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We study a version of the mathematical Ruijsenaars-Schneider model and reinterpret it physically in order to
describe the spreading with time of quantum wave packets in a system where multifractality can be tuned by
varying a parameter. We compare different methods to measure the multifractality of wave packets and identify
the best one. We find the multifractality to decrease with time until it reaches an asymptotic limit, which is
different from the multifractality of eigenvectors but related to it, as is the rate of the decrease. Our results could
guide the study of experimental situations where multifractality is present in quantum systems.
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I. INTRODUCTION

Multifractal properties have been characterized in several
physical contexts, from turbulence [1] to the stock market [2]
and cloud images [3]. Similar features were also recently
observed in quantum mechanics or complex wave systems.
Indeed, multifractal wave functions are observed for electrons
at the Anderson metal-insulator transition [4-7], in quantum
Hall transitions [8], in random matrix models [9,10], and
others [11-13]. They are also visible in the different context of
pseudointegrable systems, for which constants of motion exist
but dynamics takes place on manifolds more complicated than
the tori characteristic of integrability [14-21].

Many theoretical studies have been devoted to these quan-
tum multifractal systems. In parallel, experimental progress
opens the way to direct observation of multifractality; hints
of such properties were seen in waves in elastic media
[22], disordered conductors [23], and cold atoms [24]. The
theoretical studies were mainly concentrated on eigenvectors
(stationary states) of the systems considered [5-21]. In
contrast, the experimental protocols in general involve the
propagation of wave packets (WP), for which results on
eigenvectors are a priori not directly applicable. In order to
further characterize experimental results and interpret them,
it is therefore important to have detailed results on the
multifractal properties of WP. Some works have related global
properties of WP, e.g., spreading laws or envelope shapes,
to the multifractal properties of eigenvectors or eigenspectra
[25-29]. Other works found specific examples of multifractal
WP [30,31]. However, the general existence and origin of the
multifractality of WP is still unclear. In this paper, we rein-
terpret the mathematical Ruijsenaars-Schneider model [32] as
the quantization of a pseudointegrable map. The properties of
the eigenfunctions can be continuously tuned through system
parameters from a weak to a strong multifractality regime,
enabling us to systematically compare multifractality of WP
and eigenvectors. Although the system is of mathematical
origin, it can serve as a test bed, and the results for this model
can give insights into the behavior of a wide class of physical
systems with multifractal properties. Our computations show
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that several numerical methods can give different results
for measuring this multifractality of WP, and we identify
the optimal one. Our numerical and analytical results show
that one can systematically relate the multifractality of WP
and its time evolution to that of eigenfunctions, opening
the possibility to probe these properties in detail through
experimental observations.

II. THE MODEL

We consider a periodically kicked system with period
T and Hamiltonian H(p,q) = %2 +V(g)>_,8(t —nT), with
potential V(q) = —y{q}. Here {g} denotes the fractional part
of ¢, and (p,q) are the conjugated momentum and position
variables. The classical equations of motion integrated over
one period yield the classical map p=p+vy; §g=9qg+
T p (mod 1). The quantization of this map gives the unitary
evolution operator U = e~iTP /@ e=iV@/h  Tn [15,18], the
choice of parameters led to a quantum map on a toroidal
phase space independent of the Hilbert space dimension N.
In order to allow for long spreading times for a WP, here we
fix 7 and truncate the phase space by taking p € [0,27 NA[ or,
equivalently, integer indices P defined by p = 2w Ph such
that 0 < P < N — 1. This defines a quantum map over a
phase space whose classical size grows with N. The evolution
operator then becomes U = e TP p=lo2miyQ/N F o with
Fpo = exp(iPQ/N)/~/N, which yields
ei<I>p 1— eZiny
Upp =

N 1 — e2im(P—P'+y)/N ’ M
with ®p = —n T P2.

This system corresponds to the mathematical Ruijsenaars-
Schneider map [20,21]. This model reinterpreted physically
in this way has many advantages. The multifractality of
eigenvectors is known [19-21] to depend on the parameter
y in a continuous way, enabling us to probe all the regimes
from weak to strong multifractality. In addition, the simplicity
of this one-dimensional model makes analytical calculations
and numerical computations tractable. In the numerical results
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below, we replaced the kinetic term ®p in (1) by random
phases in order to get averaged quantities while keeping the
same physics.

III. ANALYTICAL CALCULATION OF AVERAGE WP

We consider the evolution of a WP initially localized on
one single momentum state, \11;9) = §(P — Py). Iterations of
the map make the WP spread out. Analytical calculations are
possible in the regime of small 7 and y close to an integer. In
this section, using a tailored version of perturbation theory, we
compute the average WP over random phases & p.

