
CutMix: Regularization Strategy to Train Strong Classifiers

with Localizable Features

Sangdoo Yun1 Dongyoon Han1 Seong Joon Oh2 Sanghyuk Chun1

Junsuk Choe1,3 Youngjoon Yoo1

1Clova AI Research, NAVER Corp.
2Clova AI Research, LINE Plus Corp.

3Yonsei University

Abstract

Regional dropout strategies have been proposed to en-

hance the performance of convolutional neural network

classifiers. They have proved to be effective for guiding

the model to attend on less discriminative parts of ob-

jects (e.g. leg as opposed to head of a person), thereby

letting the network generalize better and have better ob-

ject localization capabilities. On the other hand, current

methods for regional dropout remove informative pixels on

training images by overlaying a patch of either black pix-

els or random noise. Such removal is not desirable be-

cause it leads to information loss and inefficiency dur-

ing training. We therefore propose the CutMix augmen-

tation strategy: patches are cut and pasted among train-

ing images where the ground truth labels are also mixed

proportionally to the area of the patches. By making ef-

ficient use of training pixels and retaining the regulariza-

tion effect of regional dropout, CutMix consistently outper-

forms the state-of-the-art augmentation strategies on CI-

FAR and ImageNet classification tasks, as well as on the Im-

ageNet weakly-supervised localization task. Moreover, un-

like previous augmentation methods, our CutMix-trained

ImageNet classifier, when used as a pretrained model, re-

sults in consistent performance gains in Pascal detection

and MS-COCO image captioning benchmarks. We also

show that CutMix improves the model robustness against

input corruptions and its out-of-distribution detection per-

formances. Source code and pretrained models are avail-

able at https://github.com/clovaai/CutMix-PyTorch.

1. Introduction

Deep convolutional neural networks (CNNs) have shown

promising performances on various computer vision prob-

lems such as image classification [30, 20, 12], object de-

ResNet-50 Mixup [47] Cutout [3] CutMix

Image

Label Dog 1.0
Dog 0.5

Cat 0.5
Dog 1.0

Dog 0.6

Cat 0.4

ImageNet

Cls (%)

76.3

(+0.0)

77.4

(+1.1)

77.1

(+0.8)

78.6

(+2.3)

ImageNet

Loc (%)

46.3

(+0.0)

45.8

(-0.5)

46.7

(+0.4)

47.3

(+1.0)

Pascal VOC

Det (mAP)

75.6

(+0.0)

73.9

(-1.7)

75.1

(-0.5)

76.7

(+1.1)

Table 1: Overview of the results of Mixup, Cutout, and

our CutMix on ImageNet classification, ImageNet localiza-

tion, and Pascal VOC 07 detection (transfer learning with

SSD [23] finetuning) tasks. Note that CutMix significantly

improves the performance on various tasks.

tection [29, 23], semantic segmentation [1, 24], and video

analysis [27, 31]. To further improve the training efficiency

and performance, a number of training strategies have been

proposed, including data augmentation [20] and regulariza-

tion techniques [33, 17, 37].

In particular, to prevent a CNN from focusing too much

on a small set of intermediate activations or on a small re-

gion on input images, random feature removal regulariza-

tions have been proposed. Examples include dropout [33]

for randomly dropping hidden activations and regional

dropout [3, 50, 32, 8, 2] for erasing random regions on

the input. Researchers have shown that the feature removal

strategies improve generalization and localization by letting

a model attend not only to the most discriminative parts of

objects, but rather to the entire object region [32, 8].
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While regional dropout strategies have shown improve-

ments of classification and localization performances to a

certain degree, deleted regions are usually zeroed-out [3,

32] or filled with random noise [50], greatly reducing the

proportion of informative pixels on training images. We rec-

ognize this as a severe conceptual limitation as CNNs are

generally data hungry [26]. How can we maximally utilize

the deleted regions, while taking advantage of better gener-

alization and localization using regional dropout?

We address the above question by introducing an aug-

mentation strategy CutMix. Instead of simply removing

pixels, we replace the removed regions with a patch from

another image (See Table 1). The ground truth labels are

also mixed proportionally to the number of pixels of com-

bined images. CutMix now enjoys the property that there is

no uninformative pixel during training, making training ef-

ficient, while retaining the advantages of regional dropout

to attend to non-discriminative parts of objects. The added

patches further enhance localization ability by requiring the

model to identify the object from a partial view. The train-

ing and inference budgets remain the same.

