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Supplementary Methods

Overview. MMseqs2
(Many-against-Many sequence
searching) is a software suite to search
and cluster huge protein sequence sets.
MDMseqs2 is open source GPL-licensed
software implemented in C++ for Linux
and Mac OS. At the core of MMseqs2 is
its sequence search module. It searches
and aligns a set of query sequences
against a set of target sequences.
Queries are processed in three
consecutive stages of increasing
sensitivity and decreasing speed (Fig.
1a): (1) the fast k-mer match stage
filters out 99.9 % of sequences, (2) the
ungapped alignment stage filters out a
further 99 %, and (3) the accurate,
vectorized Smith-Waterman alignment
thus only needs to align ~ 10~° of the
target sequences.

MDMseqs2 builds on our MMseqs
software suite®, designed for fast
sequence clustering and searching of
globally alignable sequences. The k-mer
match stage of MMseqs2, which is
crucial for its improved sensitivity-speed
trade-off, has been developed from
scratch, profile-to-sequence and
sequence-to-profile searching capabilities
have been developed, and many other
powerful features and utilities have been
added (see Supplemental Table S2
for an overview of differences).

The software is designed to run on
multiple cores and servers and exhibits
nearly linear scalability. It makes
extensive use of single instruction
multiple data (SIMD) vector units which
are part of modern Intel and AMD
CPUs. For older CPUs without AVX2
support, MMseqs2 falls back to SSE4.1
instructions throughout with minimal

speed loss.

k-mer match stage. Most fast
methods follow a seed-and-extend
approach: a fast seed stage searches for
short-word (“k-mer*) matches which are
then extended to a full, gapped
alignment. Since the k-mer match stage
processes all sequences, it needs to be
much faster than the subsequent stages.
Its sensitivity is therefore crucial for the
overall search sensitivity. In contrast to
BLAST and SWORD2Y most fast
methods index the database k-mers
instead of the query sequences, using
hashes or suffix arrays, and a few index
both to streamline random memory
access during the identification of k-mer
matches#%2, To increase the seeds’
sensitivity, some methods allow for one
or two mismatched positions®#?, others
employ reduced alphabets2%23952  Nany
use spaced k-mer seeds to reduce spatial
clustering of chance matches”,
Whereas most other tools use only
single, exact k-mer matches as seeds, the
k-mer match stage of MMseqs2 detects
double, consecutive, similar-k-mer
matches occurring on the same diagonal
i— j. 1 is position of the k-mer in the
query and j is the position of the
matching k-mer in the target sequence.
This criterion very effectively suppresses
chance k-mer matches between
nonhomologous sequences as these have
a probability of only
~ 1/(Lquery + Ltarget) to have coinciding
diagonals. In contrast, consecutive
k-mer matches between homologous
sequences lie on the same diagonal if no
alignment insertion or deletion occurred
between them. A similar criterion is

used in the earlier, two-hit 3-mer seed
strategy of BLASTY. (The new version
reverts to a single-hit strategy but uses
6-mers on a reduced size-15 alphabet
instead of 3-mers.7.)

The double k-mer match criterion
effectively bases our decision to trigger
the next search stage on 11 to 14 amino
acids (depending on the number of
common residues between seeds) instead
of just 2 x 3 in BLAST or 12 letters on a
size-11 reduced alphabet in DIAMOND.
(Even though DIAMOND uses 4 seed
patterns with 12 letters, it takes
independent decisions for each of the
patterns.) The information content in
each of the reduced-alphabet letters is
3.0 in contrast to 4.2 bits for the full
20-letter amino acid alphabet.

Query sequences are searched one by
one against the target set (Fig. 1b, loop
1). For each k-mer starting position in
the query (loop 2) we generate a list of
all similar k-mers (orange frame) with a
Blosum62 similarity above a threshold
score. Lower threshold scores (option
--k-score <int>) result in higher average
numbers of similar k-mers and thereby
higher sensitivity and lower speed. The
similar k-mers are generated with a
linear-time branch-and-bound
algorithm/.

