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Objective: Computed tomography (CT) provides rich diagnosis and severity information of
COVID-19 in clinical practice. However, there is no computerized tool to automatically delineate
COVID-19 infection regions in chest CT scans for quantitative assessment in advanced applications
such as severity prediction. The aim of this study was to develop a deep learning (DL)-based method
for automatic segmentation and quantification of infection regions as well as the entire lungs from
chest CT scans.
Methods: The DL-based segmentation method employs the “VB-Net” neural network to segment
COVID-19 infection regions in CT scans. The developed DL-based segmentation system is trained
by CT scans from 249 COVID-19 patients, and further validated by CT scans from other 300
COVID-19 patients. To accelerate the manual delineation of CT scans for training, a human-in-
volved-model-iterations (HIMI) strategy is also adopted to assist radiologists to refine automatic
annotation of each training case. To evaluate the performance of the DL-based segmentation system,
three metrics, that is, Dice similarity coefficient, the differences of volume, and percentage of infec-
tion (POI), are calculated between automatic and manual segmentations on the validation set. Then, a
clinical study on severity prediction is reported based on the quantitative infection assessment.
Results: The proposed DL-based segmentation system yielded Dice similarity coefficients of
91.6% � 10.0% between automatic and manual segmentations, and a mean POI estimation error of
0.3% for the whole lung on the validation dataset. Moreover, compared with the cases with fully
manual delineation that often takes hours, the proposed HIMI training strategy can dramatically
reduce the delineation time to 4 min after three iterations of model updating. Besides, the best accu-
racy of severity prediction was 73.4% � 1.3% when the mass of infection (MOI) of multiple lung
lobes and bronchopulmonary segments were used as features for severity prediction, indicating the
potential clinical application of our quantification technique on severity prediction.
Conclusions: A DL-based segmentation system has been developed to automatically segment and
quantify infection regions in CT scans of COVID-19 patients. Quantitative evaluation indicated high
accuracy in automatic infection delineation and severity prediction. © 2020 American Association of
Physicists in Medicine [https://doi.org/10.1002/mp.14609]
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1. INTRODUCTION

The outbreak of 2019 novel coronavirus in Wuhan, China has
rapidly spread to other countries since Dec 2019.1–7 The
infectious disease caused by this virus was named as
COVID-19 by the World Health Organization (WHO) on Feb
11, 2020.8 To date (July 23rd, 2020), there have been
14 765 256 confirmed cases reported all around the world.9

Each suspected case needs to be confirmed by real-time poly-
merase chain reaction (RT-PCR) assay of the sputum.10

Although it is the gold standard for diagnosis, confirming
COVID-19 patients using RT-PCR is time-consuming in
many countries and has been reported to suffer from high
false negative rates. On the other hand, because chest com-
puted tomography (CT) scans collected from COVID-19
patients often show typical features such as bilateral multifo-
cal patchy consolidation or ground glass opacities (GGO) in
the lung,11,12 it has been used as an important complementary
indicator in COVID-19 screening due to high sensitivity.13,14

Due to fast progression of COVID-19, a considerable
proportion of COVID-19 patients will progress to severe
or even critically ill stage. According to a retrospective
study on 138 hospitalized COVID-19 patients at Zhong-
nan Hospital of Wuhan University,12 26.1% of the
patients were transferred to the intensive care unit (ICU)
after enrollment. The median time from first symptom to
dyspnea was only 5.0 days, and to acute respiratory dis-
tress syndrome (ARDS) was only 8.0 days. Similar obser-
vations were also reported by Chen et al.15 and Huang
et al.11 Thus, timely identification of patients who may
progress to the severity stage at the early stage is pivotal
for subsequent active intervention.16 Although CT pro-
vides rich imaging information, it only provides qualita-
tive evaluation in the radiological reports owing to the
lack of computerized tools to accurately quantify the
infection regions and their longitudinal changes. Besides,
contouring infection regions in the chest CT is necessary
for quantitative assessment; however, manual contouring
of lung lesions is a tedious and time-consuming work,
and inconsistent delineation could also lead to subsequent
assessment discrepancies. Thus, a fast auto-contouring
tool for COVID-19 infection is urgently needed in the
onsite applications for quantitative disease assessment.

To this end, we developed a deep learning (DL)-based seg-
mentation system for quantitative infection assessment. The
system not only performs auto-contouring of infection
regions, but also accurately estimates their volumes and per-
centage of infection (POI) in CT scans of COVID-19 patients.
In order to provide delineation for hundreds of the training
COVID-19 CT scans, which is a tedious and time-consuming
work, we proposed a human-involved-model-iterations
(HIMI) strategy to iteratively generate the training samples.
This method involves radiologists to efficiently intervene
DL-based segmentation results and iteratively add more train-
ing samples to update the model, and thus greatly accelerates
the algorithm development cycle. To the best of our knowl-
edge, there are no literature that have reported the utilization

of HIMI strategy in delineating COVID-19 infections in chest
CT scans.