CutMix shares similarity with Mixup [47] which mixes

two samples by interpolating both the image and la-

bels. While certainly improving classification performance,

Mixup samples tend to be unnatural (See the mixed image

in Table 1). CutMix overcomes the problem by replacing

the image region with a patch from another training image.

Table 1 gives an overview of Mixup [47], Cutout [3],

and CutMix on image classification, weakly supervised lo-

calization, and transfer learning to object detection meth-

ods. Although Mixup and Cutout enhance ImageNet classi-

fication, they decrease the ImageNet localization or object

detection performances. On the other hand, CutMix consis-

tently achieves significant enhancements across three tasks.

We present extensive evaluations of CutMix on various

CNN architectures, datasets, and tasks. Summarizing the

key results, CutMix has significantly improved the accuracy

of a baseline classifier on CIFAR-100 and has obtained the

state-of-the-art top-1 error 14.47%. On ImageNet [30], ap-

plying CutMix to ResNet-50 and ResNet-101 [12] has im-

proved the classification accuracy by +2.28% and +1.70%,

respectively. On the localization front, CutMix improves the

performance of the weakly-supervised object localization

(WSOL) task on CUB200-2011 [43] and ImageNet [30]

by +5.4% and +0.9%, respectively. The superior localiza-

tion capability is further evidenced by fine-tuning a detec-

tor and an image caption generator on CutMix-ImageNet-

pretrained models; the CutMix pretraining has improved

the overall detection performances on Pascal VOC [6]

by +1 mAP and image captioning performance on MS-

COCO [22] by +2 BLEU scores. CutMix also enhances the

model robustness and alleviates the over-confidence issue

[13, 21] of deep networks.

2. Related Works

Regional dropout: Methods [3, 50] removing random re-

gions in images have been proposed to enhance the gener-

alization performance of CNNs. Object localization meth-

ods [32, 2] also utilize the regional dropout techniques for

improving the localization ability of CNNs. CutMix is sim-

ilar to those methods, while the critical difference is that

the removed regions are filled with patches from another

training images. DropBlock [8] has generalized the regional

dropout to the feature space and have shown enhanced gen-

eralizability as well. CutMix can also be performed on the

feature space, as we will see in the experiments.

Synthesizing training data: Some works have explored

synthesizing training data for further generalizability. Gen-

erating new training samples by Stylizing ImageNet [30, 7]

has guided the model to focus more on shape than tex-

ture, leading to better classification and object detection per-

formances. CutMix also generates new samples by cutting

and pasting patches within mini-batches, leading to perfor-

mance boosts in many computer vision tasks; unlike styl-

ization as in [7], CutMix incurs only negligible additional

cost for training. For object detection, object insertion meth-

ods [5, 4] have been proposed as a way to synthesize objects

in the background. These methods aim to train a good rep-

resent of a single object samples, while CutMix generates

combined samples which may contain multiple objects.

Mixup: CutMix shares similarity with Mixup [47, 40] in

that both combines two samples, where the ground truth la-

bel of the new sample is given by the linear interpolation

of one-hot labels. As we will see in the experiments, Mixup

samples suffer from the fact that they are locally ambiguous

and unnatural, and therefore confuses the model, especially

for localization. Recently, Mixup variants [41, 34, 10, 39]

have been proposed; they perform feature-level interpola-

tion and other types of transformations. Above works, how-

ever, generally lack a deep analysis in particular on the lo-

calization ability and transfer-learning performances. We

have verified the benefits of CutMix not only for an image

classification task, but over a wide set of localization tasks

and transfer learning experiments.

Tricks for training deep networks: Efficient training of

deep networks is one of the most important problems in

computer vision community, as they require great amount

of compute and data. Methods such as weight decay,

dropout [33], and Batch Normalization [18] are widely used

to efficiently train deep networks. Recently, methods adding

noises to the internal features of CNNs [17, 8, 45] or adding

extra path to the architecture [15, 14] have been proposed to

enhance image classification performance. CutMix is com-

plementary to the above methods because it operates on the

data level, without changing internal representations or ar-

chitecture.
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3. CutMix

We describe the CutMix algorithm in detail.

3.1. Algorithm

Let x ∈ R
W×H×C and y denote a training image and

its label, respectively. The goal of CutMix is to generate a

new training sample (x̃, ỹ) by combining two training sam-

ples (xA, yA) and (xB , yB). The generated training sample

(x̃, ỹ) is used to train the model with its original loss func-

tion. We define the combining operation as

x̃ = M⊙ xA + (1−M)⊙ xB

ỹ = λyA + (1− λ)yB ,
(1)

where M ∈ {0, 1}W×H denotes a binary mask indicating

where to drop out and fill in from two images, 1 is a binary

mask filled with ones, and ⊙ is element-wise multiplication.

