
Real-Time Website Fingerprinting Defense via Traffic Cluster Anonymization

Meng Shen∗, Kexin Ji†, Jinhe Wu∗, Qi Li‡, Xiangdong Kong∗, Ke Xu§, and Liehuang Zhu∗
∗School of Cyberspace Science and Technology, Beijing Institute of Technology

†School of Computer Science, Beijing Institute of Technology
‡Institute for Network Sciences and Cyberspace, Tsinghua University
§Department of Computer Science and Technology, Tsinghua University

{shenmeng, jikexin, jinhewu, xiangdongkong, liehuangz}@bit.edu.cn; {qli01, xuke}@tsinghua.edu.cn

Abstract—Website Fingerprinting (WF) attacks significantly
threaten user privacy in anonymity networks such as Tor.
While numerous defenses have been proposed, they are unable
to efficiently defend against recent deep learning based WF
attacks. In this paper, we propose Palette, a novel and practical
WF defense that utilizes traffic cluster anonymization to pro-
tect live Tor traffic. By clustering websites with high similarity
in traffic patterns and regulating them into a well-designed
uniform pattern for a cluster (i.e., a group of similar websites),
Palette prevents attackers from distinguishing between these
similar websites within the cluster and further provides a
strong anonymity guarantee. Comprehensive evaluations with
public real-world datasets show that Palette is superior to
the existing defenses, greatly reducing the accuracy of the
state-of-the-art (SOTA) WF attacks with acceptable overheads.
Furthermore, we implement Palette as a Pluggable Transport
in the Tor network. The experiment results demonstrate that,
on average, Palette effectively reduces the accuracy of the
SOTA WF attacks by 73.60%, which improves the existing
defenses by 33.50%-43.47%.

1. Introduction

The Onion Router (Tor) is one of the popular anonymous
communication services [1], which enables millions of users
to access the Internet without revealing their identities.
However, Tor has been proven to be vulnerable to various
Website Fingerprinting (WF) attacks [2]. By constructing
WF attacks, a local eavesdropper can utilize the side-channel
information (e.g., timing, size, and direction) of packets
between a Tor client (i.e., the victim) and the corresponding
Tor guard node to infer the website that the victim is visiting,
which poses serious privacy risks for Tor users.

Recent studies have proposed various defenses that
leverage packet padding and delaying to mitigate WF attacks
on Tor. As shown in Table 1, existing defenses mainly
depend on two strategies: obfuscation and regularization.
Obfuscation-based defenses disturb traffic patterns by ran-
domizing packets sending [3–5]. However, since all defenses
deployed on Tor are publicly available, the attackers can
utilize the defended traffic for adversarial training, leading
to evading the defenses [6–9]. Regularization-based defenses

aim to reshape traffic into one or multiple pre-defined pat-
terns [10–17]. Nevertheless, they cannot be applied to live
traffic due to the high overhead or informative feature leaks.
For example, some defenses [12–14] compute fix patterns
(i.e., the precise direction and timestamp for each packet)
in advance and these patterns cannot be matched by packets
in the live traffic, resulting in delaying the live packets
significantly. Although dynamic pattern reshaping [15–17]
can mitigate the issue, it also leaks the important informa-
tive features [9], which can be further abused to construct
sophisticated attacks. As a result, it remains a challenging
task to protect live Tor traffic against the SOTA WF attacks.

In this paper, we propose Palette, which aims to achieve
effective and highly deployable WF defense with low over-
head by utilizing traffic cluster anonymization. Inspired by
the k-anonymity technology, Palette constructs anonymity
sets (i.e., clusters) consisting of at least k websites with high
similarity in traffic patterns and regulates the traffic traces
in the same anonymity set into a uniform pattern with low
overhead, preventing attackers from distinguishing between
these websites. Specifically, we utilize a representation of
traffic matrix to capture informative features of Tor traffic.
Based on the representation, we propose a three-step de-
fense workflow to protect Tor traffic. First, we design an
anonymity set generation module to group websites with
similar traffic distributions into a cluster (i.e., the same
anonymity set) and then construct a uniform traffic pattern
that can unify the traffic features of different websites.
Second, we refine the uniform traffic pattern based on the
historical traffic traces, which can be matched by the live
traffic and further reduce the bandwidth and time overhead
of the traffic, while retaining its effectiveness. Finally, we
design a trace regularization module that regulates the live
traffic online according to the refined traffic pattern.

To provide a theoretical analysis on Palette, we utilize
the information leakage measurement framework (WeFDE)
[19], an information theory-based framework, to analyze
the amount of information that potential attackers can learn
based on specific features used for fingerprinting the de-
fended traffic. The analysis demonstrates that Palette leaks
less information than SOTA WF defenses, proving the effec-
tiveness of Palette in defending against potential WF attacks.

We extensively evaluate the performance of Palette. Par-

TABLE 1: The comparison with the existing WF defenses.

Defense
Categories

Typical
Methods

Trace
Representation

Defense Characteristics
Resisting
AdvTrain

1 Adapting to
Live Traffic

Masking
Informative Features

Achieving
Moderate Overhead

2

Obfuscation
WTF-PAD [3] Packet Sequence % ! % !

FRONT [4] Packet Sequence % ! % !

BLANKET [5] Packet Sequence % ! % !

Regularization

BuFLO Family [10–12] Packet Sequence ! % ! %

Supersequence [14] Packet Sequence ! % ! %

Glove [13] Packet Sequence ! % ! %

Walkie-Talkie [15] Burst Sequence % ! % !

RegulaTor [16] Packet Surges % ! % !

Surakav [17] Burst Sequence % ! % !

Palette Traffic Matrix ! ! ! !

1 We refer to a defense as resisting AdvTrain if it can make the accuracy of existing attacks with adversarial training less than 50%.
2 Following the literature [18], moderate overhead means the bandwidth overhead (BOH) and time overhead (TOH) of a defense are less than 100% and 50%, respectively.

ticularly, we compare it with the existing WF defenses on the
public dataset in the closed- and open-world scenarios. The
results demonstrate that Palette achieves the best defense
performance, reducing the accuracy of the SOTA attack [9]
by 61.97%. Compared with the SOTA WF defense (i.e.,
RegulaTor [16]), Palette can further reduce the accuracy by
up to 16.68%, with a similar bandwidth and time overhead.

In order to demonstrate the practicality of Palette, we
prototype Palette by utilizing Pluggable Transports [20] that
can be deployed in real Tor networks. In the real-world
scenario, we collect the closed-world dataset and compare
Palette with four representative WF defenses, i.e., Tama-
raw [12], FRONT [4], RegulaTor [16] and Surakav [17].
The results show that with a similar or even less overhead,
on average, Palette effectively reduces the accuracy of the
SOTA WF attacks by 73.60%, which improves the existing
defenses by 33.50%-43.47%.
Contributions. The main contributions are as follows:
• We propose Palette, a real-time defense based on traffic

cluster anonymization that can protect live Tor traffic
against various WF attacks.

• We utilize information leakage analysis to theoretically
prove the effectiveness of Palette. The analysis shows
that Palette leaks less information than other defenses,
demonstrating the superiority of Palette to defend against
potential attackers.

• We conduct extensive experiments with public datasets to
evaluate the performance of Palette as well as the SOTA
defenses against multiple representative WF attacks. The
results in both closed- and open-world scenarios demon-
strate that Palette exhibits superiority in resisting adversar-
ial training and significantly outperforms existing defenses
in terms of effectiveness and overhead.

• We prototype our defense to prove that Palette is a deploy-
able defense and compare it with representative defenses
to evaluate its effectiveness against SOTA attacks in the
large datasets collected in the real Tor network. Results
show that Palette achieves the largest accuracy reduction
of the representative WF attacks with an acceptable over-
head in the real world.

The rest of the paper is organized as follows. We first
introduce the related work in Section 2 and the preliminaries
in Section 3. Then, we present the high-level design of
Palette in Section 4 and the design details in Section 5. Next,
we conduct a comprehensive evaluation on the performance
of Palette in Section 6. We evaluate its resilience against
potential adaptive attacks in Section 7. Finally, we conclude
this paper and discuss relevant issues in Section 8.

2. Related Work

WF attacks and defenses are a hot research topic in
traffic analysis. In this section, we briefly review the existing
WF attacks and defenses.

2.1. WF Attacks

WF attacks in the early stage rely on traditional machine
learning models that utilized manually crafted statistical
features (e.g., Support Vector Machine (SVM) [21], k-
Nearest Neighbors (k-NN) [14] and Random Forests [22])
to distinguish between different websites.

Recent WF attacks [6–8, 23] achieve high accuracy by
leveraging deep neural networks (DNNs) with raw traffic
information (e.g., packet directions and timestamps) as input
to enable automated feature engineering. The latest research
shows that combining feature engineering with deep learn-
ing can significantly improve WF attack performance [9],
particularly against recent WF defenses.

2.2. WF Defenses

To defend against WF attacks, existing WF defenses
typically disturb traffic patterns of the original traffic by
dummy packets padding or real packets delaying according
to different strategies, which can be roughly divided into
two categories: obfuscation and regularization.
Obfuscation Defenses. These defenses try to use less band-
width and time overhead to hide the most distinguishing
features in traffic, thus reducing the accuracy of WF attacks.

WTF-PAD [3] uses adaptive padding to hide distinctive
large time gaps between bursts. FRONT [4] proposes using
Rayleigh distribution to randomly sample the timestamps
for dummy packets and inject them into traffic to obfus-
cate feature-rich fronts. However, these defenses have been
defeated by recent DNN-based WF attacks [6–9].

Recent research also exploits the vulnerability of deep
neural networks to adversarial examples to design effective
obfuscation defenses against DNN-based WF attacks [24].
These defenses only require small and carefully crafted
perturbations based on the input of DNNs to reduce the
accuracy of WF attacks significantly. However, these at-
tackers either require traffic to be known before generating
the perturbation [25, 26], which is impractical for real-
time deployment, or follow the assumption in other do-
mains [27, 28] where the perturbations are agnostic to the
attacker [5, 29–32], underestimating the real ability of WF
attackers in Tor [18], i.e., the attacker is aware of the defense
and can use the defended traffic for adversarial training.
Regularization Defenses. This type of defense aims to map
websites into predefined traffic patterns so that the defended
traffic of websites has high similarity to achieve high secu-
rity. The early stage defenses, such as BuFLO family [10–
12], try to send packets at a fixed order with a constant
rate to map all websites into a uniform pattern, resulting
in extremely high bandwidth and time overhead. To reduce
overhead, RegulaTor [16] only focuses on regulating the
coarse feature on traffic, i.e., infrequent and irregular surges
of packets, while leaving the other features unmasked.

Glove [13] and Supersequence [14] group traffic into
clusters and map them into a uniform pattern for each group
to achieve provable security. However, these defenses are
less practical due to the prohibitively heavy bandwidth and
time overhead. In comparison, Palette shows high effective-
ness with moderated overhead when deployed in the Tor
network. Walkie-Talkie aims to regulate the traffic from one
website into the traffic from another to construct collisions,
where at least two traffic from different websites have the
same pattern. However, since it only considers the burst
feature [7, 9], it needs to modify the browser to talk in half-
duplex mode, and it is vulnerable to recent attacks based on
the timing feature. Surakav [17] uses Generative Adversarial
Networks (GANs) to generate realistic traffic patterns and
regulate traffic to match the generated pattern with moderate
overheads. However, it is less effective against the latest
attack [9], and GAN training requires a large dataset and
high computational complexity.
Other Defenses. These defenses split the traffic to destroy
the original fingerprints of websites. They do not lead to
time or bandwidth overhead but have implementation diffi-
culties, e.g., HyWF [33], TrafficSliver [34] and CoMPS [35]
propose to split traffic over several Tor sub-circuits in a
highly random manner and merge it to the guard, mid-
dle node and a migration-supporting server, respectively.
However, such defenses only protect against the attacker
observing a single path. Local attackers, such as those under
the same network, can observe the complete traffic, thus
weakening the effectiveness of such defenses.

