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We examined individual differences in masked repetition priming by re-analyzing item-level response-time 
(RT) data from three experiments.  Using a linear mixed model (LMM) with subjects and items specified as 
crossed random factors, the originally reported priming and word-frequency effects were recovered. In the 
same LMM, we estimated parameters describing the distributions of these effects across subjects. Subjects’ 
frequency and priming effects correlated positively with each other and negatively with mean RT. These 
correlation estimates, however, emerged only with a reciprocal transformation of RT (i.e., -1/RT), justified on 
the basis of distributional analyses. Different correlations, some with opposite sign, were obtained (1) for 
untransformed or logarithmic RTs or (2) when correlations were computed using within-subject analyses. We 
discuss the relevance of the new results for accounts of masked priming, implications of applying RT 
transformations, and the use of LMMs as a tool for the joint analysis of experimental effects and associated 
individual differences. 

 
 
How does an individual’s mean response speed relate to that person’s effect size in response to an experimental 
manipulation in a cognitive task? Somewhat surprisingly, there is no clear answer to this question. Even for well-
studied experimental effects such as the relation between word frequency and masked repetition priming (Forster & 
Davis, 1984; Forster, Mohan, & Hector, 2003), we do not know whether fast responders show larger or smaller 
frequency or priming effects and whether frequency and priming effects correlate positively or negatively with each 
other. Here, we demonstrate how such individual differences in experimental effects and their correlations can be 
estimated simultaneously with the genuine effects of the experimental manipulation. Specifically, we show how 
individual differences, presumably present in all psychological experiments, can be included in the analysis of 
experimental effects by replacing traditional repeated-measures analyses of variance (rmANOVA) with a linear 
mixed model analysis (LMM). In a re-analysis of published data, we show (1) that correlations based on difference 
scores computed separately for each subject (i.e., within-subject analyses) are inferior to estimating such correlations 
in a LMM and (2) that the strength and even the sign of such correlations depend strongly on the metric one chooses 
for reaction times (RTs).  
 

CORRELATIONS OF EXPERIMENTAL EFFECTS 
 
Is the variability between subjects, typically seen when assessing RT effects, meaningfully linked to fundamentally 
important features of the cognitive architecture?  For example, there may be a systematic relation between a 
subject's mean response speed and the size of the effect of a manipulation on that subject's RT.  A relationship of 
this type may support conclusions about the relative speed with which separable cognitive operations are completed. 
________________________  
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In support of this possibility, numerous studies examining RT distributions have shown that effects of independent 
variables can be particularly pronounced for slow responses (e.g., Balota, Yap, Cortese, & Watson, 2008; 
Ridderinkoff, 2002; Steinhauser & Hübner, 2008).  Where this trend occurs, one might expect that slower subjects 
should generate larger effects of a manipulation.  In this article, we reportsignificant correlations between average 
response speed, masked priming effects, and word frequency effects in a lexical decision task using a joint re-
analysis of three experiments reported in Bodner and Masson (1997; Exp. 1 and 2) and Kinoshita (2006, Exp. 2). 
This analysis, however, can be applied to many psychological experiments. Therefore, before we turn to the 
specifics of our data set, we describe our approach from a general perspective. 
 We typically manipulate some independent variables within subjects to provide a powerful statistical test of 
effects. Subjects vary in the size of such effects and this variability is treated as error or noise in standard analysis of 
variance models. But usually this variability is also indicative of reliable individual differences in the experimental 
effects. A reasonable starting point for examining this possibility is to test whether there is a positive or a negative 
relationship between, for example, subjects’ mean RT and their various raw experimental effect sizes. Simple 
introspection affords predictions for both positive and negative correlations.  
 For example, subjects who “take their time” in general might give an experimental effect a better chance to 
express itself. This is a well-known result from individual-differences research. For example, older adults are 
typically slower on many RT tasks than young adults and also show larger absolute effect sizes, yielding the typical 
age x task complexity interaction (e.g., as noted already by Birren, 1956).  If we ignore age group, such a pattern of 
results translates into a positive correlation between mean RT and effect size across all subjects (i.e., the so-called 
ecological fallacy). Obviously, such a correlation is likely to exist also within homogeneous age groups on the basis 
of normal interindividual differences.  Similarly, degrading a stimulus leads to longer RT and also to enhanced 
effects of factors such as semantic context (e.g., Becker & Killion, 1977; Borowsky & Besner, 1993). 
 From a different perspective, we might instead expect a negative correlation between mean RTs and masked-
priming effect sizes. Subjects who are more skilled (faster) at identifying words might be able to more successfully 
encode a briefly presented word prime and could use that information to more efficiently process a subsequently 
presented target word. Alternatively, suppose that subjects differ in their degree of task engagement. Those who 
comply with the instruction to respond as fast as possible will have shorter RTs than subjects with a casual attitude 
towards the experiment.  The latter subjects may be less likely to attend closely to the visual display and could 
therefore fail to encode information from the masked primes, leading to relatively weak priming effects. Under 
either of these two scenarios, subjects with shorter RTs could be more sensitive to differences in word frequency 
because they might base their responses on relatively little accumulated information (e.g., Wagenmakers, Ratcliff, 
Gomez, & McKoon, 2008) and the influence of word frequency may be especially strong at early stages of word 
processing. Importantly, in either event, mean RT should correlate negatively with all experimental effects, but the 
experimental effects should correlate positively among each other.  Moreover, a positive correlation between two 
experimental effects in the absence of any correlation between either of those effects and mean RT would strongly 
suggest an architecturally relevant relationship between the two effects. The LMM analysis we present here allows 
us to test these competing possibilities. 
 