Like Mixup [47], the combination ratio λ between two data

points is sampled from the beta distribution Beta(α, α). In

our all experiments, we set α to 1, that is λ is sampled from

the uniform distribution (0, 1). Note that the major differ-

ence is that CutMix replaces an image region with a patch

from another training image and generates more locally nat-

ural image than Mixup does.

To sample the binary mask M, we first sample the

bounding box coordinates B = (rx, ry, rw, rh) indicating

the cropping regions on xA and xB . The region B in xA is

removed and filled in with the patch cropped from B of xB .

In our experiments, we sample rectangular masks M

whose aspect ratio is proportional to the original image. The

box coordinates are uniformly sampled according to:

rx ∼ Unif (0,W ) , rw = W
√
1− λ,

ry ∼ Unif (0, H) , rh = H
√
1− λ

(2)

making the cropped area ratio rwrh
WH

= 1−λ. With the crop-

ping region, the binary mask M ∈ {0, 1}W×H is decided

by filling with 0 within the bounding box B, otherwise 1.

In each training iteration, a CutMix-ed sample (x̃, ỹ)
is generated by combining randomly selected two training

samples in a mini-batch according to Equation (1). Code-

level details are presented in Appendix A. CutMix is simple

and incurs a negligible computational overhead as existing

data augmentation techniques used in [35, 16]; we can effi-

ciently utilize it to train any network architecture.

3.2. Discussion

What does model learn with CutMix? We have motivated

CutMix such that full object extents are considered as cues

for classification, the motivation shared by Cutout, while

ensuring two objects are recognized from partial views in a

single image to increase training efficiency. To verify that

CutMix is indeed learning to recognize two objects from

Cutout Mixup CutMix

CAM for 
‘St. Bernard’

CAM for 
‘Poodle’

Input
Image

Original
Samples

Figure 1: Class activation mapping (CAM) [51] visualiza-

tions on ‘Saint Bernard’ and ‘Miniature Poodle’ samples

using various augmentation techniques. From top to bot-

tom rows, we show the original images, input augmented

image, CAM for class ‘Saint Bernard’, and CAM for class

‘Miniature Poodle’, respectively. Note that CutMix can take

advantage of the mixed region on image, but Cutout cannot.

Mixup Cutout CutMix

Usage of full image region ✔ ✘ ✔

Regional dropout ✘ ✔ ✔

Mixed image & label ✔ ✘ ✔

Table 2: Comparison among Mixup, Cutout, and CutMix.

their respective partial views, we visually compare the acti-

vation maps for CutMix against Cutout [3] and Mixup [47].

Figure 1 shows example augmentation inputs as well as

corresponding class activation maps (CAM) [51] for two

classes present, Saint Bernard and Miniature Poodle. We

use vanilla ResNet-50 model1 for obtaining the CAMs to

clearly see the effect of augmentation method only.

We observe that Cutout successfully lets a model focus

on less discriminative parts of the object, such as the belly

of Saint Bernard, while being inefficient due to unused pix-

els. Mixup, on the other hand, makes full use of pixels, but

introduces unnatural artifacts. The CAM for Mixup, as a re-

sult, shows that the model is confused when choosing cues

for recognition. We hypothesize that such confusion leads

to its suboptimal performance in classification and localiza-

tion, as we will see in Section 4.

CutMix efficiently improves upon Cutout by being able

to localize the two object classes accurately. We summarize

1We use ImageNet-pretrained ResNet-50 provided by PyTorch [28].
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Figure 2: Top-1 test error plot for CIFAR100 (left) and Im-

ageNet (right) classification. Cutmix achieves lower test er-

rors than the baseline at the end of training.

the key differences among Mixup, Cutout, and CutMix in

Table 2.

Analysis on validation error: We analyze the effect

of CutMix on stabilizing the training of deep networks.

We compare the top-1 validation error during the training

with CutMix against the baseline. We train ResNet-50 [12]

for ImageNet Classification, and PyramidNet-200 [11] for

CIFAR-100 Classification. Figure 2 shows the results.

We observe, first of all, that CutMix achieves lower val-

idation errors than the baseline at the end of training. At

epoch 150 when the learning rates are reduced, the base-

lines suffer from overfitting with increasing validation error.

CutMix, on the other hand, shows a steady decrease in val-

idation error; diverse training samples reduce overfitting.