Middle

Adversary

Tor Network

Guard
Exit

Tor Traffic Tor Defended TrafficRaw Traffic

Figure 1: The threat model of WF attacks and defenses.

3. Threat Model and Problem Statement

3.1. Threat Model

The threat model of WF attacks is shown in Figure 1. We
follow the same assumption with prior works [6, 22, 36, 37],
where the attacker is a local and passive eavesdropper that
can only collect packets from the connection between the
client and the Tor guard node, but cannot modify, drop, or
decrypt packets. Potential attackers that might launch WF
attacks include eavesdroppers on the client’s local network,
Internet Service Providers (ISPs), Autonomous Systems
(AS), or malicious Tor guard nodes.

WF attack is usually considered a classification problem.
In the training process, the attacker extracts features from a
collection of website traffic and trains a supervised classifier
offline. When launching the WF attack, the attacker captures
the traffic from the target client’s connection to the Tor
network, extracts features, and predicts with the classifier
which website the client is visiting. It is worth noting that
the attacker can perform adversarial training as an adaptive
strategy to undermine WF defenses, by collecting defended
traffic to retrain the classifier.

To defend against attackers, WF defense can be deployed
on the client and the Tor middle node. It can inject dummy
packets or delay real packets to generate defended traffic.
We follow the assumption in prior works [13, 14] that the
Tor client can know the identity of the website the user is
going to visit. Based on this information, the Tor client can
negotiate with the Tor middle node for a more sophisticated
defense. We also assume that the client visits one page at
a time so that the attacker knows the start and end of a
page load. This presents a more challenging scenario for
defenders, as attacking in a multi-tab browsing scenario is
generally considered difficult [4, 38, 39].
Closed- and Open-World Scenarios. They are commonly
used to evaluate the performance of WF attacks and de-
fenses. In the closed-world scenario, the client is only
assumed to visit a small set of websites known as monitored
websites. The attacker thus has samples of these websites to
train a classifier for website classification. The open-world
scenario is more realistic, where the client visits a set of
monitored websites and a much larger set of unmonitored
websites. The attacker, who can only obtain a fraction of the
unmonitored websites for training, infers whether the client
visits the monitored websites and, if so, which ones.

1. Anonymity Set Generation 2. Super-Matrix Refinement

Anonymity Sets

···

Outgoing Packets Incoming Packets Empty SlotSlot with Packets

W4W2 W7

W9W8W5

W1 W3 W6

···

Super-M
atrix C

onstruction

Super-Matrix Shrinking Super-Matrix Sampling

Weight
Training

···
···

6

20

4

1520

5

···
···

2

8

1

412

1

Historical traces in the anonymity set

3. Trace Regularization

Online Regularization

Density
Estimation

···
···

0

2

1

08

0

Extraction
Feature

reference

Buffer Buffer

1) Early Sending

2) Tail Padding

Dormancy

Congestion

···

···
···

TAM Website Clustering

···

Free

Figure 2: Palette overview: 1) Generate anonymity sets and corresponding super-matrices through website clustering. 2)
Refine super-matrices using historical traces to lower overhead. 3) Use refined super-matrices for online trace regularization.

3.2. Problem Statement

In the WF scenario, we define the traffic trace as a
sequence of packets collected during the page loading,
denoted as f = [(t1, d1), (t2, d2), . . . , (t|f |, d|f |)], where |f |
is the total number of packets in the trace. ti and di are the
timestamp and the direction of the i-th packet, respectively.
In particular, di = +1 denotes an outgoing packet, and −1
denotes an incoming packet. Since Tor packets (as noted as
cells) are all padded to the same size, we use timestamps
and directions to represent packets.

To generate a defended trace f ′, WF defenses can inject
dummy packets, (t′, d′), and delay real packets by δ seconds,
i.e., (ti + δ, di), leading to bandwidth and time overhead,
respectively. Following prior works [4, 16, 17], bandwidth
overhead B(f, f ′) is the ratio of the number of dummy
packets to real packets, denoted by |f ′|/|f | − 1, while
time overhead T (f, f ′) is the ratio of the delayed time
experienced by the last real packet, denoted by t∗/t|f | − 1,
where t∗ is the timestamp of the last real packet in f ′.

Our problem is to design an efficient defense that can
effectively reduce the accuracy of WF attacks, especially
enhanced by adversarial training. As shown in Table 1, the
SOTA obfuscation defenses [3–5] fail to provide sufficient
protection against adversarial training. On the other hand,
regularization defenses [10–17] can achieve stronger pro-
tection by reshaping the traffic into predefined patterns [10–
17]. However, applying these patterns to live traffic is not
trivial, as it faces two major challenges. First, the predefined
patterns should be based on an informative high-level rep-
resentation. Some defenses [10–14] using per-packet repre-
sentation (e.g., sequence of packet direction and timestamp)
to assign the fixed direction and timestamp for each packet
may be over-detailed and can easily mismatch with the
live traffic, making them less efficient (introduce expensive
overhead in terms of packet padding and delaying). While
the high-level representation (e.g., burst sequence and packet
surges) can be regulated with less overhead [15–17], they
often lead to high information loss. Defenses that utilize

these representations thus leave other informative features
unmasked and can be exploited by potential attackers [7, 9].

The second challenge is that these patterns should be
well-designed to accommodate the different traffic distribu-
tions of the websites. Some defenses [10–12, 15–17] ignore
both the variances and similarities in traffic distribution
across websites. They might, for example, regulate all web-
sites into a uniform fixed pattern [12, 16] or blindly reshape
each website into a random pattern chosen from a set of
candidate patterns [15, 17], making it hard to lower their
overhead. While some defenses [16, 17] employ various
real-time adjustment strategies to achieve a reasonable over-
head, they inevitably leak informative features, weakening
their protection.

4. Overview of Palette

In this section, we introduce our defense Palette that
overcomes the two mentioned challenges. To address the
first challenge (an informative high-level representation), we
employ a new trace representation called Traffic Aggrega-
tion Matrix (TAM) [9], which aggregates multi-dimensional
information to capture more informative features (as de-
tailed in Section 5.1). We solve the second challenge (a
well-designed uniform pattern) by exploiting the similarities
across websites rather than using a fixed or random pattern.
The basic idea of Palette is to group at least k websites with
high similarity in terms of traffic traces into an anonymity
set and construct a uniform pattern (called super-matrix) to
achieve traffic cluster anonymization, i.e., each website in
the anonymity set cannot be distinguished by the attacker
from at least k − 1 other websites. The constructed pattern
is highly correlated with websites in the anonymity set,
enabling live traffic to align to it with a more reasonable
overhead. Palette consists of three main components, includ-
ing Anonymity Set Generation, Super-Matrix Refinement,
and Trace Regularization, as shown in Figure 2.
Anonymity Set Generation. This module first extracts the
TAM representations from traffic traces and then groups

websites with similar patterns into the same anonymity set.
To ensure the high degree of anonymity1 in each set, we first
perform a carefully designed website clustering method that
ensures each anonymity set contains at least k websites with
high similarity in terms of traffic patterns. Then, for each
anonymity set, we construct a super-matrix that can cover
all website traces using packet padding in each anonymity
set. We will present the details in Section 5.2.
Super-matrix Refinement. The initial super-matrix can
provide a high anonymity degree. However, it is a dense
matrix with high values as it covers all traces to ensure a
uniform pattern, leading to high bandwidth overhead. In this
module, we perform two strategies to refine the super-matrix
in the anonymity set with less overhead on packet padding
and delaying. As shown in Figure 2, we first employ super-
matrix shrinking to adjust the high values at each time slot
according to historical traffic. Then, we randomly sample
the time slots in the super-matrix according to the estimated
function to reduce its density. We will present the details in
Section 5.3.
Trace Regularization. This module sends packets between
the client and the Tor middle node based on the value in
the refined super-matrix at each time interval. Specifically,
if the value of the refined super-matrix is greater than the
live trace at the current time interval, the module sends
dummy packets, otherwise, it buffers the packets. However,
due to the dynamic nature of the live traces, the mismatch
between the live trace and the refined super-matrix may in-
troduce extra overhead during real-time packet sending. For
instance, some packets may experience prolonged buffering,
causing a significant increase in time overhead. When no
real packets need to be sent (e.g., the page has finished
loading), dummy packets will be padded according to the
super-matrix, introducing extra bandwidth overhead. To ad-
dress these problems, we perform early sending and tail
padding to achieve real-time adjustment. We will detail how
Palette performs the regularization in Section 5.4.

5. Design Details

In this section, we first describe the trace representation
used by Palette, and then introduce the design details of each
module in Palette, i.e., Anonymity Set Generation, Super-
Matrix Refinement, and Trace Regularization.

5.1. Trace Representation

Note that regularization defenses always generate the
predefined pattern based on a certain form of trace repre-
sentation (e.g., raw packet sequence, burst sequence, and
packet surges). Some defenses can achieve provable secu-
rity by applying a fixed packet sequence (i.e., define the
specific direction and timestamp for each packet) for all
websites [10–12] or a group of similar websites [13, 14].
However, the packet sequence introduces high overhead in
packet padding and delay as they are over-detailed and

1. Each anonymity set contains at least k websites and ideally, the attack
accuracy should be close to 1/k (random guess).

Time
Outgoing
Incoming

……

Outgoing Packet Incoming Packet

3 1 2
2 4 2

Figure 3: Visualization of TAM. It counts the number of
outgoing and incoming packets in each time slot s and
merges the values into a matrix.

cannot adapt well to the dynamic nature (e.g., network
jitter) and inter-packet dependency of the live traffic. Prior
studies point that transforming trace from packet sequence
into burst sequence [15, 17] (the number of consecutive
packets from the same direction) or packet surges (a large
number of packets sent in a short time) [16] can reduce
the defense overhead and facilitate the implementation of
the WF defense. However, since the information loss is
inevitable during the mapping of packet sequence, both
representations fail to cover specific distinguishable features
used for fingerprinting [7, 9].

In this work, we use the Traffic Aggregation Matrix
(TAM) to represent a trace [9], a robust trace representation
used by the SOTA WF attack that can undermine existing
WF defenses. As shown in Figure 3, TAM divides the
maximum website load time T into N time slots and counts
the number of outgoing and incoming packets in each time
slot s, and finally constructs a matrix M ∈ R2×N . An
element Mij represents the number of outgoing (i = 1)
or incoming (i = 2) packets whose timestamps are between
(j−1)×s and j×s. We set T = 80s by default to ensure that
the majority of websites can complete their loading process
and set s = 80ms, N = 1, 000 for a better overhead trade-
off of Palette based on the observation in Section 6.5.

TAM is an informative trace representation that can
aggregate multi-dimensional information, including packet
direction, number, and time. Based on TAM, we demonstrate
that our defense implementation can be facilitated by send-
ing or buffering packets at each time slot based on a given
TAM. We also show that our defense can effectively mask
more informative features than other defenses in Section 6.4
and Appendix (Table 13).

5.2. Anonymity Set Generation

The anonymity set generation module is used to group
website traces with high similarity in terms of TAM into the
same anonymity set and construct a uniform pattern that can
cover all traces to achieve a high degree of anonymity.

