible alternating products of factorizations.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 07 2021
STATUS
approved
Number of nonsquare divisors of n.
+10
21
0, 1, 1, 1, 1, 3, 1, 2, 1, 3, 1, 4, 1, 3, 3, 2, 1, 4, 1, 4, 3, 3, 1, 6, 1, 3, 2, 4, 1, 7, 1, 3, 3, 3, 3, 5, 1, 3, 3, 6, 1, 7, 1, 4, 4, 3, 1, 7, 1, 4, 3, 4, 1, 6, 3, 6, 3, 3, 1, 10, 1, 3, 4, 3, 3, 7, 1, 4, 3, 7, 1, 8, 1, 3, 4, 4, 3, 7, 1, 7, 2, 3, 1, 10, 3, 3, 3, 6, 1, 10, 3, 4, 3, 3, 3, 9, 1, 4, 4, 5, 1, 7, 1
OFFSET
1,6
COMMENTS
a(A000430(n))=1; a(A030078(n))=2; a(A030514(n))=2; a(A006881(n))=3; a(A050997(n))=3; a(A030516(n))=3; a(A054753(n))=4; a(A000290(n))=A055205(n). - Reinhard Zumkeller, Aug 15 2011
LINKS
FORMULA
a(n) = A000005(n) - A046951(n) = tau(n) - tau(A000188(n)).
Sum_{k=1..n} a(k) ~ n*log(n) + (2*gamma - zeta(2) - 1)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 01 2023
EXAMPLE
a(36)=5 because the set of divisors of 36 has tau(36)=nine elements, {1, 2, 3, 4, 6, 9, 12, 18, 36}, five of which, that is {2, 3, 6, 12, 18}, are not perfect squares.
MAPLE
A056595 := proc(n)
local a, d ;
a := 0 ;
for d in numtheory[divisors](n) do
if not issqr(d) then
a := a+1 ;
end if;
end do:
a;
end proc:
seq(A056595(n), n=1..40) ; # R. J. Mathar, Aug 18 2024
MATHEMATICA
Table[Count[Divisors[n], _?(#!=Floor[Sqrt[#]]^2&)], {n, 110}] (* Harvey P. Dale, Jul 10 2013 *)
a[1] = 0; a[n_] := Times @@ (1 + (e = Last /@ FactorInteger[n])) - Times @@ (1 + Floor[e/2]); Array[a, 100] (* Amiram Eldar, Jul 22 2019 *)
PROG
(Haskell)
a056595 n = length [d | d <- [1..n], mod n d == 0, a010052 d == 0]
-- Reinhard Zumkeller, Aug 15 2011
(PARI) a(n)=sumdiv(n, d, !issquare(d)) \\ Charles R Greathouse IV, Aug 28 2016
CROSSREFS
See A194095 and A194096 for record values and where they occur.
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 21 2000
STATUS
approved

Search completed in 0.055 seconds