2. MATERIALS AND METHODS

2.A. Datasets

The protocol of this retrospective study was approved by
the Ethics Committees of Shanghai Public Health Clinical
Center and other centers outside Shanghai. Informed consent
was waived because of the retrospective nature of the study,
and all the private information of patients was anonymized
by the investigators after data collection. Totally 305 CT
scans from 305 COVID-19 patients (from Shanghai) were
collected for validation. About 249 CT scans of 249 COVID-
19 patients were collected from other centers (outside Shang-
hai) for training the segmentation network. Among 305 vali-
dation patients, 97 patients were considered as severe cases,
which follows the clinical classification criterion in The
Handbook of COVID-19 Prevention and Treatment.17 Seven
patients died eventually. All COVID-19 patients were con-
firmed with a laboratory examination through real-time PCR
(RT-PCR) detection by the local Center for Disease Control
(CDC), and rechecked by national CDC. According to the
Hospitalization Information System, the average hospital stay
for COVID-19 patients was about 9 days. The inclusion crite-
ria are listed as follows:

a Patients with a positive new coronavirus nucleic acid and
confirmed by the CDC;

b Age >= 18;
c Chest CT showed pneumonia.

Since the 249 CT scans were only used in training the seg-
mentation network and not used for severity prediction, the
severity information is not provided by the hospitals. Five
COVID-19 Patients (from Shanghai) with CT scans showing
obvious motion artifacts or pre-existing lung cancer condi-
tions were excluded in this study. Therefore, the total number
of patients used for validation is 300.

2.B. Image acquisition parameters

All COVID-19 patients underwent thin-section CT scan.
The CT scanners used in our study included uCT780 from
UIH, Optima CT520, LightSpeed 16 from GE, Aquilion
ONE from Toshiba, SOMATOM Force from Siemens, and
Scenaria 64 CT from Hitachi. The median duration from ill-
ness onset to CT scan was 4 days, ranging from 1 to 14 days.
The CT protocol was as follows: 120 kV; automatic tube cur-
rent (180–400 mA); iterative reconstruction; 64 mm detector;
rotation time, 0.35 s; slice thickness, 1 mm; collimation,
0.625 mm; pitch, 1.5; matrix, 512 × 512; and breath hold at
full inspiration. The reconstruction kernel used is set as “lung
smooth with a thickness of 1 mm and an interval of
0.8 mm”. During reading, the lung windows (with window
width 1200 HU and window level-600 HU) were used.
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2.C. DL-based segmentation network: VB-Net

Although segmentation methods have been fully investi-
gated in medical imaging applications,18,19 segmenting infec-
tion regions from the chest CT scans is still very challenging
due to the low contrast of the infection regions manifested as
GGO in CT images and large variation of both shape and
position across different patients. We therefore developed a
DL-based network called VB-Net, for this purpose. It is a
modified 3D convolutional neural network that combines V-
Net20 with a bottle-neck structure.21 Similar to V-Net,20 VB-
Net consists of two paths (Fig. 1). The first path is a contract-
ing path including down-sampling and convolution opera-
tions to extract global image features. The second path is an
expansive path including up-sampling and convolution opera-
tions to integrate fine-grained image features. In the contract-
ing path, the number of channels after the first convolution
layer is 16. The number of channels doubles, and the spatial
size decreases by half after each down-sampling layer. In the
expansive path, the number of channels decreases by half,
and the spatial size doubles after each up-sampling layer. In
the VB-Net, the bottle-neck structure replaces the 5 × 5 × 5
convolution operation in the V-Net by a sub-network includ-
ing three convolutional layers. Specifically, the first convolu-
tional layer reduces the channels of feature maps by applying
1 × 1 × 1 convolution kernel. The second convolutional
layer performs spatial convolution with 3 × 3 × 3 kernel
sizes. The last convolutional layer increases the channels of
feature maps by applying 1 × 1 × 1 convolution kernel.
Compared with V-Net,20 the speed of VB-Net is much faster
because the bottle-neck structure is integrated in the VB-Net,
as detailed in Fig. 1.22,23