For each k-mer in the list of similar
k-mers (loop 3), we obtain from the
index table (blue frame) the list of target
sequence identifiers target_ID and the
positions j of the k-mer (green frame).
In the innermost loop 4 we go through
this list to detect double k-mer matches
by comparing the current diagonal i—j
with the previously matched diagonal for
target_ID. If the previous and current



diagonals agree, we store the diagonal
i—j and target_ID as a double match.
Below, we describe how we carry out this
computation within low-level, fast CPU
cache without random memory access.

Minimizing random memory
access. Due to the increase in the
number of cores per CPU and the
stagnation in main memory speeds in
the last decade, main memory access is
now often the chief bottleneck for
compute-intensive applications. Since it
is shared between cores, it also severely
impairs scalability with the number of
cores. It is therefore paramount to
minimize random memory accesses.

We want to avoid the random main
memory access to read and update the
value of diagonal_prev[target_ID] in
the innermost loop. We therefore merely
write target_ID and the diagonal i— j
serially into an array matches for later
processing. Because we write linearly
into memory and not at random
locations, these writes are automatically
buffered in low-level cache by the CPU
and written to main memory in batches
with minimal latency. When all k-mers
from the current query have been
processed in loop 2, the matches array is
processed in two steps to find double
k-mer matches. In the first step, the
entries (target_ID, i—j) of matches are
sorted into 2P arrays (bins) according to
the lowest B bits of target_ID, just as
in radix sort. Reading from matches is
linear in memory, and writing to the 27
bins is again automatically buffered by
the CPU. In the second step, the 27
bins are processed one by one. For each
k-mer match (target_ID, i—j), we run
the code in the magenta frame of Fig.
1b. But now, the diagonal_prev array
fits into L1/L2 CPU cache, because it
only needs ~ N/2P entries, where N is
the number of target database
sequences. To minimize the memory
footprint, we store only the lowest 8 bits
of each diagonal value in
diagonal_prev, reducing the amount of
memory to ~N/2B bytes. For example,
in the 256 KB L2 cache of Intel Haswell

CPUs we can process a database of up
to 256K x 28 sequences. To match L2
cache size to the database size, MMseqs2
sets B = ceil(log2(N/L2_size)).

Index table generation. For the
k-mer match stage we preprocess the
target database into an index table. It
consists of a pointer array (black frame
within blue frame in Fig. 1b) and k-mer
entries (green frame in Fig. 1b). For
each of the 21% k-mers (the 21st letter X
codes for "any amino acid") a pointer
points to the list with target sequences
and positions (target_ID, j) where this
k-mer occurs. Prior to index generation,
regions of low amino acid compositional
complexity are masked out using
TANTAN (see Masking low-complexity
regions)“.

Building the index table can be done
in multithreaded fashion and does not
require any additional memory. To that
end, we proceed in two steps: counting
of k-mers and filling entries. In the first
step each thread counts the k-mers, one
sequence at a time. All threads add up
their counts using the atomic function
__sync_fetch_and_add. In the second
step, we allocate the appropriately sized
array for the k-mer entries. We
transform the k-mer count array into an
offset table. Each thread picks a new
sequence from the database, parallelized
by OpenMP using #pragma omp
parallel for, and processes all k-mers
in the sequence. Each k-mer is now
written into the entry array. We can
prevent two threads writing into the
same position pointed to by the offset
pointer by fetching and incrementing it
at the same time using the atomic
__sync_fetch_and_add instruction.
Building the index table file for 3 x 107
sequences takes 7.1 minutes on 2 x 8
cores.

Memory requirements. The index
table needs 4 + 2 bytes for each entry
(target_ID, j), and one byte per residue
is needed to store the target sequences.
For a database of NL residues, we
therefore require NL x 7 B. The pointer

array needs another 21% x 8 B. The
target database set can be split into
arbitrary chunk sizes to fit them into
memory (see Parallelization).