A perturbation expansion for matrix (1) can be obtained
whenever y is close to an integer, namely, y = k + €, with k
being an integer. In order to obtain slightly simpler expressions
we rescale the matrix Upp: by a trivial factor exp[—imwe(l —
1/N)], so that it can be expressed as

Upp = e'®?8(P +k — P')
270 o, 1 —8(P+k—P)

2
Y ’ | — o2wi(P+k—PO/N +0(€). (2

We consider the evolution of a wave packet initially in the state
| W @), Upon one iteration of map (2) the state becomes | W)
with components
. 2mi eler
1) _ i®p\q O 0)
Vp = e ey 2L T pmorw Ve O)
P'£P

(all indices are to be understood modulo N). The iterate |¥®)
after ¢ applications of the map is obtained by applying (3)
recursively. The general term at first order is of the form

(0

(1) q,(t) 0) 2mi XP p (0)
Vp =Wy e > T 2P PN Pk
PP
“)
In particular fort = 1, %) = ®p and X = e'®?. Applying

one iteration to state (4) ylelds

t+) _ idp+iol),  \, 0
Vet =TT WL
. i +l<I>”
_ 627” Z O i pr T @O
N 1 — e2mi(P—P)/N P'+k(t+1)°
PIA£P
4)
so that dD(I? and X P P, satisfy the recurrence relations
+1 1
oy = @f) + ®p ©)
and
1 - 1)
Xi o) = € Xphp g + €T %)
We readily obtain the following expressions:
-1
t
oY =) Ppay ®)

j=0

and

t r—1 t—1
Xg)p = ZGXP iZ Dp ;i +1i Z DPpyii |, 9
=1 =0 j=r
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which together with (4) give the first-order expression of | W "),
Now suppose we start from a wave packet initially localized at
Py, so that the initial state is defined by \I/g) = 1 and its other
components equal to zero. In (4), only terms with P’ + kt =

Py yield a nonzero contribution, so that we get at lowest order

WP =1 if P=Py—kt, (10)
2 en? |X1(3t,)P0—kt|

otherwise. (11

||

P N2 sin2 Z(P — Py + kt)
The first-order expression for the mean wave packet is obtained
by averaging over random phases @ p. Using (9), the average
reads

t
<|Xg,)Posz|2> = Z <CXP|: (Z(DP-H(] + Z D@ py4ij

rr'=1 j=r—t

r'—1
— D Priiy — Zebmk,)b. (12)
j=0

j=r'—t

For diagonal terms with r =’ the term in the exponen-
tial vanishes. For terms such that r > r/, the term in the

exponential is
r—t—1

r—1

Y Opii— Y Pp- (13)
j=r j=r'—t

The average over random phases is nonzero if and only
if all terms in (13) vanish, that is, if the set of indices
Q ={P+kr',...,P +k(r—1)} is equal (modulo N) to
the set Q, = {Py+k(+' —1t),...,Pp+k(r —t — 1)}. In the
case k = 0 this is impossible since we are in the case where
P # Py — kt. Consider now k > 1 (for simplicity we restrict
ourselves to k coprime with N). Suppose that P + kr’ is equal
to a certain index of Q,, say P +kr' = Py + k(r' —t + q)
for some g with 1 < g <r —r"—1 (given that we are in
a case where P # Py — kt, we must have g # 0). Then for
0<s<r—r —1—gq we have equalities P + k(r' + s5) =
Py+ k(r' —t 4+ g +s), the last equality being P + k(r —
1—¢q)= Py+k(r —t — 1). Then in order to have Q; = 2,
we must have P + k(r — g) equal to one of the remaining
indices of €, thatis, P + k(r — q) = Py + k(r’' — t + s9) for
some sy, 0 < 59 < g — 1. Since by definition of ¢ we have
P = Py+ k(—t + q), we get k(r —r’ — s9) = 0 modulo N.
Since we assumed that k and N are coprime and r > r’, this
givesso = r —r’.Butwehad sy < g — 1 < r —r’ — 2, which
yields a contradiction. So we cannot have | = €2,. Thus only
diagonal terms survive in (12). Since there are ¢ of them, we
get the final formula for the average WP for P # Py — kt:

<|\y(’)| ) e2m’t 1

N? sin? (P — Py + ki)’

(14)

This formula implies that close to integer values of y, the WP
displays a single peak moving at speed k. Actually, formula
(14) is close to the numerical results even for quite large
values of ¢ and for y far from integers, provided k is replaced
by y and € by sin(wy)/m. This can be seen, for instance,
in the insets of Fig. 2, where the average wave function is
shown together with formula (14) for three different values
of y and r = 100. Discrepancies are visible only by zooming
close to the center of the distribution. In the case y =~ 0.5,
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one can actually distinguish two peaks, one staying at the
initial position, the other one moving faster than y, but the
tails are still perfectly reproduced by Eq. (14). The peak at
the origin for small y can be interpreted as a manifestation of
strong multifractality since it can be related to the correlation
dimension [25,26,28].

