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Abstract

Growth theory is based on the assumption of exponential total factor produc-
tivity (TFP) growth. Across countries and time periods I find that TFP growth is
additive. There is no evidence that TFP increments increase with the level of TFP
as predicted by the exponential model. Even starting from low priors, Bayesian es-
timation selects the additive model over the exponential one. The additive growth
model, unlike the exponential one, provides useful long-term forecasts for TFP.
For the distant past the model suggests piecewise linear evolutions with infrequent
changes: the size of TFP increments increases around 1650, 1830 and 1930. For
the distant future the model predicts ever increasing increments in standards of
living but with falling real interest rates and growth rates that converge to zero.

∗I am grateful to Tim Cogley, Chad Jones, Ufuk Akcigit, Virgiliu Midrigan, Greg Mankiw, Olivier
Blanchard, Xavier Gabaix, Xavier Jaravel, Antonin Bergeaud, Remy Lecat, David Weil, Gilbert Cette,
David Romer, Callum Jones, German Gutierrez, Ben Jones, Alexey Guzey, Peter Kruse-Andersen, and
Bill Easterly for their comments, and to Yad Selvakumar for outstanding research assistance.

†New York University Stern School of Business, CEPR and NBER, tphilipp@stern.nyu.edu

1



This paper is an empirical investigation of the stochastic process that governs total
factor productivity (TFP). At least since Solow (1956) economists have assumed that
TFP follows an exponential process. In a deterministic setup this model (model G for
“geometric”) takes the form:

At+τ = Ate
ḡτ , (1)

where At is TFP in year t and the trend ḡ is constant or at least highly persistent. I
will show instead that growth is additive and that the TFP process is better described
by model A (as in “additive” or “arithmetic”):

At+τ = At + b̄τ, (2)

where b̄ is constant or at least highly persistent. The key prediction of model G is that
the size of the next TFP increment is proportional to the current level of TFP. I examine
data across many countries and time periods and I find that this prediction is rejected.
In essentially all cases productivity growth appears to be additive.

Figure 1 provides a straightforward motivation for this paper. It suggests that TFP
growth has been linear in the US since at least World War II. In the figure, models A and
G are estimated over the first half of the sample (1947-1983) and then used to predict
the level of TFP in the second half of the sample (1984-2019). One can observe the
well-known TFP slowdown “puzzle” with model G, which simply says that actual TFP
has fallen short of the exponential benchmark. By contrast there is no TFP slowdown
according to model A.

Equivalently, Figure 2 shows that the additive growth model predicts the correct
path of TFP slowdown in the exponential model.

Empirically, then, US growth after World War 2 is well described by the following
statement: Hicks-neutral TFP, normalized to 1 in 1947, increases each year by about
250 basis points. The initial trend growth rate is 2.5% but growth is additive: as TFP
doubles after 40 year and increments are constant, the measured trend growth rate is
half of what it used to be. After 60 years, it is around one percent, in line with the
data. When Hicks-neutral TFP grows linearly, capital accumulation creates a convex
path for labor productivity. The Appendix shows that the linear TFP model predicts
the correct non-linear evolution of labor productivity while the exponential model over-
predicts future levels of labor productivity. The point that TFP is additive therefore
does not depend on a (possibly noisy) measure of the capital stock.

The goal of this paper, then, is to formally test the proposition that TFP growth
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Figure 1: US Post War TFP
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Notes: TFP is normalized to 1 in 1947. Models are estimated over 1947-1983. The forecast 1984-2019
is out-of-sample. Data source: Bergeaud et al. (2016).

is additive, across many countries and time periods, and to draw the implications for
economic theory.

Section 1 focuses on US data and uses a relatively simple test based on the root
mean squared errors of forecasts (RMSE) from models A and G. The test confirms
the visual impression of figure 1. Model G performs poorly even when the trend ḡ

is allowed to change over time. Model A forecasts TFP better than model G at all
horizons. The test based on RMSEs rejects model G with more than 95% confidence
even conditionally on a TFP slowdown. The same results hold in the longer sample
(1890-2019) of Bergeaud et al. (2016). The long sample also reveals that the trend
in Figure 1 actually starts around 1930. This finding is consistent with the historical
literature (Field, 2003; David, 1990; Gordon, 2016), and it suggests that US TFP growth
has been additive with constant expected increments for 90 years.

Section 2 extends the analysis with a Bayesian model. The parameters are esti-
mated by maximum likelihood, filtering the distribution of the unobserved states with
a Kalman filter, before approximating the conditional expectations using Monte Carlo
simulations. While more complicated than that of Section 1, the Bayesian estimation
provides optimal forecasts as well as posteriors for model selection. Figure 6 shows the
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Figure 2: Predicted TFP Slowdown
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Notes: TFP is normalized to 1 in 1947. TFP Growth MA is the centered moving average of TFP
growth over (t− 5, t+ 5). The prediction of model A is based on a constant annual increment of 250
basis points. Data source: Bergeaud et al. (2016).

conditional forecasts of the two models and highlights the failures of model G. In the
model selection exercise the posteriors converge to one for model A even when one starts
with large priors in favor of model G in 1890.

Section 3 repeats the analysis of Sections 1 and 2 in the panel of 23 countries from
Bergeaud et al. (2016). The additive model predicts TFP dynamics better than the
exponential model for each of the 23 countries. The 10-year forecast errors of the ex-
ponential model are 30% to 60% higher than those of the additive model and model
selection favors model A in all cases. I also consider a sample of OECD countries that
are not in the BCL sample (e.g., Korea) and I show that their TFP growth is linear.
TFP growth paths in Thailand and Taiwan, two prime example of “miracle growth” in
Asia, are also linear. The exponential growth model fails because it predicts periods of
sustained and convex productivity growth that simply do not exist in the data.

Section 4 provides a broader historical interpretation of the data. A symptom of the
failure of the exponential model is that the estimated trend growth rates are unstable.
By contrast the additive TFP model displays remarkably few breaks and these have
plausible economic interpretations in terms of General Purpose Technologies (Bresnahan
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and Trajtenberg, 1995). For example, the process of US TFP increments has only one
break over the past 130 years, around 1930, following the large-scale implementation of
the electricity revolution (Gordon, 2016). Using UK data on GDP per capita back to
1500, I find only two more breaks. The first is around 1650 and the second is around 1830.
These breaks are consistent with historical research on the first and second industrial
revolutions (Mokyr and Voth, 2010).

Section 5 discusses the implications of these empirical findings for economic theory.
Additive growth does not substantially change the short-run dynamics of a standard
stochastic growth model with exogenous TFP. Wealth effects are somewhat muted in
model A relative to model G, but the policy functions for consumption and investment
are quantitatively similar for reasonable values of the elasticity of inter-temporal substi-
tution. Even if agents believe (incorrectly) that the underlying process is exponential,
they save (approximately) the same fraction of their income, supply the same quantity
of labor, and the economy accumulates the same quantity of capital. The fact that TFP
growth is additive therefore has limited implications for the great ratios (labor share,
capital to GDP ratio) and for business cycles given observed TFP. It does, however,
facilitate the estimation of the natural rate of interest and it sheds new light on debt
sustainability and long term discounting.

The second part of Section 5 studies additive TFP in models of endogenous growth
(Romer, 1990; Grossman and Helpman, 1991; Aghion and Howitt, 1992). I argue that
exponential growth in these models does not follow from first principles, but from the
assumption that ideas are multiplicative. Models with expanding varieties assume that
the number of potential new varieties is proportional to the number of existing varieties.
Models with vertical differentiation assume that the quality ladder is exponential. I ex-
plain how alternative assumptions lead to additive growth and I discuss the issues that
may then arise. I also discuss additive growth in the context of search-and-imitation
models (so called mean-field games) such as Lucas and Moll (2014), Perla and Tonetti
(2014) and Akcigit et al. (2018). An important policy implication of this analysis is that
inter-temporal spillovers are smaller under model A than under model G since improve-
ments in TFP raise economic efficiency but do make future discoveries exponentially
easier. The rationale for R&D subsidies is thus weaker (but not zero in general) under
additive growth.

Literature Solow (1956) studies the theoretical properties of the neoclassical growth
model and Solow (1957) constructs TFP series from 1909 to 1949. Since then, essentially
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all models of growth have taken the exponential model as a benchmark. My Bayesian
estimation rejects the exponential model using the full sample, but, interestingly, the
power of the test is lower if I only use Solow’s original data because of the structural
break in 1930.

This paper complements the literature on endogenous growth accounting, such as
Jones (2002). Compared to Solow (1957), this literature treats TFP growth as an en-
dogenous variable to be explained by inputs such as capital, education, and the labor
force employed in research. A key puzzle in the literature is that TFP growth has not
increased despite the increase in measured research effort (Jones, 1995). Jones (2009)
argues that innovation is getting harder because new generations of innovators face an
increasing educational burden. Similarly, Bloom et al. (2020) present case studies of
several technologies to argue that innovations are becoming harder to find. Guzey et al.
(2021), however, show that this conclusion is sensitive to the choice of a productivity
measure, and that many series, including US TFP, do not appear to exhibit exponential
growth. A critical issue in this literature is the measurement of inputs into the inno-
vation process. Formal R&D spending captures only a fraction of innovative activities,
and R&D data is usually missing before World War 2. Growth accounting also depends
on the functional form chosen to map inputs into TFP. By contrast, my approach fo-
cuses directly on the TFP process and shows that TFP is additive across many countries
and time periods. This new stylized fact speaks to all models of growth, endogenous or
semi-endogenous, based on R&D or on learning-by-doing.