To achieve this goal, all anonymity sets must contain at
least k websites. However, Palette is unable to use traditional
clustering algorithms like K-Means and DBSCAN since
they can not guarantee the minimum size of each cluster. For
instance, if the anonymity set contains only a single website,
the WF attacker can definitively identify it. Therefore, we
design a website clustering method to iteratively build the

Algorithm 1: Website Clustering

Input : Numbers of websites C, trace set Sc for each website
c ∈ C, size for each anonymity set k

Output: Anonymity sets SA, super-matrix sets SM

1 SA,SM ← empty the sets
2 for c ∈ C do
3 MSc ← calculate the super-matrix for Sc
4 end
5 SA1,SM1 ← randomly select one website p, MSp

6 for i← 1, ⌊|C|/k⌋ do
7 if i ̸= 1 then

// initialize a new set with the farthest
website

8 ĉ← argmaxc/∈SA
1

|SA|
∑|SA|

j=1 ∥M
Sc − SMj ∥2

9 SAi ,SMi ← ĉ, MSĉ

10 end
11 while |SAi | < k do

// find the nearest website to the i-th set

12 ĉ← argminc/∈SA∥MSc − SMi ∥2
13 SAi ← ĉ

14 SMi ← calculate the super-matrix for {SMi ,MSĉ}
15 end
16 end
17 for c /∈ SA do

// assign remaining websites to the nearest set

18 î← argmin
i∈[1,|SA|]∥M

Sc − SMi ∥2
19 SA

î
← c

20 SM
î
← calculate the super-matrix for {SM

î
,MSc}

21 end
22 return SA,SM

anonymity set with at least k high-similar websites and
update the corresponding uniform pattern. Meanwhile, it
maintains a high difference among the anonymity sets during
the clustering process. Note that we use TAM to represent
traces as mentioned in the previous subsection, in this case,
we refer to the uniform pattern as the super-matrix. To cover
all traces in the anonymity set, the super-matrix takes the
maximum value of each time slot among all traces, which
is defined as follows:

Definition 1 (Super-Matrix). For a set of traces S, the
value of each time slot in super-matrix MS is the maximum
value among all traces in S, which can be denoted by:

MS
ij = max{Mij | M ∈ S} (1)

Algorithm 1 demonstrates the workflow of the web-
site clustering method. Specifically, given the number of
websites C and the anonymity set size k, the number of
anonymity sets n can be calculated by n = ⌊C/k⌋. We
use two phases to group websites into anonymity sets and
construct the corresponding super-matrix. We first construct
the super-matrix for each website using the corresponding
traces (lines 2-4). Then we initialize the first anonymity
set by randomly selecting one website (line 5). Then, we
repeatedly assign the nearest website and update the super-
matrix (lines 11-15). Note that we define the distance of

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Anonymity Set Index

1000

2000

3000

4000

5000

D
is

ta
nc

e

Intra-cluster Distance

(a) Similarity measure among anonymity sets. The boxplots show the
maximum values, 75th, 50th, and 25th percentile, and the minimum values
of the inter-cluster distance for each anonymity set.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Anonymity Set Index

95

96

97

98

99

100

C
ov

er
 R

at
e

(%
) Outgoing Incoming

(b) Incoming/outgoing cover rate of super-matrix in each anonymity set.

Figure 4: Quantitative measurements of cluster similarity
and traffic anonymization in anonymity set generation.

two anonymity sets as the Euclidean distance2 between their
super-matrices. We will initialize a new anonymity set with
the remaining website that has the largest average distance
from previous anonymity sets (lines 7-10) until the size of
the current anonymity set is k. Finally, when the size of
all anonymity sets is equal to k, we assign the remaining
websites to the anonymity set with the shortest distance.

We resort to quantitative measurements to demonstrate
the effectiveness of our website clustering method in achiev-
ing high similarity of TAM in each anonymity set. We
perform the website clustering algorithm on the closed-
world dataset mentioned in Section 6.1, specifically setting
the parameter k = 5 for easy illustration and using the
training set which contains 800 traces for each website.
Then, we calculate the pairwise distance of different web-
sites based on Euclidean distance on non-overlap 200 traces
for each website. The results are shown in Figure 4(a). For
each anonymity set, the blue marker represents the aver-
age distance between websites in the same anonymity set
(i.e., intra-cluster distance), and each boxplot represents the
distances from other anonymity sets (i.e., inter-cluster dis-
tances). An effective clustering method can achieve shorter
intra-cluster distance than inter-cluster distance. We observe
that all anonymity sets have their intra-cluster distances
smaller than the medium value of their inter-cluster distances
and 15 of the 19 anonymity sets have intra-class distances
less than 25 percentiles of the inter-class distances, demon-
strating the high similarity in each anonymity set.

Moreover, we test if the constructed super-matrix is
generalizable enough to accommodate unseen traces, i.e., the
test traces can be effectively covered by the super-matrix so
that they can be reshaped into the super-matrix simply using
dummy packets padding. Specifically, in each time slot, we
verify that the value of the super-matrix is greater than that

2. Euclidean distance can clearly reflect the number of packets that
should be modified (padding or delaying) to align the two matrices.

of the traces in the anonymity set. Therefore, we define the
cover rate of each super-matrix M as follows:

CoverRate(i) =
1

|A|
∑
c∼A

∑N
j=1 I(Mij≥M

Sc
ij)

|N |
(2)

where i is the index for outgoing (i = 1) and incoming
(i = 2) packets, and A denotes an anonymity set. A super-
matrix covering more traces of the anonymity set should
achieve a higher cover rate.

As shown in Figure 4(b), for each anonymity set, both
incoming and outgoing cover rates are greater than 95%.
This indicates that the super-matrix is generalizable to the
unseen traces in the anonymity set, allowing loading each
website in the anonymity set to yield a similar pattern (i.e.,
super-matrix) using dummy packet padding.

We further investigate the potential information leakage
of anonymity set in terms of website category (e.g., online
video, social media), which allows the attacker to infer a
larger pattern (i.e., website category) of the website that
the victim is visiting. We collected 50 websites in five
categories and constructed the corresponding anonymity sets
with different k values (see Appendix A for more details).
We find that when k ≥ 4, the anonymity set contains at
least three categories on average, and each single category
does not include more than 50% of the websites in each
anonymity set. This demonstrates that websites in the same
category exhibit different TAM features and thus are not
clustered into the same anonymity set, effectively preventing
the attacker from inferring larger patterns (e.g, website
category) according to the anonymity sets.

5.3. Super-Matrix Refinement

While the super-matrix can achieve a high degree of
anonymity, it is dense with high values at each time slot and
introduces high bandwidth overhead (the same observation
in prior works [13, 14]). This is because the super-matrix
should cover the sending peaks of each trace, which typi-
cally span a range of time slots (the high similarity of traces
tends to reduce this range). Now, we propose two refinement
strategies to reduce the bandwidth overhead.
Super-Matrix Shrinking. To reduce the high values at each
time slot, we define vectors w and b to shrink the super-
matrix. w performs a coarse shrinking on each incoming
and outgoing time slot in the super-matrix M, enabling
adjustments over a broad range. b is used to shift M to
enable more precise adjustment. We formulate the process
of super-matrix shrinking in Eq. (3),

Ms = max(σ(w) ·M, τ)− τσ(b) (3)

where σ(·) is a sigmoid function to limit w and b within
[0, 1], τ is a threshold that controls the adjustment range
of w and b, which we set to 10 for better tuning in our
experiments. We resort to gradient descent to train w and b
using historical traces in each anonymity set to obtain the
optimized values that minimize the specific loss. An ideal

0 200 400 600 800 1000
Time Slots

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

.(1
e-

2)

Outgoing

0 200 400 600 800 1000
Time Slots

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

.(1
e-

2)

Incoming

Figure 5: Probability Mass Function of incoming and out-
going time slots.

shrunk super-matrix Ms should incur minimal overhead
in terms of packet padding and delay to ensure all traces
closely align with it at each time slot. Therefore, the loss
function can be defined as Eq. (4),

L = Ec∼AEM∼Sc

2∑
i=1

N∑
j=1

max(Ms
ijI(Mij>0) −Mij , τhigh)

−λ Ec∼AEM∼Sc

2∑
i=1

N∑
j=1

min(Ms
ijI(Mij>0) −Mij , τlow)

(4)

where I(·) is the indicator function, τhigh and τlow determine
the number of padded and delayed packets at each time
slot inducing no penalty. We set λ = 0.5 to obtain a good
balance between bandwidth and time overhead.
Super-Matrix Sampling. Our key observation is that the
traffic trace is sparse due to the small time slot of TAM,
i.e., the value of most time slots is zero. We randomly select
1000 traces for each of the 95 websites and verify this by
counting the number of empty slots for both directions. We
find that 95% of traces (each containing 1000 time slots)
have over 700 empty outgoing slots and 600 empty incoming
slots. However, since the shrunk super-matrix is dense (the
values of all time slots are non-zero), its traffic volume is
much larger than that of the real trace. Therefore, it is still
bandwidth wasted when using Ms to guide packet sending.
To further reduce the bandwidth overhead, we first estimate
the Probability Mass Function (PMF) of each anonymity
set, i.e., the probability that outgoing (i = 1) and incoming
(i = 2) packets are sent at each time slot. The PMF p̂(x)i
is estimated as:

p̂(x)i =

∑
c∼A

∑
M∼Sc

I(Mix>0)∑
c∼A

∑
M∼Sc

∑N
j=1 I(Mij>0)

(5)

Figure 5 shows the PMF of a randomly selected
anonymity set. We observe that the probability roughly
follows a right-skewed distribution, indicating that packets
are likely to be sent in the first few seconds of page loading.
The low probability of packets being sent at other time slots
may also explain why most time slots in the trace are empty.

The analysis of the PMF provides a way to further
reduce the bandwidth cost by allocating more of the packet-
sending budget to time slots with higher probability. To do
so, we sample the time slots without replacement from N
time slots for each page loading, accumulating the probabil-
ity of the sampled time slot until a threshold α is reached.
We retain the values of the sampled time slots in the shrunk

0 200 400 600 800 1000
Time Slots

300
250
200
150
100

50
0

50
Pk

t.
N

um
be

r

(a) Super-Matrix M

0 200 400 600 800 1000
Time Slots

300
250
200
150
100

50
0

50

Pk
t.

N
um

be
r

(b) Shrunk Super-Matrix Ms

0 200 400 600 800 1000
Time Slots

300
250
200
150
100
50

0
50

Pk
t.

N
um

be
r

(c) Refined Super-Matrix Mr

Figure 6: Visualization of the super-matrix. We use the negative values to represent incoming packets. The super-matrix
refinement module can effectively reduce the high density and values of the original super-matrix.

super-matrix, setting the values of the remaining time slots
to zero (noted as empty slots). Finally, we evenly spread the
values from the sampled time slot to the subsequent empty
slots. This is because an empty slot indicates no packet
should be sent, and the real packet will be delayed to the
next non-empty slot, leading to cumulative delay.

Figure 6 shows the visualization of the original super-
matrix M, the shrunk super-matrix Ms and the refined
super-matrix Mr. Comparing M and Ms, M is dense
with high values, the super-matrix shrinking strategy can
automatically reduce the packet number at each time slot
by minimizing the loss. Comparing Ms and Mr, the super-
matrix sampling strategy can further reduce the bandwidth
overhead based on the PMF of each anonymity set. As a
result, the super-matrix refinement can effectively reduce
the high values and the density of the super-matrix, allowing
Palette to regulate traces with less overhead.

5.4. Trace Regularization

In this subsection, we describe the design details of
the trace regularization module, which guides the packet
sending based on the refined super-matrix in real time.

As stated in Section 3.2, the implementation of Palette
can be facilitated with TAM. Specifically, during the page
loading, the client and Tor middle node buffer incoming and
outgoing packets in the current time slot, respectively, then
send packets in the next time slot based on the value in
the corresponding index of the refined super-matrix Mr. If
the value of Mr in the current time slot is greater than the
number of packets in the buffer, Palette will pad dummy
packets to align with the super-matrix. Otherwise, the real
packets will be buffered.