Several regimes can be characterized in the evolution of
the WP. At t = 0, the WP is localized at P = Py. As time
increases, the WP spreads according to Eq. (14) until it reaches
the system size. We have checked that the limiting result
for very long times (+ = oo limit) is equivalent to the one
obtained by diagonalizing the evolution operator, replacing
the eigenphases by random numbers, and transforming back to
the momentum basis. The speed at which the properties con-
verge to this asymptotic regime depends on the multifractality
(see Sec. V).

IV. NUMERICAL COMPUTATION OF
MULTIFRACTAL EXPONENTS

Different methods can be used in order to compute multi-
fractal exponents. They are all equivalent for mathematically
defined multifractal measures. However, our system is discrete
and cannot reach arbitrarily small scales. Furthermore, WP can
be described as a smooth average Eq. (14), with superimposed
fluctuations. Our study focuses on the multifractality of these
fluctuations. However, the presence of a nontrivial envelope
can affect the computation of the exponents. Thus in our case
different methods may give different answers. We tested four
different algorithms. The first one (moment method), widely
used in a quantum context, e.g., in [5,6], consists of computing
the moments of the wave function P, = Z]}\,Izl |[Wp|% for
different system sizes N; the multifractal exponent D, can be
obtained from the scaling of these moments with N through
(Py) o« N7% with 7, = D,(q — 1). However, this method
assumes scale invariance of the system as N increases. In
our system the envelope has a nontrivial scaling with N, and
this effect is hard to disentangle from the multifractality due
to the fluctuations. Thus while in most regimes we found this
method to give results equivalent to other ones, in some cases
it gives nontrivial multifractal exponents even for a smooth
WP [e.g., for the average WP of Eq. (14)].

We therefore investigated alternative methods, which
use only one system size N. One possibility is to eval-
uate the scaling with box size of the moments Pg"" =

> boxes (X pebox |p12)? of the wave function summed up
inside boxes of same sizes [box-counting (BC) method]
[17,18]. Another method uses the scaling of the sum of the
local maxima of the wavelet transform of the wave function at
each scale (wavelet method) [33-35]. Finally, we investigated
a method suited for WP spreading with time, similar to the
moment method but using the scaling of the moments as a
function of time instead of different system sizes (time method)
[31]. We found this latter method difficult to implement since
it required some knowledge of the spreading law and less
reliable than the BC method. For relatively large values of g
(g > 1) results were similar to those obtained with the other
methods. For strong multifractality, BC and wavelet methods
gave the same results. However, in the weak multifractality
regime, where the scaling is strongly dependent on the scales
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FIG. 1. (Color online) Multifractal exponents D, vs g for (top)
y = 0.05, (middle) y = 0.5, and (bottom) y = 0.95. Red solid
curves: WP at + = 100 (including envelope and fluctuation effects;
see text); blue dotted curves: fluctuations corresponding to the WP
divided by the average WP over all realizations; green dashed curves:
fluctuations corresponding to the WP divided by a smoothed average
WP; purple dot-dashed curves: fluctuations corresponding to the WP
divided by the analytical average WP Eq. (14) (see text). In the top
and middle panels the three latter curves are mostly indistinguishable.
Shaded areas indicate standard error in the least-squares fit. The
insets show examples of fit for the WP and ¢ = 2. The D, have been
extracted from 1000 random phase realizations of size N = 2'® by
the BC method applied on the 2! central components with box sizes
ranging from 1 to 64. All quantities on the figure are dimensionless.

at which we choose to fit the data, the BC method appeared to
be more reliable. We therefore choose throughout the paper the
BC method for the numerical computation of the exponents.
An average was made over the positions of the box centers
to eliminate a threshold effect linked to the relative position
of the WP and the boxes. In addition, it is interesting to note
that the multifractality of WP contains effects of the envelope
of the WP and effects from the fluctuations around this
envelope. In Fig. 1 we show the multifractal exponents D,
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computed by the BC method in four different ways. The first
one is the direct application of the BC method for the full WP;
the other three aim to separate fluctuation effects from envelope
effects by dividing the WP by its average value, computed in
three different ways (see caption of Fig. 1). The results show
that if y is not close to 1, the multifractality measured by the
BC method on the full WP corresponds mainly to fluctuation
effects. In contrast, for y approaching 1 (weak multifractality
regime), the results of the BC method clearly incorporate both
envelope and fluctuation effects. In many physical systems,
averages over realizations or analytical envelopes might be
difficult to obtain, so we will use in the following computations
the BC method for the full WP without dividing the WP by its
average value.