4. Experiments

In this section, we evaluate CutMix for its capability to

improve localizability as well as generalizability of a trained

model on multiple tasks. We first study the effect of Cut-

Mix on image classification (Section 4.1) and weakly su-

pervised object localization (Section 4.2). Next, we show

the transferability of a CutMix pre-trained model when it is

fine-tuned for object detection and image captioning tasks

(Section 4.3). We also show that CutMix can improve the

model robustness and alleviate the model over-confidence

in Section 4.4.

All experiments were implemented and evaluated on

NAVER Smart Machine Learning (NSML) [19] platform

with PyTorch [28]. Source code and pretrained models are

available at https://github.com/clovaai/CutMix-PyTorch.

4.1. Image Classification

4.1.1 ImageNet Classification

We evaluate on ImageNet-1K benchmark [30], the dataset

containing 1.2M training images and 50K validation im-

ages of 1K categories. For fair comparison, we use the stan-

dard augmentation setting for ImageNet dataset such as re-

sizing, cropping, and flipping, as done in [11, 8, 16, 36].

We found that regularization methods including Stochastic

Model # Params
Top-1

Err (%)

Top-5

Err (%)

ResNet-152* 60.3 M 21.69 5.94

ResNet-101 + SE Layer* [15] 49.4 M 20.94 5.50

ResNet-101 + GE Layer* [14] 58.4 M 20.74 5.29

ResNet-50 + SE Layer* [15] 28.1 M 22.12 5.99

ResNet-50 + GE Layer* [14] 33.7 M 21.88 5.80

ResNet-50 (Baseline) 25.6 M 23.68 7.05

ResNet-50 + Cutout [3] 25.6 M 22.93 6.66

ResNet-50 + StochDepth [17] 25.6 M 22.46 6.27

ResNet-50 + Mixup [47] 25.6 M 22.58 6.40

ResNet-50 + Manifold Mixup [41] 25.6 M 22.50 6.21

ResNet-50 + DropBlock* [8] 25.6 M 21.87 5.98

ResNet-50 + Feature CutMix 25.6 M 21.80 6.06

ResNet-50 + CutMix 25.6 M 21.40 5.92

Table 3: ImageNet classification results based on ResNet-50

model. ‘*’ denotes results reported in the original papers.

Model # Params
Top-1

Err (%)

Top-5

Err (%)

ResNet-101 (Baseline) [12] 44.6 M 21.87 6.29

ResNet-101 + Cutout [3] 44.6 M 20.72 5.51

ResNet-101 + Mixup [47] 44.6 M 20.52 5.28

ResNet-101 + CutMix 44.6 M 20.17 5.24

ResNeXt-101 (Baseline) [44] 44.1 M 21.18 5.57

ResNeXt-101 + CutMix 44.1 M 19.47 5.03

Table 4: Impact of CutMix on ImageNet classification for

ResNet-101 and ResNext-101.

Depth [17], Cutout [3], Mixup [47], and CutMix require a

greater number of training epochs till convergence. There-

fore, we have trained all the models for 300 epochs with

initial learning rate 0.1 decayed by factor 0.1 at epochs

75, 150, and 225. The batch size is set to 256. The hyper-

parameter α is set to 1. We report the best performances of

CutMix and other baselines during training.

We briefly describe the settings for baseline augmenta-

tion schemes. We set the dropping rate of residual blocks to

0.25 for the best performance of Stochastic Depth [17]. The

mask size for Cutout [3] is set to 112×112 and the location

for dropping out is uniformly sampled. The performance of

DropBlock [8] is from the original paper and the difference

from our setting is the training epochs which is set to 270.

Manifold Mixup [41] applies Mixup operation on the ran-

domly chosen internal feature map. We have tried α = 0.5
and 1.0 for Mixup and Manifold Mixup and have chosen 1.0
which has shown better performances. It is also possible to

extend CutMix to feature-level augmentation (Feature Cut-

Mix). Feature CutMix applies CutMix at a randomly chosen

layer per minibatch as Manifold Mixup does.