APPLICATION TO EFFECTS OF MASKED REPETITION PRIMING AND WORD FREQUENCY 

 
In this article, we re-analyze effects of masked repetition priming and word frequency with LMMs. In experimental 
research, statistical analyses emphasize the significance of main effects and their interactions—so called fixed 
effects. In the reports by Bodner and Masson (2001) and Kinoshita (2006), the hypothesis was that masked 
repetition effects might be larger for low- than for high-frequency words. Initially, the rationale for this proposal was 
that in studies of long-term repetition priming, low-frequency words produce reliably more repetition priming than 
high-frequency words (e.g., Forster & Davis, 1984; Jacoby & Dallas, 1981). Bodner and Masson (2001) proposed 
that masked repetition priming and long-term priming may have a common basis in a form of memory for the 
processing of the prime event and should therefore operate according to a common set of principles.  Thus, the well 
established interaction between word frequency and repetition seen in long-term priming was expected to appear 
with masked priming as well. Although Bodner and Masson (2001) obtained such an interaction, Bodner and 
Masson (1997), using a weaker manipulation of word frequency, failed to do so in two separate experiments. The 
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difference between those two experiments was the visual format in which targets items were presented (i.e., in 
normal uppercase or alternating case). In a related study, Kinoshita (2006) was able to produce an interaction 
between frequency and masked priming by ensuring that even the low-frequency word targets were familiar to 
subjects. Kinoshita's reasoning was that the low-frequency words used in earlier studies (including her Experiment 
1) were of low semantic familiarity and therefore were not stably represented in the mental lexicon. Consequently, 
these low-frequency items were not capable of reliably activating a lexical representation when presented as a 
masked prime. By using familiar low-frequency words, it was expected that these items would successfully prime 
the lexicon when presented as masked primes, leading to full repetition priming effects and generating an interaction 
between frequency and priming. The LMM that we applied to the original data from these three experiments 
(Bodner & Masson, 1997, Exp. 1 and 2; Kinoshita, 2006, Exp. 2) was expected to lead to the same conclusions as 
the original reports as far as the significance of main effects and interactions is concerned.  
 Our emphasis in this article is on correlations between (1) mean RT, (2) size of priming effect (i.e., the 
difference between RTs in unrelated and repetition prime conditions), and (3) size of frequency effect (i.e., the 
difference between RTs to low- and high-frequency word targets) across subjects. In individual differences research, 
these correlations are typically computed in separate analyses of mean RTs and difference scores based on 
individual subjects’ data. Recent work has shown that the reliability of certain effects, particularly of semantic 
priming, is surprisingly low (Stolz, Besner, & Carr, 2005), so it is critical to take into account the reliability of 
measures when examining individual differences. In contrast to such a within-subject analysis, a LMM estimates 
parameters representing the variances (standard deviations) and covariances (correlations) of these effects across 
subjects (i.e., the variance component parameters) simultaneously with the fixed effects. The LMM parameters 
afford a better prediction of subjects’ individual mean RTs as well as of their frequency and priming effects and 
correlations than is accomplished with a within-subject analysis because they take into account between-subject 
differences in reliability of mean RTs as well as of frequency and priming effects (i.e., the predictions are a type of 
shrinkage estimate; Faraway, 2006).  
 As it turns out, there is another very critical issue requiring attention in the analyses of individual differences in 
experimental effects. Correlations between effect sizes depend strongly on distributional properties of the dependent 
variable. RT distributions, for example, typically exhibit a positive skew, violating the normal distribution 
assumption. Such violations can be corrected with a suitable power transformation, using, for example, the Box-Cox 
procedure to estimate the optimal power coefficient (Box & Cox, 1964). Typically, in the case of RTs, scientists 
apply a log transformation or take the reciprocal of standard RTs.  The former transformation moves statistical 
inferences into a multiplicative frame, whereas reciprocal RTs afford an interpretation of effects in terms of rate or 
speed rather than time. Obviously, these transformations preserve the ordinal relation of means, so they do not 
change the direction of effects. Actually, they rarely even affect the significance of main effects. Matters are not 
straightforward, however, for their influence on interactions (e.g., Loftus, 2002). For instance, a log transformation 
will render a significant interaction for standard RTs insignificant when similar proportional differences exist 
between pairs of means but will induce a significant subadditive interaction in log RTs when a pure main-effect 
pattern holds for simple RT. Moreover, as we demonstrate here with separate LMMs for untransformed, log-
transformed, and reciprocal RTs, the choice of transformation may even change the sign of the correlation between 
effects.  
 In summary, we combined and reanalyzed the data from three published experiments on masked repetition 
priming. In each experiment, the key independent variables were relatedness of prime-target pairs and target 
frequency. We replicated the ANOVA-based inferences of the original publications for untransformed, log-
transformed, and reciprocal RTs, and also estimated the variances and correlations associated with these effects 
across subjects. We will show that these estimated correlations yield a much clearer picture than correlations 
computed directly from the observed RTs of individual subjects (i.e., within-subject estimates). Counter to 
established practice, correct statistical inference about such correlations depends critically on a transformation of 
RTs that establishes compliance with distributional assumptions. 
 
Method 

 
 Subjects.  Results are reported for 72 students, 24 having participated each in Experiments 1 and 2a of Bodner 
and Masson (1997) and Experiment 2 of Kinoshita (2006).  

 
 Materials and procedure. In the Bodner and Masson (1997) experiments, subjects were presented a sequence of 
204 masked priming trials in a lexical decision task.  Of these, 96 were critical trials that presented a word target.  
Half of the word targets were low frequency and half were high frequency. Half of the word targets of each 
frequency were preceded by an identity prime appearing in lowercase letters (duration: 60 ms) and the other half 
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were preceded by an unrelated word prime. Assignment of items to prime conditions was counterbalanced across 
subjects. Targets appeared in uppercase letters in Experiment 1 and in alternating case in Experiment 2a. Data from 
Kinoshita’s (2006) second experiment were also available in the unaggregated format required for the LMM 
analyses. Subjects were presented a sequence of 216 masked priming trials in a lexical decision task.  Of these, 96 
were critical trials that presented a word target. Half of the word targets were low frequency and half were high 
frequency.  Half of the word targets of each frequency were preceded by an identity prime appearing in lowercase 
letters and the other half were preceded by an unrelated word prime. Assignment of items to prime conditions was 
counterbalanced across subjects. The critical feature of Experiment 3 was the selection of low-frequency words that 
were of high familiarity, that is, a minimum familiarity rating of 490 on a scale of 100–700 based on the MRC 
Psycholinguistic Database (Coltheart, 1981). Each trial began with a forward mask (a row of Xs) for 500 ms. Prime 
duration was 60 ms in Bodner and Masson (1997) and 53 ms in Kinoshita (2006). Subjects classified each target as a 
word or a nonword.  Reaction time and response accuracy were measured on each trial. 