However, the variation of the live trace may mismatch
with the super-matrix due to the dynamic nature and inter-
packet dependency of the page loading process, resulting in
uncontrollable overhead. In particular, the high bandwidth
and time overhead are primarily caused by buffer congestion
and dormancy, respectively. As shown in Figure 2, buffer
congestion occurs when the volume of the live trace exceeds
that of the refined super-matrix over time, causing most
real packets to be buffered for a longer period of time and
introducing significant time overhead. On the other hand,
buffer dormancy indicates that the buffer is idle for a long
period of time when there is no real packet to be sent (e.g.,
slow server response or the page has finished loading). If

TABLE 2: The parameters for trace regularization.
Parameters Descriptions

k Anonymity set size
α Threshold for time slots sampling
B Multiple for tail padding
U Upper bound for the early sending threshold

the module continues to send dummy packets according to
Mr, this will result in significant bandwidth overhead.

We propose early sending and tail padding to address
the above issues. Early sending aims to send the buffered
packet immediately when the number of real packets in the
buffer is greater than a predefined threshold. Tail padding
checks whether the buffer is empty for consecutive time slots
to determine whether to continue padding dummy packets.
Then, we introduce these strategies in detail.
Early Sending. As mentioned above, when large numbers
of packets need to be sent while the value in the current time
slot of Mr is small, we need to send the buffered packet
immediately, otherwise, it will lead to buffer congestion
and increase the time overhead. To address this issue, early
sending should determine when and how many buffered
packets should be sent early. Specifically, when the number
of packets in the buffer exceeds the sum of the values on
the next u time slots in the shrunk super-matrix Ms, our
module will send out packets based on Ms, which has
higher volume than Mr. More specifically, we define Eq. (6)
to determine the number of outgoing (incoming) packets
sent in j-th time slot (denoted as mij) according to the
number of packets in the buffer (denoted as bi),

mij =

{
Ms

ij , bi ≥ bmax
ij

Mr
ij , bi < bmax

ij
(6)

where

bmax
ij =

u∼[0,U)∑
k=0

Ms
i(j+k) (7)

u is sampled from a uniform distribution of range [0, U),
where U is a parameter for tuning the upper bound to bal-
ance the time overhead and anonymity. We list the important
parameters of the trace regularization module in Table 2.
Tail Padding. When the buffer is empty during the page
loading, padding dummy packets based on Mr can effec-
tively hide distinguishable behaviors of websites (e.g., end
of the page loading), but introduce the high bandwidth over-

head. To reduce the overhead while leaking less information
the attacker can exploit, we first check whether the buffer
is empty when the current time slot index is a multiple
of the padding parameter B. We assume the website has
finished loading and stop sending dummy packets until the
real packets are sent again. Given that the defense cannot
know when the page finishes loading and stops sending extra
dummy packets, tail padding provides a way to be aware
of this by checking the buffer. It is more practical than
Tamaraw [12], which needs to know exactly when a page
has finished loading to stop dummy packet padding. It can
also balance bandwidth overhead and information leakage of
websites in the anonymity set. We will further discuss the
impact of B on overhead and performance in Section 6.5.

6. Performance Evaluation

In this section, we make a comprehensive evaluation of
Palette. We first describe the experimental setup in Sec-
tion 6.1. Then, we make a comprehensive comparison of
Palette with SOTA defenses in both closed- and open-world
scenarios in Section 6.2 and 6.3. Next, we evaluate the
ability of existing defenses and Palette to defend against po-
tential attackers from the perspective of information leakage
in Section 6.4. We discuss the effect of key parameters in
Section 6.5. Next, we prototype Palette and compare it with
the SOTA defenses in the real Tor network in Section 6.6.
Finally, we measure the updating costs of Palette in Sec-
tion 6.7.

6.1. Experiment Setup

Dataset. Our evaluation uses the public real-world
dataset [6], which is also used to evaluate recent WF attacks
and defenses [6, 7, 9, 16, 34]. The closed-world dataset
contains 1000 traces of 95 websites, and the open-world
dataset includes 40,716 websites, excluding the 95 websites,
each with one trace.
WF Attacks. We select six state-of-the-art WF attacks as
our benchmark, including machine learning-based and deep
learning-based attacks. The attacks are listed as follows.
• CUMUL [21]. It uses a cumulative representation that

implicitly covers features used by other classifiers, and
uses it to train a Support Vector Machine (SVM) classifier.

• k-FP [22]. It uses a large set of statistical features. These
features are input into random forests to extract a finger-
print vector and then apply the fingerprint vector to the
k-NN classifier for WF.

• DF [6]. It uses direction sequence as input and utilizes
a Convolutional Neural Network (CNN) to automate the
feature engineering process from packet direction.

• Tik-Tok [7]. It leverages the same CNN structure as DF.
Unlike DF, its input is the product of direction and raw
time, which improves the performance of the attack.

• Var-CNN [8]. It uses a sophisticated architecture based
on ResNets and leverages packet direction, inter-packet
time, and metadata to train the ensemble of models.

• RF [9]. It uses a robust trace representation called Traffic
Aggregation Matrix (TAM) that captures the number of
incoming and outgoing packets in small time slots and a
CNN-based model to enable automatic feature extraction.

They are all built with the source code released by
the authors. All WF attacks are trained and tested on a
server equipped with an Intel Core i7 3.4 GHz, 32GB of
memory, and a GPU with 10GB of memory. To make a fair
comparison, we do adversarial training with each WF attack
on defended datasets and fine-tune these attacks to achieve
equivalent or even higher accuracy than the results reported
in their original papers.
WF Defenses. To make a comprehensive comparison, we
take the defenses Supersequence [14], Tamaraw [12], WTF-
PAD [3], FRONT [4], Surakav [17] and RegulaTor [16]
as the target of WF attacks. The parameter settings for
each defense are shown in Table 10 in the Appendix. We
simulated each defense on the undefended dataset to create
defended datasets for closed- and open-world scenarios.

6.2. Closed-World Performance

In this subsection, we evaluate the closed-world effec-
tiveness of defenses against six attacks. Following prior
works [6, 8], we split the closed-world dataset into training,
validation, and testing sets with a ratio of 8:1:1. As shown in
Table 3, without any defenses, the accuracy of all six attacks
is over 94%, indicating that attackers can effectively identify
the website the user is visiting without countermeasures.

Both Supersequence and Tamaraw provide strong pro-
tection that can reduce the accuracy of all attacks to below
30%. However, they introduce high overheads, burdening
the Tor network and impacting user experience.

The obfuscation-based defenses WTF-PAD and FRONT
do not introduce packet delays and maintain a moderate
bandwidth overhead. However, WTF-PAD is defeated by
four deep learning-based attacks with over 90% accuracy,
and RF also undermines FRONT with over 90% accuracy.
This suggests that the existing obfuscation defenses fail to
defend against the SOTA WF attack.

Surakav, RegulaTor, and Palette exhibit much lower
overhead compared to Supersequence and Tamaraw while
providing stronger protection than zero-delay defenses. With
80% bandwidth and 6% time overhead, Surakav can reduce
the accuracy of DF, Tik-Tok, and Var-CNN to 64.00%,
67.63%, and 54.56%, respectively, but is less effective
against RF. This is because Surakav generates the reference
burst from a randomly chosen class, which can easily mis-
match with live traces. RegulaTor is a stronger defense that
aims to regulate all traces into similar packet surges. It can
reduce the accuracy of WF attacks to at least 53.11%. Palette
demonstrates superior defense performance compared to
Surakav and RegulaTor, achieving the lowest accuracy for
all attacks at a similar level of overhead. Particularly, Palette
can reduce the accuracy of RF to 36.43%, a decrease of
16.68% compared to the RegulaTor.

To demonstrate the effectiveness of Palette in regulating
website traffic in the anonymity set, we utilize T-SNE [40] to

TABLE 3: The overhead and effectiveness of defenses against attacks in the closed-world scenario.

Defenses Overhead (%) Accuracy (%)
Bandwidth Time k-FP [14] CUMUL [21] DF [6] Tik-Tok [7] Var-CNN [8] RF [9]

Undefended - - 94.54 94.81 98.23 98.45 98.83 98.40
Supersequence [14] 88 91 27.28 24.71 29.09 29.18 17.89 26.51

Tamaraw [12] 121 43 10.24 8.42 8.34 8.32 3.56 10.23
WTF-PAD [3] 61 0 68.47 55.83 90.85 93.80 94.83 96.64

FRONT [4] 80 0 52.34 23.22 76.10 84.79 80.97 93.92
Surakav [17] 80 6 41.83 44.03 64.00 67.63 54.56 79.94

RegulaTor [16] 80 5 39.17 16.30 20.41 29.06 40.51 53.11
Palette 84 9 29.39 ▼ 9.78 10.96 ▼ 5.34 20.27 ▼ 0.14 24.73 ▼ 4.33 22.79 ▼ 17.72 36.43 ▼ 16.68

1 We use ▼ to highlight the reduction of attack accuracy compared with the SOTA defense RegulaTor.

Undefended Supersequence Tamaraw WTF-PAD FRONT Surakav RegulaTor Palette

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec
is
io
n

(a) DF

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

(b) Tik-Tok

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

(c) Var-CNN

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

(d) RF

Figure 7: Precision-recall curves of WF attacks in the open-world scenario.

visualize the feature vectors of the last layer of the classifier
for four DNN-based attacks in Figure 15 in the Appendix.
The results show that SOTA attacks fail to classify websites
within the same anonymity set, demonstrating that Palette
can successfully achieve website anonymization.

6.3. Open-World Performance

In this subsection, we evaluate the performance of each
defense in the open-world scenario. As described in Sec-
tion 3.1, the user can visit any website in the open-world
scenario and an attacker who monitors a subset of those
websites while training a classifier to determine whether
the visited website is in the monitored set. This scenario is
typically more difficult to carry out, given that the attacker
is assumed to obtain only a fraction of the unmonitored
websites for training, i.e., the set of unmonitored websites
used for training and testing are not overlapped.

We take all websites in the closed-world dataset as the
monitored set and all websites in the open-world dataset
as the unmonitored set. For training and validation, we
randomly select 900 traces for each monitored website and
20,000 traces from the unmonitored set and split them with a
ratio of 8:1. The remaining dataset, which contains 95×100
traces from the monitored set and 20,000 traces from the
unmonitored set, is used for testing. Since the open-world
websites do not belong to any of the anonymity sets, Palette
will randomly select an anonymity set and regulate them
based on the corresponding super-matrix.

Considering the significant imbalance between the sizes
of the monitored and unmonitored sets, the precision-recall
curve is commonly used in the literature [6, 23]. If a

monitored website is labeled correctly (i.e., the maximum
output probability is greater than a pre-defined threshold),
it is considered a True Positive (TP) or False Negative (FN)
otherwise. If an unmonitored website is mislabeled as a
monitored class, it is considered a False Positive (FP) or
True Negative (TN) otherwise. Precision and recall are then
defined as TP / (TP+FP) and TP / (TP+FN), respectively.
The attacker can trade-off between precision and recall by
setting different thresholds.

The precision and recall curves of WF attacks on ex-
isting defenses are shown in Figure 7. Without defenses
deployed, DF, Tik-Tok, Var-CNN, and RF can achieve
high precision and recall, demonstrating the effectiveness
of four WF attacks in the open-world scenario. WTF-PAD
and FRONT perform better than the closed-world scenario,
which can effectively reduce the recall of DF, Tik-Tok,
and Var-CNN when tuned to high precision (over 0.95).
However, they fail to undermine RF, which can still achieve
high recall (0.92 on WTF-PAD and 0.83 on FRONT).