Ungapped alignment stage. A fast,
vectorized algorithm computes the scores
of optimal ungapped alignments on the
diagonals with double k-mer matches.
Since it has a linear time complexity, it
is much faster than the Smith-Waterman
alignment stage with its quadratic time
complexity. The algorithm aligns 32
target sequences in parallel, using the
AVX2 vector units of the CPU. To only
access memory linearly we precompute
for each query sequence a matrix with
32 scores per query residue, containing
the 20 amino acid substitution scores for
the query residue, a score of —1 for the
letter X (any residue), and 11 zero
scores for padding. We gather bundles of
32 target sequences with matches on the
same diagonal and also preprocess them
for fast access: We write the amino acids
of position j of the 32 sequences
consecutively into block j of 32 bytes,
the longest sequence defining the
number of blocks. The algorithm moves
along the diagonals and iteratively
computes the 32 scores of the best
alignment ending at query position ¢ in
AVX2 register S using

S =max(0, Smatch + Sprev). The
substitution scores of the 32 sequences
at the current query position ¢ in AVX2
register Spatch are obtained using the
AVX2 (V)PSHUFB instruction, which
extracts from the query profile at
position i the entries specified by the 32
bytes in block j of the target sequences.
The maximum scores along the 32
diagonals are updated using

Smax = max(Smax, S). Alignments above
15 bits are passed on to the next stage.

Vectorized Smith-Waterman
alignment stage. We extended the
alignment library of Mengyao et al.22
which is based on Michael Farrar’s
stripe-vectorized alignment algorithm®,
by adding support for AVX2 instructions
and for sequence profiles. To save time



when filtering matches, we only need to
compute the score and not the full
alignment. We therefore implemented
versions that compute only the score
and the end position of the alignment, or
only start and end position and score.

Amino acid local compositional
bias correction. Many regions in
proteins, in particular those not forming
a stable structure, have a biased amino
acid composition that differs
considerably from the database average.
These regions can produce many
spurious k-mer matches and high-scoring
alignments with non-homologous
sequences of similarly biased amino acid
distribution. Therefore, in all three
search stages we apply a correction to
substitution matrix scores developed for
MMseqs®, assigning lower scores to the
matches of amino acids that are
overrepresented in the local sequence
neighborhood. Query sequence profile
scores are corrected in a similar way:
The score S(i,aa) for amino acid aa at
position 4 is corrected to Scor(7,aa) =

. i+20 .
S(i,aa) — 45 i 00,2 S(j,aa) +

Lquer .
! Zgil Y (]aaa)'

Lquery

Masking low-complexity regions.
The query-based amino acid local
compositional bias correction proved
effective, particularly for
sequence-to-sequence searches. However,
for iterative profile sequence searches a
very low level of false discovery rate is
required, as false positive sequences can
recruit more false positives in
subsequent iterations leading to
massively corrupted profiles and search
results in these instances. We observed
that these cases were mainly caused by
biased and low-complexity regions in the
target sequences. We therefore mask out

low-complexity regions in the target
sequences during the k-mer matching
and the ungapped alignment stage. We

use TANTAN® with a threshold of 0.9%
probability for low complexity.

Iterative profile search mode. The
first iteration of the profile-to-sequence
search is a straightforward MMseqs2
sequence-to-sequence search. We then
realign all matched sequences with
FE-values below the specified inclusion
threshold (option --e-profile

<value>, default value 0.1). At this
stage, we add a score offset of —0.1 bits
per matched residue pair to the scores of
the substitution matrix to avoid
homologous overextensions of the
alignments, a serious problem causing
many false positives in iterative profile
searches®@. In all further iterations, we
remove from the prefilter results
sequences that were previously included
in the profile and align only the newly
found sequence matches. From the
search results we construct a simple star
multiple sequence alignment (MSA) with
the query as the master sequence. We
filter the multiple sequence alignment
with 90% maximum pairwise sequence
identity and pick the 100 most diverse
sequences using C++ code adapted from
our HH-suite software packagel®. As in
HH-suite, we compute position-specific
sequence weights, which ensure that
MSAs with many matched segments that
stretch only part of the query sequence,
as occurs often for multidomain proteins,
are treated appropriately. We add
pseudocounts to the amino acid counts
of each profile column as described for
HHsearch!®, All matches included in the
profile or achieving an E-value in the
last iteration below the value given by
-e <value> are displayed.

