Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a268545 -id:a268545
Displaying 1-10 of 71 results found. page 1 2 3 4 5 6 7 8
     Sort: relevance | references | number | modified | created      Format: long | short | data
A005259 Apery (Apéry) numbers: Sum_{k=0..n} (binomial(n,k)*binomial(n+k,k))^2.
(Formerly M4020)
+10
127
1, 5, 73, 1445, 33001, 819005, 21460825, 584307365, 16367912425, 468690849005, 13657436403073, 403676083788125, 12073365010564729, 364713572395983725, 11111571997143198073, 341034504521827105445, 10534522198396293262825, 327259338516161442321485 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Conjecture: For each n = 1,2,3,... the Apéry polynomial A_n(x) = Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)^2*x^k is irreducible over the field of rational numbers. - Zhi-Wei Sun, Mar 21 2013
The expansions of exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + 5*x + 49*x^2 + 685*x^3 + 11807*x^4 + 232771*x^5 + ... and exp( Sum_{n >= 1} a(n-1)*x^n/n ) = 1 + 3*x + 27*x^2 + 390*x^3 + 7038*x^4 + 144550*x^5 + ... both appear to have integer coefficients. See A267220. - Peter Bala, Jan 12 2016
Diagonal of the rational function R(x, y, z, w) = 1 / (1 - (w*x*y*z + w*x*y + w*z + x*y + x*z + y + z)); also diagonal of rational function H(x, y, z, w) = 1/(1 - w*(1+x)*(1+y)*(1+z)*(x*y*z + y*z + y + z + 1)). - Gheorghe Coserea, Jun 26 2018
Named after the French mathematician Roger Apéry (1916-1994). - Amiram Eldar, Jun 10 2021
REFERENCES
Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 137-153.
Wolfram Koepf, Hypergeometric Identities. Ch. 2 in Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities. Braunschweig, Germany: Vieweg, pp. 55, 119 and 146, 1998.
Maxim Kontsevich and Don Zagier, Periods, pp. 771-808 of B. Engquist and W. Schmid, editors, Mathematics Unlimited - 2001 and Beyond, 2 vols., Springer-Verlag, 2001.
Leonard Lipshitz and Alfred van der Poorten, "Rational functions, diagonals, automata and arithmetic." In Number Theory, Richard A. Mollin, ed., Walter de Gruyter, Berlin (1990), pp. 339-358.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..656 (first 101 terms from T. D. Noe)
Boris Adamczewski, Jason P. Bell and Eric Delaygue, Algebraic independence of G-functions and congruences "a la Lucas", arXiv preprint arXiv:1603.04187 [math.NT], 2016.
Jean-Paul Allouche, A remark on Apéry's numbers, J. Comput. Appl. Math., Vol. 83 (1997), pp. 123-125.
Roger Apéry, Irrationalité de zeta(2) et zeta(3), in Journées Arith. de Luminy. Colloque International du Centre National de la Recherche Scientifique (CNRS) held at the Centre Universitaire de Luminy, Luminy, Jun 20-24, 1978. Astérisque, Vol. 61 (1979), pp. 11-13.
Roger Apéry, Sur certaines séries entières arithmétiques, Groupe de travail d'analyse ultramétrique, Vol. 9, No. 1 (1981-1982), Exp. No. 16, 2 p.
Roger Apéry, Interpolation de fractions continues et irrationalité de certaines constantes, Bulletin de la section des sciences du C.T.H.S III (1981), pp. 37-53.
Thomas Baruchel and Carsten Elsner, On error sums formed by rational approximations with split denominators, arXiv preprint arXiv:1602.06445 [math.NT], 2016.
Frits Beukers, Another congruence for the Apéry numbers, J. Number Theory, Vol. 25, No. 2 (1987), pp. 201-210.
Frits Beukers, Consequences of Apéry's work on zeta(3), in "Zeta(3) irrationnel: les retombées", Rencontres Arithmétiques de Caen, June 2-3, 1995 [Mentions divisibility of a(n) by powers of 5 and powers of 11]
Francis Brown, Irrationality proofs for zeta values, moduli spaces and dinner parties, arXiv:1412.6508 [math.NT], 2014.
William Y. C. Chen, Qing-Hu Hou and Yan-Ping Mu, A telescoping method for double summations, J. Comp. Appl. Math., Vol. 196, No. 2 (2006), pp. 553-566, Example 4.
Shaun Cooper, Apéry-like sequences defined by four-term recurrence relations, arXiv:2302.00757 [math.NT], 2023. See Table 2 p. 7.
M. Coster, Email, Nov 1990
Eric Delaygue, Arithmetic properties of Apéry-like numbers, arXiv preprint arXiv:1310.4131 [math.NT], 2013.
Emeric Deutsch and Bruce E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, arXiv:math/0407326 [math.CO], 2004.
Emeric Deutsch and Bruce E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, J. Num. Theory 117 (2006), 191-215.
Gerald A. Edgar, A formula with Legendre polynomials, Sci. Math. Research posting Mar 21 2005.
G. A. Edgar, The Apéry Numbers as a Stieltjes Moment Sequence, arXiv:2005.10733 [math.CA], 2020.
Carsten Elsner, On recurrence formulas for sums involving binomial coefficients, Fib. Q., Vol. 43, No. 1 (2005), pp. 31-45.
Stéphane Fischler, Irrationalité de valeurs de zeta, arXiv:math/0303066 [math.NT], 2003.
Scott Garrabrant and Igor Pak, Counting with irrational tiles, arXiv:1407.8222 [math.CO], 2014.
Ira Gessel, Some congruences for Apéry numbers, Journal of Number Theory, Vol. 14, No. 3 (1982) 362-368.
Ofir Gorodetsky, New representations for all sporadic Apéry-like sequences, with applications to congruences, arXiv:2102.11839 [math.NT], 2021. See gamma p. 3.
Leonard Lipshitz and Alfred J. van der Poorten, Rational functions, diagonals, automata and arithmetic, in: Richard A. Mollin (ed.), Number theory, Proceedings of the First Conference of the Canadian Number Theory Association Held at the Banff Center, Banff, Alberta, April 17-27, 1988, de Gruyter, 2016, pp. 339-358; alternative link; Wayback Machine copy.
Ji-Cai Liu, Supercongruences for the (p-1)th Apéry number, arXiv:1803.11442 [math.NT], 2018.
Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, Vol. 2 (2016), Article 5.
Stephen Melczer and Bruno Salvy, Symbolic-Numeric Tools for Analytic Combinatorics in Several Variables, arXiv:1605.00402 [cs.SC], 2016.
Romeo Meštrović, Lucas' theorem: its generalizations, extensions and applications (1878--2014), arXiv preprint arXiv:1409.3820 [math.NT], 2014.
Robert Osburn and Brundaban Sahu, A supercongruence for generalized Domb numbers, Funct. Approx. Comment. Math., Vol. 48, No. 1 (2013), pp. 29-36; alternative link.
Eric Rowland and Reem Yassawi, Automatic congruences for diagonals of rational functions, Journal de théorie des nombres de Bordeaux, Vol. 27, No. 1 (2015), pp. 245-288; arXiv preprint, arXiv:1310.8635 [math.NT], 2013-2014.
Eric Rowland, Reem Yassawi and Christian Krattenthaler, Lucas congruences for the Apéry numbers modulo p^2, arXiv:2005.04801 [math.NT], 2020.
Andrew Strangeway, A Reconstruction Theorem for Quantum Cohomology of Fano Bundles on Projective Space, arXiv preprint arXiv:1302.5089 [math.AG], 2013.
Andrew Strangeway, Quantum reconstruction for Fano bundles on projective space, Nagoya Math. J., Vol. 218 (2015), pp. 1-28.
Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv preprint, arXiv:1401.0854 [math.NT], 2014.
Volker Strehl, Recurrences and Legendre transform, Séminaire Lotharingien de Combinatoire, B29b (1992), 22 pp.
Volker Strehl, Binomial identities -- combinatorial and algorithmic aspects, Discrete Mathematics, Vol. 136 (1994), 309-346.
Zhi-Hong Sun, Congruences for Apéry-like numbers, arXiv:1803.10051 [math.NT], 2018.
Zhi-Hong Sun, New congruences involving Apéry-like numbers, arXiv:2004.07172 [math.NT], 2020.
Zhi-Wei Sun, Congruences for Franel numbers, arXiv preprint arXiv:1112.1034 [math.NT], 2011.
Zhi-Wei Sun, On sums of Apéry polynomials and related congruences, J. Number Theory 132(2012), 2673-2699. [Zhi-Wei Sun, Mar 21 2013]
Zhi-Wei Sun. Sun, On sums of Apéry polynomials and related congruences, arXiv:1101.1946 [math.NT], 2011-2014. [Zhi-Wei Sun, Mar 21 2013]
Alfred van der Poorten, A proof that Euler missed ..., Math. Intelligencer, Vol. 1, No. 4 (December 1979), pp. 196-203, (b_n) after eq. (1.2), and Exercise 3.
Chen Wang, Two congruences concerning Apéry numbers, arXiv:1909.08983 [math.NT], 2019.
Eric Weisstein's World of Mathematics, Apéry Number.
Eric Weisstein's World of Mathematics, Strehl Identities.
Eric Weisstein's World of Mathematics, Schmidt's Problem.
Ernest X. W. Xia and Olivia X. M. Yao, A Criterion for the Log-Convexity of Combinatorial Sequences, The Electronic Journal of Combinatorics, Vol. 20 (2013), #P3.
FORMULA
D-finite with recurrence (n+1)^3*a(n+1) = (34*n^3 + 51*n^2 + 27*n + 5)*a(n) - n^3*a(n-1), n >= 1.
