Svoboda | Graniru | BBC Russia | Golosameriki | Facebook

Lipid Metabolism: Critical Roles in Male Fertility and Other Aspects of Reproductive Development in Plants

Mol Plant. 2020 Jul 6;13(7):955-983. doi: 10.1016/j.molp.2020.05.009. Epub 2020 May 17.

Abstract

Fatty acids and their derivatives are essential building blocks for anther cuticle and pollen wall formation. Disruption of lipid metabolism during anther and pollen development often leads to genic male sterility (GMS). To date, many lipid metabolism-related GMS genes that are involved in the formation of anther cuticle, pollen wall, and subcellular organelle membranes in anther wall layers have been identified and characterized. In this review, we summarize recent progress on characterizing lipid metabolism-related genes and their roles in male fertility and other aspects of reproductive development in plants. On the basis of cloned GMS genes controlling biosynthesis and transport of anther cutin, wax, sporopollenin, and tryphine in Arabidopsis, rice, and maize as well as other plant species, updated lipid metabolic networks underlying anther cuticle development and pollen wall formation were proposed. Through bioinformatics analysis of anther RNA-sequencing datasets from three maize inbred lines (Oh43, W23, and B73), a total of 125 novel lipid metabolism-related genes putatively involved in male fertility in maize were deduced. More, we discuss the pathways regulating lipid metabolism-related GMS genes at the transcriptional and post-transcriptional levels. Finally, we highlight recent findings on lipid metabolism-related genes and their roles in other aspects of plant reproductive development. A comprehensive understanding of lipid metabolism, genes involved, and their roles in plant reproductive development will facilitate the application of lipid metabolism-related genes in gene editing, haploid and callus induction, molecular breeding and hybrid seed production in crops.

Keywords: anther cuticle; genic male sterility (GMS); lipid metabolism; plant reproductive development; pollen wall.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Fertility / genetics
  • Gene Expression Regulation, Plant
  • Gene Regulatory Networks
  • Genes, Plant*
  • Lipid Metabolism* / genetics
  • Plant Infertility / genetics*
  • Pollen / physiology