Sequence-to-profile search mode.
To enable searching a target profile
database, we made four changes to the
search workflow (Supplementary Fig.
S11): (1) We generate a k-mer index
table for the target database by looping
over all profiles and all k-mer positions
and adding all k-mers to the index that
obtain a profile similarity score above
the threshold. Lower score thresholds
lead to more k-mers and higher
sensitivity. (2) We only look for the
exact query k-mers in the index table.

The former loop 3 is omitted. (3) The
ungapped alignment for each matched
diagonal is computed between the query
sequence and the target profile’s
consensus sequence, which contains at
each column the most frequent amino
acid. (4) The previous step produced for
each query sequence s a list of matched
profiles p with score Ss, > 15bit.
However, the gapped alignment stage
can only align profiles with sequences
and not vice versa. We therefore
transpose the scores Sy, in memory and
obtain for each profile p all matched
sequences, {s:S,s > 15bit}, which we
pass to the gapped alignment stage.
Finally, the results are transposed again
to obtain for each query sequence a list
of matched profiles.

Algorithmic novelty in MMseqs2.
MDMseqs2 builds upon many powerful
previous ideas in the sequence search
field, such as inexact k-mer matching,
finding two k-mers on the same
diagonall, or spaced k-mers'3. In
addition to carefully engineering every
relevant piece of code for maximum
speed, we introduce with MMseqs2
several novel ideas that were crucial to
the improved performance: (1) the
algorithm to find two consecutive,
inexact k-mer matches (Fig. 1b); (2) the
avoidance of random memory accesses in
the innermost loop of the k-mer match
stage (Supplementary Fig. S1); (3)
the use of 7-mers, which is only enabled
by the fast generation of similar k-mers
(~ 60000 per k-mer in sensitive mode);
(4) iterative profile-sequence search
mode including profile-to-sequence
vectorized Smith-Waterman alignment;
(5) sequence-to-profile search mode; (6)
the introduction of a fast, vectorized
ungapped-alignment step (Fig. 1a); (7)
a fast amino acid compositional bias
score correction on the query side that
suppresses high-scoring false positives.

Parallelization. Due to the
stagnation in CPU clock rates and the
increase in the number of cores per
CPU, vectorization and parallelisation



across multiple cores and servers is of
growing importance for highly
compute-intensive applications. Besides
careful vectorization of time-critical
loops, MMseqs? is efficiently parallelized
to run on multiple cores and servers
using OpenMP and message passing
interface (MPI).

OpenMP threads search query
sequences independently against the
target database and write their result
into separate files. After all queries are
processed, the master thread merges all
results together.

To parallelize the time-consuming
k-mer matching and gapless alignment
stages among multiple servers, two
different modes are available. In the
first, MMseqs2 can split the target
sequence set into approximately
equal-sized chunks, and each server
searches all queries against its chunk.
The results from each server are
automatically merged. Alternatively, the
query sequence set is split into
equal-sized chunks and each server
searches its query chunk against the
entire target set. Splitting the target
database is less time-efficient due to the
slow, IO-limited merging of results. But
it reduces the memory required on each
server to NL x 7B/#chunks + 21* x 8 B
and allows users to search through huge
databases on servers with moderate
memory sizes. If the number of chunks is
larger than the number of servers,
chunks will be distributed among servers
and processed sequentially. By default,
MDMseqs2 automatically decides which
mode to pick based on the available
memory on the master server.

MMseqs2 software suite. The
MDMseqs2 suite consists of four
simple-to-use main tools for standard
searching and clustering tasks, 37 utility
tools, and four core tools ("expert
tools"). The core tool

mmseqs prefilter runs the first two
search stages in Fig. la, mmseqs align
runs the Smith-Waterman alignment
stage, and mmseqs clust offers various
clustering algorithms. The utilities

comprise format conversion tools,
multiple sequence alignment, sequence
profile calculation, open reading frame
(ORF) extraction, 6-frame translation,
set operations on sequence sets and
results, regex-based filters, and statistics
tools to analyse results. The main tools
are implemented as bash-scripted
workflows that chain together core tools
and utilities, to facilitate their
modification and extension and the
creation of new workflows.

