Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
BBC Russian clickable element to expand a topic
Skip to content
Optica Publishing Group

DRL-based progressive recovery for quantum-key-distribution networks

Not Accessible

Your library or personal account may give you access

Abstract

With progressive network recovery, operators restore network connectivity after massive failures along multiple stages, by identifying the optimal sequence of repair actions to maximize carried live traffic. Motivated by the initial deployments of quantum-key-distribution (QKD) over optical networks appearing in several locations worldwide, in this work we model and solve the progressive QKD network recovery (PQNR) problem in QKD networks to accelerate the recovery after failures. We formulate an integer linear programming (ILP) model to optimize the achievable accumulative key rates during recovery for four different QKD network architectures, considering different capabilities of using trusted relay and optical bypass. Due to the computational limitations of the ILP model, we propose a deep reinforcement learning (DRL) algorithm based on a twin delayed deep deterministic policy gradients (TD3) framework to solve the PQNR problem for large-scale topologies. Simulation results show that our proposed algorithm approaches well compared to the optimal solution and outperforms several baseline algorithms. Moreover, using optical bypass jointly with trusted relay can improve the performance in terms of the key rate by 14% and 18% compared to the cases where only optical bypass and only trusted relay are applied, respectively.

© 2024 Optica Publishing Group

Full Article  |  PDF Article
More Like This
Key-count differential-based proactive key relay algorithm for scalable quantum-secured networking

Chankyun Lee, Yonghwan Kim, Kyuseok Shim, and Wonhyuk Lee
J. Opt. Commun. Netw. 15(5) 282-293 (2023)

Large-scale quantum key distribution network simulator

Emir Dervisevic, Miroslav Voznak, and Miralem Mehic
J. Opt. Commun. Netw. 16(4) 449-462 (2024)

Cost-Efficient Quantum Key Distribution (QKD) Over WDM Networks

Yuan Cao, Yongli Zhao, Jianquan Wang, Xiaosong Yu, Zhangchao Ma, and Jie Zhang
J. Opt. Commun. Netw. 11(6) 285-298 (2019)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (6)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (20)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.