2.D. Training VB-Net with human-involved-model-
iterations (HIMI) strategy

Training samples with detailed delineation of each infec-
tion region are required for the proposed VB-Net. However, it
is a labor-intensive work for radiologists to manually annotate
hundreds of COVID-19 CT scans. We, therefore, adopted the
human-involved-model-iterations (HIMI) strategy to itera-
tively update the DL model. Specifically, the training data are
divided into several batches, with 30–50 CT scans in each
batch. First, radiologists manually contour the CT data in the
smallest batch (i.e., 36 CT scans). Then, the segmentation
network is trained by this batch as an initial model. This ini-
tial model is applied to segment infection regions in the next
batch, which will be manually corrected by radiologists.
These corrected segmentation results together with the first
batch contoured by the radiologists are then combined as new
training data, and the model can be updated with increased
training dataset. In this way, we iteratively increase the train-
ing dataset by adding the newly corrected batch to the previ-
ous ones. When the segmentation accuracy on the new batch
becomes stable, the training process converges and the final
segmentation network is constructed. In the testing stage, the
trained segmentation network segments the infection regions

on a new CT scan via a forward propagation of neural net-
work. According to our experience, this HIMI training strat-
egy converged after 3-4 batches were used in the training
process. Figure 2 illustrates the process of the proposed
HIMI training strategy.

2.E. Quantification and assessment of COVID-19
infection

Besides COVID-19 infection regions, the whole lung, lung
lobes and bronchopulmonary segments of each subject were
also segmented using our system. To acquire the ground-truth
for bronchopulmonary segments, radiologists annotated bron-
chopulmonary segments on CT images, which we used as the
ground-truth for bronchopulmonary segmentation. Specifi-
cally, radiologists first annotated lung vessels and bronchus
using semi-automated tools on 3D Slicer.24 Then, based on
the 3D surface rendering of vessels and bronchus, radiolo-
gists divide the lung volume into multiple bronchopulmonary
segments.

After segmentation, various metrics were computed to
quantify the COVID-19 infection, including volumes of infec-
tion in the whole lung, and volumes of infection in each lobe
and each bronchopulmonary segment. In addition, the POIs
in the whole lung, each lobe and each bronchopulmonary
segment were also computed, respectively, to measure the
severity of COVID-19 and the distribution of infection within
the lung. The Hounsfield unit (HU) histogram within the
infection region can also be visualized for evaluation of GGO
(−750 to −300 HU) and consolidation components (−300 to
50 HU) inside the infection region delineated by our sys-
tem.25 Besides, a small number of voxels with HU values not

FIG. 1. The network structure for COVID-19 infection segmentation. The
dashed boxes show the bottle-neck structures inside the V-shaped network.
[Color figure can be viewed at wileyonlinelibrary.com]
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falling within the interval [−750, 50] are surrounded by
GGOs or consolidation area. They are also delineated as the
infection area by the system.

Figure 3 shows the entire pipeline for quantitative
COVID-19 assessment. A chest CT scan is first fed to the
DL-based segmentation system, which generates infection
areas, the whole lung, lung lobes, and all the bronchopul-
monary segments, respectively. Then, the aforementioned
quantitative metrics are calculated to quantify infection
regions of the patient. The quantification provides the basis
for measuring the severity of COVID-19 from the CT per-
spective and for tracking longitudinal changes during the
treatment course.

2.F. Quantitative evaluation on segmentation and
measurement accuracy

To quantitatively evaluate the accuracy of segmentation
and measurement, infection regions on 300 CT scans of 300
COVID-19 patients were first manually contoured by two

radiologists (W.S. and F.S., with 12 and 19 yr of experience
in chest radiology, respectively). Each case was manually
contoured by one radiologist and then reviewed by the other.
In case of disagreement, the final results were determined by
consensus between the two radiologists. After that, the infec-
tion regions were automatically segmented by the system.
Finally, the automatically segmented infection regions were
compared to the reference standard in terms of overlap ratio
(measured by Dice similarity coefficient), volume, the per-
centage of infection (POI) in the whole lung, POI in each
lung lobe, and POI in each bronchopulmonary segment.

Due to the time-consuming manual labeling process, the
inter-rater variability was assessed by randomly sampling 50
CT scans of COVID-19 patients from the entire validation set.
The two radiologists first independently contoured the infec-
tion regions in these CT scans. Their manual segmentation
was then compared using the same metrics as mentioned
above.

In our study, both VB-Net and V-Net20 had identical
hyper-parameter settings including the number of channels

FIG. 2. The human-involved-model-iterations (HIMI) workflow. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 3. Pipeline for quantifying COVID-19 infection. A chest computed tomography (CT) scan is first fed into the DL-based segmentation system. Then, quanti-
tative metrics are calculated to characterize infection regions in the CT scan, including (but not limited to) infection volumes and POIs in the whole lung, lung
lobes and bronchopulmonary segments. [Color figure can be viewed at wileyonlinelibrary.com]
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and the filter sizes in each layer. In training the network, the
Adam optimizer was used. We used the default setting of
Pytorch implementation. The initial learning rate was set as
α¼ 10�4, β1 ¼ 0:9, β2 ¼ 0:999, ɛ¼ 10�8. The training was
stopped when loss values were stabilized.