We recall that the exponents D, are positive and decrease
for g > 0 from Dy = 1; at a fixed value of ¢ > 0, the smaller
D, is, the stronger the multifractality is. For an ergodic
wave function one has D, =1 for all . In systems such as
ours where an average is made over wave functions one can
distinguish two sets of multifractal exponents [5,6]. For the BC
method, the first one corresponds to (Pg"") as defined above
and yields exponents D,, while the other one corresponds to

(InP2%) and yields exponents Dg". In cases where moments
are distributed according to power laws with small exponents,
the two quantities can be different, with the latter being the
typical value of the moment for the bulk of the wave functions
considered, while the former could be dominated by rare wave
functions with much larger moments. As the quantity D,
is the most accessible to analytical methods and the most
widely studied in the literature, we concentrate on it. We
have nevertheless checked that our results are similar for both
quantities.

V. MULTTIFRACTAL EXPONENTS FOR WP AND
EIGENVECTORS

We now turn to the discussion of multifractal exponents
D, for WP in different regimes of y. Studies of eigenvectors
of map (1) have shown [20,21] that their multifractality is
the strongest close to y = 0 and the smallest for y close to
nonzero integers. In Fig. 2 we show the exponents D, for
WP at t = 100 and ¢ = oo and for eigenvectors in different
regimes. As long as the WP remains localized, the multifractal
exponents are extracted from scales smaller than the typical
WP size. Indeed, above this scale, the weight is concentrated
only in one box and does not depend any longer on the box size
(see insets of Fig. 1 showing the saturation of the moments).
For very small times there are very few scales from which to
extract the exponents, which may affect the precision.

The comparison of the different curves in Fig. 2 (top)
shows that the regime of small y corresponds to a strong
multifractality of both WP and eigenvectors. In this regime, it
is possible to use a specific perturbative approach in order to
obtain multifractal properties of eigenvectors [21]. It predicts

- D — 0y Lg=1/2)

that forg > 1/2 the multifractal e;(polnentls qu (1_/22)/) )
. o - —q

while for ¢ < 1/2 it is Dy, = = +2y—\/7?(q71)f‘(7q)' The

results displayed in Fig. 2 (top) show that this formula is
also quite close to the multifractal exponents of WP, even for
values of y as high as 0.05. Our explanation is that with the
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FIG. 2. (Color online) Multifractal exponents D, vs g for (top)
y = 0.05, (middle) y = 0.5, and (bottom) y = 0.95. Red solid
curves: WP atr = 100; blue dotted curves: ¢t = oo limit; green dashed
curves: eigenvectors of (1); black dot-dashed curves: analytical theory
for eigenvectors (see text). Shaded areas indicate standard error in the
least-squares fit. The insets show the average WP (initially localized
at P = 0; dotted yellow curve) and analytical formula (14) (black
solid curve). The D, of WP have been extracted from 1000 random
phase realizations of size N = 2'6 by the BC method applied on
the 2" central components with box sizes from 1 to 64. The D, in
the t = oo limit and for eigenvectors have been extracted from 2'3
vectors of size 2! by the BC method with box sizes from 8 to 512.
All quantities on the figure are dimensionless.

eigenvectors and initial WP both being very localized, only
a few eigenvectors contribute to the WP. Thus in this regime
the multifractal exponents of the WP yield direct information
on those of eigenvectors. We also note that the # = oo limit is
reached already for r = 100.