Representation as a special value of the hypergeometric function 4F3, in Maple notation: a(n)=hypergeom([n+1, n+1, -n, -n], [1, 1, 1], 1), n=0, 1, ... - Karol A. Penson Jul 24 2002
a(n) = Sum_{k >= 0} A063007(n, k)*A000172(k)). A000172 = Franel numbers. - Philippe Deléham, Aug 14 2003
G.f.: (-1/2)*(3*x - 3 + (x^2-34*x+1)^(1/2))*(x+1)^(-2)*hypergeom([1/3,2/3],[1],(-1/2)*(x^2 - 7*x + 1)*(x+1)^(-3)*(x^2 - 34*x + 1)^(1/2)+(1/2)*(x^3 + 30*x^2 - 24*x + 1)*(x+1)^(-3))^2. - Mark van Hoeij, Oct 29 2011
Let g(x, y) = 4*cos(2*x) + 8*sin(y)*cos(x) + 5 and let P(n,z) denote the Legendre polynomial of degree n. Then G. A. Edgar posted a conjecture of Alexandru Lupas that a(n) equals the double integral 1/(4*Pi^2)*int {y = -Pi..Pi} int {x = -Pi..Pi} P(n,g(x,y)) dx dy. (Added Jan 07 2015: Answered affirmatively in Math Overflow question 178790) - Peter Bala, Mar 04 2012; edited by G. A. Edgar, Dec 10 2016
a(n) ~ (1+sqrt(2))^(4*n+2)/(2^(9/4)*Pi^(3/2)*n^(3/2)). - Vaclav Kotesovec, Nov 01 2012
a(n) = Sum_{k=0..n} C(n,k)^2 * C(n+k,k)^2. - Joerg Arndt, May 11 2013
0 = (-x^2+34*x^3-x^4)*y''' + (-3*x+153*x^2-6*x^3)*y'' + (-1+112*x-7*x^2)*y' + (5-x)*y, where y is g.f. - Gheorghe Coserea, Jul 14 2016
From Peter Bala, Jan 18 2020: (Start)
a(n) = Sum_{0 <= j, k <= n} (-1)^(n+j) * C(n,k)^2 * C(n+k,k)^2 * C(n,j) * C(n+k+j,k+j).
a(n) = Sum_{0 <= j, k <= n} C(n,k) * C(n+k,k) * C(k,j)^3 (see Koepf, p. 55).
a(n) = Sum_{0 <= j, k <= n} C(n,k)^2 * C(n,j)^2 * C(3*n-j-k,2*n) (see Koepf, p. 119).
Diagonal coefficients of the rational function 1/((1 - x - y)*(1 - z - t) - x*y*z*t) (Straub, 2014). (End)
a(n) = [x^n] 1/(1 - x)*( Legendre_P(n,(1 + x)/(1 - x)) )^m at m = 2. At m = 1 we get the Apéry numbers A005258. - Peter Bala, Dec 22 2020
a(n) = Sum_{k = 0..n} (-1)^(n+k)*binomial(n, k)*binomial(n+k, k)*A108625(n, k). - Peter Bala, Jul 18 2024
EXAMPLE
G.f. = 1 + 5*x + 73*x^2 + 1445*x^3 + 33001*x^4 + 819005*x^5 + 21460825*x^6 + ...
a(2) = (binomial(2,0) * binomial(2+0,0))^2 + (binomial(2,1) * binomial(2+1,1))^2 + (binomial(2,2) * binomial(2+2,2))^2 = (1*1)^2 + (2*3)^2 + (1*6)^2 = 1 + 36 + 36 = 73. - Michael B. Porter, Jul 14 2016
MAPLE
a := proc(n) option remember; if n=0 then 1 elif n=1 then 5 else (n^(-3))* ( (34*(n-1)^3 + 51*(n-1)^2 + 27*(n-1) +5)*a((n-1)) - (n-1)^3*a((n-1)-1)); fi; end;
# Alternative:
a := n -> hypergeom([-n, -n, 1+n, 1+n], [1, 1, 1], 1):
seq(simplify(a(n)), n=0..17); # Peter Luschny, Jan 19 2020
MATHEMATICA
Table[HypergeometricPFQ[{-n, -n, n+1, n+1}, {1, 1, 1}, 1], {n, 0, 13}] (* Jean-François Alcover, Apr 01 2011 *)
Table[Sum[(Binomial[n, k]Binomial[n+k, k])^2, {k, 0, n}], {n, 0, 30}] (* Harvey P. Dale, Oct 15 2011 *)
a[ n_] := SeriesCoefficient[ SeriesCoefficient[ SeriesCoefficient[ SeriesCoefficient[ 1 / (1 - t (1 + x ) (1 + y ) (1 + z ) (x y z + (y + 1) (z + 1))), {t, 0, n}], {x, 0, n}], {y, 0, n}], {z, 0, n}]; (* Michael Somos, May 14 2016 *)
PROG
(PARI) a(n)=sum(k=0, n, (binomial(n, k)*binomial(n+k, k))^2) \\ Charles R Greathouse IV, Nov 20 2012
(Haskell)
a005259 n = a005259_list !! n
a005259_list = 1 : 5 : zipWith div (zipWith (-)
(tail $ zipWith (*) a006221_list a005259_list)
(zipWith (*) (tail a000578_list) a005259_list)) (drop 2 a000578_list)
-- Reinhard Zumkeller, Mar 13 2014
(GAP) List([0..20], n->Sum([0..n], k->Binomial(n, k)^2*Binomial(n+k, k)^2)); # Muniru A Asiru, Sep 28 2018
(Magma) [&+[Binomial(n, k) ^2 *Binomial(n+k, k)^2: k in [0..n]]:n in [0..17]]; // Marius A. Burtea, Jan 20 2020
(Python)
def A005259(n):
m, g = 1, 0
for k in range(n+1):
g += m
m *= ((n+k+1)*(n-k))**2
m //=(k+1)**4
return g # Chai Wah Wu, Oct 02 2022
CROSSREFS
Apéry's number or Apéry's constant zeta(3) is A002117. - N. J. A. Sloane, Jul 11 2023
Related to diagonal of rational functions: A268545-A268555.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.
Cf. A092826 (prime terms).
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved
A006480 De Bruijn's S(3,n): (3n)!/(n!)^3.
(Formerly M4284)
+10
97
1, 6, 90, 1680, 34650, 756756, 17153136, 399072960, 9465511770, 227873431500, 5550996791340, 136526995463040, 3384731762521200, 84478098072866400, 2120572665910728000, 53494979785374631680, 1355345464406015082330, 34469858696831179429500, 879619727485803060256500, 22514366432046593564460000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Number of paths of length 3n in an n X n X n grid from (0,0,0) to (n,n,n), using steps (0,0,1), (0,1,0), and (1,0,0).
Appears in Ramanujan's theory of elliptic functions of signature 3.
S(s,n) = Sum_{k=0..2n} (-1)^(k+n) * binomial(2n, k)^s. The formula S(3,n) = (3n)!/(n!)^3 is due to Dixon (according to W. N. Bailey 1935). - Charles R Greathouse IV, Dec 28 2011
a(n) is the number of ballot results that end in a 3-way tie when 3n voters each cast two votes for two out of three candidates vying for 2 slots on a county board; in such a tie, each of the three candidates receives 2n votes. Note there are C(3n,2n) ways to choose the voters who cast a vote for the youngest candidate. The n voters who did note vote for the youngest candidate voted for the two older candidates. Then there are C(2n,n) ways to choose the other n voters who voted for both the youngest and the second youngest candidate. The remaining voters vote for the oldest candidate. Hence there are C(3n,2n)*C(2n,n)=(3n)!/(n!)^3 ballot results. - Dennis P. Walsh, May 02 2013
a(n) is the constant term of (X+Y+1/(X*Y))^(3*n). - Mark van Hoeij, May 07 2013
For n > 2 a(n) is divisible by (n+2)*(n+1)^2, a(n) = (n+1)^2*(n+2)*A161581(n). - Alexander Adamchuk, Dec 27 2013
a(n) is the number of permutations of the multiset {1^n, 2^n, 3^n}, the number of ternary words of length 3*n with n of each letters. - Joerg Arndt, Feb 28 2016
Diagonal of the rational function 1/(1 - x - y - z). - Gheorghe Coserea, Jul 06 2016
At least two families of elliptic curves, x = 2*H1 = (p^2+q^2)*(1-q) and x = 2*H2 = p^2+q^2-3*p^2*q+q^3 (0<x<4/27), generate this sequence via the period-energy function T(x) = 2*Pi*2F1(1/3,2/3; 1; (27/4)*x). - Bradley Klee, Feb 25 2018
The ordinary generating function also determines periods along a family of tetrahedral-symmetric sphere curves ("du troisième ordre"). Compare links to Goursat "Étude des surfaces..." and "Proof Certificate". - Bradley Klee, Sep 28 2018
REFERENCES
L. A. Aizenberg and A. P. Yuzhakov, "Integral representations and residues in multidimensional complex analysis", American Mathematical Society, 1983, p. 194.
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 174.
N. G. de Bruijn, Asymptotic Methods in Analysis, North-Holland Publishing Co., 1958. See chapters 4 and 6.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
George E. Andrews, The well-poised thread: An Organized Chronicle of Some Amazing Summations and their Implications, Ramanujan J., 1 (1997), 7-23; see Section 8.
A. Bostan, S. Boukraa, J.-M. Maillard and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, Journal of Physics A: Mathematical and Theoretical, Vol. 48, No. 50 (2015), 504001; arXiv preprint, arXiv:1507.03227 [math-ph], 2015.
Alin Bostan, Armin Straub, and Sergey Yurkevich, On the representability of sequences as constant terms, arXiv:2212.10116 [math.NT], 2022.
Henry W. Gould, Tables of Combinatorial Identities, Edited by J. Quaintance.
Édouard Goursat, Étude des surfaces qui admettent tous les plans de symétrie d'un polyèdre régulier, Annales scientifiques de l'École Normale Supérieure, Série 3 : Volume 4 (1887), 165-166.
Brad Klee, Geometric G.F. for Ramanujan Periods, seqfans mailing list, 2017.
Bradley Klee, Proof Certificate.
Gilbert Labelle and Annie Lacasse, Closed paths whose steps are roots of unity, in FPSAC 2011, Reykjavík, Iceland DMTCS proc. AO, 2011, pp. 599-610.