Comparison against baseline augmentations: Results

are given in Table 3. We observe that CutMix achieves
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PyramidNet-200 (α̃=240)

(# params: 26.8 M)

Top-1

Err (%)

Top-5

Err (%)

Baseline 16.45 3.69

+ StochDepth [17] 15.86 3.33

+ Label smoothing (ǫ=0.1) [37] 16.73 3.37

+ Cutout [3] 16.53 3.65

+ Cutout + Label smoothing (ǫ=0.1) 15.61 3.88

+ DropBlock [8] 15.73 3.26

+ DropBlock + Label smoothing (ǫ=0.1) 15.16 3.86

+ Mixup (α=0.5) [47] 15.78 4.04

+ Mixup (α=1.0) [47] 15.63 3.99

+ Manifold Mixup (α=1.0) [41] 16.14 4.07

+ Cutout + Mixup (α=1.0) 15.46 3.42

+ Cutout + Manifold Mixup (α=1.0) 15.09 3.35

+ ShakeDrop [45] 15.08 2.72

+ CutMix 14.47 2.97

+ CutMix + ShakeDrop [45] 13.81 2.29

Table 5: Comparison of state-of-the-art regularization meth-

ods on CIFAR-100.

the best result, 21.40% top-1 error, among the considered

augmentation strategies. CutMix outperforms Cutout and

Mixup, the two closest approaches to ours, by +1.53% and

+1.18%, respectively. On the feature level as well, we find

CutMix preferable to Mixup, with top-1 errors 21.78% and

22.50%, respectively.

Comparison against architectural improvements: We

have also compared improvements due to CutMix versus

architectural improvements (e.g. greater depth or additional

modules). We observe that CutMix improves the perfor-

mance by +2.28% while increased depth (ResNet-50 →
ResNet-152) boosts +1.99% and SE [15] and GE [14]

boosts +1.56% and +1.80%, respectively. Note that un-

like above architectural boosts improvements due to Cut-

Mix come at little or memory or computational time.

CutMix for Deeper Models: We have explored the perfor-

mance of CutMix for the deeper networks, ResNet-101 [12]

and ResNeXt-101 (32×4d) [44], on ImageNet. As seen in

Table 4, we observe +1.60% and +1.71% respective im-

provements in top-1 errors due to CutMix.

4.1.2 CIFAR Classification

We set mini-batch size to 64 and training epochs to 300.

The learning rate was initially set to 0.25 and decayed by

the factor of 0.1 at 150 and 225 epoch. To ensure the effec-

tiveness of the proposed method, we used a strong baseline,

PyramidNet-200 [11] with widening factor α̃ = 240. It has

26.8M parameters and achieves the state-of-the-art perfor-

mance 16.45% top-1 error on CIFAR-100.

Table 5 shows the performance comparison against other

state-of-the-art data augmentation and regularization meth-

ods. All experiments were conducted three times and the

averaged best performances during training are reported.

Model # Params
Top-1

Err (%)

Top-5

Err (%)

PyramidNet-110 (α̃ = 64) [11] 1.7 M 19.85 4.66

PyramidNet-110 + CutMix 1.7 M 17.97 3.83

ResNet-110 [12] 1.1 M 23.14 5.95

ResNet-110 + CutMix 1.1 M 20.11 4.43

Table 6: Impact of CutMix on lighter architectures on

CIFAR-100.

PyramidNet-200 (α̃=240) Top-1 Error (%)

Baseline 3.85

+ Cutout 3.10

+ Mixup (α=1.0) 3.09

+ Manifold Mixup (α=1.0) 3.15

+ CutMix 2.88

Table 7: Impact of CutMix on CIFAR-10.

Hyper-parameter settings: We set the hole size of

Cutout [3] to 16× 16. For DropBlock [8], keep prob and

block size are set to 0.9 and 4, respectively. The drop

rate for Stochastic Depth [17] is set to 0.25. For Mixup [47],

we tested the hyper-parameter α with 0.5 and 1.0. For Mani-

fold Mixup [41], we applied Mixup operation at a randomly

chosen layer per minibatch.

Combination of regularization methods: We have eval-

uated the combination of regularization methods. Both

Cutout [3] and label smoothing [37] does not improve the

accuracy when adopted independently, but they are effec-

tive when used together. Dropblock [8], the feature-level

generalization of Cutout, is also more effective when la-

bel smoothing is also used. Mixup [47] and Manifold

Mixup [41] achieve higher accuracies when Cutout is ap-

plied on input images. The combination of Cutout and

Mixup tends to generate locally separated and mixed sam-

ples since the cropped regions have less ambiguity than

those of the vanilla Mixup. The superior performance of

Cutout and Mixup combination shows that mixing via cut-

and-paste manner is better than interpolation, as much evi-

denced by CutMix performances.

CutMix achieves 14.47% top-1 classification error on

CIFAR-100, +1.98% higher than the baseline performance

16.45%. We have achieved a new state-of-the-art perfor-

mance 13.81% by combining CutMix and ShakeDrop [45],

a regularization that adds noise on intermediate features.