This paper is not the first to suggest a departure from exponential growth. Jones
(1995), for instance, includes a TFP equation of the type Ȧt = Aϕt LA,t where LA,t is re-
search employment. Exponential growth in standard models comes from the assumption
that ϕ = 1. The endogenous growth accounting literature calibrates ϕ < 1 to match the
fact that increasing research effort does not necessarily lead to faster growth, but the
estimates of ϕ using R&D data are rather unstable. My results suggest that ϕ = 0.

Finally this paper relates to the history of long run growth. Transitions between
regimes, illustrated in Figure 13, are even more striking when viewed through the lens of
additive growth. The fact that growth increments increase during industrial revolutions
speaks to the complementarity of new inventions with existing technologies emphasized
by Comin et al. (2010). The turning point of the 1930s is consistent with Field (2003)’s
argument that “the years 1929–1941 were, in the aggregate, the most technologically
progressive of any comparable period in U.S. economic history.” The early break point
around 1650 is consistent with recent work by Bouscasse et al. (2021).
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1 Evidence from the US

My primary sources for TFP is Bergeaud et al. (2016) (BCL). BCL covers 23 countries
from 1890 to 2019 and their data allow the analysis of a long sample period as well as
international comparisons in Section 3.

The challenge is to create a test that can distinguish between additive and geometric
growth. Consider a simple example to build some intuition. Suppose that measured TFP
is equal to fundamental TFP A∗

t plus noise At = A∗
t + ϵt where ϵt is iid with volatility σϵ.

Let us normalize A∗
0 = 1 and assume that fundamental TFP is deterministic and that

the trend measured at time 0 is b. We do not know whether A∗
t will grow exponentially

as A∗
t,G = ebt (model G) , or linearly as A∗

t,A = 1 + bt (model A). How long would we
wait before deciding which is the correct model? If we want to the two forecasts to be
nσ apart we need ebt − 1 − bt ≥ nσ or bt ≥ x where x is the root of ex − 1 − x = nσ.
For small values of nσ, x is close to

√
2nσ so we need t ≥

√
2nσ
b

. With n = 2, σ = 1%

and b = 2% we get approximately t ≥ 10 years. If we assume instead that the noise is
multiplicative At = A∗

t (1 + ϵt) then we need approximately t ≥ 12 years.
The example above is of course not realistic, but the basic insight carries over to

the more advanced models used below. This section starts with a simple test based on
the root mean square error of recursive forecasts. Section 2 presents a full Bayesian
estimation and likelihood ratio test.

1.1 Simple Test using Postwar U.S. Data

This section focuses on post-war data because it is the most reliable and because the
US was arguably at the technological frontier during the entire period. The simple test
is based on a forecasting exercise. Given an sequence of observed TFP I construct the
log growth rate as gt ≡ logAt − logAt−1, and the linear increment as bt ≡ At − At−1.
To estimate the local drifts ḡt = Et [gt+1] and b̄t = Et [bt+1], I use a standard smoothing
model

b̂t = (1− ζ) b̂t−1 + ζbt, (3)

where b̂t is the estimate of b̄t. Similarly, ĝt = (1− ζ) ĝt−1 + ζgt is the estimate of ḡt. I
use values of ζ = 0.05 and ζ = 0.1 for the smoothing parameter. At 0.05, the sensitivity
of the trend estimate to the most recent observation is the same as that of a 20-year
moving average. At 0.1 the sensitivity is the same as that of a 10-year moving average.
These cover the range of plausible values for estimating a trend. Equation (3) implies
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Table 1: RMSE of TFP Forecasts, U.S. 1947-2019,

Loss Function (At+h − Et [At+h])2 (logAt+h − Et [logAt+h])2

Smoothing Parameter ζ = 0.05 ζ = 0.1 ζ = 0.05 ζ = 0.1
Horizon h (years) 10 20 10 20 10 20 10 20

Model A .0473 .0694 .0527 .0813 .0448 .0625 .0497 .0734
Model G .0637 .1123 .0662 .1204 .0586 .1000 .0612 .1072

Notes: US TFP is from the updated work of Bergeaud et al. (2016)

that gt and bt are martingales, so that Et [gt+h] = Et [gt+1] for all h > 1. The T-period
ahead forecasts for model A is therefore

Et [At+h | A] = At + b̂th,

and model G
Et [logAt+h | G] = logAt + ĝth.

Finally I compute the forecast errors

ϵAt+h =
At+h − Et [At+h | A]

Ā
,

where Ā is the sample average of At (this normalization eases the comparison across
datasets). For model G the forecast error of log TFP is

ϵG,logt+h = logAt+h − Et [logAt+h | A] .

Similarly we can compute the log errors of model A, ϵA,logt+h , and the level errors of model
G, ϵGt+h.

1

Table 3 reports the root mean square errors (RMSE) of the forecasts of the two
models, for two values of ζ and of h, and for two loss functions, in levels and in logs.
In all cases, model A beats model G. The gap is around 150 basis points at the 10-year
horizon and 400 basis points at the 20-year horizon. The relative performance of the two
models does not appear to depend on the loss function. To save space I will therefore
focus on the quadratic loss in levels for the rest of the paper.

1These forecasts are non-linear and incorporate Jensen inequality terms, but these corrections are
small and make no difference in practice. In post-war US data the mean growth rate ḡ is 1.36% and
the volatility of the 10-year moving average is 0.48%. At the 10 year horizon the mean effect is 13.6%
while the variance (1/2σ2

h) is only 0.11%.
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Table 2: Monte Carlo Simulations

US Data Obs. Mean Std. Dev. Min. Max
Log growth rate: ∆ logAt 73 .0136 .0122 -.009 .037

Simulated Data Obs. Mean Std. Dev.
Log growth rate: ∆ logAt 73× 5, 000 .0136 .0122

Test Results Obs. Mean Median Std. Dev. 5th 1th

RMSE(A)−RMSE(G) 5, 000 0.6% 0.65% 0.96% -1.06% -1.81%

Test Power Obs. ∆RMSE < 1.5% Type 1 Errors
Full MC Sample 5, 000 98 1.96%

Sample with TFP Slowdown 2, 495 98 3.93%

Notes: US TFP 1947-2019 from Bergeaud et al. (2016). Growth rates winsorized at 5%,95%. Simulated
data based on 1,000 simulations of 73 years of growth, matching the mean and volatility of US TFP
growth. On average model G beats model A in the RMSE test by 60 basis points. The risk of type
1-error at 150 basis points (model A beating model G by more than 150bps) is 2% in the full sample
of 5,000 simulations. There are 2,495 simulations with a TFP slowdown (average TFP growth from
t=1 to 36 is higher than from t=37 to t=73). Conditional on a TFP slowdown the risk of type 1 error
rises to 3.9%.

I now wish to test the power of the test with respect to the hypothesis that the data
is generated by model G. Is the fact that model model A beats model G by 150bps at the
10-year horizon significant or not? Random fluctuations in growth rates can, especially
in small samples, generate type-1 errors. How likely are these?

Table 2 presents the key statistics for post-war data. TFP growth is close to iid.
The autocorrelation (∆ logAt,∆ logAt−1) is zero. A simple benchmark, then, is to
model growth as

gt = ḡ + ϵt,

where ḡ = 1.36% and ϵ is white noise with σϵ = 1.22%. To take into account the limited
sample size I simulate 5,000 TFP path of 73 years of growth. Figure 3 shows the results
of applying the simple RMSE test to the simulated data. The median value of the test
is around 65 basis points. As expected it is difficult to distinguish exponential growth
in a relatively short sample. In many simulations the difference in RMSE is small and
in a quarter of the simulations model A performs a bit better even though the data is
generated by model G. Very few simulations, however, produce differences of more than
100 basis points in favor of model A. The 5th percentile is -1% and the first percentile
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is -1.8%. If we use the decision rule “reject model G if model A beats it by more than
150bps”, consistent with the evidence in Table 1, the risk of type-1 error is slightly less
than 2%.

Figure 3: RMSE of A vs G in G-Simulated Data
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Notes: The goal of the figure is to assess the prevalence of type-1 errors in the simple RMSE test, i.e.,
the risk that the test rejects model G in favor of model A even though growth is actually exponential.
The data is generated by 10,000 simulations of 73 years of random growth under model G, matching
moments of US post war TFP growth. The simple RMSE test is then run on these 10,000 simulated
economies. The figure shows the RMSE(A)−RMSE(G). Since model G is used to generate the data,
we expect a positive difference.

One might argue, however, that one should perform the test conditional on a TFP
slowdown. There are 2,495 2 simulations where average TFP growth from t = 37 to
t = 73 is higher than average TFP growth from t = 1 to t = 36. Conditional on a TFP
slowdown the risk of type 1 error rises to approximately 4%.3

Result 1: Postwar US TFP growth is well described by model A with constant
increments around 250 basis points each year starting from a value of 1 in 1947. Model

2The expected value is 2500 (half of 5,000) but there is some sampling noise.
3I should emphasize that it is meaningless to test for unrestricted TFP slowdowns since this would

actually include model A, where the slowdown is simply proportional to 1/At as shown in Figure 2.
As an alternative I have used estimations with structural breaks instead of the continuous updates in
equation (3) and the results are the same. Model A needs fewer breaks that model G and its forecasts
are more accurate.
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Figure 4: US TFP, 1890-2019
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Notes: Models are estimated over 1947-1980. The left panel show the prediction of a linear model. The
right panel shows the prediction of a log-linear model. US TFP is from the updated work of Bergeaud
et al. (2016).