Pedro J. Miana, Hideyuki Ohtsuka, and Natalia Romero, Sums of powers of Catalan triangle numbers, Discrete Mathematics, Vol. 340, No. 10 (2017), pp. 2388-2397; arXiv preprint, arXiv:1602.04347 [math.NT], 2016.
Jovan Mikić, A Method For Examining Divisibility Properties Of Some Binomial Sums, J. Int. Seq., Vol. 21 (2018), Article 18.8.7.
Michaël Moortgat, The Tamari order for D^3 and derivability in semi-associative Lambek-Grishin Calculus, 15th Workshop: Computational Logic and Applications (CLA 2020).
Karol A. Penson and Allan I. Solomon, Coherent states from combinatorial sequences, in: E. Kapuscik and A. Horzela (eds.), Quantum theory and symmetries, World Scientific, 2002, pp. 527-530; arXiv preprint, arXiv:quant-ph/0111151, 2001.
Marko Petkovsek, Herbert Wilf and Doron Zeilberger, A=B, A K Peters, 1996, p. 22.
Srinivasa Ramanujan, Modular Equations and Approximations to Pi, Quarterly Journal of Mathematics, XLV (1914), 350-372.
Bruno Salvy, GFUN and the AGM.
Eric Weisstein's World of Mathematics, Binomial Sums.
Wikipedia, Dixon's identity.
FORMULA
Using Stirling's formula in A000142 it is easy to get the asymptotic expression a(n) ~ 1/2 * sqrt(3) * 27^n / (Pi*n) - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001
From Karol A. Penson, Nov 21 2001: (Start)
O.g.f.: hypergeom([1/3, 2/3], [1], 27*x).
E.g.f.: hypergeom([1/3, 2/3], [1, 1], 27*x).
Integral representation as n-th moment of a positive function on [0, 27]:
a(n) = int( x^n*(-1/24*(3*sqrt(3)*hypergeom([2/3, 2/3], [4/3], 1/27*x)* Gamma(2/3)^6*x^(1/3) - 8*hypergeom([1/3, 1/3], [2/3], 1/27*x)*Pi^3)/Pi^3 /x^(2/3)/Gamma(2/3)^3), x=0..27). This representation is unique. (End)
a(n) = Sum_{k=-n..n} (-1)^k*binomial(2*n, n+k)^3. - Benoit Cloitre, Mar 02 2005
a(n) = C(2n,n)*C(3n,n) = A104684(2n,n). - Paul Barry, Mar 14 2006
G.f. satisfies: A(x^3) = A( x*(1+3*x+9*x^2)/(1+6*x)^3 )/(1+6*x). - Paul D. Hanna, Oct 29 2010
D-finite with recurrence: n^2*a(n) - 3*(3*n-1)*(3*n-2)*a(n-1) = 0. - R. J. Mathar, Dec 04 2012
a(n) = (n+1)^2*(n+2)*A161581(n) for n>2. - Alexander Adamchuk, Dec 27 2013
0 = a(n)^2*(472392*a(n+1)^2 - 83106*a(n+1)*a(n+2) + 3600*a(n+2)^2) + a(n)*a(n+1)*(-8748*a(n+1)^2 + 1953*a(n+1)*a(n+2) - 120*a(n+2)^2) + a(n+1)^2*(+36*a(n+1)^2 - 12*a(n+1)*a(n+2) + a(n+2)^2 for all n in Z. - Michael Somos, Oct 22 2014
0 = x*(27*x-1)*y'' + (54*x-1)*y' + 6*y, where y is g.f. - Gheorghe Coserea, Jul 06 2016
From Peter Bala, Jul 15 2016: (Start)
a(n) = 3*binomial(2*n - 1,n)*binomial(3*n - 1,n) = 3*[x^n] 1/(1 - x)^n * [x^n] 1/(1 - x)^(2*n) for n >= 1.
a(n) = binomial(2*n,n)*binomial(3*n,n) = ([x^n](1 + x)^(2*n)) *([x^n](1 + x)^(3*n)) = [x^n](F(x)^(6*n)), where F(x) = 1 + x + 2*x^2 + 14*x^3 + 127*x^4 + 1364*x^5 + 16219*x^6 + ... appears to have integer coefficients. Cf. A002894.
This sequence occurs as the right-hand side of several binomial sums:
Sum_{k = 0..2*n} (-1)^(n+k)*binomial(2*n,k)^3 = a(n) (Dixon's identity).
Sum_{k = 0..n} binomial(n,k)*binomial(2*n,n - k)*binomial(3*n + k,k) = a(n) (Gould, Vol. 4, 6.86)
Sum_{k = 0..n} (-1)^(n+k)*binomial(n,k)*binomial(2*n + k,n)*binomial(3*n + k,n) = a(n).
Sum_{k = 0..n} binomial(n,k)*binomial(2*n + k,k)*binomial(3*n,n - k) = a(n).
Sum_{k = 0..n} (-1)^(k)*binomial(n,k)*binomial(3*n - k,n)*binomial(4*n - k,n) = a(n).
Sum_{k = 0..2*n} (-1)^(n+k)*binomial(2*n + k,2*n - k)*binomial(2*k,k)*binomial(4*n - k,2*n) = a(n) (see Gould, Vol.5, 9.23).
Sum_{k = 0..2*n} (-1)^k*binomial(3*n,k)*binomial(3*n - k,n)^3 = a(n) (Sprugnoli, Section 2.9, Table 10, p. 123). (End)
From Bradley Klee, Feb 28 2018: (Start)
a(n) = A005809(n)*A000984(n).
G.f.: F(x) = 1/(2*Pi) Integral_{z=0..2*Pi} 2F1(1/3,2/3; 1/2; 27*x*sin^2(z)) dz.
With G(x) = x*2F1(1/3,2/3; 2; 27*x): F(x) = d/dx G(x). (Cf. A007004) (End)
F(x)*G(1/27-x) + F(1/27-x)*G(x) = 1/(4*Pi*sqrt(3)). - Bradley Klee, Sep 29 2018
Sum_{n>=0} 1/a(n) = A091683. - Amiram Eldar, Nov 15 2020
From Peter Bala, Sep 20 2021: (Start)
a(n) = Sum_{k = n..2*n} binomial(2*n,k)^2 * binomial(k,n). Cf. A001459.
a(n*p^k) == a(n*p^(k-1)) ( mod p^(3*k) ) for any prime p >= 5 and any positive integers n and k (write a(n) as C(3*n,2*n)*C(2*n,n) and apply Mestrovic, equation 39, p. 12). (End)
a(n) = 6*A060542(n). - R. J. Mathar, Jun 21 2023
Occurs on the right-hand side of the binomial sum identities Sum_{k = -n..n} (-1)^k * (n + x - k) * binomial(2*n, n+k)^3 = (x + n)*a(n) and Sum_{k = -n..n} (-1)^k * (n + x - k)^3 * binomial(2*n, n+k)^3 = x*(x + n)*(x + 2*n)*a(n) (x arbitrary). Compare with Dixon's identity: Sum_{k = -n..n} (-1)^k * binomial(2*n, n+k)^3 = a(n). - Peter Bala, Jul 31 2023
From Peter Bala, Aug 14 2023: (Start)
a(n) = (-1)^n * [x^(2*n)] ( (1 - x)^(4*n) * Legendre_P(2*n, (1 + x)/(1 - x)) ).
Row 1 of A364509. (End)
EXAMPLE
G.f.: 1 + 6*x + 90*x^2 + 1680*x^3 + 34650*x^4 + 756756*x^5 + 17153136*x^6 + ...
MAPLE
seq((3*n)!/(n!)^3, n=0..16); # Zerinvary Lajos, Jun 28 2007
MATHEMATICA
Sum [ (-1)^(k+n) Binomial[ 2n, k ]^3, {k, 0, 2n} ]
a[ n_] := If[ n < 0, 0, (-1)^n HypergeometricPFQ[ {-2 n, -2 n, -2 n}, {1, 1}, 1]]; (* Michael Somos, Oct 22 2014 *)
Table[Multinomial[n, n, n], {n, 0, 100}] (* Emanuele Munarini, Oct 25 2016 *)
CoefficientList[Series[Hypergeometric2F1[1/3, 2/3, 1, 27*x], {x, 0, 5}], x] (* Bradley Klee, Feb 28 2018 *)
PROG
(PARI) {a(n) = if( n<0, 0, (3*n)! / n!^3)}; /* Michael Somos, Dec 03 2002 */
(PARI) {a(n) = my(A, m); if( n<1, n==0, m=1; A = 1 + O(x); while( m<=n, m*=3; A = subst( (1 + 2*x) * subst(A, x, (x/3)^3), x, serreverse(x * (1 + x + x^2) / (1 + 2*x)^3 / 3 + O(x^m)))); polcoeff(A, n))}; /* Michael Somos, Dec 03 2002 */
(Magma) [Factorial(3*n)/(Factorial(n))^3: n in [0..20] ]; // Vincenzo Librandi, Aug 20 2011
(Maxima) makelist(multinomial_coeff(n, n, n), n, 0, 24); /* Emanuele Munarini, Oct 25 2016 */
(GAP) List([0..20], n->Factorial(3*n)/Factorial(n)^3); # Muniru A Asiru, Mar 31 2018
(Python)
from math import factorial
def A006480(n): return factorial(3*n)//factorial(n)**3 # Chai Wah Wu, Oct 04 2022
CROSSREFS
Row 3 of A187783.
Related to diagonal of rational functions: A268545-A268555. Elliptic Integrals: A002894, A113424, A000897. Factors: A005809, A000984. Integrals: A007004, A024486. Sphere Curves: A318245, A318495.
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
a(14)-a(16) from Eric W. Weisstein
Terms a(17) and beyond from T. D. Noe, Jun 29 2008
STATUS
approved
A268555 Diagonal of the rational function of six variables 1/((1 - w - u v - u v w) * (1 - z - x y)). +10
74
1, 6, 78, 1260, 22470, 424116, 8305836, 166929048, 3419932230, 71109813060, 1496053026468, 31777397077608, 680354749147164, 14664155597771400, 317877850826299800, 6924815555276838960, 151505459922479997510, 3327336781596164286180 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Also diagonal of rational function R(x,y,z) = 1 /(1 - x - y - z - x*y + x*z).