Design of sensitivity benchmark.
Some recent new sequence search tools
were only benchmarked against short
sequences, using BLAST results as the
gold standard* %2523 Short matches
require fairly high sequence identities to
become statistically significant, making
BLAST matches of length 50 relatively
easy to detect. (For a sequence match to
achieve an E—value < 0.01 in a search
through UniProt requires a raw score of
~ 40 bits, which on 50 aligned residues
translates to a sequence identity

> 40%). Because long-read,
third-generation sequencing technologies
are becoming widespread, short-read
technologies are improving read lengths,
and ORFs and putative genes in
metagenomics are commonly predicted
from assembled contigs, we constructed
a benchmark set using full-length queries
and database sequences, not just
sequences of structured domains as
usually done. Including disordered
regions, membrane helices, and other
low-complexity regions is important
since they often give rise to false-positive
sequence matches, particularly in
iterative sequence searches.

Because we cannot use BLAST or
SWIPELY as gold standard if we want to
compare other tools with them, we use
evolutionary relationships that have
been determined on the basis of
structures as gold standard. SCOPY4 is
a database of protein domains of known
structure organised by evolutionary
relationships.

We defined true positive matches to
have annotated SCOP domains from the

same SCOP family, false positives match
a reversed sequence. In the first
benchmark version matches to a
sequence with a SCOP domain from a
different fold except the beta propellers
(which are known to be homologous™?)
are also conside--red false positives.
Other cases are ignored. -- The false
discovery rate (FDR) For a single search
is computed as FDR = FP/(FP + TP),
where TP and FP are the numbers of
true and false positive matches below a
cutoff score in that search. To prevent a
few searches with many false positives
from dominating the FDR, we computed
the FDR for all searches as arithmetic
mean over the single-search FDRs.

We measure the sensitivity of search
tools using a receiver operating
characteristic (ROC) analysis”?. We
search with a large set of query
sequences through a database set (see
next paragraph) and record for each
query the fraction of true positive
sequences detected up to the first false
positive. This sensitivity is also called
area under the curve 1 (AUC1). We
then plot the cumulative distribution of
AUCI1 values, that is, the fraction of
query sequences with an AUCI value
larger than the value on the x-axis. The
more sensitive a search tools is the
higher will its cumulative distribution
trace lie. We do not analyse only the
best match for every search in order to
increase the number of matches and to
thereby reduce statistical noise.

Benchmark set. The
SCOP/ASTRAL (v. 1.75) database was
filtered to 25% maximum pairwise
sequence identity (7616 sequences), and
we searched with each SCOP sequence
through the UniRef50 (06/2015)
database, using SWIPELS and, for
maximum sensitivity, also three
iterations of HHblits. To construct the
query set, we chose for each of the 7616
SCOP sequences the best matching
UniRef50 sequence for the query set if
its SWIPE E-value was below 1072,
resulting in 6370 query sequences with
7598 SCOP-annotated domains. In the



first version of the benchmark (Fig. 2),
query sequences were shuffled outside of
annotated regions within overlapping
windows of size 10. This preserves the
local amino acid composition while
precluding true positive matches in the
shuffled regions. In the second version of
the benchmark, query sequences were
left unchanged (Supplementary Fig.
S3, S4, S5, S6).

To construct the target database, we
selected all UniRef50 sequences with
SWIPE or HHblits E—value < 107° and
annotated them with the corresponding
SCOP family, resulting in 3374 007
annotations and a median and average
number of sequences per SCOP family of
353 and 2150, respectively. Since the
speed measurements are only relevant
and quantitative on a database of
realistic size, we added the 27 056 274
reversed sequences from a 2012 UniProt
release. Again, the reversion preserves
the local amino acid composition while
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ruling out true positive matches™. We
removed the query sequences from the
target database and removed queries
with no correct matches in the target
database from the query set.