A forecasts TFP better than model G by about 150 basis points at the 10-year horizon.
The RMSE test rejects model G with more than 95% confidence even conditionally on a
TFP slowdown.

As explained in the introduction, this result is robust to the measurement of the
capital stock. If TFP is additive then labor productivity – the product of TFP and
capital intensity – is convex. Panel (b) in Figure 16 shows that the convex-linear forecast
of model A predicts correctly the evolution of labor productivity in the long term. Model
G does not.

1.2 U.S. 1890-2019

I now extend the sample to pre-WW2 data, focusing again on the simple test based on
RMSE. Figure 4 shows the raw and smoothed series for ζ = 0.05 and ζ = 0.1. The data
is from Bergeaud et al. (2016). The model is initiated over the first 10 observations,
1891 to 1900: E1900 [y1901] =

y1891+..y1900
10

. I drop observations between 1942 and 1946 to
avoid extreme outliers during WW2.

A few features stand out in Figure 4. The series in first difference is approximately
homoskedastic. The standard deviation of TFP changes is 0.13 before WW2 and 0.11
since 1947, and the difference is not statistically significant. The series is percent changes,
on the other hand, displays a secular decline in volatility. The second striking feature is
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Table 3: RMSE for US TFP Forecasts, 1890-2019

1890-2019 Levels
Smoothing Parameter ζ = 0.05 ζ = 0.1

Forecast Horizon 10 years 20 years 10 years 20 years
Model A .086 .145 .090 .147
Model G .107 .209 .114 .237

Notes: US TFP is from the updated work of Bergeaud et al. (2016)

that there is a permanent mean change around 1930. I will return to this point later.

Forecasts Errors As in the post-war sample, Table 3 shows that model A outper-
forms model G in all cases and the relative performance of model A increases with the
forecast horizon. The main reason is that after a sequence of positive growth rates the
multiplicative model extrapolates exponential growth for 10 years, which systematically
fails to materialize.

Result 2. For US TFP over 1890-2019, model G’s long-term forecast errors are 25%
to 40% higher than those of model A.

2 Bayesian Model Selection

This section presents a formal analysis of models A and G through the lens of Bayesian
model selection. I consider a decision maker (DM) who, faced with some data on TFP,
AT ≡ {At}Tt=1, must choose between model A and model G.4 Define the decision maker’s
priors p (A) and p (G) = 1 − p (A), and the likelihood of the data given the model
M = A,G as f

(
AT | M

)
. The DM can then use Bayes’ rule to calculate the pos-

terior probability of the model conditional on the data. In the spirit of the previous
section, I take this calculation one-step further and calculate posterior probabilities at
the forecasting horizon h:

πh
(
M | AT

)
=

fh
(
AT | M

)
p (M)

fh (AT | A) p (A) + fh (AT | G) p (G)
(4)

I will consider various values for h.
4This is a binary choice. Andrew et al. (2021) explains how a fully Bayesian approach can encounter

difficulties for problems with a continuum of choices, (e.g. if the DM could choose a linear combination
of models A and G).
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2.1 Hidden Markov Models

To take into account changing growth rates, I cast models A and G within a hidden
Markov Chain framework with time-varying parameters. I specify model A as

bt = bt−1 + σuut (5)

At = At−1 + bt + σaϵ
a
t (6)

where ut and ϵat are uncorrelated, iid standard Gaussian innovations. In the language of
Kalman filtering, equation (5) is the state equation. The state is the (unobserved, latent)
trend bt subject to (unobserved) shocks ut. Equation (6) is the observation equation.
I observe TFP At at time t. The change in TFP from t − 1 to t reflects the sum of
the underlying trend and the temporary shock ϵat , which includes measurement errors.
Similarly, the state and observation equations of model G are

gt = gt−1 + σννt (7)

At = At−1 (1 + gt) + σgϵ
g
t (8)

where νt and ϵgt are uncorrelated, iid standard Gaussian innovations.

2.2 Estimation and Inference

I estimate the parameters θA = {σu, σa} and θB = {σν , σg} via maximum likelihood,
filtering the distribution of the unobserved states via the Kalman filter. The innovations
representation of the Kalman filter (Ljungqvist and Sargent, 2018) and the distributions
of the latent states in each model, {bt} and {gt}, are estimated conditional on the
parameters.

I let the Kalman filter estimate the data from 1942 to 1946 to avoid outliers (Durbin
and Koopman, 2008). Equations (5) and (7) assume that the trends are random walk.
I confirm that the residuals are indeed close to iid, with small autocorrelations of −.09
for model A and −.002 for model G.

Figure 5 shows the filtered estimates b̂t = E [bt+1 | At] and ĝt = E [gt+1 | At], where
At = (At, . . . A0) denotes the history up to time t. In the top panel, I show the mean
estimate of bt (top left), and how it relates to the data (top right). The estimates confirm
the large increase in b̂t around the 1930s from Figure 4.

The bottom panel of Figure 5 shows ĝt and how it relates to the data (bottom right).
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Figure 5: Estimated unobserved coefficients for US TFP

We see again the large increase in the growth rate around 1930 but unlike model A the
increase is transitory.

2.3 Conditional Forecasts

With parameter estimates in hand I can calculate the conditional forecasts of At+h | At

for any horizon h. Figure 6 shows the conditional forecasts of Models A and G for
the US economy between 1890 and 2019. For model A the conditional mean is simply
E [At+h | At] = At + hb̂t. For model G, however, I must approximate the conditional
expectations using Monte Carlo simulations. The technical details are in Appendix B.

The top panel of Figure 6 plots the term structure TFP forecasts implied by model
A, conditional on the estimated parameter vector θ̂A = {σu, σa} and the filtered state

E
[
At+h | At, θ̂A, b̂t;A,

]
We observe large forecast errors around the 1930s, inline with the large change in b̂t

discussed earlier. Once the filtered estimates of bt adjust the forecasts errors do not
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appear substantial, even at longer horizons.

Figure 6: Conditional forecasts from time-varying parameter model, USA

The bottom panel of Figure 6 shows the conditional expectations from model G,
E
[
At+h | At, θ̂G, ĝt;G,

]
. These conditional expectations are computed by MC simula-

tions because of the non-linearities in model G. We again observe large forecast errors
around the 1930s but even once the filter adjusts the exponential nature of model G
leads to large forecast errors at long horizons. The next section formalizes this intuition.

2.4 Model Comparison

The main advantage of Bayesian estimation lies in its ability to formally compare com-
peting models. To do so I calculate the posterior probabilities in equation 4 starting
with the conditional likelihoods at different forecast horizons, h. While full Bayesian
estimation would require fh

(
AT | M

)
=
∫
fh
(
AT | θM

)
dπ (θM), the well-documented
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numerical instabilities involved in calculating marginal densities motivate the use of the
maximum likelihood estimate fh

(
AT | M

)
= fh

(
AT | θMLE

M
)
. The simplifying assump-

tion that the estimates b̂t and ĝt are known with certainty implies that the conditional
forecasts at any horizon are Gaussian, substantially reducing the complexity of the like-
lihood calculation. It also implies that the distribution of the vector of forecasts is fully
characterized by its mean and covariance matrix.

The h-steps ahead likelihood are evaluated recursively. Since each density is Gaussian
it is enough to evaluate the mean and variance of the conditional forecasts for both
models. The conditional variance of model A is a (relatively) simple recursive equation
involving the Kalman gains and the conditional one-step variances. For model G, I
must again use Monte Carlo simulations described in Appendix B. Moreover, since the
forecasts are serially correlated, I must calculate the likelihood of the vector of forecasts
in its entirety.5

The left panel of Figure 7 shows the posterior probability of Model A, πh
(
A | AT

)
as

a function of the forecast horizons τ . The different colored lines correspond to different
priors of the decision maker. The right panel of Figure 7 slices the same data in a
different way, showing the posterior probability as a function of prior probabilities for
different forecast horizons h. The posterior is one irrespective of the prior for all horizon
except h = 1.

Result 3. The Bayesian model select model A with posterior probability of one in
the long US Sample.

The Bayesian approach to model selection can also shed light on the history of
economic research on growth. Using data from 1909 to 1949 Solow (1957) found a
pattern for A (t) qualitatively similar to that in Figure 6. He wrote that “there does
seem to be a break at about 1930. There is some evidence that the average rate of
progress in the years 1909-29 was smaller than that from 1930-49.” Indeed, as I show
in Section 4, a formal structural test finds a break around 1930 in the first difference
series A (t)−A (t− 1). The change in the slope makes it difficult to distinguish models
A and G using only Solow’s data. Formally, if one feeds data from 1909 to 1949, the
posteriors over the two models are not very different from the priors. The Bayesian
approach therefore also explains why past research might have concluded that model G
was appropriate.

5In practice we use MC simulations for model A as well as for model G to ensure that the two models
are treated in exactly the same way. We then use the recursive formula available for model A to verify
the accuracy of the MC simulations.
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Figure 7: Posterior Selection Probability for Model A, USA

3 International Evidence

Bergeaud et al. (2016) provide data for 23 countries.6 I now apply the models of Section
1 and 2 to each country. This exercise is useful for two reasons. The first reason is
that the sample is much larger. The second reason is that I can investigate TFP growth
in countries that are not necessarily at the frontier of technology. I find that model A
beats model G in all countries, and often by a wider margin that in the US. Interestingly,
catch-up growth is also (conditionally) linear.