Annihilating differential operator: x*(16*x^2-24*x+1)*(d/dx)^2 + (48*x^2-48*x+1)*(d/dx) + 12*x-6.
LINKS
A. Bostan, S. Boukraa, J.-M. Maillard, J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
FORMULA
D-finite with recurrence: n^2*a(n) -6*(2*n-1)^2*a(n-1) +4*(2*n-1)*(2*n-3)*a(n-2)=0. - R. J. Mathar, Mar 10 2016
a(n) ~ sqrt(4+3*sqrt(2)) * 2^(2*n-3/2) * (1+sqrt(2))^(2*n) / (Pi*n). - Vaclav Kotesovec, Jul 01 2016
G.f.: hypergeom([1/12, 5/12],[1],6912*x^4*(1-24*x+16*x^2)/(1-24*x+48*x^2)^3)/(1-24*x+48*x^2)^(1/4).
0 = x*(16*x^2-24*x+1)*y'' + (48*x^2-48*x+1)*y' + (12*x-6)*y, where y is g.f.
a(n) = A000984(n)*A001850(n) = C(2*n,n)*Sum_{k = 0..n} C(n,k)*C(n+k,k). - Peter Bala, Mar 19 2018
EXAMPLE
G.f. = 1 + 6*x + 78*x^2 + 1260*x^3 + 22470*x^4 + 424116*x^5 + 8305836*x^6 + ...
MAPLE
A268555 := proc(n)
1/(1-w-u*v-u*v*w)/(1-z-x*y) ;
coeftayl(%, x=0, n) ;
coeftayl(%, y=0, n) ;
coeftayl(%, z=0, n) ;
coeftayl(%, u=0, n) ;
coeftayl(%, v=0, n) ;
coeftayl(%, w=0, n) ;
end proc:
seq(A268555(n), n=0..40) ; # R. J. Mathar, Mar 10 2016
seq(binomial(2*n, n)*add(binomial(n, k)*binomial(n+k, k), k = 0..n), n = 0..20); # Peter Bala, Mar 19 2018
MATHEMATICA
sc = SeriesCoefficient;
a[n_] := 1/(1-w-u*v-u*v*w)/(1-z-x*y) // sc[#, {x, 0, n}]& // sc[#, {y, 0, n}]& // sc[#, {z, 0, n}]& // sc[#, {u, 0, n}]& // sc[#, {v, 0, n}]& // sc[#, {w, 0, n}]&;
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Nov 14 2017 *)
a[n_] := Product[Hypergeometric2F1[-n, -n, 1, i], {i, 1, 2}];
Table[a[n], {n, 0, 17}] (* Peter Luschny, Mar 19 2018 *)
PROG
(PARI) \\ system("wget http://www.jjj.de/pari/hypergeom.gpi");
read("hypergeom.gpi");
N = 18; x = 'x + O('x^N);
Vec(hypergeom_sym([1/12, 5/12], [1], 6912*x^4*(1-24*x+16*x^2)/(1-24*x+48*x^2)^3, N)/(1-24*x+48*x^2)^(1/4)) \\ Gheorghe Coserea, Jul 05 2016
(PARI) {a(n) = if( n<1, n==0, my(A = vector(n+1)); A[1] = 1; A[2] = 6; for(k=2, n, A[k+1] = (6*(2*k-1)^2*A[k] - 4*(2*k-1)*(2*k-3)*A[k-1]) / k^2); A[n+1])}; /* Michael Somos, Jan 22 2017 */
(PARI)
diag(expr, N=22, var=variables(expr)) = {
my(a = vector(N));
for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N));
for (n = 1, N, a[n] = expr;
for (k = 1, #var, a[n] = polcoeff(a[n], n-1)));
return(a);
};
diag(1/(1 - x - y - z - x*y + x*z), 18)
\\ test: diag(1/(1-x-y-z-x*y+x*z)) == diag(1/((1-w-u*v-u*v*w)*(1-z-x*y)))
\\ Gheorghe Coserea, Jun 15 2018
(GAP) List([0..20], n->Binomial(2*n, n)*Sum([0..n], k->Binomial(n, k)*Binomial(n+k, k))); # Muniru A Asiru, Mar 19 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 29 2016
STATUS
approved
A005260 a(n) = Sum_{k = 0..n} binomial(n,k)^4.
(Formerly M2110)
+10
65
1, 2, 18, 164, 1810, 21252, 263844, 3395016, 44916498, 607041380, 8345319268, 116335834056, 1640651321764, 23365271704712, 335556407724360, 4854133484555664, 70666388112940818, 1034529673001901732 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
This sequence is s_10 in Cooper's paper. - Jason Kimberley, Nov 25 2012
Diagonal of the rational function R(x,y,z,w) = 1/(1 - (w*x*y + w*x*z + w*y*z + x*y*z + w*x + y*z)). - Gheorghe Coserea, Jul 13 2016
This is one of the Apéry-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
Every prime eventually divides some term of this sequence. - Amita Malik, Aug 20 2017
Two walkers, A and B, stand on the South-West and North-East corners of an n X n grid, respectively. A walks by either North or East steps while B walks by either South or West steps. Sequence values a(n) < binomial(2*n,n)^2 count the simultaneous walks where A and B meet after exactly n steps and change places after 2*n steps. - Bradley Klee, Apr 01 2019
a(n) is the constant term in the expansion of ((1 + x) * (1 + y) * (1 + z) + (1 + 1/x) * (1 + 1/y) * (1 + 1/z))^n. - Seiichi Manyama, Oct 27 2019
REFERENCES
H. W. Gould, Combinatorial Identities, Morgantown, 1972, (X.14), p. 79.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..834 (terms 0..250 from Jason Kimberley)
B. Adamczewski, J. P. Bell, and E. Delaygue, Algebraic independence of G-functions and congruences "a la Lucas", arXiv preprint arXiv:1603.04187 [math.NT], 2016.
Hacene Belbachir and Yassine Otmani, A Strehl Version of Fourth Franel Sequence, arXiv:2012.02563 [math.CO], 2020.
F. Beukers, Another congruence for the Apéry numbers, J. Number Theory 25 (1987), no. 2, 201-210.
W. Y. C. Chen, Q.-H. Hou, and Y-P. Mu, A telescoping method for double summations, J. Comp. Appl. Math. 196 (2006) 553-566, eq (5.5).
M. Coster, Email, Nov 1990
E. Delaygue, Arithmetic properties of Apéry-like numbers, arXiv preprint arXiv:1310.4131 [math.NT], 2013.
Ofir Gorodetsky, New representations for all sporadic Apéry-like sequences, with applications to congruences, arXiv:2102.11839 [math.NT], 2021. See s10 p. 3.
Darij Grinberg, Introduction to Modern Algebra (UMN Spring 2019 Math 4281 Notes), University of Minnesota (2019).
Timothy Huber, Daniel Schultz, and Dongxi Ye, Ramanujan-Sato series for 1/pi, Acta Arith. (2023) Vol. 207, 121-160. See p. 11.
Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5.
Robert Osburn, Armin Straub, and Wadim Zudilin, A modular supercongruence for 6F5: an Apéry-like story, arXiv:1701.04098 [math.NT], 2017.
M. A. Perlstadt, Some Recurrences for Sums of Powers of Binomial Coefficients, Journal of Number Theory 27 (1987), pp. 304-309.
V. Strehl, Recurrences and Legendre transform, Séminaire Lotharingien de Combinatoire, B29b (1992), 22 pp.
Zhi-Wei Sun, Open conjectures on congruences, Nanjing Univ. J. Math. Biquarterly 36(2019), no.1, 1-99. (Cf. Conjectures 49-51.)
Eric Weisstein's World of Mathematics, Binomial Sums
Mark C. Wilson, Diagonal asymptotics for products of combinatorial classes, preprint of Combinatorics, Probability and Computing, 24(1), 2015, 354-372.
Jin Yuan, Zhi-Juan Lu, Asmus L. Schmidt, On recurrences for sums of powers of binomial coefficients, J. Numb. Theory 128 (2008) 2784-2794
FORMULA
a(n) ~ 2^(1/2)*Pi^(-3/2)*n^(-3/2)*2^(4*n). - Joe Keane (jgk(AT)jgk.org), Jun 21 2002
D-finite with recurrence: n^3*a(n) = 2*(2*n - 1)*(3*n^2 - 3*n + 1)*a(n-1) + (4*n - 3)*(4*n - 4)*(4*n - 5)*a(n-2). [Yuan]
G.f.: 5*hypergeom([1/8, 3/8],[1], (4/5)*((1-16*x)^(1/2)+(1+4*x)^(1/2))*(-(1-16*x)^(1/2)+(1+4*x)^(1/2))^5/(2*(1-16*x)^(1/2)+3*(1+4*x)^(1/2))^4)^2/(2*(1-16*x)^(1/2)+3*(1+4*x)^(1/2)). - Mark van Hoeij, Oct 29 2011
1/Pi = sqrt(15)/18 * Sum_{n >= 0} a(n)*(4*n + 1)/36^n (Cooper, equation (5)) = sqrt(15)/18 * Sum_{n >= 0} a(n)*A016813(n)/A009980(n). - Jason Kimberley, Nov 26 2012
0 = (-x^2 + 12*x^3 + 64*x^4)*y''' + (-3*x + 54*x^2 + 384*x^3)*y'' + (-1 + 40*x + 444*x^2)*y' + (2 + 60*x)*y, where y is g.f. - Gheorghe Coserea, Jul 13 2016
For r a nonnegative integer, Sum_{k = r..n} C(k,r)^4*C(n,k)^4 = C(n,r)^4*a(n-r), where we take a(n) = 0 for n < 0. - Peter Bala, Jul 27 2016
a(n) = hypergeom([-n, -n, -n, -n], [1, 1, 1], 1). - Peter Luschny, Jul 27 2016
Sum_{n>=0} a(n) * x^n / (n!)^4 = (Sum_{n>=0} x^n / (n!)^4)^2. - Ilya Gutkovskiy, Jul 17 2020
a(n) = Sum_{k=0..n} C(n,k)*C(n+k,k)*C(2k,k)*C(2n-2k,n-k)*(-1)^(n-k). This can be proved via the Zeilberger algorithm. - Zhi-Wei Sun, Aug 23 2020
a(n) = (-1)^n*binomial(2*n, n)*hypergeom([1/2, -n, -n, n + 1], [1, 1, 1/2 - n], 1). - Peter Luschny, Aug 24 2020
a(n) = Sum_{k=0..n} binomial(n,k)^2*binomial(2*k,n)*binomial(2*n-k,n) [Theorem 1 in Belbachir and Otmani]. - Michel Marcus, Dec 06 2020
a(n) = [x^n] (1 - x)^(2*n) P(n,(1 + x)/(1 - x))^2, where P(n,x) denotes the n-th Legendre polynomial. See Gould, p. 66. This formula is equivalent to the binomial sum identity of Zhi-Wei Sun given above. - Peter Bala, Mar 24 2022
EXAMPLE
G.f. = 1 + 2*x + 18*x^2 + 164*x^3 + 1810*x^4 + 21252*x^5 + 263844*x^6 + ...