 
 Data screening. The following analyses are based on RTs from correct trials with high- and low-frequency 
target words following identity and unrelated masked primes. Excluding incorrect trials and the two shortest 
response latencies (i.e., < 250 ms) left us with 4182 of 4608 RTs (i.e., 91%) from Bodner and Masson (1997) and 
with 2199 of 2304 RTs (95%) from Kinoshita (2006). There were statistically reliable effects associated with errors 
in a generalized linear mixed model (GLMM); the effects went in the same direction as RTs, that is opposite to a 
potential speed-accuracy tradeoff.  

 
 Analysis software. We used the lmer program of the lme4 package (Bates, Maechler, & Dai, 2009) for 
estimating fixed effects and variance/covariance component parameters of the LMM (see Bates, 2008a, 2008b, for 
technical background). This package and many others (e.g., we extensively used lattice, Sarkar, 2008, reshape, 
Wickham, 2007, and ggplot2, Wickham, 2009) are supplied in the R system for statistical computing (version 2.8.1 
R Development Core Team, 2009) under the GNU General Public License (Version 2, June 1991). 

 
 Fixed effects. We coded priming and frequency effects as +.5/-.5 contrasts (i.e., unrelated - repetition primes, 
low - high frequency words) and the two contrasts associated with the three experiments as two orthogonal Helmert 
contrasts (C1: Bodner-Masson-Exp 1 vs. Bodner-Masson-Exp 2a; C2: both BM-Exps vs. Kinoshita-Exp).1  

 
 Random factors and variance/covariance component parameters. Subjects and words are specified as random 
factors, varying in mean RTs. We also assume that subjects vary reliably in frequency and priming effects. The 
LMM assumes that words’ mean RTs as well as subjects’ mean RTs, priming effects, and frequency effects are 
normally distributed around the respective fixed effects (i.e., the grand mean RT, the mean difference between 
unrelated and repetition primes, and the mean difference between low- and high-frequency words). This 
specification yields six variance/covariance component parameters for subjects and one variance component 
parameter for words (see Baayen, 2008, and Baayen, Davidson, & Bates, 2008, for discussion of replacing F1/F2-
ANOVA with LMM). Finally, the LMM also estimates the residual variance. 

 
Results 

 
Figure 1 displays the priming x frequency interaction for each of the three experiments (columns) for untransformed 
RT, log-transformed RT, and -1/RT (rows). We multiplied reciprocal scores by minus 1 to maintain the direction of 
effects compatible for the three variants, effectively converting speed into “rate of slowing”. The pattern of means 
reveals larger priming effects for low-frequency than for high-frequency words in Experiment 3, but no support for 
this interaction in Experiments 1 and 2. Standard and transformed RTs afford the same interpretation. Tables 1 and 2 
display parameter estimates for fixed effects and variance/covariance components, respectively. 

 
 Fixed effects. The fixed-effect estimates of untransformed RT, log RTs, and reciprocal RTs are listed in separate 
columns of Table 1. Our criterion for significance was a coefficient magnitude of at least two standard errors (i.e., 
absolute t values > 2). The degrees of freedom for t-values are not known exactly for a LMM. Given the large 
number of observations in our analyses, however, the t distribution has converged, for all practical purposes, to the 
standard normal distribution. In this case the 2-SE criterion is close to the conventional two-tailed 5% level of 
significance (e.g., Baayen et al., 2008, Note 1).2 In agreement with the visual impression conveyed by Figure 1, raw 
_____________________ 
 
1It would certainly be in the spirit of LMM to use continuous frequency values rather than two extreme frequency categories. 
However, we prefer to respect the design choices of the original publications for ease of comparison. For continuous, usually log-
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transformed, frequencies, the fixed effect represents the linear regression slope for RT on word frequency. The random effect of 
frequency represents the between-subject variance in linear regression slopes. Linear, quadratic and even cubic fixed effects of 
log frequency have been reported for single-fixation durations in reading (e.g., Kliegl, 2007). 
2There is also the option to use Markov Chain Monte Carlo (MCMC) methods to generate a sample from the posterior 
distribution of the parameters of a fitted model and determine the approximate highest 95% posterior density (HPD) interval for 
the coefficients in this sample. In our experience, typically involving large data sets like the present one, inferences based on 
HPD intervals have been overwhelmingly consistent with the t > 2 criterion. 
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Figure 1. Each row shows the frequency by priming interaction for  (a) Bodner and Masson (1997, Exp. 1), (b) Bodner and 
Masson (1997, Exp. 2a), and (c) Kinoshita (2006, Exp. 2). Effects are displayed for untransformed RT (top row), logarithmic RT 
(middle row), and reciprocal RT (i.e., -1/RT, bottom row).  Error bars represent 95% confidence intervals for cell means (i.e., 
they are not corrected for between-subject or between-word variance). 
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RTs and the transformed RTs led to the same statistical conclusions for the primary questions. There were 
significant effects of frequency, priming, and contrast 1 (Exp 1 vs. Exp 2) as well as a significant interaction 
between priming and visual familiarity. Most important, the three-factor interaction of priming, frequency, and 
contrast 2 was significant when the log RT or reciprocal RT transformations were used, indicating a difference in the 
priming-frequency interaction effect seen in the Bodner and Masson study versus the Kinoshita experiment. We 
note, however, that this three-way interaction was not significant in the untransformed RT data. Separate LMMs for 
                     