3.1 Simple Model

The trend growths are estimated with the recursive learning model (3) with parameter
ζ = 0.05 and ζ = 0.1. As before, all the forecasts are out-of-sample. For each country

6Australia, Austria, Belgium, Canada, Switzerland, Chile, Germany, Denmark, Spain, Finland,
France, United Kingdom, Greece, Ireland, Italy, Japan, Mexico, Netherlands, Norway, New Zealand,
Portugal, Sweden and United States. The sample covers 1890–2019. The main variables are GDP,
labor, and capital. Labor is constructed from data on total employment and working time. Capital is
constructed by the perpetual inventory method applied to equipment and buildings.
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i = 1 : 23 and each year t I compute the forecast errors at the 10 year horizon as

ϵMi,t =
Ai,t − EM

t−10 [Ai,t]

Āi
,

where Āi is the country sample average and the expectation are taken under models A
and G. Finally, I compute the root mean square error for each country as

RMSEi (M) =

√√√√ 1

T

T∑
t=1

(
ϵMi,t
)2
.

I consider first the 1950-2019 sample to avoid the disruption of World War II.7 Figure
8(a) shows the RMSE of TFP forecasts in the two datasets. Model A performs better
than model G in all cases. In most cases the relative performance of model A is stronger
than for the US.

I also use the OECD MFP database as a robustness check in Figure 8(b). The data
covers 24 countries and starts in 1985 for most, and later for some. Because the time
series are much shorter it is more difficult to tell the models apart and some countries
are bunched close to the 45 degree line. Nevertheless, model G never performs better
than model A, and often performs worse. Perhaps the most interesting case is that of
Korea, which is not in the BCL sample and has experienced strong growth over the past
30 years. It turns out that Korean TFP growth is very linear.

The BCL and OECD data do not include some important Asian countries with
strong growth performance. Figure 9 shows TFP for Thailand and Taiwan along with
the 10-year forecasts of the two models. Taiwan’s TFP growth is remarkable. The TFP
index, normalized to 1 in 2017, was only 0.2 in 1955. Such a fast growth makes it easy
to tell apart the two models. Model A fits very well. Model G vastly over-predicts TFP,
irrespective the smoothing parameter.

Table 4 summarizes the average performance of models A and G. The differences
are even larger than in Table 3. Model A over-performs model G by 30% to 60%. The
table shows that this result also holds for the long sample.

7The existence of disasters is a good reason to use TFP as opposed to GDP per capita to study long
term growth. In the US, for instance, modern TFP growth starts in the middle of the great depression:
a macro disaster coincides with a technological miracle. TFP captures it correctly because it accounts
for changes in hours worked. The case of Europe is more complicated because the shock (WW2) is
larger and destroys the capital stock, where some of the technology is embedded. It therefore seems
safer to first estimate the model in the post-1950 sample. In any case, Table 4 shows that the results
are similar in the full sample 1890-2019.
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Figure 8: TFP Forecast Errors, Post War

(a) BCL 1950-2019
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(b) OECD, post-1985
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Notes: Model G on the horizontal axis, model A on the vertical axis. Out-of-sample, 10-year forecasts
with smoothing parameter 0.05. Data from Bergeaud et al. (2016). Sample 1950-2019.
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Figure 9: TFP, Fast Growing Asian Countries
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Notes: Data from Penn tables Asia. The solid green line is the level of TFP, At. The dashed and dotted
lines show the forecast made 10 years before by the two models, EM

t−10 [At].

Table 4: Average RMSE for 23 Countries, BCL Sample

Sample 1890-2019 1950-2019
Parameter ζ = 0.05 ζ = 0.1 ζ = 0.05 ζ = 0.1
Model A .130 .128 .102 .103
Model G .171 .168 .162 .145

Number of Countries 23 23 23 23
Notes: Data from Bergeaud et al. (2016).
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Linear growth inside the frontier could suggest that the limit on productivity growth
is not the flow of new ideas, but rather their implementation, via human capital invest-
ment and learning-by-doing (Comin and Hobijn, 2010).

3.2 Bayesian Selection

I run the same model selection methodology used for the US for all the countries in the
BCL sample. Figure 10 shows the proportion of countries with posterior probability
of Model A greater than 0.5. The Bayesian model selects model A for essentially all
countries in the sample. The one exception is Ireland where both models fit poorly and
there is no clear winner.

Figure 10: Proportion of countries with p(A|Data) > 0.5

Result 4. TFP growth is better described by model A than by model G for both
developed and developing countries.

3.3 TFP Slowdown Revisited

Section 1.1 has shown that there is no TFP slowdown in the US if one defines the
benchmark model as linear. There is, however, a TFP slowdown in the euro area (EA,
defined as of current membership) and in Japan. Figure 11 compares the evolution of
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Figure 11: TFP and Labor Productivity in the US and the Euro Area
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Table 5: TFP Increments

∆ [TFP ] /TFPUS,1947 1947-1990 1991-2019
USA .023 .027

Euro Area .037 .016
Japan .029 .012

Denmark .026 .026
Sweden .022 .028

Notes: TFP Increments measured in units of US TFP in 1947: ∆ [TFP ] /TFPUS,1947. Data from
Bergeaud et al. (2016).

TFP (left panel) and labor productivity (right panel) in the US and the EA during the
post-war era. The EA catches up with the US from 1947 to 1980. Between 1980 and
1990 TFP growth is somewhat faster in the EA than in the US. From the mid 1990s
onward, however, EA TFP starts to fall behind US TFP. The right panel shows the
same pattern for labor productivity, and the dashed line shows that the entire slowdown
in output per hour in the EA comes from TFP, not from capital accumulation.

Table 5 shows the evolution of TFP increments before and after 1991, a year chosen
because it corresponds to the peak of the EA relative TFP performance. The increments
are scaled by US TFP in 1947 to make them comparable across regions. As I have already
shown, the US grows with a roughly constant increment. Until 1990 the EA and Japan
grow at a faster pace. After 1990, however, their TFP increments decline dramatically
and fall below that of the US. The key point is that this slowdown goes beyond what
one might expect at the end of the catch-up period.

Table 5 suggests that model A provides a more useful benchmark to study growth
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than model G does. Model G is a poor diagnostic tool because no country is able to live
up to its extreme predictions.8 If one takes the benchmark to be one of exponentially
growing increments, then one must conclude that all countries have failed to live up
to our expectations. By contrast the linear TFP benchmark highlights that Denmark
and Sweden have TFP performances comparable to that of the US while Japan and the
Euro area do not. The exponential model paints a particularly misleading picture of
growth in countries with high TFP. The danish TFP increment, at 0.026 is much higher
than that of the Euro Area at 0.016. The difference in growth rates is less impressive,
however, because TFP in Denmark is higher than in the EA.

4 Long Term Historical Evidence

In this section I provide historical evidence of changes in TFP growth in the very long
run. In doing so I depart from the formal statistical approach of the previous sections as
the historical discussion is more easily framed in terms of regimes separated by breaks.

4.1 The 1930 Structural Break

Figure 4 shows that model A, unlike model G, appears to have only one break over
the period 1890-2019 in the US. I can formally test this idea following Bai and Perron
(2003). The unconstrained test finds one break in the ∆ [TFP ] series: the point estimate
is 1933. I test {H0: no breaks} versus {H1: break in 1933}. The W statistic is 21.72
and the p-value is 0.0.

The timing of the break is consistent with Field (2003)’s argument that “the years
1929–1941 were, in the aggregate, the most technologically progressive of any comparable
period in U.S. economic history.” This period corresponds to the large scale implemen-
tation of the discoveries of the second industrial revolution: electric light, electric power,
and the internal combustion engine, as discussed in Jovanovic and Rousseau (2005).
Gordon (2016) points out that it is somewhat surprising that “much of the progress
occurred between 1928 and 1950,” several decades after the discoveries were made. Fol-
lowing David (1990), he explains the paradox by showing that the 1930s were a period
of follow-on inventions, such as the perfection of the piston-powered aircraft and the im-
proving quality of machinery made possible by a large increase in available horsepowers

8Unless the predicted growth rate is continuously revised downward so as to emulate a linear growth
model, but that merely proves the point that the exponential benchmark is useless.
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Figure 12: Linear US TFP with One Break

0.
00

2.
00

4.
00

6.
00

8.
00

1900 1920 1940 1960 1980 2000 2020
Year

TFP Pre-Post GPT

US TFP

Notes: US TFP is from the updated work of Bergeaud et al. (2016), normalized to 1 in 1890.

and kilowatt-hours of electricity.

4.2 World TFP: 1550-2020

Just as the US provides a good proxy for the world technological frontier in the 20th
and 21st centuries, the UK arguably provides a good proxy in previous centuries. The
Maddison series for UK GDP per capita has one observation in the year 1000 and then
offers annual values from 1252 onward. Growth appears virtually null until the 1600’s
(Bolt and van Zanden, 2020). In the neoclassical growth model, labor productivity is

proportional to A
1

1−α

t . If hours worked per capita are stationary and if the capital share
is constant then I can use series on GDP per capita to construct proxies for TFP. I make
these heroic assumptions and use as my proxy for TFP (yt)

1−α where yt is GDP per
capita and α = 1/3.

I will use this measure of UK pseudo-TFP for the first part of the sample and then
the data from BCL, which start in 1890. An important choice is when to switch from
the UK to the US as proxy for the TFP frontier. In the BCL data, the US overtakes
Britain in 1910 for GDP per capita but only in the late 1930s for TFP (the US has a
higher capital intensity than the UK during that period, which explains the difference).
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I use 1930 as a switching point. My proxy for World TFP is thus based on the UK
before 1930 and on the US after 1930.