MAPLE
A005260 := proc(n)
add( (binomial(n, k))^4, k=0..n) ;
end proc:
seq(A005260(n), n=0..10) ; # R. J. Mathar, Nov 19 2012
MATHEMATICA
Table[Sum[Binomial[n, k]^4, {k, 0, n}], {n, 0, 20}] (* Wesley Ivan Hurt, Mar 09 2014 *)
PROG
(PARI) {a(n) = sum(k=0, n, binomial(n, k)^4)};
(Python)
def A005260(n):
m, g = 1, 0
for k in range(n+1):
g += m
m = m*(n-k)**4//(k+1)**4
return g # Chai Wah Wu, Oct 04 2022
CROSSREFS
Column k=4 of A309010.
Related to diagonal of rational functions: A268545-A268555.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
Sum_{k = 0..n} C(n,k)^m for m = 1..12: A000079, A000984, A000172, A005260, A005261, A069865, A182421, A182422, A182446, A182447, A342294, A342295.
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by Michael Somos, Aug 09 2002
Minor edits by Vaclav Kotesovec, Aug 28 2014
STATUS
approved
A006077 (n+1)^2*a(n+1) = (9n^2+9n+3)*a(n) - 27*n^2*a(n-1), with a(0) = 1 and a(1) = 3.
(Formerly M2775)
+10
51
1, 3, 9, 21, 9, -297, -2421, -12933, -52407, -145293, -35091, 2954097, 25228971, 142080669, 602217261, 1724917221, 283305033, -38852066421, -337425235479, -1938308236731, -8364863310291, -24286959061533, -3011589296289, 574023003011199, 5028616107443691 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
This is the Taylor expansion of a special point on a curve described by Beauville. - Matthijs Coster, Apr 28 2004
Conjecture: Let W(n) be the (n+1) X (n+1) Hankel-type determinant with (i,j)-entry equal to a(i+j) for all i,j = 0,...,n. If n == 1 (mod 3) then W(n) = 0. When n == 0 or 2 (mod 3), W(n)*(-1)^(floor((n+1)/3))/6^n is always a positive odd integer. - Zhi-Wei Sun, Aug 21 2013
Conjecture: Let p == 1 (mod 3) be a prime, and write 4*p = x^2 + 27*y^2 with x, y integers and x == 1 (mod 3). Then W(p-1) == (-1)^{(p+1)/2}*(x-p/x) (mod p^2), where W(n) is defined as the above. - Zhi-Wei Sun, Aug 23 2013
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
Diagonal of rational functions 1/(1 - (x^2*y + y^2*z - z^2*x + 3*x*y*z)), 1/(1 - (x^3 + y^3 - z^3 + 3*x*y*z)), 1/(1 + x^3 + y^3 + z^3 - 3*x*y*z). - Gheorghe Coserea, Aug 04 2018
REFERENCES
Matthijs Coster, Over 6 families van krommen [On 6 families of curves], Master's Thesis (unpublished), Aug 26 1983.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
D. Zagier, Integral solutions of Apery-like recurrence equations, in: Groups and Symmetries: from Neolithic Scots to John McKay, CRM Proc. Lecture Notes 47, Amer. Math. Soc., Providence, RI, 2009, pp. 349-366.
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1400 (terms 0..200 from T. D. Noe)
Arnaud Beauville, Les familles stables de courbes sur P_1 admettant quatre fibres singulières, Comptes Rendus, Académie Sciences Paris, no. 294, May 24 1982.
A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
M. Coster, Email, Nov 1990
Ofir Gorodetsky, New representations for all sporadic Apéry-like sequences, with applications to congruences, arXiv:2102.11839 [math.NT], 2021. See B p. 2.
S. Herfurtner, Elliptic surfaces with four singular fibres, Mathematische Annalen, 1991. Preprint.
Bradley Klee, Checking Weierstrass data, 2023.
Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5.
Stéphane Ouvry and Alexios Polychronakos, Lattice walk area combinatorics, some remarkable trigonometric sums and Apéry-like numbers, arXiv:2006.06445 [math-ph], 2020.
Zhi-Wei Sun, Three mysterious conjectures on Hankel-type determinants, a message to Number Theory List, August 22, 2013.
Zhi-Wei Sun, Connections between p = x^2+3*y^2 and Franel numbers, J. Number Theory 133(2013), 2914-2928.
FORMULA
G.f.: hypergeom([1/3, 2/3], [1], x^3/(x-1/3)^3) / (1-3*x). - Mark van Hoeij, Oct 25 2011
a(n) = Sum_{k=0..floor(n/3)}(-1)^k*3^(n-3k)*C(n,3k)*C(2k,k)*C(3k,k). - Zhi-Wei Sun, Aug 21 2013
0 = x*(x^2+9*x+27)*y'' + (3*x^2 + 18*x + 27)*y' + (x + 3)*y, where y(x) = A(x/-27). - Gheorghe Coserea, Aug 26 2016
a(n) = 3^n*hypergeom([-n/3, (1-n)/3, (2-n)/3], [1, 1], 1). - Peter Luschny, Nov 01 2017
From Bradley Klee, Jun 05 2023: (Start)
The g.f. T(x) obeys a period-annihilating ODE:
0=3*(-1 + 9*x)*T(x) + (-1 + 9*x)^2*T'(x) + x*(1 - 9*x + 27*x^2)*T''(x).
The periods ODE can be derived from the following Weierstrass data:
g2 = 3*(-8 + 9*(1 - 9*x)^3)*(1 - 9*x);
g3 = 8 - 36*(1 - 9*x)^3 + 27*(1 - 9*x)^6;
which determine an elliptic surface with four singular fibers. (End)
EXAMPLE
G.f. = 1 + 3*x + 9*x^2 + 21*x^3 + 9*x^4 - 297*x^5 - 2421*x^6 - 12933*x^7 - ...
MAPLE
a := n -> 3^n*hypergeom([-n/3, (1-n)/3, (2-n)/3], [1, 1], 1):
seq(simplify(a(n)), n=0..24); # Peter Luschny, Nov 01 2017
MATHEMATICA
Table[Sum[(-1)^k*3^(n - 3*k)*Binomial[n, 3*k]*Binomial[2*k, k]* Binomial[3*k, k], {k, 0, Floor[n/3]}], {n, 0, 50}] (* G. C. Greubel, Oct 24 2017 *)
a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/3, 2/3}, {1}, x^3 / (x - 1/3)^3 ] / (1 - 3 x), {x, 0, n}]; (* Michael Somos, Nov 01 2017 *)
PROG
(PARI) subst(eta(q)^3/eta(q^3), q, serreverse(eta(q^9)^3/eta(q)^3*q)) \\ (generating function) Helena Verrill (verrill(AT)math.lsu.edu), Apr 20 2009 [for (-1)^n*a(n)]
(PARI)
diag(expr, N=22, var=variables(expr)) = {
my(a = vector(N));
for (k = 1, #var, expr = taylor(expr, var[#var - k + 1], N));
for (n = 1, N, a[n] = expr;
for (k = 1, #var, a[n] = polcoeff(a[n], n-1)));
return(a);
};
diag(1/(1 + x^3 + y^3 + z^3 - 3*x*y*z), 25)
(PARI)
seq(N) = {
my(a = vector(N)); a[1] = 3; a[2] = 9;
for (n = 2, N-1, a[n+1] = ((9*n^2+9*n+3)*a[n] - 27*n^2*a[n-1])/(n+1)^2);
concat(1, a);
};
seq(24)
\\ test: y=subst(Ser(seq(202)), 'x, -'x/27); 0 == x*(x^2+9*x+27)*y'' + (3*x^2+18*x+27)*y' + (x+3)*y
\\ Gheorghe Coserea, Nov 09 2017
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); (-1)^n * polcoeff( subst(eta(x + A)^3 / eta(x^3 + A), x, serreverse( x * eta(x^9 + A)^3 / eta(x + A)^3)), n))}; /* Michael Somos, Nov 01 2017 */
CROSSREFS
Related to diagonal of rational functions: A268545-A268555.
Cf. A091401.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.
KEYWORD
sign
AUTHOR
EXTENSIONS
More terms from Kok Seng Chua (chuaks(AT)ihpc.nus.edu.sg), Jun 20 2000
STATUS
approved
A008977 a(n) = (4*n)!/(n!)^4. +10
46
1, 24, 2520, 369600, 63063000, 11732745024, 2308743493056, 472518347558400, 99561092450391000, 21452752266265320000, 4705360871073570227520, 1047071828879079131681280, 235809301462142612780721600, 53644737765488792839237440000, 12309355935372581458927646400000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Number of paths of length 4*n in an n X n X n X n grid from (0,0,0,0) to (n,n,n,n).
a(n) occurs in Ramanujan's formula 1/Pi = (sqrt(8)/9801) * Sum_{n>=0} (4*n)!/(n!)^4 * (1103 + 26390*n)/396^(4*n) ). - Susanne Wienand, Jan 05 2013
a(n) is the number of ballot results that lead to a 4-way tie when 4*n voters each cast three votes for three out of four candidates vying for 3 slots on a county commission; each of these ballot results give 3*n votes to each of the four candidates. - Dennis P. Walsh, May 02 2013
a(n) is the constant term of (X + Y + Z + 1/(X*Y*Z))^(4*n). - Mark van Hoeij, May 07 2013
In Narumiya and Shiga on page 158 the g.f. is given as a hypergeometric function. - Michael Somos, Aug 12 2014
Diagonal of the rational function R(x,y,z,w) = 1/(1-(w+x+y+z)). - Gheorghe Coserea, Jul 15 2016
LINKS
Timothy Huber, Daniel Schultz, and Dongxi Ye, Ramanujan-Sato series for 1/pi, Acta Arith. (2023) Vol. 207, 121-160. See p. 11.