TABLE 1 
LMM estimates of fixed effects for untransformed RT, log RT, and reciprocal RT 

–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 Measure 
 –––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 Untransformed RT Logarithmic RT Reciprocal RT(-1/RT)     
 ––––––––––––––––––––––––––––– –––––––––––––––––––––––––––– –––––––––––––––––––––––––– 
Effect Estim SE t  Estim  SE t Estim SE  t 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
(Intercept) 0.682 0.012  58.6 6.469  0.015 427.1 -1.624  0.023 -70.9 
p 0.053 0.005  10.5 0.078  0.006  12.6  0.129  0.010  13.0 
f 0.141 0.012  11.7 0.184  0.014  13.0  0.262  0.020  12.9 
e.BM1-2 0.038 0.013 2.9 0.045  0.017 2.6  0.059  0.026 2.3 
e.BM-SK  -0.071 0.008  -8.7  -0.103  0.011  -9.8 -0.166  0.016 -10.4 
p:f 0.020 0.010 2.1 0.022  0.011 2.1  0.024  0.015 1.6 
p:e.BM1-2 0.021 0.006 3.3 0.020  0.008 2.7  0.023  0.012 1.9 
p:e.BM-SK  -0.005 0.004  -1.5 0.002  0.004 0.5  0.018  0.007 2.7 
f:e.BM1-2  -0.002 0.009  -0.2  -0.011  0.010  -1.1 -0.024  0.014  -1.8 
f:e.BM-SK  -0.051 0.008  -6.4  -0.060  0.009  -6.4 -0.074  0.013  -5.6 
p:f:e.BM1-2 -0.001 0.012  -0.1  -0.006  0.013  -0.5 -0.012  0.019  -0.6 
p:f:e.BM-SK 0.004 0.007 0.6 0.015  0.007 2.0  0.035  0.011 3.3 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note. p: priming, f: frequency, e.BM1-2: visual familiarity, e.BM-SK: semantic familiarity; ":" is a crossing operator. 
 
 
the three experiments confirmed that the priming by frequency interaction was significant only in Experiment 3. 
Table 1 also shows that two of the lower order interactions of this three-factor interaction were significant for 
untransformed RT and log RT, but not for reciprocal RT. We also carried out the three corresponding rmANOVAs 
using subjects as random factor and obtained the same pattern of significant and non-significant effects regarding the 
three-factor interaction. Thus, as far as fixed effects are concerned, LMMs and rmANOVAs led to the same 
conclusions. 

 
 Variance/covariance component parameters. The variance/covariance component parameters for 
untransformed, logarithmic, and reciprocal RTs are listed in Table 2. They comprise the estimated standard 
deviations (i.e., square roots of variance estimates) of words’ and subjects’ means and of subject-related effects of 
frequency and priming as well as the associated estimates of correlations. The decisive role of the choice of 
transformation is apparent when we compare the estimates of correlations for the three RT variants. The correlation 
between priming and frequency effects is always estimated as positive, but there is a dramatic change of estimates 
       
 

TABLE 2 
LMM estimates of variance/covariance component parameters for untransformed RT, log RT, and 

reciprocal RT 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 Measure 
 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
 Untransformed RT Logarithmic RT Reciprocal RT(-1/RT)     
 ––––––––––––––––––––––––––––––– ––––––––––––––––––––––––––––––– ––––––––––––––––––––––––––––– 
Effect SD mean priming SD mean priming SD mean priming 
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Words          
 mean 0.061   0.076   0.111   
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Subjects          
 mean 0.088   0.117   0.178   
 priming  0.014 +0.392  0.027 -0.153  0.055 -0.482  
 frequency 0.051 +0.557 +0.542 0.053 +0.137 +0.321 0.071 -0.342 +0.359 
Residual 0.190   0.210   0.299   
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note. SD = square root of lmer variance estimate; remaining entries are estimates of correlations between effects. 
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Figure 2. Plots of LMM residuals over normalized fitted values for untransformed (left), log transformed (middle), and 
reciprocal (right) RTs. Residuals in the bottom panel best meet model assumption of normality. 
 
 
 
 
for the correlations of priming and frequency effects with mean RT when going from untransformed, to log-
transformed to reciprocal RTs. Correlation estimates are highly positive for untransformed RTs, drop considerably 
in magnitude for log-transformed RTs, and end up as highly negative for reciprocal RTs (i.e., -1/RT). 
 
 Tests of correlation estimates. We tested the significance of correlation estimates by contrasting the LMM with 
an alternative LMM that assumes them to be zero. As the alternative is nested under the current model, we can 
compute a restricted likelihood-ratio based chi-square statistic. Forcing correlation estimates to zero led to a 
significant drop in goodness of fit for untransformed RTs, χ2 (3) = 15.9, p = 0.001, and for reciprocal RTs, χ2 (3) = 
12.2, p = 0.007. Thus, the positive correlation estimates for untransformed RTs and the negative correlations for 
reciprocal RTs were significantly different from zero and, by implication, from each other. For log-transformed RTs, 
the corresponding increment in goodness of fit was not significant, χ2 (3) = 2.4, p = 0.492. Thus, LMMs for standard 
RT and for reciprocal RT revealed significant correlation estimates of opposite sign between mean RT and priming 
and frequency effects. 
 