Panel (a) of Figure 13 shows the long series for the frontier of World TFP – normalized
to 1 in 1930 – together with historical breaks. Each circle represents a five year average.
The breaks are in 1650, 1830 and 1930. Panel (b) zooms in on the two main sub-
period, 1550-1915 and 1820-2020. Growth is zero until 1650 and the level of TFP is 0.3.
Starting in 1650 it increases by 10.5 basis points each year until 1830 where it reaches
approximately 0.5. In 1830 the increment increases to 46 basis points and grows linearly
until World War 1. The period 1915-1930 is somewhat noisy but TFP remains close to
its linear trend of 45 basis points until 1930. After 1930 I observe an enormous increase
in TFP growth, from 46 basis points to 418 basis points per year. As a result, TFP
today is almost five times higher than it was in 1930.

I have discussed the break in 1930 in the previous section. The break in 1830 also
aligns well with the standard historical account of the second industrial revolution. The
break in 1650 seems to happen before the first industrial revolution, however. There
are several explanations for the fact that growth in the UK started earlier than the
18th century. The first key point to keep in mind is that I do not have a measure of
hours worked. The pseudo-TFP series are based on income per-capita. Voth (2001)
has shown that a rising labor input was an important contributor to growth after 1770.
It is plausible that changes in hours per capita also contributed to growth during the
previous century. Mokyr and Voth (2010) point out that “the rise of cottage industries
in the countryside after 1650, the famed “proto-industrialization” phenomenon, would do
exactly that. There is also reasonable evidence to believe that labor participation rates
were rising in the century before the Industrial Revolution.” Moreover, England, unlike
France, had no food crises between 1650 and 1725. Finally, the increase in GPP per
capita in the 1600’s is consistent with recent work by Bouscasse et al. (2021).

5 Theory

This section discusses the theoretical implications of additive growth, first with exoge-
nous TFP, and then with endogenous TFP.

25



Figure 13: World Frontier TFP
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5.1 Additive Neoclassical Growth

Consider the textbook neoclassical growth model with exogenous TFP. Time is con-
tinuous and the labor supply is inelastic. Aggregate value added (GDP, Yt) is given
by

Yt = F (Kt, AtLt) (9)

where At is labor augmenting (Hicks-neutral) productivity,9 Lt is the flow of labor ser-
vices, and Kt is the capital stock which accumulates as

K̇t = It − δKt. (10)

Labor grows at the constant population growth rate gL: dLt

dt
= gLLt. Households have

standard CRRA preferences with relative risk aversion γ and rate of time preference ρ.
Normalizing the macro variables per efficiency unit of labor as k̂t ≡ Kt

AtLt
and ĉt ≡ Ct

LtAt
,

the resource constraint is

˙̂
kt = f

(
k̂t

)
− ĉt −

(
δ + gL +

Ȧt
At

)
k̂t, (11)

and the Euler equation is

γ
˙̂ct
ĉt

= f ′
(
k̂t

)
− δ − ρ− γ

Ȧt
At
. (12)

Defining long term TFP growth as gA∞ ≡ limt→∞
Ȧt

At
, the long-term balanced growth

path is given by
f ′
(
k̂∞

)
= δ + ρ+ γgA∞

and
ĉ∞ = f

(
k̂∞

)
− (δ + gL + gA∞) k̂∞

In the long run all per capital variables grow with At. For instance, long run per capita
consumption is ct = Ct/Lt = ĉ∞At. Under exponential growth we have gA∞ > 0. There
is nothing particularly surprising about the behavior of an economy under permanent

9Note that the empirical analysis in Fernald (2012) and Bergeaud et al. (2016) uses standard growth
accounting notations where Yt = AS

t K
α
t L

1−α
t where AS

t is the Solow residual. In the Cobb-Douglass
case there is of course the equivalence AS

t = A1−α
t . Whether one assumes that AS

t or At is linear is of
course important empirically but it makes no difference to the theory. I therefore work with A linear
because it simplifies the notations.
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Figure 14: Response to One Time Increase in Trend Growth

(a) Expected TFP (b) Expected Consumption

Notes: Economy in steady state with zero growth at time 0. The shock is 2% trend growth starting
at time 1. The key parameters are CRRA=2, Frisch elasticity=1/2 and capital adjustment costs of 5
(annual frequency) as in I/K − δ = (Q− 1)/5. See Appendix for details.

additive growth: Growth continues forever, consumption is unbounded but we simply
have gA∞ = 0 and the risk free rate falls over time towards ρ. Moreover, any growth
process less extreme than the exponential one would also have gA∞ = 0. Groth et al.
(2010) discuss various specifications where this happens and Kruse-Andersen (2022)
provides estimates in favor of semi-endogenous growth models.

Since TFP is exogenous in this model we cannot question its path, but we can ask
if given an observed path for TFP, macroeconomic variables would be different under
models A and G. In other words, we can ask whether agents react differently to the
same observed changes in TFP depending on the model they use to interpret the data.
To understand whether policy functions depend on model specification I simulate the
responses of the economy to additive versus exponential trend growth shocks. For the
simulations I use a standard discrete time model with elastic labor supply and capital
adjustment costs (details are in the Appendix). The important parameters are the
CRRA (γ = 2) and the Frisch elasticity (0.5).

Figure 14 shows the response of the economy to a one-time increase in trend growth.
The economy is in steady state with no growth until time 0, with TFP normalized to
A0 = 1. Agents wake up at time 1 and observe an increase in TFP from 1 to 1.02.
Agents believe the trend increase is permanent. In model G the agents expect g = 2%

for ever. In model A they anticipate b = 0.02 for ever. Panel (a) shows the expected
paths of TFP, one additive, and one exponential. Panel (b) shows the expected path
of consumption and I am interested in the initial consumption response C1/C0 under
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Table 6: Initial Response to TFP Trend Shocks

CRRA γ 0.5 1 2 3 4 5

Consumption C1

C0
− 1 (%) Model A 0.16 1.86 4.31 6.01 7.29 8.30

Model G 0.04 1.92 4.66 6.60 8.07 9.24

Short Rate r1 (1)− r0 (1)(%) Model A 0.72 1.16 1.71 2.05 2.32 2.55
Model G 0.71 1.15 1.68 2.02 2.30 2.54

Long Rate r1 (τ)− r0 (τ)(%) Model A 0.79 1.47 2.68 3.77 4.79 5.79
Model G 0.93 1.75 3.24 4.60 5.91 7.19

Notes: Economy in steady state with zero growth at time 0. The shock is 2% trend growth starting
at time 1. The key parameters are CRRA=2, Frisch elasticity=1/2 and capital adjustment costs of 5.
The long rate is computed for τ = 20 years. See Appendix for details.

models A and G. Note that current TFP is A1 = 1.02 in both cases and the only
difference between models A and G comes from the expected path of TFP from time
t = 2 onwards. Consumption jumps on impact because of a wealth effect. The wealth
effect could be stronger in model G than in model A because agents anticipate higher
consumption in the future. The key point, however, is that the increase in consumption
in year 1 is quantitatively similar in the two economies. In other words, conditional
on the same capital stock and the same observed TFP, agents choose roughly the same
level of consumption whether they believe growth to be linear or exponential. Formally,
the policy function C1 = C (A1, K0;M) does not depend much on the model M in
the agents’ information set for given state (A1, K0). This is a quantitative result that
depends on the assumed EIS and figure 14 uses γ−1 = 0.5 as a benchmark.

Table 6 shows the initial response of consumption and interest rates to trend growth
shocks for different values of γ. The case γ = 2 is the one depicted on Figure 14 where
consumption increases by 4.3% when agents believe model A and 4.6% when they believe
model G. When γ = 1 (log preferences) the initial consumption response is virtually
identical. When γ = 0.5 both are very small. When γ = 5 agents are less willing to
substitute consumption over time and the wealth effect is stronger, but the difference
between model A and G is still only 1 percentage point. Table 6 also shows that the
responses of the short term interest rate are nearly identical under models A and G,
even for relatively high CRRA. The simulations assume that agents observe the trend
directly. Adding learning and imperfect information, as in Section 1.2 or in Edge et al.
(2007), would make the responses even more similar.

The response of long term interest rates is somewhat stronger under model G than
under model A. For instance, when γ = 2 the growth shock increases the 20 year rate
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by 2.68p.p. under model A (b = 0.02) versus 3.24p.p. under model G (g = 2%). The
stronger response of the long rate is consistent with the expected path of consumption
and it explains the similarity of the initial response of consumption and investment.
Agents anticipate higher returns to capital in the future under model G than under
model A, which, all else equal, would increase Tobin’s Q and investment. The increase
in the long rate compensates that difference so that the response of Tobin’s Q becomes
similar in both models. When γ = 0.5 Tobin’s Q increases by 2.2p.p. under model A
versus 2.5p.p. under model G. When γ = 2, Tobin’s Q decreases by 6.9p.p. under A
versus 7.6p.p. under G.

The conclusion, then, is that the behavior of the economy, conditional on the same
path for At, would be roughly the same under models A or G. To understand this
point, note that the state space is (At, Kt−1) and that capital is determined by the law
of motion: Kt = K (Kt−1, At;M) where the function K is not sensitive to the model
M used by the agents to interpret the data. The same path of At therefore leads to
(approximately) the same path for Kt and to the same path of Ct. Given the same
historical path of TFP, the two models make similar predictions about consumption,
investment, the labor share, the capital labor ratio or inflation.10 With respect to
monetary policy the additive growth model can improve the estimation of the natural
rate.