To show the advantage of VB-Net over classical deep
learning methods, the segmentation results obtained by VB-
Net were also compared with those obtained by U-Net,26–28

which was popularly used in medical image segmentation.
Notice that our experiments were carried out in the same
experimental condition, and the U-Net segmentation experi-
ments also used the HIMI training strategy.

2.G. Clinical use of quantification

One clinical application of the above quantification
technique is performing severity prediction for the
COVID-19 patients. Based on the segmentation results
obtained from the CT scans taken from COVID-19
patients on their first-day enrollment, the quantified radio-
logical features, including the percentage of consolidation
(POC), the percentage of infection (POI), and the mass
of infection, were calculated. Here, POC was calculated
as the ratio between the volume of consolidation and the
whole infection volume of the lung lobes or bronchopul-
monary segments, and POI was calculated as the ratio
between the infection volume and the volume of the lung
lobes or bronchopulmonary segments. The mass of infec-
tion region was calculated as Ref. [29]

M¼V � Ameanþ1000ð Þ�0:001½ � (1)

where M is the mass in milligrams per millimeter, V is the
infection volume, and Amean is the mean attenuation in
Hounsfield units. MOI, POC and POI of 5 lung lobes and 18
bronchopulmonary segments were calculated for each patient.
Table I lists the lung regions, from which the radiological fea-
tures are extracted.

The pneumonia severity index (PSI) is a clinical prediction
rule that is often used to calculate the probability of morbid-
ity and mortality among patients with community acquired
pneumonia.30,31 It is calculated based on demographics,
coexistence of comorbidity illnesses, and abnormal physical
and laboratory examinations. To verify whether PSI was suit-
able for severity prediction for COVID-19 patients, we also
did severity prediction experiments using only PSI. In our
experiments, PSI was estimated for each patient on his/her
first-day enrollment.

In our experiments of severity prediction, the 300 valida-
tion scans were used, where 97 cases were severe cases. We
performed 10-folded validation and repeated the experiments
20 times.

Since both severe and nonsevere cases are highly mixed in
the feature space, the classical linear classifiers cannot obtain
satisfactory results. We thus used the support vector machine
(SVM) as the classifier for severity prediction. To handle data
imbalance between the severe and nonsevere groups, we modi-
fied the classical C-SVM and constructed a cost-sensitive

learning criterion to learn the hyperplane of the classifier as
follows:

min
ω,b

1
2
kw k2þC∑

N1

i¼1

1
N1

ξiþC ∑
N1þN2

i¼N1þ1

1
N2

ξi

s:t:yi w
TφðxiÞþbð Þ≥1� ξi

ξi≥0, i¼ 1, . . .,N

where N1 and N2 are the sample numbers of the severe and
nonsevere groups, respectively, and N ¼N1þN2 is the total
number of samples. The Gaussian kernel function was used
in our experiments.

2.H. Statistical analysis and evaluation metrics

Statistical analysis was performed by R version 3.6.1 (R
Project for Statistical Computing, Vienna, Austria). Because
a majority of the continuous data did not follow a normal dis-
tribution, they were expressed as the median and interquartile
range (IQR, 25th and 75th percentiles).

In severity prediction, accuracy, sensitivity, specificity,
and AUC were used as metrics to evaluate the classification
performance. The AUC was used as the criterion for selecting
the optimal hyper-parameters for SVM.

3. RESULT

3.A. Visualization of delineating infection regions

To demonstrate the effectiveness, Fig. 4 shows typical
cases of COVID-19 infection in three different stages: early
stage, progressive stage and peak stage.32 Coronal images
without and with overlaid segmentation are presented in

TABLE I. The lung regions where the radiological features are extracted.

Categories Lung regions

Lung lobes Left upper lobe
Left lower lobe
Right upper lobe
Right middle lobe
Right lower lobe.

Bronchopulmonary segments Left upper lobe/apical posterior segment
Left upper lobe/anterior segment
Left upper lobe/superior lingular segment
Left upper lobe/inferior lingular segment
Left lower lobe/superior segment
Left lower lobe/anteromedial basal segment
Left lower lobe/lateral basal segment
Left lower lobe/posterior basal segment
Right upper lobe/apical segment
Right upper lobe/posterior segment
Right upper lobe/anterior segment
Right middle lobe/lateral segment
Right middle lobe/medial segment
Right lower lobe/superior segment
Right lower lobe/medial basal segment
Right lower lobe/anterior basal segment
Right lower lobe/lateral basal segment
Right lower lobe/posterior basal segment
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parallel for comparison. In addition, 3D rendering of each
case is also provided to give a more vivid understanding of
COVID-19 infection within the lung. All three cases show
that the contours delineated by the deep learning system
match well with the visible lesion boundaries in CT scans.