Similar to the results in the closed-world scenario, Su-
persequence and Tamaraw are the most effective defenses
but have significantly heavy bandwidth and time overheads,
which deter their widespread deployment on Tor [18]. With
moderate overhead, Surakav, RegulaTor and Palette achieve
better defense performance in the open-world scenario com-
pared to WTF-PAD and FRONT. Surakav is limited to
effectively defending against DF and Tik-Tok. RegulaTor
demonstrates effectiveness against DF, Tik-Tok, and Var-
CNN, however, strong protection still cannot be guaranteed
on RF. In comparison, Palette can significantly drive down
the precision-recall curve of all attacks. In particular, Palette
can reduce the recall of all attacks to less than 0.1 when

TABLE 4: Dataset of one-page setting.
Monitored Unmonitored

Websites Traces Websites Traces

Training 1 900 94 + 20,000 94 × 900 + 20,000
Testing 1 100 94 + 20,000 94 × 100 + 20,000

10−4 10−3 10−2 10−1 100

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
PR

Undefended Supersequence Tamaraw WTF-PAD
FRONT Surakav RegulaTor Palette Ideal

Figure 8: Defenses performance against k-FP attack under
the one-page setting.

tuned to high precision.
The overhead of Palette is slightly affected by the scale

of unmonitored websites. While the increase of unmonitored
websites can enlarge the mismatch between the pre-defined
super-matrix and the real traces, Palette can mitigate this im-
pact by using early sending and tail padding. Our experiment
results show that as the size of unmonitored sites increases
from 10,000 to 40,000, the bandwidth overhead slightly
grows from 79.63% to 81.81%, while the time overhead
remains almost the same (i.e., from 8.89% to 8.86%).
One-Page Setting Evaluation. To further demonstrate that
Palette can undermine all WF attacks in the open-world
scenario, we evaluate Palette under a harder open-world
setting where the defenses are more vulnerable to the k-FP
attack [41]. In the one-page setting, the attackers monitor a
single website. As shown in Table 4, we repeatedly select
one website from the closed-world dataset as the monitored
set (labeled as positive) and the rest including the open-
world dataset as the unmonitored set (labeled as negative).
So we have 900 positive and 102,600 negative traces for
training, 100 positive and 29,400 negative traces for testing.
Then, we perform the binary classification with k-FP and
compute the average of TPR and FPR over all websites.

Figure 8 presents the ROC curve on different defenses.
Supersequence and Tamaraw outperform Palette under the
one-page setting. However, they introduce significant high
overheads, e.g., Supersequence and Tamaraw incur 82% and
34% higher time overhead than Palette, respectively, which
may raise the risk of memory exhaustion of Tor nodes [18].
Among defenses with moderate overhead, Palette exhibits
the best performance with the lowest TPR within a low FPR
range (i.e., less than 0.1). Since the positive and negative
traces are heavily imbalanced in the testing set, evaluating
the TPR under low FPR conditions is more reasonable, e.g.,
with an FPR of 0.1, the classifier misclassifies more than
2,000 traces from the negative set as positive. However,
there are only 100 traces in the positive set. In this case, the
majority of the traces identified as positive are false positive
traces, thus, the precision of the attacker is significantly low.

0 20 40 60 80 100
Attack Accuracy (%)

1.0

1.5

2.0

2.5

3.0

In
fo

rm
at

io
n

Le
ak

ag
e

(B
it)

Undefended
Supersequence

Tamaraw
WTF-PAD

FRONT
Surakav

RegulaTor
Palette

Better

Figure 9: The average and variance of information leakage
over Top-500 informative features and the attack accuracy
for each defense. The magnitude of variance is denoted by
the size of the marker.

6.4. Information Leakage Measurement

In the previous subsection, we have evaluated the perfor-
mance of Palette against existing attacks. In this subsection,
we quantitatively analyze the ability of WF defenses against
potential attackers from the perspective of information leak-
age. A higher information leakage indicates that the defense
is less effective in protecting against potential attacks, even
if it achieves a low attack accuracy on existing attacks. We
use the WeFDE framework [19] to conduct an information
leakage measurement for each defense. The idea of WeFDE
is to estimate the mutual information of a specific feature
and website. Following their methodology, we compute
the information leakage for all the features (in total, 3043
features) used in the literature. For each defense, we select
the top 500 features that leak the most bits of information
and compute the mean and variance of their leaked bits. We
also present the attack accuracy of RF on each defense.

The results are shown in Figure 9. We can observe that
Supersequence and Tamaraw are effective against RF, but
they incur non-negligible information leakage. It is consis-
tent with the existing study [19], i.e., a defense achieving
lower attack accuracy does not always lead to lower infor-
mation leakage. Palette raises the least information leaks,
while achieving better defense effectiveness than existing
defenses with acceptable overhead, indicating that Palette
still outperforms SOTA defenses against potential attacks.
Another interesting observation is that both Palette and
FRONT have low information leakage, but RF achieves
over 95% accuracy against FRONT. It can be explained by
computing the average information leakage for each feature
category, which is presented in Table 13 in the Appendix.
The results show that FRONT exhibits an imbalanced in-
formation leakage. Some informative features (e.g., Pkt. per
second) are leaked with high bits, which can be exploited
by attackers.

6.5. Parameter Tuning

We investigate the impact of key parameters on defense
against four typical attacks (i.e., DF, Tik-Tok, Var-CNN, and
RF) in the closed-world scenario.
Time Slot s. It determines the granularity of the super-
matrix and controls the packet sending interval during real-

160107806453
s (ms)

0

20

40

60

TO
H

 (%
)

TOH

60

80

100

120

B
O

H
 (%

)

BOH

(a) Overhead

160107806453
s (ms)

0

20

40

60

A
cc

ur
ac

y
(%

)

DF Tik-Tok Var-CNN RF

(b) Attack Accuracy

Figure 10: The overhead and performance of Palette with
different valules of time slot s. The length of TAM N can
be calculated by T/s, where T = 80s.

TABLE 5: The overhead and performance of Palette with
different k.

k
Overhead (%) Accuracy (%)

Bandwidth Time DF Tik-Tok Var-CNN RF

5 39 18 51.24 58.15 57.28 70.70
10 51 14 37.87 40.21 47.33 55.64
15 61 12 33.95 40.31 36.60 50.67
20 59 15 32.47 37.12 34.96 47.27
30 84 9 20.27 24.73 22.79 36.43
45 88 9 16.21 20.04 19.18 31.00
95 96 8 12.26 15.86 14.96 25.49

time regularization. Thus, the overhead and performance of
Palette may change when the time slot varies. Figure 10
shows that the increase of s from 53 ms to 160 ms leads
to a 21% increase in time overhead and a 46% decrease
in bandwidth overhead. This is because more real packets
will be buffered in each time slot, reducing the necessity
for padding with dummy packets to align with the super-
matrix. We also observe that increasing s enhances defense,
as the timing information of real packets is hidden by a
larger time slot, leading to a decrease in the accuracy of RF
from 38.55% to 28.62%.
Anonymity Set Size k. It defines the size of the anonymity
sets to guarantee the maximum degree of anonymity. We
fix the other parameters of Palette and determine k by
increasing the number of anonymity sets from 1 to 19.
As shown in Table 5, when k increases from 5 to 95, the
bandwidth overhead increases 57%, and the time overhead
is reduced by 10%. This is mainly because setting a larger
k will reduce the similarity of the anonymity set, leading
the PMF to be flat, and more time slots will be sampled.
The accuracy of four attacks significantly reduces when the
anonymity degree increases.
Threshold for Time Slots Sampling α. It controls how
many time slots can be sampled from the PMF in each
anonymity set. As shown in Figure 5, since the probability
of each time slot in PMF is relatively low, the variation
of α can significantly impact the number of sampled time
slot indexes, subsequently affecting the overhead. We thus
change α in a small range of [0.1, 0.24] to analyze the
overhead and the attack accuracy while keeping the other
parameters consistent with the default settings. The results
are shown in Figure 11. When α increases from 0.1 to

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
0

20

40

60

TO
H

 (%
)

TOH

60

80

100

120

B
O

H
 (%

)

BOH

(a) Overhead

0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24
0

20

40

60

A
cc

ur
ac

y
(%

)

DF Tik-Tok Var-CNN RF

(b) Attack Accuracy

Figure 11: The overhead and performance of Palette with
different α.

U

0
10

20
30

40
50

60
70

80
90

B
0255075100125150175200

O
verhead (%

)

0
20
40
60
80

100
120
140
160

TOH BOH

(a) Overhead

U

0
10

20
30

40
50

60
70

80
90

B
0255075100125150175200

A
ccuracy (%

)

0
10
20
30
40
50
60
70

RF
DF

Tik-Tok
Var-CNN

(b) Attack Accuracy

Figure 12: The overhead and performance of Palette with
different B and U .

0.24, the time overhead is reduced from 22% to 5%. The
bandwidth overhead is more sensitive to the change of α,
increasing from 60% to 123%, indicating that sampling
more time slots can significantly increase the bandwidth
overhead. It can also slightly reduce the attack accuracy
since more noises are injected, leading to the high similarity
of defended trace in each anonymity set. We set α = 0.16
by default to trade off the overhead.
Impact of B and U . B is the multiple for tail padding.
When the buffer is empty and the index of the current time
slot is a multiple of B, the trace regularization module will
stop padding dummy packets until real packets come. U is
the upper bound for sampling the early sending threshold p.
We fix k = 30, α = 0.16, and then perform the grid search
for B and U to understand how these parameters affect the
defense performance and overhead.

We investigate B in range [1, 200] and U in range
[10, 90] in this work, the results are shown in Figure 12.
When U is fixed, increasing B only increases the bandwidth
overhead since tail padding only works if no real packets
are in the buffer. Setting a larger B can achieve a higher
anonymity degree by injecting more noise into traffic and
hiding the loading time of the websites. When B is fixed,
decreasing U from 90 to 10 will introduce more bandwidth
overhead (over 40%) but reduce the time overhead (over
10%). This is because lower U means the buffered real
packet will be sent out earlier, leading to less packet delay
but more dummy packets padded when there are not enough
real packets in the buffer. However, lowing U will leak
timing features and significantly increase the accuracy by
over 20%. As a result, larger B and U mean stricter control
on online regularization, which increases the fidelity of the

TABLE 6: Real-world overhead and performance.

Defenses Overhead (%) Accuracy (%)
Bandwidth Time DF Tik-Tok Var-CNN RF

Undefended 0 0 91.80 93.20 94.40 98.20
Tamaraw [12] 135 78 24.95 23.01 14.33 22.51
FRONT [4] 99 0 55.19 57.19 54.23 90.45

Surakav [17] 81 14 60.50 58.12 29.95 75.08
RegulaTor [16] 70 112 62.42 56.16 31.95 66.67

Palette 80 24 13.97 11.35 4.58 53.28

regularization module to the generated trace. We set B = 45,
U = 20 for a better trade-off between overhead and defense
performance.

6.6. Real-World Performance

To obtain a more accurate overhead estimation and de-
fense performance evaluation in the real world, we prototype
Palette3 via WFDefProxy [42], a framework for WF defense
evaluation in the real world, and implement it as a Pluggable
Transport (PT) [20], which transforms traffic between the
client and a bridge to disguise the Tor traffic. We also deploy
Tamaraw, FRONT, Surakav, and RegulaTor for comparison.
Implementation. We leveraged two cloud servers for de-
ploying defenses, one as the private bridge and another with
eight docker containers as individual clients to visit websites
in parallel. Each client connected to our private bridge as
the guard node with a limited connection bandwidth of 120
Mbps. The private bridge was equipped with 2 CPU cores
and 4GB of RAM, and the client was equipped with 8 CPU
cores and 16GB of RAM, both running on Ubuntu 20.04
LTS. The Tor Browser (version 10.5.10) was configured
to run in the XVFB environment on each client. We used
TBSelenium to launch the Tor Browser and automatically
visit websites. Specifically, to ensure complete website load-
ing, we allocated a maximum of 110s for each website
loading. When the loading was completed, we waited for
an additional 5s on the website to avoid overlap with the
traffic from the previous visit. After that, the browser would
restart and a Signal.NEWNYM command would be sent to
the Tor client to ensure each visit uses a different circuit.
Dataset. We collected the close-world datasets to evaluate
defenses since it is much more challenging for defenders.
Following prior works [17, 42], the websites were selected
from the Tranco [43] list, which was updated on February
2023. This list is composed of five existing lists (i.e., Um-
brella, Majestic, Farsight, CrUX, and Radar) where undesir-
able domains (e.g., unavailable or malicious domains) are
excluded. We will discuss an alternative approach to collect
a more representative list in Tor for the WF research.

