Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a226748 -id:a226748
Displaying 1-4 of 4 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A003108 Number of partitions of n into cubes.
(Formerly M0209)
+10
55
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 17, 17, 17, 18, 18, 18, 19, 19, 21, 21, 21, 22, 22, 22, 23, 23, 25, 26, 26, 27, 27, 27, 28 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,9
COMMENTS
The g.f. 1/(z+1)/(z**2+1)/(z**4+1)/(z-1)**2 conjectured by Simon Plouffe in his 1992 dissertation is wrong.
REFERENCES
H. P. Robinson, Letter to N. J. A. Sloane, Jan 04 1974.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
F. Smarandache, Sequences of Numbers Involved in Unsolved Problems, Hexis, Phoenix, 2006.
LINKS
T. D. Noe and Vaclav Kotesovec, Table of n, a(n) for n = 0..100000 (terms 0..1000 from T. D. Noe)
G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proceedings of the London Mathematical Society, 2, XVI, 1917, p. 373.
F. Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sci. 16E, 237-240, 1997.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Eric Weisstein's World of Mathematics, Cubic Number
Eric Weisstein's World of Mathematics, Partition
Eric Weisstein's World of Mathematics, Smarandache Sequences
FORMULA
G.f.: 1/Product_{j>=1} (1-x^(j^3)). - Emeric Deutsch, Mar 30 2006
G.f.: Sum_{n>=0} x^(n^3) / Product_{k=1..n} (1 - x^(k^3)). - Paul D. Hanna, Mar 09 2012
a(n) ~ exp(4 * (Gamma(1/3)*Zeta(4/3))^(3/4) * n^(1/4) / 3^(3/2)) * (Gamma(1/3)*Zeta(4/3))^(3/4) / (24*Pi^2*n^(5/4)) [Hardy & Ramanujan, 1917]. - Vaclav Kotesovec, Dec 29 2016
EXAMPLE
a(16) = 3 because we have [8,8], [8,1,1,1,1,1,1,1,1] and [1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1].
G.f.: A(x) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + 2*x^8 +...
such that the g.f. A(x) satisfies the identity [Paul D. Hanna]:
A(x) = 1/((1-x)*(1-x^8)*(1-x^27)*(1-x^64)*(1-x^125)*...)
A(x) = 1 + x/(1-x) + x^8/((1-x)*(1-x^8)) + x^27/((1-x)*(1-x^8)*(1-x^27)) + x^64/((1-x)*(1-x^8)*(1-x^27)*(1-x^64)) +...
MAPLE
g:=1/product(1-x^(j^3), j=1..30): gser:=series(g, x=0, 70): seq(coeff(gser, x, n), n=0..65); # Emeric Deutsch, Mar 30 2006
MATHEMATICA
nmax = 100; CoefficientList[Series[Product[1/(1 - x^(k^3)), {k, 1, nmax^(1/3)}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 19 2015 *)
nmax = 60; cmax = nmax^(1/3);
s = Table[n^3, {n, cmax}];
Table[Count[IntegerPartitions@n, x_ /; SubsetQ[s, x]], {n, 0, nmax}] (* Robert Price, Jul 31 2020 *)
PROG
(PARI) {a(n)=polcoeff(1/prod(k=1, ceil(n^(1/3)), 1-x^(k^3)+x*O(x^n)), n)} /* Paul D. Hanna, Mar 09 2012 */
(PARI) {a(n)=polcoeff(1+sum(m=1, ceil(n^(1/3)), x^(m^3)/prod(k=1, m, 1-x^(k^3)+x*O(x^n))), n)} /* Paul D. Hanna, Mar 09 2012 */
(Haskell)
a003108 = p $ tail a000578_list where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Oct 31 2012
(Magma) [#RestrictedPartitions(n, {d^3:d in [1..n]}): n in [0..150]]; // Marius A. Burtea, Jan 02 2019
(Python)
from functools import lru_cache
from sympy import integer_nthroot, divisors
@lru_cache(maxsize=None)
def A003108(n):
@lru_cache(maxsize=None)
def a(n): return integer_nthroot(n, 3)[1]
@lru_cache(maxsize=None)
def c(n): return sum(d for d in divisors(n, generator=True) if a(d))
return (c(n)+sum(c(k)*A003108(n-k) for k in range(1, n)))//n if n else 1 # Chai Wah Wu, Jul 15 2024
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
STATUS
approved
A068980 Number of partitions of n into nonzero tetrahedral numbers. +10
32
1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 11, 11, 12, 12, 15, 15, 16, 16, 19, 19, 22, 22, 25, 25, 28, 29, 32, 32, 35, 36, 42, 42, 45, 46, 52, 53, 56, 57, 63, 64, 70, 71, 77, 78, 84, 87, 94, 95, 101, 104, 115, 116, 122, 125, 136, 139, 146, 149, 160, 163, 175 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
LINKS
Zhicheng Gao, Andrew MacFie and Daniel Panario, Counting words by number of occurrences of some patterns, The Electronic Journal of Combinatorics, 18 (2011), #P143.