CutMix for various models: Table 6 shows CutMix

also significantly improves the performance of the weaker

baseline architectures, such as PyramidNet-110 [11] and

ResNet-110.

CutMix for CIFAR-10: We have evaluated CutMix on

CIFAR-10 dataset using the same baseline and training set-

ting for CIFAR-100. The results are given in Table 7. On
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𝛼
Figure 3: Impact of α and CutMix layer depth on CIFAR-

100 top-1 error.

PyramidNet-200 (α̃=240)

(# params: 26.8 M)

Top-1

Error (%)

Top-5

Error (%)

Baseline 16.45 3.69

Proposed (CutMix) 14.47 2.97

Center Gaussian CutMix 15.95 3.40

Fixed-size CutMix 14.97 3.15

One-hot CutMix 15.89 3.32

Scheduled CutMix 14.72 3.17

Complete-label CutMix 15.17 3.10

Table 8: Performance of CutMix variants on CIFAR-100.

CIFAR-10, CutMix also enhances the classification perfor-

mances by +0.97%, outperforming Mixup and Cutout per-

formances.

4.1.3 Ablation Studies

We conducted ablation study in CIFAR-100 dataset using

the same experimental settings in Section 4.1.2. We eval-

uated CutMix with α ∈ {0.1, 0.25, 0.5, 1.0, 2.0, 4.0}; the

results are given in Figure 3, left plot. For all α values con-

sidered, CutMix improves upon the baseline (16.45%). The

best performance is achieved when α = 1.0.

The performance of feature-level CutMix is given in

Figure 3, right plot. We changed the layer on which Cut-

Mix is applied, from image layer itself to higher feature

levels. We denote the index as (0=image level, 1=after

first conv-bn, 2=after layer1, 3=after layer2, 4=af-

ter layer3). CutMix achieves the best performance when

it is applied on the input images. Again, feature-level Cut-

Mix except the layer3 case improves the accuracy over

the baseline (16.45%).

We explore different design choices for CutMix. Table 8

shows the performance of CutMix variations. ‘Center Gaus-

sian CutMix’ samples the box coordinates rx, ry of Equa-

tion (2) according to the Gaussian distribution with mean

at the image center, instead of the original uniform distri-

bution. ‘Fixed-size CutMix’ fixes the size of cropping re-

gion (rw, rh) at 16 × 16 (i.e. λ = 0.75). ‘Scheduled Cut-

Mix’ linearly increases the probability to apply CutMix as

Method
CUB200-2011

Loc Acc (%)

ImageNet

Loc Acc (%)

VGG-GAP + CAM [51] 37.12 42.73

VGG-GAP + ACoL* [48] 45.92 45.83

VGG-GAP + ADL* [2] 52.36 44.92

GoogLeNet + HaS* [32] - 45.21

InceptionV3 + SPG* [49] 46.64 48.60

VGG-GAP + Mixup [47] 41.73 42.54

VGG-GAP + Cutout [3] 44.83 43.13

VGG-GAP + CutMix 52.53 43.45

ResNet-50 + CAM [51] 49.41 46.30

ResNet-50 + Mixup [47] 49.30 45.84

ResNet-50 + Cutout [3] 52.78 46.69

ResNet-50 + CutMix 54.81 47.25

Table 9: Weakly supervised object localization results on

CUB200-2011 and ImageNet. * denotes results reported in

the original papers.

training progresses, as done by [8, 17], from 0 to 1. ‘One-

hot CutMix’ decides the mixed target label by committing

to the label of greater patch portion (single one-hot label),

rather than using the combination strategy in Equation (1).

‘Complete-label CutMix’ assigns the mixed target label as

ỹ = 0.5yA + 0.5yB regardless of the combination ratio λ.

The results show that above variations lead to performance

degradation compared to the original CutMix.

4.2. Weakly Supervised Object Localization

Weakly supervised object localization (WSOL) task

aims to train the classifier to localize target objects by us-

ing only the class labels. To localize the target well, it is

important to make CNNs extract cues from full object re-

gions and not focus on small discriminant parts of the target.

Learning spatially distributed representation is thus the key

for improving performance on WSOL task. CutMix guides

a classifier to attend to broader sets of cues to make deci-

sions; we expect CutMix to improve WSOL performances

of classifiers. To measure this, we apply CutMix over base-

line WSOL models. We followed the training and evalua-

tion strategy of existing WSOL methods [48, 49, 2] with

VGG-GAP and ResNet-50 as the base architectures. The

quantitative and qualitative results are given in Table 9 and

Figure 4, respectively. Full implementation details are in

Appendix B.