5.2 Endogenous Growth

This section presents a simple endogenous growth model that can deliver either additive
or exponential growth. I use an expanding variety model à la Romer (1990) to illustrate
this point but it is relatively straightforward to apply it to the the other types of endoge-
nous growth models (AK, human capital (Uzawa, 1965; Lucas, 1988) or quality ladders
(Aghion and Howitt, 1992)). The final good is produced using intermediate inputs and
labor using a production function from Spence (1976)

Yt = AL1−α
t

∫ Nt

0

xαi,tdi,

where Nt is the set of varieties that have been discovered up to time t and the labor
supply Lt is exogenous. The price of final output is normalized to one.

10Model G predicts balanced growth if g happens to be constant, while model A does not predict
balanced growth until the rate of growth is zero. However, since g is not constant in the data the fact
that model G makes it easier to compute a balanced growth is irrelevant.
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Micro given Nt The demand curve for product i at time t, αAL1−α
t xα−1

i,t = pi,t, is
iso-elastic with price elasticity ϵ = 1/ (1− α). The wage is such that wtLt = (1− α)Yt.

Variety i is produced from final output with a constant marginal cost ψ so profits are
πi,t = (pi,t − ψ)xi,t. The profit maximizing price is pi,t = ψ

α
and output per variety is

xi,t =

(
α2A

ψ

) 1
1−α

Lt. (13)

An important feature of (13) is that the quantity of each input is independent of Nt. It
only depends on productivity and market size measured by Lt. Profits are also propor-
tional to market size: πt = π̄Lt where π̄ = 1−α

α
(α2A)

1
1−α ψ− α

1−α . Compared to the first

best – p∗ = ψ and x∗t =
(
αA
ψ

) 1
1−α

Lt – output is too low because of market power.

Macro given Nt Aggregating across producers for a given Nt, total output is

Yt = A
1

1−α

(
α2

ψ

) α
1−α

NtLt, (14)

and labor productivity A
1

1−α

(
α2

ψ

) α
1−α

Nt is proportional to Nt. Output is either con-
sumed, used to produce existing varieties, or used to generate new varieties. Mar-
ket clearing thus requires Yt = Ct + ψXt + κ̄tṄt, where κ̄t is the average cost per
new variety that I discuss below. Using the equilibrium conditions we see that Ct =
(1− α2)Yt − κ̄tṄt. From wtLY = (1− α)Yt we have the equilibrium wage wt =

(1− α)A
1

1−α

(
α2

ψ

) α
1−α

Nt. Consumers have a standard Euler equation, expressed in per
capita consumption ct = Ct/Lt as

γ
ċt
ct

= rt − ρ. (15)

Innovation I assume that the innovator gets a permanent patent so the value of
discovering a new variety is

vt =

∫ ∞

t

πτe
−(τ−t)rt,τdτ (16)

where rt,τ is the zero coupon yield at time t with maturity τ . Up to this point the model
is exactly the same irrespective of the dynamics of TFP. I now propose a specification
that nests the exponential model as a special case. At any time t there is a set Mt of
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ideas for new varieties, indexed by their discovery costs: idea j costs κj and the labels
are normalized so that κj is increasing in j. By free entry the marginal idea financed at
time t must satisfy κj(t) = vt. The number of new varieties is therefore

Ṅt = F (vt)M (Lt, Nt) (17)

where F (.) is the c.d.f. of κj and Mt = M (Lt, Nt) is the mass of potential ideas.
A simple model could be that each person has some probability of having an idea, in
which case Mt should be proportional to Lt. Mt could also depend on the number Nt of
varieties already discovered. In general I write Mt =M (Lt, Nt).

The dynamics of the system are pinned down by the Euler equation (15), the NPV of
monopoly profits (16), and the variety production equation (17). I focus for simplicity
on a balanced growth path with constant labor Lt = L. With constant interest rate r we
have v = π

r
. From the resource constraint we see that the growth rate of consumption

per capita is the same as the growth rate of N . The dynamics are therefore

Ṅt = F
(π
r

)
M (L,Nt) (18)

γ
Ṅt

Nt

= r − ρ (19)

I now explain how the function M determines the nature of growth.

Exponential Growth Let us start with the “standard” model. To get exponential
growth one has to assume that the number of new ideas is proportional to the number
of existing varieties Mt = M̄Nt. Growth is such that γgc = r − ρ and the equilibrium
interest rate solves

γM̄F
(π
r

)
= r − ρ. (20)

The comparative statics are the same as in the textbook model: Growth is high when
risk aversion is low, when consumers are patient, when innovation costs are low, and
when monopoly profits are high. The model has a scale effect because π is proportional
to L – larger markets enable higher profits and faster accumulation of N .

Equation (20) allows us to better understand the key assumption of the standard
model. In textbooks (e.g., Barro and Sala-i-Martin, 2004) one often assumes an infinite
supply of new ideas at constant cost κ. Technically this corresponds to M = ∞ together
with a degenerate distribution of potential ideas: F is discontinuous at κ: F (κ−) = 0
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while F (κ+) = 1. In that special case we must have r = π
κ

and we obtain the growth
rate directly from the Euler equation γgc = π

κ
− ρ. Infinite elasticity at κ is unrealistic11

and it hides the fundamental assumption driving exponential growth, namely that M
must be proportional to N . Proportionality ensures that the capacity constraint on
new ideas does not become binding as the economy grows. Proportionality is all that is
needed for balanced growth, it is much weaker than assuming M = ∞, and it allows a
more transparent comparison with other models.

Remark 1. The fundamental assumption delivering exponential growth in the standard
model is that the number of new ideas Mt is proportional to the number of existing
varieties Nt.

All endogenous growth models make the same fundamental assumption to obtain
exponential growth. The quality ladder model, for instance, assumes that the steps of
the ladder are exponentially distributed. The key assumption that ideas multiply each
other does not seem particularly plausible. In the context of expanding varieties, (14)
implies that labor productivity is proportional to N , which makes sense since these
varieties were invented precisely to offer goods that consumers want. But there is no
reason to think that the flow of new ideas should also be proportional to N .

Additive Growth We obtain an additive growth model when M does not depend on
N . In the long run the interest rate converges to the rate of time preference ρ and the
increment is constant: Ṅ = F

(
π
ρ

)
M implies

N = N0 + t× F

(
π

ρ

)
M. (21)

The Lemma summarizes our discussion so far

Lemma 1. Growth is exponential when Mt is proportional to Nt and additive when Mt

does not depend on Nt.

If we think that ideas occur in people then a natural specification is M = M̄L. Ag-
gregate innovation Ṅ = F

(
π̄L
ρ

)
M̄L depends on market size in two ways: big countries

have big markets that can sustain more varieties (π̄L/ρ) and they have more people who
can generate ideas (M̄L). This scale effect does not alter the fact that growth is additive.

11It says that all varieties existing today could have been discovered earlier and the only reason they
were not is that the cost in terms of consumption would have been too high. Strictly speaking, this
assumption means that the iPhone could have been invented in 1900.
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Time varying population growth, Lt, would generate time varying economic growth just
as in the standard model.

Recent research has discussed the evolution of R&D spending and research produc-
tivity. Jones (2009) argues that researchers spend an increasing amount of time getting
to the frontier of knowledge before they can finally push it. Bloom et al. (2020) show that
the number of researchers has increased significantly over the past 80 years. Since TFP
growth has not increased they conclude that research productivity must have declined.
This literature uses exponential growth as a benchmark therefore additive growth would
appear as a form of decreasing return. Note, however, that additive growth does not
mean stagnation: productivity goes to infinity, just not as quickly as in the exponential
benchmark.

With decreasing returns to R&D the models cannot sustain endogenous growth,
which is why Bloom et al. (2020) and Jones (2021) argue for semi-endogenous models
where population growth is the ultimate source of long term growth. Population growth
can overcome decreasing returns in two ways. The pull factor comes from increasing
market size and profits since πt = π̄Lt. The push factor comes from the increase in the
number of ideas as M increases with L.

The additive growth equation (21) fits the TFP data well. Its implications for R&D
spending appear more ambiguous. In the very long run, assuming no break and once
r has converged to ρ, we have v∞ = π/ρ. At this point the total resources spent on
innovation – M

∫ v∞
0

κdF (κ)– is fixed and since productivity is growing linearly the share
of spending in GDP falls.12 Along this path, however, v increases as r falls and thus
spending increases and the evolution of the spending share is ambiguous. Moreover, in
the data we observe important changes in the valuation equation. Assuming that new
ideas are embedded in existing firms, the ratio of aggregate firm value to GDP is propor-
tional to π

r−g and this ratio has increased over time despite the fall in g, perhaps because
of a decline in the discount rate (lower risk free rate or lower equity risk premium), or
perhaps because firms can appropriate a higher fraction of the value of their innovations.
Conditional on the observed value to GDP ratio the model would predict a stable or
increasing the ratio of R&D spending to GDP.13

12That it decreases towards zero is an artifact of the accounting for research effort. In the simple
model all the costs of innovation are made when the variety is created. In practice much R&D spending
is ongoing, which changes the accounting without changing the model’s prediction. Suppose that the
owner of a variety must spend m < π units per period to maintain the relevance of her variety. The flow
profits become π−m and the model is unchanged by simply replacing π with π−m in the equilibrium
conditions. In that case the ratio of R&D to GDP converges to m in the additive model.

13Additive growth requires Ft (vt) be constant. An increase in v (say because of lower risk premia)
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Mean-Field Models of Endogenous Growth This discussion can be extended
to models of growth through learning and interactions, as in Lucas and Moll (2014),
Perla and Tonetti (2014) and Akcigit et al. (2018). In these models agents actively
seek meetings with others in order to learn productivity-increasing ideas. If the cost of
searching is measured by foregone production then low productivity agents search more.
As a result, the left tail of low productivity is replaced by draws from the upper tail.
This is the process that generates growth. The growth rate depends on characteristics of
the productivity distribution, with a thicker-tailed distribution leading to more growth.
The planner’s problem takes into account and internalizes the external benefits of search.