We first removed the inaccessible and duplicate URLs
that directed to the same page (including the different lo-
cations) in the top 200 sites. We chose the first 100 as the
monitored websites. We let multiple clients visit the mon-
itored list in a random order. After merging all the crawls

3. The source code of Palette is available at https://github.com/kxdkxd/
Palette.

TABLE 7: The overhead and performance of Palette under
different network conditions.

Browsers Bandwidth
Constraints

Overhead (%) Accuracy (%)
Bandwidth Time RF

Tor
80 Mbps 76 28 47.74

120 Mbps 73 30 50.87
160 Mbps 77 34 47.76

Chrome 120 Mbps 19 50 24.47

and removing outliers (following the approach described
in [21]), we guaranteed that each monitored website had
at least 100 instances. Considering the differences in time
and network conditions between the public dataset used for
simulation and the collected dataset, we fine-tuned the pa-
rameters of each defense to keep a moderate bandwidth and
time overheads trade-off, which can be found in Table 11
in the Appendix. We also discuss the strategy of selecting
the default parameters of Palette for real-world deployment
in Section 8.
Results. Table 6 shows the real-world performance of each
defense, we have four key observations from the results.
1) Tamaraw achieves effective defense performance on RF
at the expense of incurring 135% bandwidth overhead and
78% time overhead. As discussed in Seciton 6.3, it may
raise the risk of memory exhaustion of Tor nodes due
to the large packet surges [18]. 2) FRONT has a similar
bandwidth overhead to simulation (see Table 3), which can
effectively reduce the attack accuracy of DF, Tik-Tok, and
Var-CNN. However, it fails to undermine RF in the real
world, which maintains over 90% accuracy. 3) We obtain the
same observation as [42]: the bandwidth and performance
of RegulaTor exhibit significant differences compared to
the simulation. Specifically, the time overhead increases to
112%, but the attack accuracy of DF, Tik-Tok, and RF
improves by more than 10%. 4) Both Surakav and Palette
have the time overhead increase compared to the simulation.
This is because the dependencies of the incoming and
outgoing packets are difficult to represent with simulation,
i.e., delayed packets may have an uncertain impact on the
subsequent packets. However, Surakav remains ineffective
in defending against SOTA attacks in the real world. Palette
outperforms defenses. Specifically, it can reduce the accu-
racy of DF, Tik-Tok, and Var-CNN to less than 15% and
reduce the accuracy of RF to 53.28%.
Varying Network Conditions. We used another two cloud
servers with the same settings as mentioned above to eval-
uate the robustness of Palette under varying network condi-
tions. Specifically, we considered two network conditions:
bandwidth constraints (80 Mbps, 120 Mbps, and 160 Mbps)
and different browsers (Tor Browser and Chrome). We
obtained the super-matrix and parameters of Palette with
the 120 Mbps bandwidth and Tor Browser, which were
then applied to protect the traces with different bandwidths
and browsers. The results are shown in Table 7. Palette is
resilient to bandwidth fluctuations, as trace regularization
can adaptively reduce overhead when the pre-defined super-
matrix mismatches a real trace. Under the same bandwidth

https://github.com/kxdkxd/Palette
https://github.com/kxdkxd/Palette

TABLE 8: The time and storage overheads of Palette with
different anonymity set sizes.

Time (s) Storage (KB)
k Generation Refinement

5 112.61 ± 0.29 148.78 ± 1.43 228
10 112.65 ± 0.54 92.68 ± 0.37 111
15 112.68 ± 0.58 75.09 ± 0.08 75
20 112.98 ± 0.62 65.75 ± 0.13 52
30 112.63 ± 0.45 77.84 ± 0.25 40
45 112.73 ± 0.53 73.62 ± 0.45 28
95 112.77 ± 0.50 77.64 ± 0.18 17

1 5 10 15 20 25 30
Update Frequency (days)

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d
(%

)

2.5M
5M
7.5M
10M

Figure 13: Communication overhead of Palette (k = 5)
under different Tor client scales and update frequencies.

of 120 Mbps, the variation of browsers results in a 54%
reduction in the bandwidth overhead and a 20% increase in
the time overhead. The reason is that the traffic volume of
Chrome is much larger than that of the Tor Browser because
the traffic generated by the Tor browser does not include
features that potentially leak users’ privacy (e.g., SPDY and
HTTP/2) [44], leading to that the Tor browser incurs more
packet delay and less dummy packet padding.
Performance over Time. To evaluate the performance of
Palette over time, after collecting defended traces of Palette
(configured in 120 Mbps, Tor browser) to evaluate the
performance for varying network conditions, we recollected
the same scale of defended traces under the same setting
5 days later. The results show that Palette still effectively
reduces the accuracy of RF to 48.98%, with a slight increase
of bandwidth overhead (from 73% to 75%) and a negligible
decrease of time overhead (from 30% to 29%). It demon-
strates that the same setting of Palette can be resistant to
changes over a period of 5 days. The performance over a
longer period would be interesting future work.

6.7. Overhead Incurred by Palette Update

Palette uses pre-generate data (i.e., super-matrix, PMFs,
and anonymity set mapping) to initiate the defense. In
addition to bandwidth and time overheads incurred during
regularization, we should also consider the training and
communication overheads associated with Palette updates.
The training overheads include the training time required
for anonymity set generation and super-matrix refinement,
as well as the corresponding storage space, which are shown
in Table 8. We test on the server outlined in Section 6.1
with 76,000 instances of 95 websites (around 289 MB)

TABLE 9: Accuracy (%) of adversarial training (AdvTrain)
and adaptive attack on Palette with four backbone models.

Attack
Strategies

Backbone Models
DF Tik-Tok Var-CNN RF

AdvTrain 20.27 24.73 22.79 36.43
Adaptive 24.46▲ 4.19 25.33▲ 0.60 23.27▲ 0.48 36.92▲ 0.49

and find that the time of generating anonymity sets is
almost unaffected by the anonymity set size k. The super-
matrix refinement time decreases as k increases because
fewer super-matrices require updates. In terms of storage
overhead, the client and the middle node only need to track
the outgoing and incoming direction of the super-matrix
and PMFs, respectively. A smaller k requires more space
due to a larger number of the super-matrix. Overall, when
k = 5, Palette only needs 148s for super-matrix refinement
and 228KB for data storage.

Tor directory servers can train and distribute the data,
which clients download upon Tor startup and then update
periodically. Figure 13 shows the communication overhead
with different client scales and update frequencies. Follow-
ing the prior work [17], we evaluated the communication
overhead of Palette by measuring the fraction of the aver-
age bandwidth used for transferring the data from the Tor
directory server to clients. We set the average bandwidth
of the Tor directory servers to 771MB/s according to the
existing statistics from February 2023 to 2024 [45]. We
find that the communication overhead grows as the scale
of clients and the update frequency increase. Recall that
Palette maintains its effectiveness for 5 days (Section 6.6),
we measured the communication overhead under update per
5 days, and the incurred overhead is only 0.66% even if the
number of clients reaches 10 million.

7. Adaptive Attacks

In the previous section, we have demonstrated that at-
tackers using adversarial training against Palette fail to dis-
tinguish among websites within the same anonymity set. In
this section, we investigate more powerful adaptive attacks,
where attackers with the full knowledge of Palette attempt
to identify the website in each anonymity set. Given an
unknown trace, the attackers can first train a classifier to
identify the anonymity set the trace belongs to, and then
train multiple classifiers for each anonymity set to infer
the specific website. This two-stage attack can effectively
narrow the potential target websites to a much smaller subset
of websites, thereby reducing the classification complexity
and possibly improving the accuracy.

Following the strategy above, we can use DF, Tik-Tok,
Var-CNN, or RF to conduct adaptive attacks. The results in
Table 9 illustrate that the overall attack accuracy of the adap-
tive attack is slightly higher than that of adversarial training,
demonstrating the resilience of Palette against sophisticated
adaptive attacks. Particularly, the highest accuracy achieved
by the adaptive attack is merely 36.92% under RF, indicating

the difficulty in classifying high-similarity websites in the
same anonymity set.

8. Discussion and Conclusion

In this paper, we presented Palette, a novel website fin-
gerprinting defense via traffic cluster anonymization. Specif-
ically, Palette groups websites into anonymity sets, con-
structs the super-matrix for each set based on the TAM,
and uses the super-matrix to instruct the packet sending in
real time. We compared Palette with the SOTA defenses
extensively under both the closed- and open-world scenarios
using a public real-world dataset and also implemented
it as a Pluggable Transport on the live Tor network. We
showed that Palette significantly outperformed other de-
fenses against the SOTA attacks in achieving high effective-
ness, moderate overhead, and practical deployment. Next,
we discuss the potential directions for enhancing Palette.
Website List for Tor Reasearch. We follow the same
setting as the previous studies [17, 42] to collect data ac-
cording to the Tranco list, which may not reflect the visiting
interests of real Tor users. A possible way is deploying a
Tor exit node for website collection. This, however, raises
ethical concerns (e.g., revealing the actual destinations of
Tor users). Therefore, it still needs more effort on website
collection without compromising the privacy of Tor users.
Parameter Selection. The default parameter setting for
Palette is listed in Table 11 in the Appendix. Since Palette
is capable of flexibly balancing overhead and defense per-
formance, we describe the parameter selection strategy for
Tor users with more diverse network conditions and browser
preferences. We first determine the anonymity degree by
tuning k, and then tune U and B for a better trade-off
between overhead and performance. After that, we tune the
time slot s and α for super-matrix sampling, which have a
slight impact on defense but can further reduce the overhead.
Improving the Similarity of Websites. The ablation study
in the Appendix (see Table 14) shows that website clustering
can reduce the attack accuracy. However, since it only works
on the monitored set, a small fraction of websites, certain
websites may not be highly similar to others, making it dif-
ficult to align with the super-matrix in a moderate overhead
and therefore leaking informative features. To address this,
a larger-scale website clustering in the open-world scenario
can further improve website similarity in each anonymity
set. We leave these as the future work.
Enhancing the Anonymity of Websites. In this paper,
we assign each website to a single anonymity set and
observe that an adaptive attacker can effectively distinguish
the anonymity set the trace belongs to. To enhance the
anonymity of websites, we can assign a website to multiple
anonymity sets. Consequently, different visits to the same
website may exhibit diverse traffic patterns, which increases
the difficulty of WF attackers to accurately identify which
anonymity set the website belongs to. We leave these at-
tempts as future work.

Acknowledgements

We thank our shepherd and anonymous reviewers for their
constructive comments, this paper was greatly improved
based on their suggestions. This work is partially sup-
ported by National Key R&D Program of China with
No. 2023YFB2703800, NSFC Projects with No. 62132011,
62222201, and U23A20304, Beijing Nova Program with No.
20220484174, Beijing Natural Science Foundation with No.
M23020.

References
[1] R. Dingledine, N. Mathewson, P. F. Syverson et al., “Tor: The second-

generation onion router.” in USENIX security symposium, vol. 4,
2004, pp. 303–320.

[2] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel, “Website
fingerprinting in onion routing based anonymization networks,”
in Proceedings of the 10th annual ACM workshop on Privacy
in the electronic society, Oct 2011. [Online]. Available: http:
//dx.doi.org/10.1145/2046556.2046570

[3] M. Juarez, M. Imani, M. Perry, C. Diaz, and M. Wright, “Toward
an efficient website fingerprinting defense,” in Computer Security–
ESORICS 2016: 21st European Symposium on Research in Computer
Security, Heraklion, Greece, September 26-30, 2016, Proceedings,
Part I 21. Springer, 2016, pp. 27–46.