Michaël Moortgat, The Tamari order for D^3 and derivability in semi-associative Lambek-Grishin Calculus, 15th Workshop: Computational Logic and Applications (CLA 2020).
N. Narumiya and H. Shiga, The mirror map for a family of K3 surfaces induced from the simplest 3-dimensional reflexive polytope, Proceedings on Moonshine and related topics (Montréal, QC, 1999), 139-161, CRM Proc. Lecture Notes, 30, Amer. Math. Soc., Providence, RI, 2001. MR1877764 (2002m:14030).
FORMULA
a(n) = A139541(n)*(A001316(n)/A049606(n))^3. - Reinhard Zumkeller, Apr 28 2008
Self-convolution of A178529, where A178529(n) = (4^n/n!^2) * Product_{k=0..n-1} (8*k + 1)*(8*k + 3).
G.f.: hypergeom([1/8, 3/8], [1], 256*x)^2. - Mark van Hoeij, Nov 16 2011
a(n) ~ 2^(8*n - 1/2) / (Pi*n)^(3/2). - Vaclav Kotesovec, Mar 07 2014
G.f.: hypergeom([1/4, 2/4, 3/4], [1, 1], 256*x). - Michael Somos, Aug 12 2014
From Peter Bala, Jul 12 2016: (Start)
a(n) = binomial(2*n,n)*binomial(3*n,n)*binomial(4*n,n) = ( [x^n](1 + x)^(2*n) ) * ( [x^n](1 + x)^(3*n) ) * ( [x^n](1 + x)^(4*n) ) = [x^n](F(x)^(24*n)), where F(x) = 1 + x + 29*x^2 + 2246*x^3 + 239500*x^4 + 30318701*x^5 + 4271201506*x^6 + ... appears to have integer coefficients. For similar results see A000897, A002894, A002897, A006480, A008978, A008979, A186420 and A188662. (End)
0 = (x^2-256*x^3)*y''' + (3*x-1152*x^2)*y'' + (1-816*x)*y' - 24*y, where y is the g.f. - Gheorghe Coserea, Jul 15 2016
From Peter Bala, Jul 17 2016: (Start)
a(n) = Sum_{k = 0..3*n} (-1)^(n+k)*binomial(4*n,n + k)* binomial(n + k,k)^4.
a(n) = Sum_{k = 0..4*n} (-1)^k*binomial(4*n,k)*binomial(n + k,k)^4. (End)
E.g.f.: 3F3(1/4,1/2,3/4; 1,1,1; 256*x). - Ilya Gutkovskiy, Jan 23 2018
From Peter Bala, Feb 16 2020: (Start)
a(m*p^k) == a(m*p^(k-1)) ( mod p^(3*k) ) for prime p >= 5 and positive integers m and k - apply Mestrovic, equation 39, p. 12.
a(n) = [(x*y*z)^n] (1 + x + y + z)^(4*n). (End)
D-finite with recurrence n^3*a(n) -8*(4*n-3)*(2*n-1)*(4*n-1)*a(n-1)=0. - R. J. Mathar, Aug 01 2022
a(n) = 24*A082368(n). - R. J. Mathar, Jun 21 2023
EXAMPLE
a(13)=52!/(13!)^4=53644737765488792839237440000 is the number of ways of dealing the four hands in Bridge or Whist. - Henry Bottomley, Oct 06 2000
a(1)=24 since, in a 4-voter 3-vote election that ends in a four-way tie for candidates A, B, C, and D, there are 4! ways to arrange the needed vote sets {A,B,C}, {A,B,D}, {A,C,D}, and {B,C,D} among the 4 voters. - Dennis P. Walsh, May 02 2013
G.f. = 1 + 24*x + 2520*x^2 + 369600*x^3 + 63063000*x^4 + 11732745024*x^5 + ...
MAPLE
A008977 := n->(4*n)!/(n!)^4;
MATHEMATICA
Table[(4n)!/(n!)^4, {n, 0, 16}] (* Harvey P. Dale, Oct 24 2011 *)
a[ n_] := If[ n < 0, 0, (4 n)! / n!^4]; (* Michael Somos, Aug 12 2014 *)
a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/4, 2/4, 3/4}, {1, 1}, 256 x], {x, 0, n}]; (* Michael Somos, Aug 12 2014 *)
PROG
(Maxima) A008977(n):=(4*n)!/(n!)^4$ makelist(A008977(n), n, 0, 20); /* Martin Ettl, Nov 15 2012 */
(Magma) [Factorial(4*n)/Factorial(n)^4: n in [0..20]]; // Vincenzo Librandi, Aug 13 2014
(PARI) a(n) = (4*n)!/n!^4; \\ Gheorghe Coserea, Jul 15 2016
(Python)
from math import factorial
def A008977(n): return factorial(n<<2)//factorial(n)**4 # Chai Wah Wu, Mar 15 2023
CROSSREFS
Row 4 of A187783.
Related to diagonal of rational functions: A268545-A268555.
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved
A183204 Central terms of triangle A181544. +10
40
1, 4, 48, 760, 13840, 273504, 5703096, 123519792, 2751843600, 62659854400, 1451780950048, 34116354472512, 811208174862904, 19481055861877120, 471822589361293680, 11511531876280913760, 282665135367572129040 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The g.f. for row n of triangle A181544 is (1-x)^(3n+1)*Sum_{k>=0}C(n+k-1,k)^3*x^k.
This sequence is s_7 in Cooper's paper. - Jason Kimberley, Nov 06 2012
Diagonal of the rational function R(x,y,z,w) = 1/(1 - (w*x*y + w*x*z + w*y*z + x*y + x*z + y + z)). - Gheorghe Coserea, Jul 14 2016
This is one of the Apery-like sequences - see Cross-references. - Hugo Pfoertner, Aug 06 2017
Every prime eventually divides some term of this sequence. - Amita Malik, Aug 20 2017
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..702 (terms 0..499 from Jason Kimberley)
S. Cooper, Sporadic sequences, modular forms and new series for 1/pi, Ramanujan J., December 2012, Volume 29, Issue 1, pp 163-183.
Shaun Cooper, Jesús Guillera, Armin Straub, and Wadim Zudilin, Crouching AGM, Hidden Modularity, arXiv:1604.01106 [math.NT], 5-April-2016.
Ofir Gorodetsky, New representations for all sporadic Apéry-like sequences, with applications to congruences, arXiv:2102.11839 [math.NT], 2021. See s7 p. 3.
Timothy Huber, Daniel Schultz, and Dongxi Ye, Ramanujan-Sato series for 1/pi, Acta Arith. (2023) Vol. 207, 121-160. See p. 11.
Amita Malik and Armin Straub, Divisibility properties of sporadic Apéry-like numbers, Research in Number Theory, 2016, 2:5.
Robert Osburn, Armin Straub, and Wadim Zudilin, A modular supercongruence for 6F5: an Apéry-like story, arXiv:1701.04098 [math.NT], 2017.
Wadim Zudilin, A generating function of the squares of Legendre polynomials, preprint arXiv:1210.2493 [math.CA], 2012.
FORMULA
a(n) = [x^n] (1-x)^(3n+1) * Sum_{k>=0} C(n+k-1,k)^3*x^k.
a(n) = Sum_{j = 0..n} C(n,j)^2 * C(2*j,n) * C(j+n,j). [Formula of Wadim Zudilin provided by Jason Kimberley, Nov 06 2012]
1/Pi = sqrt(7) Sum_{n>=0} (-1)^n a(n) (11895n + 1286)/22^(3n+3). [Cooper, equation (41)] - Jason Kimberley, Nov 06 2012
G.f.: sqrt((1-13*x+(1-26*x-27*x^2)^(1/2))/(1-21*x+8*x^2+(1-8*x)*(1-26*x-27*x^2)^(1/2)))*hypergeom([1/12,5/12],[1],13824*x^7/(1-21*x+8*x^2+(1-8*x)*(1-26*x-27*x^2)^(1/2))^3)^2. - Mark van Hoeij, May 07 2013
a(n) ~ 3^(3*n+3/2) / (4 * (Pi*n)^(3/2)). - Vaclav Kotesovec, Apr 05 2015
G.f. A(x) satisfies 1/(1+4*x)^2 * A( x/(1+4*x)^3 ) = 1/(1+2*x)^2 * A( x^2/(1+2*x)^3 ) [see Cooper, Guillera, Straub, Zudilin]. - Joerg Arndt, Apr 08 2016
a(n) = (-1)^n*binomial(3n+1,n)* 4F3({-n,n+1,n+1,n+1};{1,1,2(n+1)}; 1). - M. Lawrence Glasser, May 15 2016
Conjecture D-finite with recurrence: n^3*a(n) - (2*n-1)*(13*n^2-13*n+4)*a(n-1) - 3*(n-1)*(3*n-4)*(3*n-2)*a(n-2) = 0. - R. J. Mathar, May 15 2016
0 = (-x^2+26*x^3+27*x^4)*y''' + (-3*x+117*x^2+162*x^3)*y'' + (-1+86*x+186*x^2)*y' + (4+24*x)*y, where y is g.f. - Gheorghe Coserea, Jul 14 2016
From Jeremy Tan, Mar 14 2024: (Start)
The conjectured D-finite recurrence can be proved by Zeilberger's algorithm.
a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(n+k,n) * binomial(2*n-k,n) = [(w*x*y*z)^n] ((w+y)*(x+z)*(y+z)*(w+x+y+z))^n. (End)
a(n) = Sum_{0 <= j, k <= n} binomial(n, k)^2 * binomial(n, j)^2 * binomial(k+j, n) = Sum_{k = 0..n} binomial(n, k)^2 * A108625(n, k). - Peter Bala, Jul 08 2024
EXAMPLE
Triangle A181544 begins:
(1);
1, (4), 1;
1, 20, (48), 20, 1;
1, 54, 405, (760), 405, 54, 1;
1, 112, 1828, 8464, (13840), 8464, 1828, 112, 1; ...