Benchmarking. We evaluated results
up to the 4000th match per query
(ranked by E-value) and, for tools with
an upper limit on the number of
reported matches, set this limit via
command line option to 4000. The
maximum F-value was set to 10000 to
detect at least one false positive and to
avoid biases due to slightly different
FE-value calculations. Because the
MMseqs2 prefilter is already very
sensitive and returns proper E-values,
the Smith-Waterman alignment stage is
not needed in the "fast" and "faster"
versions. Program versions and calls are
found in the Supplemental Table S3.
All benchmarks were run on a single
server with two Intel Xeon E5-2640v3

CPUs (2 x 8 cores, 2.6 GHz) and 128GB
memory. Run times were measured
using the Linux time command, with
the target database (70 GB, 30.4 M
sequences) on local solid state drives.
Since some search tools are
speed-optimized not only for large target
databases but also for large query sets,
we duplicated the query set 100 times
for the runtime measurements, resulting
in 637000 query sequences. For the
slowest tools, SWIPE, BLAST and
RAPsearch2, we scaled up the runtime
for the original query dataset 100-fold.

Data availability. Parameters and
scripts for benchmarking are deposited
at https://bitbucket.org/martin_
steinegger/mmseqs-benchmark.

Code availability. The source code
and binaries of the MMseqs2 software
suite can be download at
https://mmseqgs.org,.
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Supplementary Figures and Tables
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written linearly to RAM
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Figure S 1: Eliminating random memory access during k-mer match stage in MMseqs2 Numbers in this figure are
represented in hexadecimal notation (e.g. 0xFF is equal to 255 in decimal). After the end of loop 2 (Fig. 1B), the matches
array on the left, containing single k-mer matches between the query sequence and various target sequences, is processed in two
steps to find double k-mer matches. In the first step, the entries (target_ID, i—j) of matches are sorted into 27 arrays (bins)
according to the lowest B bits of target_ID. Here, for illustration purposes, we set B = 8. In the second step, the 2Z bins are
processed one by one. For each k-mer match (target_ID, i—j), we run the code in the magenta frame of Fig. 1B. But now,
the diagonal_prev array fits into L1/L2 CPU cache, because it only contains ceil(N/25) entries, where N is the number of

Run code to find double k-mer matches
within L2 CPU cache (see Figure 1B)

// Run code to find double k-mer matches
// within L2 CPU cache bin by bin

for each bin {
for each (target_ID, diag) in bin {

if( diagonal_prev[target_ID] == diag )
// This store is linear and therefore
// buffered in L2 cache:
store double match (target_ID, diag)

// Update diagonal of previous match
//in L2 cache:
diagonal_prev[target_ID] = diag
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Figure S 2: Multi-core scaling of MMseqs2 Runtimes of MMseqs and MMseqs2 searches in fast and default sensitivity
using 1, 2, 4, 8 and 16 threads on a 2 x 8 core server with 128 GB main memory. Theoretically optimal scaling is indicated as
a dashed black line for each method. We searched with 6370 full length protein queries against 30 Mio. UniProt sequences. On
16 cores, MMseqs achieves 58% and MMseqs2 85% of their theoretical maximum performance interpolated from the single core

measurement. The improvement in scaling behaviour from MMseqgs to MMseqs2 is owed to minimizing random main memory
accesses, as explained in Fig. S1.
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Figure S 3: Runtime of MMseqs2 against the UniProt at different sensitivity and database split settings. We
measured the search time with query sets of 10000 and 100000 sequences through the UniProt database (Release 2017 03 with
80204 488 sequences) using four sensitivity settings (faster, fast, default, and sensitive) and splitting the database into 1, 2,
and 4 chunks. Runtimes for Refseq/Genbank (Release March 3, 2017 with 81 027309 sequences) are very similar. The memory