[4] J. Gong and T. Wang, “Zero-delay lightweight defenses against web-
site fingerprinting,” in 29th USENIX Security Symposium, USENIX
Security 2020, August 12-14, 2020. USENIX Association, 2020, pp.
717–734.

[5] M. Nasr, A. Bahramali, and A. Houmansadr, “Defeating dnn-based
traffic analysis systems in real-time with blind adversarial perturba-
tions,” in 30th USENIX Security Symposium, USENIX Security 2021,
August 11-13, 2021. USENIX Association, 2021, pp. 2705–2722.

[6] P. Sirinam, M. Imani, M. Juárez, and M. Wright, “Deep fingerprinting:
Undermining website fingerprinting defenses with deep learning,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018. ACM, 2018, pp. 1928–1943.

[7] M. S. Rahman, P. Sirinam, N. Mathews, K. G. Gangadhara, and
M. Wright, “Tik-tok: The utility of packet timing in website finger-
printing attacks,” Proc. Priv. Enhancing Technol., vol. 2020, no. 3,
pp. 5–24, 2020.

[8] S. Bhat, D. Lu, A. Kwon, and S. Devadas, “Var-cnn: A data-efficient
website fingerprinting attack based on deep learning,” Proc. Priv.
Enhancing Technol., vol. 2019, no. 4, pp. 292–310, 2019.

[9] M. Shen, K. Ji, Z. Gao, Q. Li, L. Zhu, and K. Xu, “Subverting website
fingerprinting defenses with robust traffic representation,” in 32nd
USENIX Security Symposium (USENIX Security 23), 2023, pp. 607–
624.

[10] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton, “Peek-a-boo,
I still see you: Why efficient traffic analysis countermeasures fail,” in
IEEE Symposium on Security and Privacy, SP 2012, 21-23 May 2012,
San Francisco, California, USA. IEEE Computer Society, 2012, pp.
332–346.

[11] X. Cai, R. Nithyanand, and R. Johnson, “Cs-buflo: A congestion
sensitive website fingerprinting defense,” in Proceedings of the 13th
Workshop on Privacy in the Electronic Society, WPES 2014, Scotts-
dale, AZ, USA, November 3, 2014. ACM, pp. 121–130.

[12] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg, “A
systematic approach to developing and evaluating website fingerprint-
ing defenses,” in Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, Scottsdale, AZ, USA,
November 3-7, 2014. ACM, 2014, pp. 227–238.

[13] R. Nithyanand, X. Cai, and R. Johnson, “Glove: A bespoke website
fingerprinting defense,” in Proceedings of the 13th Workshop on
Privacy in the Electronic Society, 2014, pp. 131–134.

[14] T. Wang, X. Cai, R. Nithyanand, R. Johnson, and I. Goldberg,
“Effective attacks and provable defenses for website fingerprinting,”

http://dx.doi.org/10.1145/2046556.2046570
http://dx.doi.org/10.1145/2046556.2046570

in Proceedings of the 23rd USENIX Security Symposium, San Diego,
CA, USA, August 20-22, 2014. USENIX Association, 2014, pp.
143–157.

[15] T. Wang and I. Goldberg, “Walkie-talkie: An efficient defense against
passive website fingerprinting attacks,” in 26th USENIX Security
Symposium, USENIX Security 2017, Vancouver, BC, Canada, August
16-18, 2017. USENIX Association, 2017, pp. 1375–1390.

[16] J. K. Holland and N. Hopper, “Regulator: A straightforward website
fingerprinting defense,” Proc. Priv. Enhancing Technol., vol. 2022,
no. 2, pp. 344–362, 2022.

[17] J. Gong, W. Zhang, C. Zhang, and T. Wang, “Surakav: generating
realistic traces for a strong website fingerprinting defense,” in 2022
IEEE Symposium on Security and Privacy (SP). IEEE, 2022, pp.
1558–1573.

[18] N. Mathews, J. K. Holland, S. E. Oh, M. S. Rahman, N. Hopper,
and M. Wright, “Sok: A critical evaluation of efficient website
fingerprinting defenses,” in 2023 IEEE Symposium on Security and
Privacy (SP). IEEE, 2023, pp. 969–986.

[19] S. Li, H. Guo, and N. Hopper, “Measuring information leakage in
website fingerprinting attacks and defenses,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security, CCS 2018, Toronto, ON, Canada, October 15-19, 2018.
ACM, 2018, pp. 1977–1992.

[20] “Tor: Pluggable transports,” https://2019.www.torproject.org/docs/
pluggable-transports.html.en.

[21] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen,
M. Henze, and K. Wehrle, “Website fingerprinting at internet scale,”
in 23rd Annual Network and Distributed System Security Symposium,
NDSS 2016, San Diego, California, USA, February 21-24, 2016. The
Internet Society, 2016.

[22] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable web-
site fingerprinting technique,” in 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12, 2016. USENIX
Association, 2016, pp. 1187–1203.

[23] V. Rimmer, D. Preuveneers, M. Juárez, T. van Goethem, and
W. Joosen, “Automated website fingerprinting through deep learning,”
in 25th Annual Network and Distributed System Security Symposium,
NDSS 2018, San Diego, California, USA, February 18-21, 2018. The
Internet Society, 2018.

[24] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus, “Intriguing properties of neural networks,” arXiv
preprint arXiv:1312.6199, 2013.

[25] M. S. Rahman, M. Imani, N. Mathews, and M. Wright, “Mockingbird:
Defending against deep-learning-based website fingerprinting attacks
with adversarial traces,” IEEE Trans. Inf. Forensics Secur., vol. 16,
pp. 1594–1609, 2021.

[26] C. Hou, G. Gou, J. Shi, P. Fu, and G. Xiong, “Wf-gan: Fighting back
against website fingerprinting attack using adversarial learning,” in
2020 IEEE Symposium on Computers and Communications (ISCC).
IEEE, 2020, pp. 1–7.

[27] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harness-
ing adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[28] N. Carlini and D. Wagner, “Audio adversarial examples: Targeted
attacks on speech-to-text,” in 2018 IEEE security and privacy work-
shops (SPW). IEEE, 2018, pp. 1–7.

[29] A. M. Sadeghzadeh, B. Tajali, and R. Jalili, “Awa: Adversarial
website adaptation,” IEEE Transactions on Information Forensics and
Security, vol. 16, pp. 3109–3122, 2021.

[30] D. Li, Y. Zhu, M. Chen, and J. Wang, “Minipatch: Undermining
dnn-based website fingerprinting with adversarial patches,” IEEE
Transactions on Information Forensics and Security, vol. 17, pp.
2437–2451, 2022.

[31] S. Shan, A. N. Bhagoji, H. Zheng, and B. Y. Zhao, “Patch-based
defenses against web fingerprinting attacks,” in Proceedings of the
14th ACM Workshop on Artificial Intelligence and Security, 2021,
pp. 97–109.

[32] A. Abusnaina, R. Jang, A. Khormali, D. Nyang, and D. Mohaisen,
“Dfd: Adversarial learning-based approach to defend against web-
site fingerprinting,” in IEEE INFOCOM 2020-IEEE Conference on
Computer Communications. IEEE, 2020, pp. 2459–2468.

[33] S. Henri, G. Garcia-Aviles, P. Serrano, A. Banchs, and P. Thiran,

“Protecting against website fingerprinting with multihoming,” Pro-
ceedings on Privacy Enhancing Technologies, 2020.

[34] W. D. la Cadena, A. Mitseva, J. Hiller, J. Pennekamp, S. Reuter,
J. Filter, T. Engel, K. Wehrle, and A. Panchenko, “Trafficsliver: Fight-
ing website fingerprinting attacks with traffic splitting,” in CCS ’20:
2020 ACM SIGSAC Conference on Computer and Communications
Security, Virtual Event, USA, November 9-13, 2020. ACM, 2020,
pp. 1971–1985.

[35] M. Wang, A. Kulshrestha, L. Wang, and P. Mittal, “Leveraging
strategic connection migration-powered traffic splitting for privacy,”
Proceedings on Privacy Enhancing Technologies, 2022.

[36] D. Herrmann, R. Wendolsky, and H. Federrath, “Website finger-
printing: attacking popular privacy enhancing technologies with the
multinomial naı̈ve-bayes classifier,” in Proceedings of the 2009 ACM
workshop on Cloud computing security, 2009, pp. 31–42.

[37] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a
distance: Website fingerprinting attacks and defenses,” in Proceedings
of the 2012 ACM conference on Computer and communications
security, 2012, pp. 605–616.

[38] X. Deng, Q. Yin, Z. Liu, X. Zhao, Q. Li, M. Xu, K. Xu, and J. Wu,
“Robust multi-tab website fingerprinting attacks in the wild,” in 2023
IEEE Symposium on Security and Privacy (SP). IEEE Computer
Society, 2023, pp. 1005–1022.

[39] Q. Yin, Z. Liu, Q. Li, T. Wang, Q. Wang, C. Shen, and Y. Xu, “An au-
tomated multi-tab website fingerprinting attack,” IEEE Transactions
on Dependable and Secure Computing, vol. 19, no. 6, pp. 3656–3670,
2021.

[40] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.”
Journal of machine learning research, vol. 9, no. 11, 2008.

[41] T. Wang, “The one-page setting: A higher standard for evaluating
website fingerprinting defenses,” in Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security,
2021, pp. 2794–2806.

[42] J. Gong, W. Zhang, C. Zhang, and T. Wang, “Wfdefproxy: Real world
implementation and evaluation of website fingerprinting defenses,”
IEEE Transactions on Information Forensics and Security, 2023.

[43] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, and W. Joosen,
“Tranco: A research-oriented top sites ranking hardened against ma-
nipulation,” in Network and Distributed Systems Security (NDSS)
Symposium 2019, 2019.

[44] P. Mike, C. Erinn, M. Steven, and K. Georg, “The design and im-
plementation of the tor browser [draft],” https://2019.www.torproject.
org/projects/torbrowser/design/, June 2018.

[45] “Tor metrics,” https://metrics.torproject.org/, 2024.

Appendix A.
Website Category Analysis

To validate if the anonymity set generation tends to
cluster websites from the same category, we labeled websites
with five distinct categories (i.e., search engine, social me-
dia, online video, news, software and application services)
and investigated the distribution of website category in
anonymity sets. We selected the Top-10 websites in Tranco
list for each category and collected 100 instances for each
website using the method mentioned in Section 6.6.

The number of categories in anonymity sets with dif-
ferent values of k is shown in Figure 14(a). The average
number of categories increases as k grows, demonstrating
the high diversity of categories in anonymity sets. We also
analyzed the proportion of the dominant category (i.e., the
category with the most websites) in each anonymity set, as
shown in Figure 14(b). The maximum proportion is no larger
than 50% when k = 10, which indicates that websites in the
same category exhibit different TAM features and thus are
not clustered into the same anonymity set.

https://2019.www.torproject.org/docs/pluggable-transports.html.en
https://2019.www.torproject.org/docs/pluggable-transports.html.en
https://2019.www.torproject.org/projects/torbrowser/design/
https://2019.www.torproject.org/projects/torbrowser/design/

2 3 4 5 6 7 8 9 10

2

3

4

5

of
 c

at
eg

or
ie

s

Average

(a) Number of categories

2 3 4 5 6 7 8 9 10
0

25

50

75

100

Pr
op

or
tio

n
(%

) Average

(b) Dominant categories proportion

Figure 14: Distribution of five website categories with dif-
ferent anonymity sizes. Results are averaged over 10 runs.