 Choice of transformation. The divergence of results for correlation estimates necessitates a decision for one of 
the three versions of RT. Inspection of standardized residuals plotted over fitted values suggests that standardized 
residuals for reciprocal RTs are closer to being normally distributed than those of the other two RT variants (see 
Figure 2). One quantitative method to decide on a suitable transformation is to estimate the optimal value of the 
λ−coefficient for the Box-Cox power transformation, y(λ) = (yλ  – 1)/λ,  if λ ≠ 0 and y(λ) = log(y), if λ = 0  (Box & 
Cox, 1964). The profile likelihood function for a range of values of λ can be determined with the boxcox function of 
the MASS package in R (Venables & Ripley, 2002), including also a horizontal line indicating an approximate 95% 
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likelihood-ratio confidence interval for the optimal value of λ. As shown in Figure 3, the optimal value of λ is -1.01 
for subject-based mean RTs of experimental design cells. This value is very close to the value of -1 used for the 
reciprocal transformation of RT, indicating that this indeed is a very suitable simple transformation for these RT 
data.  In contrast, the log transformation or keeping the RTs in the original metric would have been indicated for a  λ 
≈ 0 or  λ ≈ 1, respectively. Thus, the Box-Cox transformation strongly suggests that reciprocal RTs are in a metric 
compatible with the normal-distribution assumption of our inferential statistics. 
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Figure 3. Profile likelihood function for  λ, L(λ) = const - n/2log(RSS(z(λ)), where z(λ)) = y(λ)/y’λ−1, y’ is the geometric mean of the 
RTs, and RSS(z(λ)) is the residual sum of squares for the regression of z(λ) (Box & Cox, 1964, cited after Venables & Ripley, 2002, 
p. 170 f.). The maximum of L(λ) = 14705.81 at λ = -1.01.  The graph also displays an approximate 95% likelihood ratio 
confidence interval for λ. 
 
 
Discussion 

 
The correlation estimates obtained for reciprocal RTs (i.e., -1/RT) indicate that subjects who respond faster exhibit 
stronger effects of the experimental manipulations.  One interpretation of this relationship is that subjects who are 
more skilled readers, in the sense of being more efficient at encoding words, are more sensitive to differences in 
word frequency and to the influence of repetition primes.  This latter possibility has potential implications for how 
researchers interpret masked priming effects.  Such effects typically are believed to emerge without subjects being 
aware of the identity of the prime words or even that prime words are being presented (e.g., Forster & Davis, 1984). 
Finding larger priming effects for subjects who are better able to encode words may mean that those subjects are 
more likely to be aware of the masked primes.  Awareness of the primes could enhance the size of the priming 
effects and this possibility suggests the need for more rigorous testing of the assumption that masked priming occurs 
without awareness. Alternatively, if we interpret response speed as an indicator of task engagement or adherence to 
instruction, the result suggests that subjects who engage more will be more likely to reveal the experimental effects. 
Thus, in situations of low statistical power, investment in motivational incentives may pay off. 
In addition, the sign of the correlation estimate between mean response speed and effect size is in clear contradiction 
to the assumption of a general speed factor (i.e., subjects who are slow in general are also the ones who show larger 
experimental effects). As we pointed out, both hypotheses have guided interpretations of RT-difference based 
correlations. Our results provide a clear answer for this question for masked-repetition priming and frequency 
effects in the lexical decision task. 
 There is also a positive correlation estimate between priming and frequency effects. This correlation estimate 
hints at a possible common mechanism shared by processes that generate repetition priming and processes that are 
sensitive to word frequency. Of course, with only two effects measures we are not in a position to infer anything 
about the specificity and generalizability of these effects. Experimental designs with a larger number of factors, 
however, may inform about dissociations between experimental effects via differential correlation estimates.  
 

COMPARING WITHIN-SUBJECT COMPUTATIONS AND LMM ESTIMATES OF 
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CORRELATIONS 
 
The analyses in the previous section established that reciprocal transformation of RT leads to a specific pattern of 
correlation estimates between mean RT and experimental priming and frequency effects that is different from that 
obtained from untransformed RTs. In a LMM, these correlations are estimated as parameters simultaneously with 
the fixed effects. How do these correlation estimates compare with correlations computed from scores based on the 
individual subjects’ data, that is, from within-subject analyses obtained in a repeated-measures multiple regression 
                 

TABLE 3 
Standard deviations (SD) and correlations of reciprocal mean (-1/RT), frequency effect, and priming effect 

based on within-subject analysis 
 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 

 SD mean
 priming 

 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
mean  0.297   
priming  0.089 -0.365  
frequency 0.138 +0.439 -0.177 

 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– 
Note. Compare the within-subject correlations with corresponding LMM estimates of correlations in Table 2. 

 
 
analysis (rmMRA; Kliegl et al., 2006; Lorch & Myers, 1990)? The correlations based on these within-subject 
reciprocal RTs are presented in Table 3 and can be compared directly with corresponding LMM estimates in Table 
2. 
 The divergence between correlations based on within-subject reciprocal RTs and LMM model estimates is 
substantial. In particular, the two correlations with the frequency effect are opposite in sign. They are a consequence 
of the notorious unreliability of within-subject difference scores. Interestingly, problems of reliability may not only 
reduce the magnitude of correlations (e.g., from +0.40 to -0.18 for the correlation of frequency and priming effects), 
but they may also suggest a correlation of similar magnitude though of opposite sign, relative to that generated by a 
more reliable method (e.g., +0.44 instead of -0.34 in the case of the correlation between mean RT and frequency 
effect). The LMM corrects for the unreliability of individual subjects’ scores by “borrowing strength” from the 
presumably reliable population estimate afforded by the complete sample. Essentially, (a) the more extreme an 
observed mean, (b) the smaller the number of observations, and (c) the larger the variance for a given subject’s data, 
the more will this subject’s conditional mean be based on the overall mean (i.e., “shrunken” towards the population 
mean; see Gelman & Hill, 2007, especially chapters 12 and 18, for expositions).3 
 The LMM model estimates listed in Tables 1 and 2 can be used to generate predictions for each subject’s mean 
RT as well as each subject’s priming and frequency effects--the so-called best linear unbiased predictions (BLUPs; 
Henderson, 1953), more appropriately referred to as the conditional means evaluated at the estimated parameters 
(Bates, 2008a). In other words, the LMM-based adjustments of means and effects are calculated after estimation of 
the variance/covariance component parameters. Thus, formally, these adjustments are not parameters of the model. 
Figure 4 displays the 95% prediction intervals for conditional means and conditional priming and frequency effects 
for 72 subjects, sorted by the conditional means (-1/RT) and centered on corresponding fixed effects. Subjects’ 
prediction intervals overlap more strongly for priming and frequency effects (middle and right panels) than for mean 
RTs (left panel), because of the lower reliability of difference scores. Large mean (-1/RT) values tend to go along 
with small priming and frequency effects, in agreement with the LMM estimates of correlations (see Table 2).  
 The scatterplots of filled circles in the panels of Figure 5 represent the conditional means of 72 subjects 
predicted from the LMM estimates in the more familiar format. In addition, we also plot the unadjusted within-
subject effects as open circles and arrows pointing from within-subject values to their corresponding conditional 
___________________ 
 