FORMULA
G.f.: 1 / Product_(k>=3} (1 - z^binomial(k, 3)).
G.f.: Sum_{i>=0} x^(i*(i+1)*(i+2)/6) / Product_{j=1..i} (1 - x^(j*(j+1)*(j+2)/6)). - Ilya Gutkovskiy, Jun 08 2017
EXAMPLE
a(10) = 4 because we can write 10 = 10 = 4 + 4 + 1 + 1 = 4 + 1 + 1 + 1 + 1 + 1 = 1 + ... + 1.
MATHEMATICA
nmax = 100; CoefficientList[Series[Product[1/(1-x^(k*(k+1)*(k+2)/6)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 09 2017 *)
CROSSREFS
See also A007294 (partitions into triangular numbers), A000292 (tetrahedral numbers).
KEYWORD
easy,nonn
AUTHOR
STATUS
approved
A053012 Platonic numbers: a(n) is a tetrahedral (A000292), cube (A000578), octahedral (A005900), dodecahedral (A006566) or icosahedral (A006564) number. +10
11
1, 4, 6, 8, 10, 12, 19, 20, 27, 35, 44, 48, 56, 64, 84, 85, 120, 124, 125, 146, 165, 216, 220, 231, 255, 286, 343, 344, 364, 455, 456, 489, 512, 560, 670, 680, 729, 742, 816, 891, 969, 1000, 1128, 1140, 1156, 1330, 1331, 1469, 1540, 1629, 1728, 1771, 1834 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
19, the 3rd octahedral number, is the only prime platonic number. - Jean-François Alcover, Oct 11 2012
LINKS
OEIS Wiki, Platonic numbers
MATHEMATICA
nn = 25; t1 = Table[n (n + 1) (n + 2)/6, {n, nn}]; t2 = Table[n^3, {n, nn}]; t3 = Table[(2*n^3 + n)/3, {n, nn}]; t4 = Table[n (3*n - 1) (3*n - 2)/2, {n, nn}]; t5 = Table[n (5*n^2 - 5*n + 2)/2, {n, nn}]; Select[Union[t1, t2, t3, t4, t5], # <= t1[[-1]] &] (* T. D. Noe, Oct 13 2012 *)
PROG
(Haskell)
a053012 n = a053012_list !! (n-1)
a053012_list = tail $ f
[a000292_list, a000578_list, a005900_list, a006566_list, a006564_list]
where f pss = m : f (map (dropWhile (<= m)) pss)
where m = minimum (map head pss)
-- Reinhard Zumkeller, Jun 17 2013
(PARI) listpoly(lim, poly[..])=my(v=List()); for(i=1, #poly, my(P=poly[i], x=variable(P), f=k->subst(P, x, k), n, t); while((t=f(n++))<=lim, listput(v, t))); Set(v)
list(lim)=my(n='n); listpoly(lim, n*(n+1)*(n+2)/6, n^3, (2*n^3+n)/3, n*(3*n-1)*(3*n-2)/2, n*(5*n^2-5*n+2)/2) \\ Charles R Greathouse IV, Oct 11 2016
CROSSREFS
Numbers of partitions into Platonic numbers: A226748, A226749.
KEYWORD
easy,nice,nonn
AUTHOR
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Feb 22 2000
STATUS
approved
A226749 Number of partitions of n into distinct Platonic numbers, cf. A053012. +10
3
1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 4, 4, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 7, 6, 6, 6, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 11, 11, 11, 12, 13, 13, 12, 12, 13, 15, 15, 16, 17, 17, 16, 18, 18, 19, 19, 21, 21, 23, 24, 25, 24, 24, 24, 26, 26, 29, 32 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,11
LINKS
EXAMPLE
First Platonic numbers: 1, 4, 6, 8, 10, 12, 19, 20, 27, ...
a(10) = #{10, 6+4} = 2;
a(11) = #{10+1, 6+4+1} = 2;
a(12) = #{12, 8+4} = 2;
a(13) = #{12+1, 8+4+1} = 2;
a(14) = #{10+4, 8+6} = 2;
a(15) = #{10+4+1, 8+6+1} = 2;
a(16) = #{12+4, 10+6} = 2;
a(17) = #{12+4+1, 10+6+1} = 2;
a(18) = #{12+6, 10+8, 8+6+4} = 3;
a(19) = #{19, 12+6+1, 10+8+1, 8+6+4+1} = 4;
a(20) = #{20, 19+1, 12+8, 10+6+4} = 4.
PROG
(Haskell)
a226749 = p a053012_list where
p _ 0 = 1
p (k:ks) m = if m < k then 0 else p ks (m - k) + p ks m
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jun 17 2013
STATUS
approved
page 1

Search completed in 0.005 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 6 10:22 EDT 2024. Contains 374969 sequences. (Running on oeis4.)