MATHEMATICA
Table[Sum[Binomial[n, j]^2 * Binomial[2*j, n] * Binomial[j+n, j], {j, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Apr 05 2015 *)
PROG
(PARI) {a(n)=polcoeff((1-x)^(3*n+1)*sum(j=0, 2*n, binomial(n+j, j)^3*x^j), n)}
(Magma) P<x>:=PolynomialRing(Integers()); C:=Binomial;
A183204:=func<n|Coefficient((1-x)^(3*n+1)*&+[C(n+j, j)^3*x^j:j in[0..2*n]], n)>; // or directly:
A183204:=func<k|&+[C(k, j)^2*C(2*j, k)*C(j+k, j):j in[0..k]]>;
[A183204(n):n in[0..16]]; // Jason Kimberley, Oct 29 2012
CROSSREFS
Related to diagonal of rational functions: A268545-A268555.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692,A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Dec 30 2010
STATUS
approved
A002897 a(n) = binomial(2n,n)^3.
(Formerly M4580 N1952)
+10
34
1, 8, 216, 8000, 343000, 16003008, 788889024, 40424237568, 2131746903000, 114933031928000, 6306605327953216, 351047164190381568, 19774031697705428416, 1125058699232216000000, 64561313052442296000000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Diagonal of the rational function R(x,y,z,w) = 1/(1 - (w*x*y + w*z + x + y + z)). - Gheorghe Coserea, Jul 14 2016
Conjecture: The g.f. is also the diagonal of the rational function 1/(1 - (x + y)*(1 - 4*z*t) - z - t) = 1/det(I - M*diag(x, y, z, t)), I the 4 x 4 unit matrix and M the 4 x 4 matrix [1, 1, 1, 1; 1, 1, 1, 1; 1, 1, 1, -1; 1 , 1, -1, 1]. If true, then a(n) = [(x*y*z)^n] (1 + x + y + z)^(2*n)*(1 + x + y - z)^n*(1 + x - y + z)^n. - Peter Bala, Apr 10 2022
REFERENCES
S. Ramanujan, Modular Equations and Approximations to pi, pp. 23-39 of Collected Papers of Srinivasa Ramanujan, Ed. G. H. Hardy et al., AMS Chelsea 2000. See page 36, equation (25).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008.
C. Domb, On the theory of cooperative phenomena in crystals, Advances in Phys., 9 (1960), 149-361.
Timothy Huber, Daniel Schultz, and Dongxi Ye, Ramanujan-Sato series for 1/pi, Acta Arith. (2023) Vol. 207, 121-160. See p. 11.
Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv preprint, arXiv:1401.0854 [math.NT], 2014.
FORMULA
Expansion of (K(k)/(Pi/2))^2 in powers of (kk'/4)^2, where K(k) is the complete elliptic integral of the first kind evaluated at modulus k. - Michael Somos, Jan 31 2007
G.f.: F(1/2, 1/2, 1/2; 1, 1; 64x) where F() is a hypergeometric function. - Michael Somos, Jan 31 2007
G.f.: hypergeom([1/4,1/4],[1],64*x)^2. - Mark van Hoeij, Nov 17 2011
D-finite with recurrence n^3*a(n) - 8*(2*n - 1)^3*a(n-1) = 0. - R. J. Mathar, Mar 08 2013
From Peter Bala, Jul 12 2016: (Start)
a(n) = binomial(2*n,n)^3 = ( [x^n](1 + x)^(2*n) )^3 = [x^n](F(x)^(8*n)), where F(x) = 1 + x + 6*x^2 + 111*x^3 + 2806*x^4 + 84456*x^5 + 2832589*x^6 + 102290342*x^7 + ... appears to have integer coefficients. For similar results see A000897, A002894, A006480, A008977, A186420 and A188662. (End)
a(n) ~ 64^n/(Pi*n)^(3/2). - Ilya Gutkovskiy, Jul 13 2016
0 = (-x^2 + 64*x^3)*y''' + (-3*x + 288*x^2)*y'' + (-1 + 208*x)*y' + 8*y, where y is g.f. - Gheorghe Coserea, Jul 14 2016
a(n) = Sum_{k = 0..n} (2*n + k)!/(k!^3*(n - k)!^2). Cf. A001850(n) = Sum_{k = 0..n} (n + k)!/(k!^2*(n - k)!). - Peter Bala, Jul 27 2016
It appears that a(n) is the coefficient of (x*y*z)^(2*n) in the expansion of (1 + x*y + x*z - y*z)^(2*n) * (1 + x*y - x*z + y*z)^(2*n) * (1 - x*y + x*z + y*z)^(2*n). Cf. A000172. - Peter Bala, Sep 21 2021
From Peter Bala, Sep 24 2022: (Start)
a(n) = Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)*binomial(2*n+k,n).
a(n) = the coefficient of (x*y*z*t^2)^n in the expansion of 1/(1 - x - y)*(1 - z - t) - x*y*z*t) (a(n) = A(n,n,n,2*n) in the notation of Straub, Theorem 1.2). (End)
a(n) = (8/5) * Sum_{k = 0..n} binomial(n,k)^2*binomial(n+k,k)*binomial(2*n+k-1,n) for n >= 1. - Peter Bala, Jul 09 2024
MATHEMATICA
a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1/2, 1/2, 1/2}, {1, 1}, 64x], {x, 0, n}];
Table[Binomial[2n, n]^3, {n, 0, 20}] (* Harvey P. Dale, Dec 06 2017 *)
PROG
(PARI) {a(n) = binomial(2*n, n)^3}; /* Michael Somos, Jan 31 2007 */
(Sage) [binomial(2*n, n)**3 for n in range(21)] # Zerinvary Lajos, Apr 21 2009
(Magma) [Binomial(2*n, n)^3: n in [0..20]]; // Vincenzo Librandi, Nov 18 2011
CROSSREFS
Related to diagonal of rational functions: A268545-A268555.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
A004987 a(n) = (3^n/n!)*Product_{k=0..n-1} (3*k + 1). +10
33
1, 3, 18, 126, 945, 7371, 58968, 480168, 3961386, 33011550, 277297020, 2344420260, 19927572210, 170150808870, 1458435504600, 12542545339560, 108179453553705, 935434098376155, 8107095519260010, 70403724246205350, 612512400941986545, 5337608065351597035, 46582761297613937760 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Diagonal of rational function R(x,y) = (1 - 9*x*y) / (1 - 2*x - 3*y + 3*y^2 + 9*x^2*y). - Gheorghe Coserea, Jul 01 2016
LINKS
A. Bostan, S. Boukraa, J.-M. Maillard, and J.-A. Weil, Diagonals of rational functions and selected differential Galois groups, arXiv preprint arXiv:1507.03227 [math-ph], 2015.
A. Straub, V. H. Moll, and T. Amdeberhan, The p-adic valuation of k-central binomial coefficients, Acta Arith. 140 (2009) 31-41, eq (1.10).
FORMULA
G.f.: (1 - 9*x)^(-1/3).
a(n) = (3^n/n!)*A007559(n), n >= 1, a(0) := 1.
a(n) ~ Gamma(1/3)^-1*n^(-2/3)*3^(2*n)*{1 - 1/9*n^-1 + ...}.
Representation as n-th moment of a positive function on (0, 9): a(n) = Integral_{x=0..9} ( x^n*(1/(Pi*sqrt(3)*6*(x/9)^(2/3)*(1-x/9)^(1/3))) ), n >= 0. This function is the solution of the Hausdorff moment problem on (0, 9) with moments equal to a(n). As a consequence this representation is unique. - Karol A. Penson, Jan 30 2003
D-finite with recurrence: n*a(n) + 3*(2-3*n)*a(n-1)=0. - R. J. Mathar, Jun 07 2013
0 = a(n) * (81*a(n+1) - 15*a(n+2)) + a(n+1) * (-3*a(n+1) + a(n+2)) for all n in Z. - Michael Somos, Jan 27 2014
G.f. A(x)=:y satisfies 0 = y'' * y - 4 * y' * y'. - Michael Somos, Jan 27 2014
a(n) = (-9)^n*binomial(-1/3, n). - Peter Luschny, Mar 23 2014
E.g.f.: is the hypergeometric function of type 1F1, in Maple notation hypergeom([1/3], [1], 9*x). - Karol A. Penson, Dec 19 2015
Sum_{n>=0} 1/a(n) = (sqrt(3)*Pi + 3*(12 + log(3)))/32 = 1.3980385924595932... - Ilya Gutkovskiy, Jul 01 2016
Binomial transform of A216316. - Peter Bala, Jul 02 2023
From Peter Bala, Mar 31 2024: (Start)
a(n) = (9^n)*Sum_{k = 0..2*n} (-1)^k*binomial(-1/3, k)* binomial(-1/3, 2*n - k).
(9^n)*a(n) = Sum_{k = 0..2*n} (-1)^k*a(k)*a(2*n-k).
Sum_{k = 0..n} a(k)*a(n-k) = A004988(n).
Sum_{k = 0..2*n} a(k)*a(2*n-k) = 18^n/(2*n)! * Product_{k = 1..n} (6*k - 1)*(3*k - 2). (End)
EXAMPLE
G.f.: 1 + 3*x + 18*x^2 + 126*x^3 + 945*x^4 + 7371*x^5 + 58968*x^6 + 480168*x^7 + ...