3.B. Quantitative evaluation on segmentation and
measurement accuracy

Table II shows the statistics of these evaluations on seg-
menting the infection regions in the lung. The average Dice
similarity coefficient is 91.6% � 10.0% (median 92.2%, IQR
89.0%–94.6%, range 9.6%–98.1%). The mean POI estima-
tion errors are 0.3% for the whole lung, 0.5% for lung lobes,
and 0.8% for bronchopulmonary segments. About 86.7% of
lung-lobe POIs and 81.6% of bronchopulmonary-segment
POIs are accurately estimated with differences equal or <1%.

Typical failure cases are shown in Fig. 5. They are CT
scans with very minor symptoms. These cases show small
lesions on CT scans, for example, a small area of GGO shown
in the bottom of lung. In such cases, our algorithm may miss
the lesion, thus causing a small Dice ratio.

Table III lists the quantitative comparison results of inter-
rater variability analysis between two radiologists. The aver-
age Dice similarity coefficient between the two radiologists is
96.1% � 3.5% (median 97.2%, IQR 95.4%–98.3%, range
86.5%–99.0%). The mean POI estimation difference is 0.2%
for whole lung, 0.3% for lung lobes, and 0.4% for bron-
chopulmonary segments. About 91.4% of lung-lobe POIs and
85.9% of bronchopulmonary-segment POIs are consistently
estimated with equal or less than 1% difference.

By comparing Tables II and III, it can be seen that the seg-
mentation and measurement errors of the deep learning sys-
tem are close to the inter-rater variability. This demonstrates
the precision level of using deep learning to quantify the
COVID-19 infection in CT scans.

Table IV compares the results of VB-Net and U-Net on
segmenting the COVID-19 infection regions in the 300 infec-
tion scans. Figure 6 further gives some comparison results.
The results in both Table IV and Fig. 6 indicate that our VB-
Net outperforms the U-Net on segmenting the COVID-19
infection regions in the CT scans.

Based on the segmentation results, we can explore the
quantitative lesion distribution specifically related to

A fifty-eight years old male (early stage)

A fifty-six years old female (progressive stage)

A sixty-seven years old female (peak stage)

(a)

(c)

(b)

FIG. 4. Typical infection segmentation results of computed tomography (CT) scans of three COVID-19 patients. Rows 1–3: early, progressive and peak stages.
Columns 1–3: CT image, CT scans overlaid with infection segmentation, and 3D rendering of segmented infections. (a) CT of a fifty-eight years old male in the
early stage; (b) CT of a fifty-six years old feamale in the progressive stage; (c) CT of a fifty-seven years old feamale in the peak stage. [Color figure can be viewed
at wileyonlinelibrary.com]

Medical Physics, 48 (4), April 2021

1638 Shan et al.: Lung quantification with deep learning 1638

www.wileyonlinelibrary.com


COVID-19. According to recent literature,33,34 COVID-19
infection happens more frequently in lower lobes of the lung.
However, so far no researches have reported quantitatively
the severity of COVID-19 infection in each lung lobe and
bronchopulmonary segment. Based on the segmentation
results, the POIs of lung lobes and bronchopulmonary seg-
ments can be automatically calculated. Thus, statistics of
infection distribution can be summarized in a large-scale
dataset, for example, 300 CT scans in our study. Figure 6
shows the boxplots of these POIs calculated from 300 CT

scans of COVID-19 patients in Shanghai. Figure 7(a) shows
that the mean POIs of left and right lower lobes are higher
than those of other lobes, which coincides with the findings
reported in Refs. [33,34].

3.C. Human-involved-model-iterations (HIMI)
strategy

Two metrics were used to evaluate the HIMI strategy.
First, the time of manual contouring was recorded to

TABLE II. Quantitative evaluation of the deep learning segmentation system on the validation dataset. The Dice coefficients, and POI estimation error in the
whole lung, lung lobes and bronchopulmonary segments, were calculated to assess the automatic segmentation accuracy. * indicates no significant difference
between automatic and manual ground-truth segmentations of the validation dataset according to paired t-test.

Accuracy metrics Mean Standard deviation Median 25% IQR 75% IQR Number of infected samples