consumption of the index table for the split levels of 1, 2, and 4 was 190GB, 101GB, and 57GB respectively. All searches ran on
a 2x 14-core server with 768 GB main memory.
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Figure S 4: False discovery rate versus E-value threshold in version 2 of the sequence search sensitivity benchmark using
unshuffled query sequences. Colors are the same as in Fig. 2a
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Figure S 5: Sequence searching sensitivity assessment with unshuffled query sequences. Cumulative distribution
of area under the curve (AUC) sensitivity for all 6324 queries in version 2 of the sequence search sensitivity benchmark using
unshuffled query sequences. Higher curves signify higher sensitivity.
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Figure S 6: Sequence profile searching sensitivity assessment with unshuffled query sequence profiles. Cumulative
distribution of area under the curve (AUC) sensitivity for all 6324 unshuffled query sequences in version 2 of the sequence search
sensitivity benchmark using unshuffled query sequences. Higher curves signify higher sensitivity. Higher curves signify higher
sensitivity. 2 IT: 2 search iterations etc.
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Figure S 7: False discovery rate versus F-value threshold in version 2 of the sequence profile search sensitivity benchmark using
unshuffled query sequences.
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Figure S 8: Accuracy of reported FE-values. The expected number of false positives is the E-value threshold times the
number of searches, E' x 6324. The observed number of false positives is the total number of false positives below the E-value
threshold in all 6324 searches. If E-values were accurate, observed and expected numbers of false positives would coincide
(diagonal grey line). LAST and MMseqs2 report the most accurate E-values. The false positives shown were obtained with
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version 2 of the sequence search sensitivity benchmark. Colors are the same as in Fig. 2a.
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Figure S 9: Sequence searching sensitivity assessment with single-domain SCOP sequences. Cumulative distribution
of area under the curve (AUC) sensitivity for all 7616 single domain SCOP sequences. Higher curves signify higher sensitivity.
AUC up to the first false positive is the fraction of true positive matches found with better F-value than the first false positive
match.
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Figure S 10: False discovery rate versus E-value threshold for the single-domain SCOP sequence search sensitivity benchmark.
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Figure S 11: Workflow for fast and deep annotations of the Ocean Microbiome Reference Gene Catalog (OM-RGC) using
MMseqs2.
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Figure S 12: Algorithmic changes to perform fast sequence profile searches using MMseqs2. We precompute all
similar k-mers above a similarity threshold for each target profile and store them into the index table. For each query sequence
we run over its overlapping, spaced k-mers (loop 2) and look up in the index table (blue frame) only the exact same k-mer. At
the ungapped alignment stage we use the target profile consensus sequence. We transpose the results, i.e., we exchange the role
of query and target in the results and then, as the last step, align the profiles against all query sequences and transpose back.
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Feature MDMseqs MMseqgs2 Remark

Iterative profile sear- | no yes Iterative profile searches increase sensitivity far

ches beyond the sensitivity of BLAST

Sequence-to-profile no yes Protein sequences can be annotated very fast by

searches searching through databases of profiles, e.g. for

Pfam, eggNOG, or PDB

k-mer match stage Sums up similarity | Finds consecu- | MMseqs aggregates scores of spurious matches

scores of similar 6- | tive double T7-mer | across all possible Lquery X Liarget Start positions.

mers between pairs of
sequences

matches on the same
diagonal

OK for global alignment, but suboptimal for lo-
cal similarities. MDMseqs2’s consecutive double-
diagonal k-mer match criterion suppresses most
spurious matches and also works well for local
similarities.

Fast gapless
ment stage

align-

no

yes (AVX2 / SSE2)

Increases sensitivity-versus-speed trade-off by al-
lowing MMseqs2 to evaluate more matches from
the k-mer matching stage while still reducing the
number of Smith-Waterman alignments

Multicore scalability

Speed-up for 16 cores

Speed-up for 16 cores

MDMseqs2 minimizes random memory access by

is 9.3-fold is 13.7-fold better utilizing low-level CPU caches (Supple-
mentary Figures S1, S2)
Suppression of false | Compositional bias | Compositional bias | MMseqs2 eliminates high-scoring false positives