Balanced exponential growth in these models requires an unbounded Pareto distri-
bution of initial productivities. Perla and Tonetti (2014), however, show that when
the distribution is bounded-Pareto, growth decreases slowly for many years. Similarly,
suppose that the initial distribution of productivity is uniform over [a0, Amax] with an
average of Ā0 = (a0 + Amax) /2. Suppose that firms with productivities between a0 and
a0 + b choose to search and imitate. The distribution of productivity at time 1 will be
uniform over [a1, Amax] with a1 = a0 + b. If the process continues, average productivity
grows additively as Āt+1 = Āt + b/2. This process cannot go on indefinitely, but, just
as in Perla and Tonetti (2014), it can be a good approximation for many years when
at/Amax is small.14

5.3 Inter-temporal Spillovers

An important difference between models A and G lies in the strength of inter-temporal
spillovers. Suppose that productivity At evolves along some equilibrium and consider a
one time deviation where research output increases by ϵ/∆ from time t0 to t0 +∆ (so ϵ
is the cumulative increase). At any point t > t0 + ∆ TFP becomes A′

t = At + ϵ under
additive growth, and A′

t = Ate
ϵ under exponential growth. In other words

∂At
∂ϵ0

∣∣∣∣
A
= 1

and a decrease in F (say because ideas are more expensive) can then explain additive growth with
increasing spending on innovation.

14One must sill compute the value function and verify that the optimal policy is to imitate when
firm productivity is in [at, at + b] with b (approximately) constant. Computations are available upon
request.
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while
∂Ãt
∂ϵ0

∣∣∣∣∣
G

= At

In the exponential model, the impact on future productivity of a small change at t0
becomes infinitely large as we extend the time horizon. The following thought experiment
shows why this is implausible. Suppose that the US TFP shift of 1930 happened in 1910
instead. Using our estimates of a change in local growth rate from 1% to 3.3% during
that window, the exponential model says that TFP today (2020) would be 58% higher
and labor productivity would be twice as high. Believing in exponential growth means
believing that if the US had implemented electricity 20 years earlier than it actually did,
GDP today would be twice as high (holding constant the quantity of hours worked).
This seems wildly implausible. The linear model, by contrast, says that TFP would be
higher by 0.8 points from a baseline of 8, so 10% higher. Taking capital accumulation
into account, GDP would then be about 15% higher, as opposed to 100% higher under
exponential growth.

Planner’s Solution A simple way to highlight the role of inter-temporal spillovers
is to compare the planner allocation with the decentralized equilibrium. We already
know that the static equilibrium is inefficient. To obtain static efficiency the planner

sets the price p∗ = ψ, the quantity x∗t =
(
α
ψ

) 1
1−α

AL and the level of output is Y ∗
t =(

α
ψ

) α
1−α

ALNt. The resource constraint is

Yt = Ct + ψNtxt +M (L,Nt)

∫ κt

0

κdF (κ)

Given the Cobb-Douglas production function the resources spent on intermediate goods
are ψNtxt = αYt so the resource constraint in per- capita terms is

ct = ÃNt −
M (L,Nt)

L

∫ κt

0

κdF (κ)

where Ã ≡ (1− α)A
(
α
ψ

) α
1−α . Since the innovation equation is Ṅt = F (κt)M (L,Nt) I

can write the planner’s Hamiltonian as

H = u

(
ÃNt −

M (L,Nt)

L

∫ κt

0

κdF (κ)

)
e−ρt + λtF (κt)M (L,Nt) ,
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where λt is the Lagrange multiplier and κt the control variable. The optimal κt must
satisfy κt

L
u′ (ct) e

−ρt = λt and the co-state equation is
(
Ã− ∂Mt

∂Nt

∫ κt
0 κdF (κ)

L

)
u′ (ct) e

−ρt +

λtF (κt)
∂Mt

∂Nt
+ λ̇t = 0. Assuming CRRA preferences with γ = − ctu”t

u′t
we get

γ
ċt
ct

= Ã
L

κt
+
κ̇t
κt

− ρ+
∂Mt

∂Nt

(
F (κt)−

1

κt

∫ κt

0

κdF (κ)

)
We can now compare the Planner’s solution with the decentralized one. Assuming
production subsidies that undo the static markup the decentralized equilibrium is

γ
ċt
ct

=
ÃL

vt
+
v̇t
vt

− ρ

Ṅt = F (vt)M (L,Nt)

We see that the difference between the planner and the (statically efficient) private
equilibrium comes from ∂Mt

∂Nt

(
F (κt)− 1

κt

∫ κt
0
κdF (κ)

)
. This term is zero in the additive

model since ∂Mt

∂Nt
= 0. It is also zero in the infinite elasticity model since F (κt) −

1
κt

∫ κt
0
κdF (κ) = 0 when F is discontinuous at some fixed κ. In all other cases F (κt)−

1
κt

∫ κt
0
κdF (κ) > 0 and the externality has the sign of ∂Mt

∂Nt
. Under exponential growth,

then, the planner wants to subsidize R&D. Under additive growth the planner does
not want to subsidize R&D. The zero-subsidy result depends on the specific functional
form chosen for the simple model, but the generic result is that inter-temporal spillovers
are weaker (albeit not zero in general) under additive growth than under exponential
growth.

5.4 A Simple Rejoinder

Section 4 shows that the trend growth of the technology frontier changes over time but
these changes are not explained by an exponential model. They highlight instead the
role of technological revolutions and GPTs. A simple model that describes TFP is as
follows:

At − At−1 = bt + ϵt,

where ϵ is iid. There is a small probability p of a regime change as

bt+1 =

bt , 1− p

Atξt+1 , p
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I normalize the new regime by the level of TFP at the time of the regime change so that
the specification nests models A and G:

Et [At+1 − At] = (1− p) bt + pAtEt [ξt+1] . (22)

The pure model A corresponds to p = 0, the pure model G to p = 1. The historical
data suggests p ≤ 1% per annum which explains the success of model A. Growth is
linear within a GPT era, but there is small chance of discovering a new GPT. With
the normalization by At we have ξ1650 = 0.35%, ξ1830 = 0.94%, and ξ1930 = 4.4%. The
structural change of the 1930s appears truly amazing in that respect.

Equation (22) is related to equation (2) in Comin et al. (2010). They point out
that the exponential nature of growth depends on the complementarity between old and
new technologies. My results suggest that, in most times and places, new technologies
increase TFP independently of existing technologies. One could interpret a GPT as a
technological change that is complementary to a sufficiently high share of existing ideas
and technologies. This complementarity creates what looks like multiplicative growth
as the GPT is implemented. The key point is that the TFP equation changes following
the discovery of a new GPT. The linear growth equation holds within each GPT era
but not across GPTs. An important question for future research is the persistence of
GPTs. Should we assume that a GPT permanently increases the (potential) growth of
the economy? Or should we assume that its impact on b depreciates over time? One
could speculate that the slowdown of the late 1970s in Figure 12 reflects the waning
impact of the initial electricity revolution and the pickup in the late 1980s the impact
of IT. This is an interesting question for future research.

6 Conclusion

TFP growth is not exponential. TFP has been growing linearly over the past 90 years
in the US and the additive model beats the exponential model for every country –
developed or developing – where TFP data is available. The TFP frontier appears to
grow linearly within broad historical periods: 1650 to 1830, 1830 to 1930, and 1930 until
today. Additive TFP growth predicts increasing growth of labor productivity and GDP
per capita thanks to capital accumulation.

The additive growth model explains the observed TFP slowdown as a consequence
of model misspecification. We should not have expected growth rates to be constant in
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the first place. The additive model does not necessarily solve the research productivity
puzzle of Bloom et al. (2020) since this puzzle is not about the stochastic process for
TFP but rather about the specification of the production function for ideas.

The additive model, unlike the exponential one, provides useful long run forecasts.
To illustrate this point consider the predictions one would make in 2020 regarding GDP
in 2060, holding population constant so as not to introduce additional demographic
forecast errors. TFP level is around 3 in 2020. The estimate for TFP growth is 1.2%
with a standard deviation of 0.2% over the preceding 40 years. The estimate for TFP
increments is 0.027 with a standard deviation of 0.0036. The G-forecast for cumulative
growth between 2020 and 2060 is 2 (i.e., 1.012

40
1−α ) but the two standard errors range is

1.6 to 2.6, which is $21 trillion. It is difficult to see the usefulness of a forecast where
the error range is as large as the current value of GDP. The A-forecast is 1.59 with a
range of 1.42 to 1.76, which is only one third of 2020 GDP.

Additive growth has implications for macroeconomic, industry and firms dynamics.
At a theoretical model, additive growth suggests that new ideas add to our stock of
knowledge but do not multiply it. Per capita income and consumption growth is lower
and less volatile under additive growth than under exponential growth. This affects the
valuation of long term assets (e.g. pensions) and the quantity of long term risk in the
economy. This matters for the optimal mitigation of long term risks such as climate
change, since real discount rates are low and future generations will not be much richer
than the current one. At the firm level, Lenzu et al. (2023) show that productivity grows
linearly with the age of a firm. More importantly, the study of industries and firms can
shed light on why growth is additive and where knowledge transfers take place.
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Appendix

A US Data

A.1 Three Measures of Post-War US TFP

Figure 15 compares the TFP series from BCL and Fernald, with and without adjustment
for education.