TABLE 10: The parameter settings for defenses.
Defenses Parameter Setting

Tamaraw [12] ρout = .04 ρin = .012 L = 50
Supersequence [14] class-level cluster = 20 super-cluster = 3

WTF-PAD [3] normal rcv
FRONT [4] Ns = Nc = 1400 Wmin = 1 Wmax = 14

Surakav [17] ρ = 500 ms δ = 0.2 p = Random

RegulaTor [16]
R = 277 D = .940 T = 3.55
N = 3550 U = 3.95 C = 1.77

Palette k = 30 α = .16 B = 20 U = 45

Appendix B.
Parameter Setting

Simulation. We evaluate the defense performance and over-
head for each defense in Section 6. The parameters of
each defense are shown in Table 10, for the defenses in
comparison, we use the default parameters provided by the
authors. For Palette, we tune the parameters to achieve a
similar overhead with RegulaTor [16] and Surakav [17].
Real-World Evaluation. To determine the parameters for
each defense in real-world evaluation, we perform the grid
search and estimate the overhead by collecting 10 traces
from each website. We fix some parameters for each defense
as follows: Wmin = 1,Wmax = 14 for FRONT, p = Random
for Surakav, and k = 30 for Palette. The selected parameters
for each defense are listed in Table 11.

Appendix C.
Visualization of Attack Results

The results in Section 6.2 show that Palette can ef-
fectively undermine existing attacks by regulating website
traffic in the anonymity set. In this section, we visualize the
ability of Palette to achieve traffic cluster anonymization.

We use T-SNE to visualize the feature vectors of the last
layer of the classifier for DF, Tik-Tok, Var-CNN, and RF,
as shown in Figure 15. When k = 30, websites are grouped
into three anonymity sets. Each anonymity set corresponds

TABLE 11: The parameter settings for deployed defenses.
Defenses Parameter Setting

Tamaraw [12] ρout = .03 ρin = .09 L = 200
FRONT [4] Ns = Nc = 8000 Wmin = 1 Wmax = 14

Surakav [17] ρ = 25 ms δ = 0.6 p = Random

RegulaTor [16]
R = 277 D = .940 T = 3.55
N = 3550 U = 3.95 C = 1.77

Palette k = 30 α = .25 B = 1 U = 15

SA
1

SA
2

SA
3

(a) DF

SA
1

SA
2

SA
3

(b) Tik-Tok

SA
1

SA
2

SA
3

(c) Var-CNN

SA
1

SA
2

SA
3

(d) RF

Figure 15: Feature space visualization of WF attacks against
Palette (k = 30) using T-SNE. We use the same color to
indicate the website traces in the anonymity set SA

i .

TABLE 12: The accuracy of attacks without adversarial
training against defenses in the closed-world scenario.

Defenses Accuracy (%)
DF [6] Tik-Tok [7] Var-CNN [8] RF [9]

Supersequence [14] 0.05 1.43 0.01 1.05
Tamaraw [12] 1.18 1.53 1.32 1.05
WTF-PAD [3] 5.36 4.11 10.7 7.03

FRONT [4] 7.65 7.57 7.27 15.75
Surakav [17] 1.71 2.18 2.07 1.79

RegulaTor [16] 1.33 1.38 2.11 4.79
Palette 1.80 2.25 2.06 1.94

to a cluster, distinguished by a unique color. Each sub-figure
shows a clear separation between anonymity sets but a high
cohesion within anonymity sets, demonstrating that Palette
can obfuscate websites in the same anonymity set.

Appendix D.
Without Adversarial Training

Table 3 shows the effectiveness of defenses against
attacks enhanced by adversarial training. Given that ad-
versarial training involves extra cost and knowledge for
attackers, it might not be feasible in all cases (e.g., a
customized defense deployed on a private bridge), we also
provide the attack accuracy of DF, Tik-Tok, Var-CNN, and

TABLE 13: Information leakage for each feature category (Bit).

Features Category Undefended Defenses
Supersequence Tamaraw WTF-PAD FRONT RegulaTor Surakav Palette

Pkt.Count 2.135 2.057 1.244 1.284 0.675 1.065 1.085 1.074
Time 0.789 1.883 ▲ 1.094 1.242 ▲ 0.718 0.678 0.516 0.762 0.725 0.672

Ngram 1.129 1.088 0.346 1.014 0.345 0.792 0.471 0.556
Transposition 1.324 1.637 ▲ 0.313 0.350 0.259 0.094 0.154 0.182 0.254

Interval-I 0.773 0.673 0.281 0.181 0.175 0.113 0.180 0.428
Interval-II 0.262 0.046 0.011 0.210 0.423 ▲ 0.161 0.082 0.383 ▲ 0.121 0.237
Interval-III 0.249 0.040 0.009 0.201 0.426 ▲ 0.177 0.063 0.382 ▲ 0.133 0.235

Pkt. Distribution 1.218 1.529 ▲ 0.311 1.214 0.979 0.629 0.740 0.593 0.683
Burst 0.809 1.501 ▲ 0.692 0.231 0.398 0.171 0.445 0.412 0.340

First 20 0.223 0.488 ▲ 0.265 0.131 0.138 0.137 0.162 0.130 0.138
First 30 0.635 1.020 ▲ 0.385 0.213 0.073 0.023 0.149 0.032 0.025
Last 30 0.663 1.569 ▲ 0.906 0.004 0.174 0.175 0.347 0.155 0.132

Pkt. per Second 1.347 1.660 ▲ 0.313 1.191 1.111 1.197 1.401 ▲ 0.054 0.882 0.762
CUMUL 2.294 2.001 1.586 1.387 0.537 1.033 1.183 0.966

1 We use ▲ to highlight the increment of the information leakage compared with the undefended trace.
2 We mark the information leakage in blue if it exceeds 1 bit.

TABLE 14: Ablation study of key components in Palette.

Module Variations Overhead (%) Accuracy (%)
Bandwidth Time RF

Full - 84 9 36.43
Anonymity Set

Generation
w/o Clustering 68 11 41.52

Super-Matrix
Refinement

w/o Shrinking 490 2 26.72
w/o Sampling 770 0 55.70

w/o All 3188 0 57.20

Trace
Regularization

w/o Early Sending 71 17 32.19
w/o Tail Padding 282 9 14.29

w/o All 260 17 7.55

RF without adversarial training, i.e., all attacks are trained
on the undefended traces and tested on defended traces.

As shown in Table 12, all attacks fail to undermine
defenses in the absence of adversarial training. For instance,
the highest accuracy of RF against FRONT is 15.75%,
while the corresponding accuracy with adversarial training
is 93.92%. The results demonstrate that the existing attacks
are ineffective without adversarial training because these
defenses significantly disturb the original traffic patterns.

Appendix E.
Information Leakage Analysis of Defenses

In Section 6.4, we observe that Palette and FRONT both
have low average information leakage, but RF can achieve
over 95% accuracy against FRONT. To gain a better under-
standing of the results, we calculate the average information
leakage for each feature category, as shown in Table 13.

The information leakage of FRONT in Interval-II and
Interval-III surpasses even that of the undefended dataset.
Additionally, the Pkt. per Second of FRONT exhibits an
information leakage of 1.197 bits, which is an informative
feature used by RF. This also explains why RegulaTor
cannot effectively defend against RF, where the Pkt. per
Second has an even higher leakage than that in undefended
traces. Surakav also exhibits higher information leakage

in both Interval-II and Interval-III, making it ineffective
in defending against RF. Palette reduces the information
leakage of all categories to a relatively low level, offering
effective defense against both existing and potential attacks.

Appendix F.
Ablation Study

In this section, we separately evaluate the contribution of
the main modules of Palette, including website clustering in
anonymity set generation, super-matrix refinement, and trace
regularization. The results are shown in Table 14.
Anonymity Set Generation. To evaluate the contribution
of website clustering, we randomly divide websites into
anonymity sets. The results show that the attack accuracy in-
creases from 36.43% to 41.52%. The reason is that websites
in randomly divided anonymity sets have lower similarity
and are easier to identify by attackers.
Super-Matrix Refinement. In the absence of shrinking, the
super-matrix will remain at high values in each time slot,
leading to the transmission of numerous dummy packets.
However, it will improve the defense performance. In this
case, the bandwidth overhead rises to 490%, while the
accuracy of the attack drops to 26.72%. Removing sampling
leads to increased bandwidth overhead and attack accuracy.
This is because sampling can reduce the density of the super-
matrix while introducing random noise.
Trace Regularization. Palette w/o early sending achieves
an increase of time overhead by 8% and a decrease of attack
accuracy by 4.23%. This is because the buffer congestion
continues for a long time, and some packets may experience
significant delays, leading to an increased time overhead
but less timing information leakage. Furthermore, in the
scenario where tail padding is not employed, Palette still
sends many dummy packets when no real packets are in the
buffer for a long time, resulting in high bandwidth.

Appendix G.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

G.1. Summary

The paper introduces Palette, a novel defense for website
fingerprinting attacks based on the idea of traffic cluster
anonymization. Palette creates a traffic aggregation matrix
by clustering websites with high similarity in packet pat-
terns, refines the traffic matrix and guides packet sending
according to the refined traffic matrix to reduce bandwidth
and time overhead. The insight is that websites with similar
traffic patterns can be regularized into the same traffic
pattern with low overhead, at the same time providing k-
anonymity for the websites. Using a set of detailed evalua-
tion, the paper shows that Palette is able to resist state-of-
the-art website fingerprinting attacks, and performs better
than other defenses.

G.2. Scientific Contributions

• Creates a New Tool to Enable Future Science
• Provides a Valuable Step Forward in an Established Field

G.3. Reasons for Acceptance

1) The paper uses the clever insight that websites with
similar traffic patterns can be regularized into the same
traffic pattern with low time and bandwidth overhead for
defending against website fingerprinting attacks.

2) The paper presents a thorough evaluation of Palette, un-
der both open- and closed-world scenarios, considering
multiple settings and factors.

3) Palette outperforms existing state-of-the-art website fin-
gerprinting defenses, and is a useful tool for the com-
munity.

G.4. Noteworthy Concerns

1) The paper uses the popular and state-of-the-art Tranco
list of domains for evaluation. However, an input list
more appropriate for Tor networks will showcase appli-
cability for traffic in the anonymity network.

2) Palette’s improvements over state-of-the-art defenses is
only highly apparent in attacks with adversarial training,
where the defense deployed is known to the attacker
(Table 12). Real-world deployments of defenses may
consider the attacker’s adversarial capability to balance
between accuracy and overhead.

Appendix H.
Response to the Meta-Review

We really appreciate the meta-reviews. Regarding the
noteworthy concerns, we’d like to clarify them as follows.
Response to (1). We agree that the Tranco list may not
reflect the interests of real Tor users. However, using the
list will be the feasible way to measure the impact of our
defense on the Tor users. In particular, it is difficult to collect
popular websites without compromising the privacy of Tor
users though collecting such a list is more helpful.
Response to (2). Our paper focuses on developing strong
defenses in adversarial scenarios where the defense is known
to attackers, which is a real-world setting. The reason is
that whenever any defense is deployed on Tor nodes, it is
inevitable that attackers will be aware of the defense and
develop adversarial training or adaptive strategies against
the defense. Note that, it is difficult to enable the non-
adversarial scenarios in practice that require users deploying
private defenses on various Tor nodes.

	Introduction
	Related Work
	WF Attacks
	WF Defenses

	Threat Model and Problem Statement
	Threat Model
	Problem Statement

	Overview of Palette
	Design Details
	Trace Representation
	Anonymity Set Generation
	Super-Matrix Refinement
	Trace Regularization

	Performance Evaluation
	Experiment Setup
	Closed-World Performance
	Open-World Performance
	Information Leakage Measurement
	Parameter Tuning
	Real-World Performance
	Overhead Incurred by Palette Update

	Adaptive Attacks
	Discussion and Conclusion
	Appendix A: Website Category Analysis
	Appendix B: Parameter Setting
	Appendix C: Visualization of Attack Results
	Appendix D: Without Adversarial Training
	Appendix E: Information Leakage Analysis of Defenses
	Appendix F: Ablation Study
	Appendix G: Meta-Review
	Summary
	Scientific Contributions
	Reasons for Acceptance
	Noteworthy Concerns

	Appendix H: Response to the Meta-Review