positive matches

score correction on
query side in k-mer
match stage

score correction on
query and target side
in all three stages

much more effectively than MMseqs

Clustering methods

simple greedy strat-
egy

Simple greedy set-
cover, single-linkage
with depth cut-off

MDMseqs2 has an option to reassign cluster mem-
bers to the best representative

Utility scripts 3 37  (see MMseqs2 | MMseqgs2 has added utility tools for format con-
userguide on GitHub) | version, multiple sequence alignment, sequence
profile calculation, ORF extraction, 6-frame
translation, operations on sequence sets and re-
sults, regex-based filters, and statistics tools to
analyse results
Distribution of jobs | no yes MMseqs2 uses Message Passing Interface
on computer cluster
Split target database | no yes Allows MMseqs2 to search or cluster arbitrarily
among servers large databases with limited memory
SIMD parallelization | SSE2 AVX2 (SSE4.1 if no | AVX2 has two-fold higher parallelism and is
support for AVX2) therefore faster
Lines of code 10000 30000 A large proportion of the MMseqgs code has been

rewritten from scratch and considerably modified
for better performance.

Table S 1: Comparison between MMseqs and MMseqs2.
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Method Fractions of queries con- Number of reported false positive matches with FE-
taining a false positive value< 1072 (Expected number = 6370 x 1073 =
with E-value < 1073 0.637)

MMseqs2 sens 0.001 39

MMseqs2 0.001 54

MMseqs2 fast 0.002 126

MDMseqs2 faster 0.001 9

UBLAST 0.107 380807

DIAMOND 0.050 69211

DIAMOND sens 0.067 124906

LAST sense 0.001 7

LAST 0 0

BLAST 0.022 1313

RAPsearch2 0.044 141665

SWORD sens 0.131 676566

MMseqsl 0.159 537403

SWIPE 0.124 788356

MMseqs2 2 IT 0.013 6202

MMseqgs2 3 IT 0.024 44270

MMseqs2 4 IT 0.031 94747

PSI-BLAST 2 IT 0.253

PSI-BLAST 3 IT 0.294 1.01498e+-06

PSI-BLAST 4 IT 0.299 1.13397e+4-06

Table S 2: Analysis of high-scoring false positive matches in 6370 searches with UniProt sequences through a database of 30
million UniProt-derived sequences. For most tools, a seemingly significant E-value (e.g. smaller than 0.001) is not a strong
indication of a homologous relationship. In automatic functional annotation pipelines, such unreliable E-values will lead to an
increased fraction of false annotations. But note that even unreliable F-values can work very well for ranking matches within a
single search, and the quality of ranking matches within a single search is what is measured by the AUCI sensitivity.
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Method Version Database Command

MDMseqs2 2.0 createindex -k 7 search --k-score (95 | 85) -e 10000.0

(normal | sense) --max-seqs 4000

MMseqs2 2.0 createindex -k 7 prefilter --k-score (140 | 115 )

(very fast | fast) --max-seqs 4000

MMseqs 1.0 fasta2ffindex --z-score-thr 10.0 -s 4 --max-seqs 4000 -c 0.0 -e 10000.0

SWIPE 2.0.11 makeblastdb -dbtype prot -e 10000.0 -a 16 -v 4000 -b 4000

RAPsearch2 2.23 makeblastdb -dbtype prot -v 4000 -z 16 -e 4 -t a -b 0

UBLAST 7.0.1090 -makeudb_ublast -threads 16 -evalue 10000.0 -ublast

SWORD sens commit -t 16 -a 4000 --evalue 10000

fcb2117

LAST last-712 lastdb -cRO1 -p -v -P 16 -u3 -D100

LAST sens last-712 lastdb -cR0O1 -p -v -P 16 -m 4000 -u3 -D100

DIAMOND sens 0.7.9.58 diamond makedb --max-target-seqs 4000 --evalue 10000.0 -t /dev/shm
--threads 16 ( --sensitive)

BLAST 2.2.31+ makeblastdb -dbtype prot -num_ descriptions 4000 -num__alignments 4000
-num__ threads 16 -evalue 10000.0

PSI-BLAST 2.2.31+ makeblastdb -dbtype prot -num_ descriptions 4000 -num__alignments 4000
-num__threads 16 -num__iterations (2,3,4)

MMseqs2 profile 2.0 createindex -k 7 --num-iterations (2,3,4) -k 7 -s 5.7 -e 10000.0

--max-seqs 4000 --use-index

Table S 3: Program versions and command line parameters of tools used in the benchmark.
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