When y goes farther away from zero, the multifractality of
eigenvectors decreases. As can be seen from the numerical data
displayed in Fig. 2 (middle) for y = 0.5, the multifractality
of WP also becomes weaker. In this regime the multifractal
exponents for + = 100 and ¢ = oo are quite close, showing
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FIG. 3. (Color online) Density plot of D; as a function of y and
time ¢. Colors denote multifractality strength from white (strong) to
red or gray (weak). The exponents D; have been extracted from 100
random phase realizations of size N = 2!* by the BC method with
box sizes from 1 to 64. All quantities on the figure are dimensionless,
apart from the time ¢, in units of period 7.

that the # = oo limit is reached quite quickly. This is all the
more remarkable since, as shown in the insets of Fig. 2 (top
and middle), the WP at r = 100 remains, on average, quite
localized, while the envelope at = oo is flat (data not shown).
In this regime, the asymptotic limit is thus quickly reached and
corresponds to a multifractality weaker than for eigenvectors.
Our interpretation is that, as eigenvectors are more delocalized
than for y ~ 0, the initial WP has significant components on
more eigenvectors, which leads to an overall decrease of the
multifractality as time evolution mixes these eigenfunctions.

When y increases and gets close to nonzero integer k,
eigenvectors display weak multifractality. This can be derived
analytically since the perturbative approach yields the expres-
sion D, = 1 — (y — k)*q/k* [21]. In this regime the WP at
t = oo are also weakly multifractal, as can be seen from the
numerical data displayed in Fig. 2 (bottom). The two curves
are quite close, but in this regime of very weak multifractality
eigenvectors are slightly less multifractal than the # = oo limit.
For ¢+ = 100 the multifractality of WP is quite different from
the asymptotic one at = co. We will come back to this point
below.

The global picture for the multifractality of WP is sum-
marized in Fig. 3, which displays D; as a function of time
and y. The three regimes can be clearly distinguished, both
in the average multifractality and in the speed with which the
asymptotic regime is reached. In order to shed more light on
the way multifractality evolves with time we show in Fig. 4
the time evolution of D; and D, for three different values of
y. While the asymptotic regime is reached very quickly for
y & 0, the rate of convergence decreases with y, as can be
checked more quantitatively with the data shown in the top
inset. Our interpretation of this phenomenon is the following;
as y increases, we have already noted that the initial WP has
significant components on more and more eigenvectors. One
can relate the time at which the asymptotic regime is reached
to the inverse of the average spacing between eigenphases
corresponding to those eigenfunctions which contribute. For
y ~ 0 the eigenphases are close to the random variables @ p,
and only a few eigenvectors contribute, leading to a very large
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FIG. 4. (Color online) Multifractal exponents (top) D; and
(bottom) D, vs t, extracted from 1000 random phase realizations
of size N = 2'3 by the BC method with box sizes from 1 to 64. Red
bottom curves: y = 0.05; blue top curves: y = 0.5; green middle
curves: ¥ = 0.95. The inset in the top panel shows time 7 [defined
by Di(t) = Di4s/2] vs y. Here D, 4 is the mean value of D, () in
the time interval [3000,5000]. The solid curve is the best fit of the
form exp[A/(B — y)], with A = 0.749 and B = 1.103. The inset in
the bottom panel is the mean second moment vs time for y = 0.95
(green squares), 0.05 (orange crosses), 0.99 (magenta circles), and
0.01 (blue triangles). Black dashed lines are the analytical formula
for the second moment (see text). All quantities on the figure are
dimensionless, apart from the time 7, in units of period 7.

mean spacing and thus a very short convergence time. As y
increases, this mean spacing decreases, and the convergence
time increases.

A perturbative method similar to the one used to obtain
(14) can be developed for the second moment of WP for y
close to integers. It leads to (X p | W' |4)~! & 1 4 272€X(N? —
1)/(3N?)t, valid for t < 3/(2m%€?); the data in Fig. 4 (inset in
the bottom panel) confirm the increasing range of validity of
this formula when y gets closer to integers. It predicts D, &
0, which is compatible with the asymptotic limit for y =~ 0
but not for y close to other integers. This analysis therefore
further confirms that, as y gets closer to nonzero integers
(weak multifractality regime), the asymptotic behavior should
take longer and longer to appear.

VI. CONCLUSION

We have studied the multifractality of individual WP
in a periodically kicked system through a combination of
numerical and analytical works. We have compared different
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methods to define and measure it and assessed their usefulness,
singling out the BC method as the most efficient in this context.
The multifractality of WP was shown to typically decrease with
time until it reaches an asymptotic limit, which corresponds
to the model with randomized eigenvalues. This asymptotic
multifractality is different from the one of eigenvectors more
commonly studied but is related to it. The rate at which
the asymptotic limit is reached can also be related to the
multifractality of eigenvectors. Although the model we used
stems from mathematical studies, we think our results should

PHYSICAL REVIEW E 86, 056215 (2012)

be applicable to other models and, in particular, can guide the
analysis of experimental situations.
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