Figure 15: US TFP Levels

1.
00

1.
50

2.
00

2.
50

3.
00

1950 1960 1970 1980 1990 2000 2010 2020
Year

Bergeaud-Cette-Lecat Fernald Fernald, NQ

TFP Level, Postwar US

Notes: TFP levels, Abcl, Af
t , and An

t . Data from Fernald (2012) and Bergeaud et al. (2016).

A.2 Labor Productivity

Let us now study the accumulation of capital. Define the capital labor ratio as

kt ≡ Kt/Lt,

where, in the BCL data, Kt is the real capital stock and Lt measures hours worked.
The first order condition for capital demand in the neoclassical growth model equates
the marginal product of capital (MPK) to the user cost (defined as χ). BCL do not
consider changes in the user cost and the first order condition is simply

k1−αt =
α

χ
At. (23)
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Figure 16: Out-of-Sample Labor Productivity Forecasts
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tivity is real GDP per hour. Data source: Bergeaud et al. (2016).

Equation (23) says that the normalized inverse MPK (IMPK) is proportional to A.15

Model G therefore predicts that k1−αt grows exponentially, while model A says that it
grows linearly. Once we have a forecast for the capital labor ratio we can use our forecast
for TFP to create a forecast for labor productivity λt, defined as output per hour:

λt ≡
Yt
Lt

= Atk
α
t . (24)

model A offers a forecast for labor productivity as

λ̂t =
(
â+ b̂t

)(
âimpk + b̂impkt

) α
1−α

B Bayesian Model Selection

B.1 Model A

Consider the corresponding steady-state innovations representation (Ljungqvist and Sar-
gent, 2018) of model A:

15Users of model G typically interpret equation (23) as saying that capital grows exponentially, just
like A, as a rate (1 + g)

1/(1−α). Equivalently, if the model is written with Harrod-neutral technological
progress, Yt = Kα

t (MtHt)
1−α then capital is proportional to Mt. I return to these issues in Section 5.
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b̂t = b̂t−1 +Kat

At = At−1 + b̂t−1 + at

where b̂t = E [bt+1|At], E [a2t ] = Ω for all t ≥ 0, and K is the steady-state Kalman gain.
First, let us consider At+1 :

At+1 = At + b̂t + at+1

Define At+h|t as the random variable At+h conditional on time-t information. The mo-
ments of the 1-step ahead prediction errors are then given by:

EA [At+1|t
]
= At + b̂t

VarA
[
At+1|t

]
= Ω

This last equation is about the covariance of forecasts made at different times for a
fixed horizon (h = 1 here). Note that CovA

[
At+1|t, At+2|t+1

]
= EA [at+1 ∗ at+2] = 0.

Sequential one-period ahead forecast errors are uncorrelated.
Consider next the two-period forecasts (h = 2). We have

At+2 = At+1 + b̂t+1 + at+2

= At + b̂t + at+1 + b̂t +Kat+1 + at+2

= At + 2b̂t + (1 +K) at+1 + at+2

The moments are therefore

EA [At+2|t
]
=At + 2b̂t

VarA
[
At+2|t

]
=
(
(1 +K)2 + 1

)
Ω

CovA
[
At+2|t, At+1|t−1

]
=(1 +K) Ω

The forecast errors are now correlated because the intervals overlap. If at+1 is high, the
forecast for At+1|t−1 is too low and the forecast for At+2|t is also likely to be too low.

When h = 3 the overlap is longer and two-sided
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At+3|t = At + 3b̂t + (1 + 2K) at+1 + (1 +K) at+2 + at+3

The moments are therefore

EA [At+3|t
]
= At + 3b̂t

VarA
[
At+3|t

]
=
(
1 + (1 +K) 2 + (1 + 2K)2

)
Ω

and the covariances are

CovA
[
At+3|t, At+2|t−1

]
= CovA

[
At+3|t, At+4|t+1

]
= [(1 +K) (1 + 2K) + 1 +K] Ω

CovA
[
At+3|t, At+1|t−2

]
= CovA

[
At+3|t, At+5|t+2

]
= (1 + 2K) Ω

and CovA
[
At+3|t, At+3+p|t+p

]
= 0 for all |p| > 2.

We can generalize these moments as follows:

EA [At+h|t] = At + hb̂t

VarA
[
At+h|t

]
≡ χA

0,h = Ω
h−1∑
τ=0

(1 + τK)2

CovA
[
At+h,|t, At+h+p|t+p

]
≡ χA

p,h =

Ω
∑h−|p|

τ=1 (1 + (h− τ)K) (1 + (h− τ − |p|)K) for |p| < h

0 otherwise

where the relevant range for time series index p is [−h+ 1;h− 1].

B.2 Model G

Model G is more complicated because of the multiplicative growth terms. In this case, I
approximate the moments of the forecast distribution via Monte Carlo simulations. I use
8,000 simulations to perform the calculations, and confirm that the results are robust to
this choice.16 These simulations give approximations for EG [At+h], VarG [At+h] ≡ χG

0,h

and CovGt [At+h, At+h+p] ≡ χG
p,h. Under our simplification that ĝt is known with certainty,

these moments completely characterize the distribution of the h-period ahead forecasts
16To further confirm the validity of the Monte Carlo approximation, I also do the MC approximations

for Model A, and confirm that the approximated covariance matrices are close in supremum norm to
the those analytically derived above.
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under model G.
Because the fixed-horizon forecasts are serially correlated over time, we must calcu-

late the likelihood of the vector of forecasts in its entirety.17 In other words, given a
forecast horizon h, the vectors A1+h|1, A2+h|2, . . . , AT |T−h, under either model A or G,
are distributed as 

A1+h|1

A2+h|2
...

AT |T−h

 ∼ N




A1 + hb̂2

A2 + hb̂3
...

AT−h + hb̂T−h+1

 ,V
 (25)

where V is a matrix with χh0 on the diagonal, and χh1 on the first off-diagonal, χh2 on the
second off-diagonal, and so on until χhh−1 for the (h− 1)th off-diagonal. From this point,
calculating the likelihood for the h-period ahead forecasts fh (At|A) and fh (At|G) is
standard.

C Neoclassical Model

In the theoretical discussion I use continuous time and I assume an inelastic labor supply
to simplify the notations. For the simulations I use a standard discrete time model with
elastic labor supply. Aggregate value value added (GDP, Yt) is given by

Yt = F (Kt, AtLt) (26)

where At is labor augmenting (Hicks-neutral) productivity,18 Lt is the flow of labor
services and Kt is the flow of capital services which accumulates as

K̇t = It − δKt. (27)

Labor grows at the constant population growth rate gL: dLt

dt
= gLLt. Define ct = Ct/Lt

as per capita consumption. The representative household seeks to maximize overall
17If it wasn’t for this, we could build up the likelihood from the prediction error decomposition as

standard.
18Note that the empirical analysis in Fernald (2012) and Bergeaud et al. (2016) uses standard growth

accounting notations where Yt = AS
t K

α
t L

1−α
t where AS

t is the Solow residual. In the Cobb-Douglass
case we have of course the equivalence AS

t = A1−α
t . I have shown that AS

t is linear in the US so strictly
speaking At =

(
AS

t

) 1
1−α is convex.
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utility

U =

∫ ∞

0

u (ct) e
(gL−ρ)tdt (28)

where ρ is the rate of time preference and the utility function u is increasing, concave and
satisfies Inada conditions. The budget constraint of households is dAt

dt
= rtAt+wtLt−Ct.

On a per capita basis, with at ≡ At/Lt, I obtain

ȧt = rtat + wt − ct − gLat.

Finally I rule out Ponzi schemes by imposing the condition limt→∞

{
ate

−
∫ t
o (rt−gL)dt

}
≥ 0.

Assuming CRRA preferences with relative risk aversion γ we have u̇′t
u′t

= −γ ċt
ct

so the
Euler equation with per capita consumption is

γ
ċt
ct

= rt − ρ. (29)

Population growth gL does not appear in the Euler equation because adding a family
member increases the value of higher per capita consumption in proportion to the cost
of providing this extra consumption to all household members. In a closed economy
households must hold the capital stock: at = kt. I define capital per efficiency unit of
labor as k̂t ≡ Kt

AtLt
and firms’ optimal demand for capital requires

f ′
(
k̂t

)
= rt + δ.

Finally, defining the normalized consumption as ĉt ≡ Ct

LtAt
I characterize the equilibrium

with two equations, the capital accumulation equation

˙̂
tk = f

(
k̂t

)
− ĉt −

(
δ + gL +

Ȧt
At

)
k̂t, (30)

and the Euler equation written in efficiency units of labor

γ
˙̂ct
ĉt

= f ′
(
k̂t

)
− δ − ρ− γ

Ȧt
At
. (31)

Define

gA∞ = lim
t→∞

Ȧt
At
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The long-term balanced growth path is given by

f ′
(
k̂∞

)
= δ + ρ+ γgA∞

and
ĉ∞ = f

(
k̂∞

)
− (δ + gL + gA∞) k̂∞

All per capital variables grow with At. For instance, long run per capita consump-
tion is ct = Ct/Lt = ĉ∞At. Under additive growth, the model features decreas-
ing growth rates therefore, assuming CRRA preferences, the risk free rate falls over
time and eventually converges to ρ. I can finally check the transversality condition
limt→∞

{
kte

−
∫ t
o (rt−gL)dt

}
= 0. Since limt→∞

k̇t
kt

= gA and the long run interest rate is
r∞ = ρ+ γgA the condition is: ρ+ γgA∞ > gL + gA∞. It says that households’ discount
rate must be high enough relative to the growth rate of population, otherwise (28) yields
a value of infinity.
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