Comparison against Mixup and Cutout: CutMix outper-

forms Mixup [47] on localization accuracies by +5.51%
and +1.41% on CUB200-2011 and ImageNet, respectively.

Mixup degrades the localization accuracy of the baseline

model; it tends to make a classifier focus on small regions

as shown in Figure 4. As we have hypothesized in Sec-
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Backbone

Network

ImageNet Cls

Top-1 Error (%)

Detection Image Captioning

SSD [23]

(mAP)

Faster-RCNN [29]

(mAP)

NIC [42]

(BLEU-1)

NIC [42]

(BLEU-4)

ResNet-50 (Baseline) 23.68 76.7 (+0.0) 75.6 (+0.0) 61.4 (+0.0) 22.9 (+0.0)

Mixup-trained 22.58 76.6 (-0.1) 73.9 (-1.7) 61.6 (+0.2) 23.2 (+0.3)

Cutout-trained 22.93 76.8 (+0.1) 75.0 (-0.6) 63.0 (+1.6) 24.0 (+1.1)

CutMix-trained 21.40 77.6 (+0.9) 76.7 (+1.1) 64.2 (+2.8) 24.9 (+2.0)

Table 10: Impact of CutMix on transfer learning of pretrained model to other tasks, object detection and image captioning.

Baseline

Mixup

CutMix

Cutout

Figure 4: Qualitative comparison of the baseline (ResNet-

50), Mixup, Cutout, and CutMix for weakly supervised ob-

ject localization task on CUB-200-2011 dataset. Ground

truth and predicted bounding boxes are denoted as red and

green, respectively.

tion 3.2, more ambiguity in Mixup samples make a classifier

focus on even more discriminative parts of objects, leading

to decreased localization accuracies. Although Cutout [3]

improves the accuracy over the baseline, it is outperformed

by CutMix: +2.03% and +0.56% on CUB200-2011 and

ImageNet, respectively.

CutMix also achieves comparable localization accura-

cies on CUB200-2011 and ImageNet, even when com-

pared against the dedicated state-of-the-art WSOL meth-

ods [51, 32, 48, 49, 2] that focus on learning spatially dis-

persed representations.

4.3. Transfer Learning of Pretrained Model

ImageNet pre-training is de-facto standard practice for

many visual recognition tasks. We examine whether Cut-

Mix pre-trained models leads to better performances in cer-

tain downstream tasks based on ImageNet pre-trained mod-

els. As CutMix has shown superiority in localizing less dis-

criminative object parts, we would expect it to lead to boosts

in certain recognition tasks with localization elements, such

as object detection and image captioning. We evaluate the

boost from CutMix on those tasks by replacing the back-

bone network initialization with other ImageNet pre-trained

models using Mixup [47], Cutout [3], and CutMix. ResNet-

50 is used as the baseline architecture in this section.

Transferring to Pascal VOC object detection: Two pop-

ular detection models, SSD [23] and Faster RCNN [29], are

considered. Originally the two methods have utilized VGG-

16 as backbones, but we have changed it to ResNet-50. The

ResNet-50 backbone is initialized with various ImageNet-

pretrained models and then fine-tuned on Pascal VOC 2007

and 2012 [6] trainval data. Models are evaluated on

VOC 2007 test data using the mAP metric. We follow the

fine-tuning strategy of the original methods [23, 29]; imple-

mentation details are in Appendix C. Results are shown in

Table 10. Pre-training with Cutout and Mixup has failed to

improve the object detection performance over the vanilla

pre-trained model. However, the pre-training with CutMix

improves the performance of both SSD and Faster-RCNN.

Stronger localizability of the CutMix pre-trained models

leads to better detection performances.

Transferring to MS-COCO image captioning: We used

Neural Image Caption (NIC) [42] as the base model for im-

age captioning experiments. We have changed the backbone

network of encoder from GoogLeNet [42] to ResNet-50.

The backbone network is initialized with various ImageNet

pre-trained models, and then trained and evaluated on MS-

COCO dataset [22]. Implementation details and evaluation

metrics (METEOR, CIDER, etc.) are in Appendix D. Ta-

ble 10 shows the results. CutMix outperforms Mixup and

Cutout in both BLEU1 and BLEU4 metrics. Simply replac-

ing backbone network with our CutMix pre-trained model

gives performance gains for object detection and image cap-

tioning tasks at no extra cost.