MAPLE
a:= n-> (3^n/n!)*mul(3*k+1, k=0..n-1); seq(a(n), n=0..25); # G. C. Greubel, Aug 22 2019
MATHEMATICA
Table[(-9)^n Binomial[-1/3, n], {n, 0, 25}] (* Jean-François Alcover, Sep 28 2016, after Peter Luschny *)
PROG
(PARI) a(n) = prod(k=0, n-1, 3*k + 1)*3^n/n! \\ Michel Marcus, Jun 30 2013
(PARI)
my(x='x, y='y);
R = (1 - 9*x*y) / (1 - 2*x - 3*y + 3*y^2 + 9*x^2*y);
diag(n, expr, var) = {
my(a = vector(n));
for (i = 1, #var, expr = taylor(expr, var[#var - i + 1], n));
for (k = 1, n, a[k] = expr;
for (i = 1, #var, a[k] = polcoeff(a[k], k-1)));
return(a);
};
diag(20, R, [x, y]) \\ Gheorghe Coserea, Jul 01 2016
(Magma) [1] cat [3^n*&*[3*k+1: k in [0..n-1]]/Factorial(n): n in [1..25]]; // G. C. Greubel, Aug 22 2019
(Sage) [9^n*rising_factorial(1/3, n)/factorial(n) for n in (0..25)] # G. C. Greubel, Aug 22 2019
(GAP) List([0..25], n-> 3^n*Product([0..n-1], k-> 3*k+1)/Factorial(n) ); # G. C. Greubel, Aug 22 2019
CROSSREFS
Related to diagonal of rational functions: A268545-A268555.
KEYWORD
nonn,easy
AUTHOR
Joe Keane (jgk(AT)jgk.org)
EXTENSIONS
More terms from Ralf Stephan, Mar 13 2004
More terms from Benoit Cloitre, Jun 05 2004
STATUS
approved
A002896 Number of 2n-step polygons on cubic lattice.
(Formerly M4285 N1791)
+10
32
1, 6, 90, 1860, 44730, 1172556, 32496156, 936369720, 27770358330, 842090474940, 25989269017140, 813689707488840, 25780447171287900, 825043888527957000, 26630804377937061000, 865978374333905289360, 28342398385058078078010, 932905175625150142902300 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Number of walks with 2n steps on the cubic lattice Z^3 beginning and ending at (0,0,0).
If A is a random matrix in USp(6) (6 X 6 complex matrices that are unitary and symplectic) then a(n) is the 2n-th moment of tr(A^k) for all k >= 7. - Andrew V. Sutherland, Mar 24 2008
Diagonal of the rational function R(x,y,z,w) = 1/(1 - (w*x*y + w*x*z + w*y + x*z + y + z)). - Gheorghe Coserea, Jul 14 2016
Constant term in the expansion of (x + 1/x + y + 1/y + z + 1/z)^(2n). - Harry Richman, Apr 29 2020
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008.
C. Domb, On the theory of cooperative phenomena in crystals, Advances in Phys., 9 (1960), 149-361.
Nachum Dershowitz, Touchard’s Drunkard, Journal of Integer Sequences, Vol. 20 (2017), #17.1.5.
Li Gan, On the algebraic area of cubic lattice walks, arXiv:2307.08732 [math-ph], 2023.
W. K. Hayman, A Generalisation of Stirling's Formula, Journal für die reine und angewandte Mathematik, (1956), vol. 196, pp. 67-95
John A. Hendrickson, Jr., On the enumeration of rectangular (0,1)-matrices, Journal of Statistical Computation and Simulation, 51 (1995), 291-313.
Heng Huat Chan, Yoshio Tanigawa, Yifan Yang, and Wadim Zudilin, New analogues of Clausen's identities arising from the theory of modular forms, Advances in Mathematics, 228:2 (2011), pp. 1294-1314; doi:10.1016/j.aim.2011.06.011.
G. S. Joyce, The simple cubic lattice Green function, Phil. Trans. Roy. Soc., 273 (1972), 583-610.
Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010.
Nobu C. Shirai and Naoyuki Sakumichi, Universal Negative Energetic Elasticity in Polymer Chains: Crossovers among Random, Self-Avoiding, and Neighbor-Avoiding Walks, arXiv:2408.14992 [cond-mat.soft], 2024. See p. 5.
Chunwei Song and Bowen Yao, On Combinatorial Rectangles with Minimum oo-Discrepancy, arXiv:1909.05648 [math.CO], 2019. See p. 7 for another interpretation.
Ralph A. Raimi and Jet Wimp, Review of book "A=B" by M. Petkovsek et al., Mathematical Intelligencer, 23 (No. 4, 2001), pp. 72-77.
FORMULA
a(n) = C(2*n, n)*Sum_{k=0..n} C(n, k)^2*C(2*k, k).
a(n) = (4^n*p(1/2, n)/n!)*hypergeom([-n, -n, 1/2], [1, 1], 4), where p(a, k) = Product_{i=0..k-1} (a+i).
E.g.f.: Sum_{n>=0} a(n)*x^(2*n)/(2*n)! = BesselI(0, 2*x)^3. - Corrected by Christopher J. Smyth, Oct 29 2012
D-finite with recurrence: n^3*a(n) = 2*(2*n-1)*(10*n^2-10*n+3)*a(n-1) - 36*(n-1)*(2*n-1)*(2*n-3)*a(n-2). - Vladeta Jovovic, Jul 16 2004
An asymptotic formula follows immediately from an observation of Bruce Richmond and me in SIAM Review - 31 (1989, 122-125). We use Hayman's method to find the asymptotic behavior of the sum of squares of the multinomial coefficients multi(n, k_1, k_2, ..., k_m) with m fixed. From this one gets a_n ~ (3/4)*sqrt(3)*6^(2*n)/(Pi*n)^(3/2). - Cecil C Rousseau (ccrousse(AT)memphis.edu), Mar 14 2006
G.f.: (1/sqrt(1+12*z)) * hypergeom([1/8,3/8],[1],64/81*z*(1+sqrt(1-36*z))^2*(2+sqrt(1-36*z))^4/(1+12*z)^4) * hypergeom([1/8, 3/8],[1],64/81*z*(1-sqrt(1-36*z))^2*(2-sqrt(1-36*z))^4/(1+12*z)^4). - Sergey Perepechko, Jan 26 2011
a(n) = binomial(2*n,n)*A002893(n). - Mark van Hoeij, Oct 29 2011
G.f.: (1/2)*(10-72*x-6*(144*x^2-40*x+1)^(1/2))^(1/2)*hypergeom([1/6, 1/3],[1],54*x*(108*x^2-27*x+1+(9*x-1)*(144*x^2-40*x+1)^(1/2)))^2. - Mark van Hoeij, Nov 12 2011
PSUM transform is A174516. - Michael Somos, May 21 2013
0 = (-x^2+40*x^3-144*x^4)*y''' + (-3*x+180*x^2-864*x^3)*y'' + (-1+132*x-972*x^2)*y' + (6-108*x)*y, where y is the g.f. - Gheorghe Coserea, Jul 14 2016
a(n) = [(x y z)^0] (x + 1/x + y + 1/y + z + 1/z)^(2*n). - Christopher J. Smyth, Sep 25 2018
a(n) = (1/Pi)^3*Integral_{0 <= x, y, z <= Pi} (2*cos(x) + 2*cos(y) + 2*cos(z))^(2*n) dx dy dz. - Peter Bala, Feb 10 2022
a(n) = Sum_{i+j+k=n, 0<=i,j,k<=n} multinomial(2n [i,i,j,j,k,k]). - Shel Kaphan, Jan 16 2023
Sum_{k>=0} a(k)/36^k = A086231 = (sqrt(3)-1) * (Gamma(1/24) * Gamma(11/24))^2 / (32*Pi^3). - Vaclav Kotesovec, Apr 23 2023
EXAMPLE
1 + 6*x + 90*x^2 + 1860*x^3 + 44730*x^4 + 1172556*x^5 + 32496156*x^6 + ...
MAPLE
a := proc(n) local k; binomial(2*n, n)*add(binomial(n, k)^2 *binomial(2*k, k), k=0..n); end;
# second Maple program
a:= proc(n) option remember; `if`(n<2, 5*n+1,
(2*(2*n-1)*(10*n^2-10*n+3) *a(n-1)
-36*(n-1)*(2*n-1)*(2*n-3) *a(n-2)) /n^3)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Nov 02 2012
A002896 := n -> binomial(2*n, n)*hypergeom([1/2, -n, -n], [1, 1], 4):
seq(simplify(A002896(n)), n=0..16); # Peter Luschny, May 23 2017
MATHEMATICA
f[n_] := 4^n*Gamma[n + 1/2]*Sum[Binomial[n, k]^2 Binomial[2 k, k], {k, 0, n}]/(Sqrt[Pi]*n!); Array[f, 17, 0] (* Robert G. Wilson v, Oct 29 2011 *)
Table[Binomial[2n, n]Sum[Binomial[n, k]^2 Binomial[2k, k], {k, 0, n}], {n, 0, 20}] (* Harvey P. Dale, Jan 24 2012 *)
a[ n_] := If[ n < 0, 0, HypergeometricPFQ[ {-n, -n, 1/2}, {1, 1}, 4] Binomial[ 2 n, n]] (* Michael Somos, May 21 2013 *)
PROG
(PARI) a(n)=binomial(2*n, n)*sum(k=0, n, binomial(n, k)^2*binomial(2*k, k)) \\ Charles R Greathouse IV, Oct 31 2011
(Sage)
def A002896():
x, y, n = 1, 6, 1
while True:
yield x
n += 1
x, y = y, ((4*n-2)*((10*(n-1)*n+3)*y-18*(n-1)*(2*n-3)*x))//n^3
a = A002896()
[next(a) for i in range(17)] # Peter Luschny, Oct 09 2013
CROSSREFS
C(2n, n) times A002893.
Related to diagonal of rational functions: A268545-A268555.
Row k=3 of A287318.
KEYWORD
nonn,easy,walk,nice,changed
AUTHOR
STATUS
approved
page 1 2 3 4 5 6 7 8

Search completed in 0.050 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 8 11:48 EDT 2024. Contains 375753 sequences. (Running on oeis4.)