3Gelman and Hill (2007) illustrate shrinkage for the case of a model without predictors. Applied to our data, if M is the overall 
mean RT, mj and nj are mean and number of RTs of subject j,  σ2

y and σ2
α are residual and between-subject variances, then the 

predicted mean RT αj for subject j can be approximated as a weighted average of the subject’s mean RT and the overall mean 
RT:  

αj ≈  [(nj / σ
2
y) mj + (1/ σ2

α) Μ] / [(nj/ σ
2
y) + (1/ σ2

α)] 

Then, for the limiting case of nj = 0, αj = M, and for nj → ∞, αj = mj. Thus, on the one hand, the fewer RTs contributed by a 
subject, the stronger is the overall mean’s contribution to the predicted mean for this subject; indeed, in the case of missing data 
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(nj  = 0), we simply predict the overall mean M.  On the other hand, the larger the number of RTs, the more the prediction is 
based on the observed subject’s mean. Weights also depend on the ratio of residual and between-subject variances. For example, 
for nj  =  σ2

y/σ
2
α ,  subject and overall mean are equally weighted in the prediction; that is, the formula reduces to αj = ½ (mj + 

M).  Assuming constant residual variances for subjects (which is not necessary in general), if nj  > σ2
y /  σ2

α  (i.e., for large 
differences between subjects relative to the number of observations for subject j and the residual variance), αj will move towards 
mj; conversely, if nj  < σ2

y /  σ2
α  (if there is large residual variance or if there are few observations), αj will move towards M. 

-0.4 -0.2 0.0 0.2 0.4

Mean -1/RT

-0.1 0.0 0.1 0.2

Priming Effect

-0.2 -0.1 0.0 0.1 0.2

Frequency Effect

 
Figure 4. Caterpillar plots for 72 subjects’ (a) conditional means (-1/RT), (b) priming effects, and (c) frequency effects, centered 
on corresponding fixed effects. Subjects are ordered by mean (-1/RT). Horizontal lines indicate 95% prediction individuals; R 
script adapted from Bates (2008c). 
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means. The fact that the arrows point from the outside towards the center of the plot illustrates the model-based 
shrinkage due to unreliability of within-subject values. In general, the more extreme a value, the longer is the arrow, 
implying more shrinkage towards the population mean for such values. As a consequence of this shrinkage, 
                            

 
 
Figure 5. Scatterplot of within-subject means (open symbols) and conditional means (filled symbols). Arrows connect the two 
values for each subject. Shrinkage correction changes correlations between mean reciprocal (-1/RT) and priming effect (left), 
mean reciprocal (-1/RT) and frequency effect (middle), and between priming and frequency effects (right); R script adapted from 
Bates (2008c). 
 
 
however, the “correlations” of conditional means may take on a different sign than the corresponding within-subject 
correlations. Most noticeable in the present data, the correlation between reciprocal mean (-1/RT) and priming effect 
increases (left panel), the positive within-subject correlation changes from a positive to a negative correlation for 
reciprocal mean (-1/RT) and frequency effect (middle panel in Figure 5), and the correlation between frequency and 
priming effect changes from a low negative correlation to a medium positive one.  
 Once a correlation structure is unveiled as nicely as in Figure 5, one is tempted to carry on with the conditional-
mean predictions based on the LMM parameter estimates (i.e., the data represented by filled circles) to compute, for 
example, correlations with other background variables such as IQ or age that may be available for each subject. 
Unfortunately, however, this would be an erroneous step and would take the LMM-based predictions too far. First, 
given that conditional means represent a compromise between the subjects’ means and the estimate of the 
population mean, they must obviously not be treated as independent observations. Second, “correlations” based on 
conditional means (i.e., the filled circles in the panels of Figure 5) are not identical to the LMM correlation 
estimates. Actually, “correlations” of conditional means tend to be larger in absolute magnitude than the 
corresponding LMM correlation parameters (see next section). Therefore, subject-level variables such as IQ and age 
effects must be incorporated as covariates in the LMM where, of course, one can also specify and test interactions 
between effects of individual differences (e.g., age, IQ) and experimental effects (e.g., priming or frequency 
manipulations).  
 