4.4. Robustness and Uncertainty

Many researches have shown that deep models are eas-

ily fooled by small and unrecognizable perturbations on the

input images, a phenomenon referred to as adversarial at-

tacks [9, 38]. One straightforward way to enhance robust-

ness and uncertainty is an input augmentation by generat-

ing unseen samples [25]. We evaluate robustness and un-

certainty improvements due to input augmentation methods

including Mixup, Cutout, and CutMix.

Robustness: We evaluate the robustness of the trained

models to adversarial samples, occluded samples, and

in-between class samples. We use ImageNet pre-trained

ResNet-50 models with same setting as in Section 4.1.1.

Fast Gradient Sign Method (FGSM) [9] is used to gen-
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Figure 5: Robustness experiments on the ImageNet validation set.

Baseline Mixup Cutout CutMix

Top-1 Acc (%) 8.2 24.4 11.5 31.0

Table 11: Top-1 accuracy after FGSM white-box attack on

ImageNet validation set.

erate adversarial perturbations and we assume that the ad-

versary has full information of the models (white-box at-

tack). We report top-1 accuracies after attack on ImageNet

validation set in Table 11. CutMix significantly improves

the robustness to adversarial attacks compared to other aug-

mentation methods.

For occlusion experiments, we generate occluded sam-

ples in two ways: center occlusion by filling zeros in a cen-

ter hole and boundary occlusion by filling zeros outside of

the hole. In Figure 5a, we measure the top-1 error by vary-

ing the hole size from 0 to 224. For both occlusion scenar-

ios, Cutout and CutMix achieve significant improvements

in robustness while Mixup only marginally improves it. In-

terestingly, CutMix almost achieves a comparable perfor-

mance as Cutout even though CutMix has not observed any

occluded sample during training unlike Cutout.

Finally, we evaluate the top-1 error of Mixup and CutMix

in-between samples. The probability to predict neither two

classes by varying the combination ratio λ is illustrated in

Figure 5b. We randomly select 50, 000 in-between samples

in ImageNet validation set. In both experiments, Mixup and

CutMix improve the performance while improvements due

to Cutout are almost negligible. Similarly to the previous

occlusion experiments, CutMix even improves the robust-

ness to the unseen Mixup in-between class samples.

Uncertainty: We measure the performance of the out-of-

distribution (OOD) detectors proposed by [13] which de-

termines whether the sample is in- or out-of-distribution

by score thresholding. We use PyramidNet-200 trained on

CIFAR-100 datasets with same setting as in Section 4.1.2.

In Table 12, we report the averaged OOD detection perfor-

mances against seven out-of-distribution samples from [13,

21], including TinyImageNet, LSUN [46], uniform noise,

Method TNR at TPR 95% AUROC Detection Acc.

Baseline 26.3 (+0) 87.3 (+0) 82.0 (+0)

Mixup 11.8 (-14.5) 49.3 (-38.0) 60.9 (-21.0)

Cutout 18.8 (-7.5) 68.7 (-18.6) 71.3 (-10.7)

CutMix 69.0 (+42.7) 94.4 (+7.1) 89.1 (+7.1)

Table 12: Out-of-distribution (OOD) detection results with

CIFAR-100 trained models. Results are averaged on seven

datasets. All numbers are in percents; higher is better.

Gaussian noise, etc. More results are illustrated in Ap-

pendix E. Mixup and Cutout augmentations aggravate the

over-confidence of the base networks. Meanwhile, CutMix

significantly alleviates the over-confidence of the model.

5. Conclusion

We have introduced CutMix for training CNNs with

strong classification and localization ability. CutMix is easy

to implement and has no computational overhead, while be-

ing surprisingly effective on various tasks. On ImageNet

classification, applying CutMix to ResNet-50 and ResNet-

101 brings +2.28% and +1.70% top-1 accuracy improve-

ments. On CIFAR classification, CutMix significantly im-

proves the performance of baseline by +1.98% leads to

the state-of-the-art top-1 error 14.47%. On weakly super-

vised object localization (WSOL), CutMix substantially en-

hances the localization accuracy and has achieved compara-

ble localization performances as the state-of-the-art WSOL

methods. Furthermore, simply using CutMix-ImageNet-

pretrained model as the initialized backbone of the object

detection and image captioning brings overall performance

improvements. Finally, we have shown that CutMix results

in improvements in robustness and uncertainty of image

classifiers over the vanilla model as well as other regular-

ized models.
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