Dice Similarity Coefficient 91.6% 10.0% 92.2% 89.0% 94.6% 300

POI Error (The whole lung)* 0.3% 0.4% 0.1% 0.0% 0.4% 300

POI Error (Left upper lobe) 0.4% 1.0% 0.1% 0.0% 0.4% 233

POI Error (Left lower lobe)* 0.7% 1.6% 0.3% 0.1% 1.0% 267

POI Error (Right upper lobe) 0.3% 0.7% 0.1% 0.0% 0.5% 213

POI Error (Right middle lobe) 0.3% 0.7% 0.1% 0.0% 0.5% 204

POI Error (Right lower lobe) 0.6% 1.1% 0.3% 0.1% 0.9% 275

POI Error (Left upper lobe/apical posterior) 0.5% 1.0% 0.1% 0.0% 0.5% 189

POI Error (Left upper lobe/anterior) 0.5% 1.2% 0.2% 0.0% 0.5% 158

POI Error (Left upper lobe/superior lingular) 0.7% 1.7% 0.2% 0.0% 0.9% 192

POI Error (Left upper lobe/inferior lingular) 0.7% 1.8% 0.2% 0.0% 0.8% 175

POI Error (Left lower lobe/superior)* 0.9% 2.1% 0.4% 0.1% 1.2% 224

POI Error (Left lower lobe/anteromedial basal) 0.6% 1.4% 0.2% 0.0% 0.8% 209

POI Error (Left lower lobe/lateral basal)* 1.1% 2.5% 0.5% 0.1% 1.7% 228

POI Error (Left lower lobe/posterior basal)* 1.1% 2.4% 0.5% 0.1% 1.6% 233

POI Error (Right upper lobe/apical) 0.4% 1.1% 0.1% 0.0% 0.5% 142

POI Error (Right upper lobe/posterior) 0.7% 1.7% 0.2% 0.0% 0.8% 186

POI Error (Right upper lobe/anterior) 0.4% 1.1% 0.1% 0.0% 0.9% 151

POI Error (Right middle lobe/lateral) 0.6% 1.5% 0.1% 0.0% 0.6% 183

POI Error (Right middle lobe/medial)* 0.3% 0.8% 0.1% 0.0% 0.4% 167

POI Error (Right lower lobe/superior) 0.9% 1.9% 0.4% 0.1% 1.4% 233

POI Error (Right lower lobe/medial basal)* 0.6% 1.4% 0.3% 0.1% 0.9% 162

POI Error (Right lower lobe/anterior basal) 0.6% 1.4% 0.1% 0.0% 0.9% 210

POI Error (Right lower lobe/lateral basal) 0.9% 1.8% 0.4% 0.1% 1.2% 236

POI Error (Right lower lobe/posterior basal) 1.0% 2.0% 0.5% 0.1% 1.6% 249

FIG. 5. A typical failure case with small lesions. (a) computed tomography scan with very minor symptom. (b) ground-truth segmentation result. [Color figure
can be viewed at wileyonlinelibrary.com]
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compare labeling time of a CT scan with the deep learn-
ing model. Second, the segmentation accuracy of deep
learning models at different iterations was assessed to see
whether the accuracy improves with more annotated train-
ing data. Table V shows the labeling time and segmenta-
tion accuracy at different iterations. Without any
assistance of deep learning, it takes 211.3 � 52.6 min to
contour COVID-19 infection regions on one CT scan.
The contouring time drops dramatically to 31.1 � 8.1 min
with the assistance of the first deep learning model
trained with 36 annotated CT scans. It further drops to
12.0 � 2.9 min with 114 annotated data, and to 4.7 � 1.1
with 249 annotated data. Meanwhile, the segmentation
accuracy of deep learning models was evaluated using

Dice similarity coefficient on the entire validation set
including 300 scans. It improves from 85.1 � 11.4%, to
91.0 � 9.6%, and to 91.6% � 10.0 with more training
data added.

From Table V, it can be seen that the segmentation accu-
racy is improved after each iteration, which greatly reduces
human intervention and thus reduces significantly the time of
annotation and labeling.

3.D. Clinical use of quantification

The best accuracy of severity prediction was
73.4% � 1.3% when using MOI across 5 lung lobes as fea-
tures. Besides, the accuracy of severity prediction was
72.0% � 2.7% when using POI across 18 bronchopulmonary
segments in the study. These observations indicate the poten-
tial clinical application of quantification technique on sever-
ity prediction.

Besides, our results show an accuracy of 63.3% when
only PSI was used in severity prediction. This is lower
than using the quantified radiological features such as
POI and MOI. This shows that quantified radiological
features are more informative to predict severity of
COVID-19 than PSI.

TABLE III. Inter-rater variability analysis between two radiologists on randomly sampled 10 CT cases. The Dice coefficients, and POI difference in whole lung,
lung lobes and bronchopulmonary segments, were estimated to serve as the reference for assessing the automatic segmentation accuracy. * indicates no signifi-
cant difference between contouring results of two radiologists on the validation dataset according to paired t-test.