SIMULATION OF LMM ESTIMATES OF VARYING INTERCEPTS AND  SLOPES 
 

 Conditional means have much appeal because they take into account differences in the reliability of the grouped 
data. As a stern warning against treating them as independent observations, however, we document with simulations 
that it is indeed the LMM estimates, not the conditional means predicted from them, that we have to rely on for 
inference. To this end, we generated 100,000 sets of data for a simple LMM model including 30 “subjects” and a 
predictor with 10 levels, conforming to a known variance for intercept and slope across subjects and varying the true 
correlation between these parameters from -0.9 to +0.9 in 2,000 steps (i.e., each simulation used a different 
correlation). Results are displayed in Figure 6. The x-axis in each panel represents the true correlation in the 
simulation. The panels in the top row, from left to right, plot the difference between model estimates and true values 
for (a) intercept variance, (b) slope variance, (c) their covariance as well as (d) the derived correlation. The dashed 
horizontal line is the reference line for perfect recovery of the true values. The black line lists the mean estimate for 
all data and the grey line lists the mean estimate when 50% of a data set was randomly deleted before model 
estimations (i.e., an extreme form of model estimation with missing data). In general, model estimates are close to 
the zero line, indicating that the parameters were recovered quite well. 
 The second row plots the differences between conditional means and true values. It is immediately apparent that 
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conditional means underestimate variances and exaggerate covariances and correlations. The shrinkage of variance 
reflects the contribution of the likelihood in the computation of conditional means. Shrinkage correction for 
predictions leads to dampening of the variance components, but, as we have shown in this section, not of the 
associated covariance component. The shrinkage of variance prevents overfitting of unreliable data but, as a curious 
                        

 
 
Figure 6. Results of 100,000 LMM simulations with varying slopes and intercepts. Standard deviations for variance-component 
parameters were fixed and correlations for each run were known. The plots show moving averages of LMM estimates (top) and 
conditional means (bottom) as functions of respective true correlation; the columns contain estimates of standard deviations and 
covariance, and of the respective correlation. Black and gray lines denote runs with balanced and unbalanced (i.e., random 50% 
of data) designs. 
 
 
side effect, the “correlations” based on conditional means for individual subjects are larger in absolute value than the 
corresponding LMM estimates of the correlation. 
 In summary, the simulation shows that model estimates (top) are fine, even when estimates are based on only 
50% of the data, but conditional means (bottom), because of their dependency on estimated population values, 
clearly overestimate the magnitude of the correlation estimate. Thus, interpretations of correlations must not be 
based on the “correlations” computed from conditional means, but on LMM estimates of correlations. 

 
GENERAL DISCUSSION 

 
Analyzing RT Experiments with LMM 
 
We re-analyzed data from fairly typical RT-based experiments that examined effects of masked repetition priming, 
word frequency, visual familiarity, and semantic familiarity as well as their interactions. The goal of this article was 
to demonstrate that, in addition to these fixed effects of experimental manipulations, we can also simultaneously 
estimate the variances and correlations of mean RT, priming effects, and frequency effects for subjects in a LMM. 
RTs enter the analysis in an unaggregated format, rather than being averaged over words within design cells prior to 
analysis in a mixed-model ANOVA with subjects as a random factor. The new analysis requires the specification of 
subjects and words as crossed random factors and assumes that means and effect sizes are normally distributed 
among subjects and among words. The term “random” is a bit unfortunate in this context; it derives from the 
(presumably) random sampling of subjects and words; it definitely does not refer to anything that could be 
dismissed. There is much to be said for Gelman and Hill’s (2007) proposal to refer to these variances as based on 
varying intercepts and varying effects.  
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 The validity of variance/covariance component parameters, in particular the correlations between mean RT and 
frequeny and priming effects among subjects, depended on a reciprocal transformation of RTs which was required to 
establish normality for residuals of fitted models. Given a suitable transformation of RTs, we established fixed 
effects of priming, frequency, visual familiarity, and semantic familiarity as well as interactions among them. The 
results were in agreement with those of the original publications; in particular, the interaction between frequency 
and priming was not significant for the Bodner and Masson (1997) data, but was significant for the Kinoshita (2006) 
data. Only the use of transformed data, however, revealed a statistically significant difference across experiments 
with respect to the frequency by priming interaction. 
 Novel results were obtained when the reciprocal transformation was used:  (1) negative correlation estimates 
between mean (-1/RT) and both priming and frequency effects, and (2) a positive correlation estimate between 
frequency and priming effects among subjects. These results indicate that we observe stronger experimental effects 
for faster subjects. Such a pattern could emerge if short RTs indicate a difference in encoding efficiency. 
Alternatively, short RTs may reflect task engagement, with strong task engagement leading to stronger experimental 
effects. Obviously, with only an overall mean and two effects, we are not in a position to prefer one of these 
explanations to the other. The results do rule out, however, the proposition that longer RTs are a prerequisite for 
observing stronger experimental effects. Both LMM estimates of correlations and within-subject correlations based 
on untransformed RTs would have led us to erroneously support this claim.  
 Correlations based on within-subject analysis are generally weaker than the correlations estimated in a LMM. 
Much research on individual differences in cognitive processes has been invested in correlating difference scores 
related to experimental conditions, only to find that the inherent unreliability of these scores rendered them close to 
useless for establishing a link to traditional psychometric research. For example, demonstrations of low reliability in 
priming effects, such as those reported by Stolz et al. (2005), may have been influenced by this problem. From a 
LMM perspective, researchers using the typical difference score approach have stacked their cards heavily against 
themselves for finding reliable relationships. This problem generalizes to the use of repeated-measures multiple 
regression analysis (e.g., Kliegl et al., 2006; Lorch & Myers, 1990), which has also been shown to run the risk of 
being anti-conservative (Baayen et al., 2008). Nevertheless, sufficiently large sample sizes will remain a prerequisite 
for estimating correlations between experimental effects even with a LMM. In the present report, for example, 
significant correlation estimates depended on aggregating over three experiments. Moreover, in this case an 
appropriate transformation of the raw data was required as well to ensure the validity of the analysis. 
 