Inter-rater variability metrics Mean Standard deviation Median 25% IQR 75% IQR Number of infected samples

Dice Similarity Coefficient 96.1% 3.5% 97.2% 95.4% 98.3% 10

POI Error (Whole lung)* 0.2% 0.1% 0.2% 0.1% 0.2% 10

POI Error (Left upper lobe)* 0.4% 0.7% 0.1% 0.0% 0.3% 7

POI Error (Left lower lobe)* 0.2% 0.2% 0.3% 0.0% 0.4% 7

POI Error (Right upper lobe)* 0.3% 0.5% 0.1% 0.1% 0.3% 6

POI Error (Right middle lobe)* 0.3% 0.5% 0.1% 0.0% 0.1% 6

POI Error (Right lower lobe)* 0.2% 0.2% 0.2% 0.0% 0.3% 9

POI Error (Left upper lobe/apical posterior)* 0.9% 1.1% 0.2% 0.0% 1.2% 5

POI Error (Left upper lobe/anterior)* 0.9% 0.8% 0.4% 0.3% 1.2% 3

POI Error (Left upper lobe/superior lingular)* 0.6% 0.9% 0.0% 0.0% 0.6% 7

POI Error (Left upper lobe/inferior lingular)* 0.2% 0.2% 0.1% 0.0% 0.3% 4

POI Error (Left lower lobe/superior)* 0.1% 0.1% 0.2% 0.1% 0.2% 4

POI Error (Left lower lobe/anteromedial basal)* 0.2% 0.1% 0.3% 0.2% 0.3% 5

POI Error (Left lower lobe/lateral basal)* 0.3% 0.4% 0.2% 0.0% 0.4% 6

POI Error (Left lower lobe/posterior basal)* 0.6% 0.5% 0.4% 0.2% 0.7% 6

POI Error (Right upper lobe/apical)* 0.5% 0.7% 0.2% 0.0% 0.6% 5

POI Error (Right upper lobe/posterior)* 0.5% 0.5% 0.2% 0.1% 0.8% 5

POI Error (Right upper lobe/anterior)* 0.5% 0.9% 0.1% 0.0% 0.2% 5

POI Error (Right middle lobe/lateral)* 0.2% 0.3% 0.1% 0.0% 0.2% 6

POI Error (Right middle lobe/medial)* 0.3% 0.6% 0.1% 0.0% 0.1% 5

POI Error (Right lower lobe/superior)* 0.4% 0.4% 0.2% 0.1% 0.7% 7

POI Error (Right lower lobe/medial basal)* 0.5% 0.3% 0.6% 0.3% 0.8% 4

POI Error (Right lower lobe/anterior basal)* 0.2% 0.3% 0.1% 0.0% 0.1% 8

POI Error (Right lower lobe/lateral basal)* 0.2% 0.2% 0.1% 0.1% 0.2% 7

POI Error (Right lower lobe/posterior basal)* 0.3% 0.5% 0.1% 0.0% 0.2% 7

TABLE IV. Comparison on Dice values of VB-Net and U-Net in segmenting
infections of the lung.

Network Mean
Standard
deviation Median

25%
IQR

75%
IQR

Number of
testing
samples

U-Net 87.3% 10.1% 89.5% 85.6% 93.2% 300

VB-Net 91.6% 10.0% 92.2% 89.0% 94.6% 300
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4. DISCUSSION

Computed tomography imaging has become an efficient
tool for both screening COVID-19 patients and assessing the
severity of COVID-19. However, radiologists lack a comput-
erized tool to accurately quantify the severity of COVID-19,
for example, the percentage of infection in the whole lung. In
the literature, deep learning has become a popular method in
medical image analysis and has been used in analyzing dif-
fuse lung diseases on CT.35,36 In this work, we explored deep
learning to segment COVID-19 infection regions within lungs
on CT images. The accurate segmentation provides quantita-
tive information that is necessary to track disease progression
and analyze longitude changes of COVID-19 during the
entire treatment period.37 A research of severity prediction on
the first day of enrollment is reported based on quantification
results. We believe that this deep learning system for COVID-
19 quantification will open up many new research directions
of interest in this community.

In our research, we have obtained more than 72% accu-
racy in severity prediction based on the quantified radiologi-
cal features. In clinical practice, more information such as
clinical features is available, which provides more informa-
tion about patients. Besides, patients often take CT scan every

3–5 days, which provides longitudinal changing information
about progression of the disease. All these kinds of informa-
tion can be used in the future to improve the accuracy of
severity prediction.

One potential research application of this system is to
quantify longitudinal changes in the follow-up CT scans of
COVID-19 patients. Hospitalized patients with confirmed
COVID-19 typically take a CT examination every 3–5 days.
As currently there is no effective medicine to target COVID-
19, most patients recover with different degrees of supportive
medicine intervention. Given many such patients, it is inter-
esting to see how disease progresses under different clinical
management. Figure 8 gives a case with three follow-up CT
scans. With infection region segmented, the changes of infec-
tion volume as well as consolidation and ground glass opaci-
ties can be easily visualized using surface rendering
technique.