Theoretical Relevance for Priming Studies 
 
This set of data and results is not unique. Indeed, alternating case has been shown to exaggerate word-frequency 
effects in the word-naming task (Besner & McCann, 1987; Herdman et al., 1999).  The effect of introducing some 
form of degradation of the visual form of words, however, does not produce a consistent influence on performance. 
Visual degradation achieved through contrast reduction has been shown to be additive with word frequency 
(Borowsky & Besner, 1991, 1993), suggesting that frequency-sensitive processes are rather late in the chain of 
processing components leading to word recognition--at least late enough to miss all the action of early perceptual 
processes that establish a clear signal against variable noise background. Interestingly, in the same experiments that 
show additivity between contrast and frequency, there is clear evidence for much larger semantic priming effects 
under conditions of low visual quality, in line with the argument that slowing causes an increase of effects riding on 
RT.  Our LMM analyses show, however, that at the level of individual differences, it is the faster subjects who show 
larger priming and word-frequency effects.  It is an open and theoretically interesting question as to whether a 
similar pattern would emerge if contrast were used as the means of visual degradation and semantic rather than 
masked repetition priming were used as the method of manipulating context. Indeed, it is quite possible that faster 
subjects will show less priming under conditions that present primes in a clear and easily seen format, but targets in 
degraded form. 
 
To Transform or not to Transform? 
 
Invariably, questions are raised about the justification for choosing a transformation of the dependent variable. This 
issue has been addressed many times in the psychological research literature with not much impact. An exception is 
that, compared to 20 years ago, it seems that logarithmic transformation of RTs needs no justification. One reason 
probably is that, for the assessment of fixed effects, it rarely matters. Our analyses support the assumption that this 
kind of tacit knowledge guides individual decisions about the transformation question. Irrespective of whether we 
look at untransformed, log-transformed, or reciprocal RTs, we consistently obtain significant main effects of 
priming, frequency, and visual familiarity. Matters change substantially, however, when we look at the correlations 
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of individual differences or estimates of such correlations between these effects. Transformation may not influence 
the pattern of differences between means, but it can drastically alter the pattern of correlations between effects or 
between effects and mean response speed. 
 So which metric is the correct one? Sometimes psychologists do not use transformations such as those 
suggested by the Box-Cox procedure because they perceive RTs as the natural metric. In the linear model, 
coefficients reflect the additional time due to an experimental effect; that is, the time it takes for a hypothetical 
cognitive process to finish. Thus, they give priority to additivity of time and attempt to explain the general positive 
skew of RT distributions and their heteroscedasticity across conditions as a consequence of internal information 
processing (e.g., Logan, 1992; Wagenmakers & Brown, 2007). 
 In contrast, effects estimated in a transformed RT metric may not have an obvious interpretation. There is some 
force to this argument, but at least the two transformations considered in this article do have psychologically 
plausible interpretations: 1/RT leads to an interpretation of coefficients as additive changes in processing rate 
possibly tied to neural spike rates (e.g., Carpenter, 1981; Carpenter & Williams, 1995) and coefficients estimated 
from log(RT) inform about the size and reliability of standard RT effects in multiplicative, rather than additive, 
terms. Thus, we can also develop models with these metrics. 
 The general problem, however, is that, if the linear model is to be used for statistical inference, then it simply 
does not make sense to work with a yardstick for which the precision of measurement changes with the size of the 
object to be measured. The only generally applicable (i.e., independent of specific content domains) and meaningful 
estimate of the precision of our measurement scale is the standard deviation. Therefore, if statistical inference is 
intended for fixed and random experimental effects, one solution is to transform one’s scale such that the same 
standard deviation holds across the entire range, a characteristic that often does not hold when untransformed RT 
data are considered (Wagenmakers & Brown, 2007). The reciprocal transformation appears to achieve this goal for 
the RT data considered here; for other data sets, logarithmic, square-root, or no transformations may be called for. 
 Nevertheless some theoretical constructs make perfect sense in one metric, but not in another. So, can’t we have 
our cake and eat it, too? The standard linear model requires a normally distributed measure, but RTs obviously do 
not have this property. They appear, however, to be well described, for example, by lognormal or gamma 
distributions. If one is theoretically committed to such a distribution (e.g., the SWIFT model of eye movement 
control in reading randomly samples the starting times of saccade programs from a gamma distribution; Engbert, 
Nuthmann, Richter, & Kliegl, 2005), then an elegant solution, one that preserves interpretation in the standard RT 
metric, is to switch from the linear mixed model to a generalized linear mixed model (GLMM) for statistical 
inference. The disadvantage associated with this approach is that estimation of GLMM coefficients (in particular 
from crossed-random effects models) must be numerically approximated rather than computed from a closed-form 
solution (Bates, 2008b). Also the interpretation of coefficients is less straightforward for GLMM than for LMM. 
 There are also recent developments to estimate crossed-random effects of subjects and items in a Bayesian 
framework (Rouder, Lu, Speckman, Sun, & Jiang, 2005). This approach opens the way to use distributions outside 
the exponential family. It also allows other than a normal parent distribution for the parameter estimates. For 
example, Rouder et al. showed that RTs for symbolic distance effects (e.g., judging the difference between 
numerically adjacent and non-adjacent digits) are best described with a three-parameter Weibull distribution, 
assuming also that the parameters themselves are gamma distributed. Their Bayesian estimation of a hierarchical 
Weibull model also represents an alternative to maximum likelihood estimation; simulations prove the Bayesian 
approach to be superior to eight alternative estimation methods for Weibull parameters at the individual or group 
level. The advantage becomes especially striking when simulations are based on only 20 rather than 80 observations 
per subject. Finally, Rouder et al. point out that their approach can be expanded to achieve what has been described 
in this article:  The simultaneous estimation of variance/covariance component parameters for subject and items.  
 In conclusion, the routine application of Bayesian techniques will still take a few years to take hold in 
experimental psychology. In the mean time, we propose to spend one degree of freedom for a transformation that 
maps the observed data into a representation that is compatible with the statistical model we use for inferences or 
prediction or to use GLMM to this end. Typically, either approach will yield normally distributed residuals. In this 
measurement space, we interpret not only the fixed effects of our experimental design but, in a single sweep, we can 
estimate how these effects vary and correlate among subjects and items. Experimental psychologists have collected 
much reliable, theoretically relevant information on subjects and items for many years. Perhaps the time has come to 
use it.  
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