Moreover, infection distribution can be analyzed further
down to the bronchopulmonary segment level, as shown in
Fig. 7(b). To the best of our knowledge, this is the first work
that reveals the COVID-19 distribution in bronchopulmonary
segments in terms of a large-scale patient CT data. Our
results show that the following segments are often infected by
COVID-19 (as indicated with decreasing mean POI): right

Case (a)

Case (b)

Case (c)

FIG. 6. Comparison of segmentation results by VB-Net and U-Net on three cases. First column shows original images, and the second column shows the
ground-truth segmentations. The segmentation results by VB-Net and U-Net are shown in the third and fourth columns, respectively. Green boxes in each case
indicate regions with large segmentation differences by VB-Net and U-Net. (a) Comparison of segmentation results on case 1. (b) Comparison of segmentation
results on case 2. (c) Comparison of segmentation results on case 3. [Color figure can be viewed at wileyonlinelibrary.com]
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lower lobe — lateral basal, right lower lobe — superior, right
lower lobe — posterior basal, left lower lobe — lateral basal,
left lower lobe — superior, left lower lobe — posterior basal,
and right upper lobe — posterior. Using HIMI strategy in

training the segmentation network is a novel feature of our
system. Existing AI-based systems for automatic quantitative
assessment always require a large amount of annotation CT
data, whereas collecting the annotated data is very expensive
or even difficult. Moreover, these AI systems are always
trained as a black box to users, who however always want to
know what has happened behind the model. Our experimen-
tal results indicate that the HIMI strategy makes the manual
annotation process faster with the assistance of deep learning
models. Also, the HIMI strategy makes the system more
comprehensible. That is, with manual intervention in HIMI,
the radiologists are aware of how good the system performs
in the training process. Besides, the HIMI strategy helps radi-
ologists accustomed to the AI system because they are
involved in the training process. It integrates professional
knowledge from radiologists in an interactive way.

Both SVM and LASSO are effective classifiers in
COVID-19 applications. In Ref. [37], Shi et al. constructed a
least absolute shrinkage and selection operator (LASSO)

FIG. 7. The box-and-whisker plots of POIs in five different lung lobes (a) and 18 different bronchopulmonary segments (b) on 300 validation computed tomogra-
phy (CT) scans of COVID-19 patients. The bottom and top of each box represent the 25th and the 75th percentile, respectively. The line in the box indicates the
50th percentile or the median value. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE V. Validation of the human-involved-model-iterations (HIMI) strat-
egy. Manual time indicates the manual labeling/correction time without DL
or with different DL models. Accuracy indicates the segmentation accuracy
of DL models. ‘# of Images’ indicates the number of training images used in
training each DL model.

Time (min)
Without DL

(min)
First iteration

(min)

Second
iteration
(min)

Third iteration
(min)

Manual
time

211.3 � 52.6 31.1 � 8.1 12 � 2.9 4.7 � 1.1

Accuracy
(DSC)

N/A 85.1 � 11.4% 91.0 � 9.6% 91.6%�10.0%

# of
Images

N/A 36 114 249
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logistic regression model for severity prediction with 24 clin-
ico-radiological features. The 24 clinico-radiological features
were reduced to five potential predictors, which include age,
lactate dehydrogenase (LDH), C-reactive protein (CRP),
CD4 + T cell counts and MOI in the whole lung. Different
from their method that used both clinical and radiological
features, we used all the quantified radiological features of
five lung lobes and 18 bronchopulmonary segments and fur-
ther constructed classifier based on SVM. Compared with the
LASSO logistic regression in Ref. [37], our method is a non-
linear classification method with stronger discriminant capa-
bility. Besides, we consider the imbalanced issue in COVID-
19 severity prediction. Both factors make our method supe-
rior to the LASSO logistic regression model in Ref. [37].

Conclusively, chest CT has played a key role not only in
the diagnosis and treatment of COVID-19 but also in evaluat-
ing both disease progression and therapeutic efficacy.13,38–40

However, the role of CT in identifying COVID-19 is still con-
troversial. Some researchers gave a critical review and ques-
tioned the role of CT in identifying COVID-19.41 In the early
outbreak of COVID-19 in China, American College of Radi-
ology also showed a reserving attitude towards the use of CT
in identifying and screening COVID-19. This is mainly
because the CT manifestations of COVID-19 are generally

not specific, and overlap with other infections, including
influenza, H1N1, SARS and MERS.42 Different from these
studies, our study focuses on COVID-19 severity prediction,
in which all the COVID-19 patients are confirmed and have
typical CT manifestations of COVID-19. Besides, the key
technical issue of severity prediction is to find discriminant
features to predict the progress of the disease, which focuses
more on the evolution of the CT features over a period of
time. Our preliminary results in Section 3D also show the
effectiveness of CT on the severity prediction of COVID-19.

It is worth noting the limitations of our work in several
aspects:

First, the validation CT datasets were collected in one cen-
ter, which may not be representative of all COVID-19 patients
in other geographic areas. The generalization of the deep
learning system needs to be further validated on multi-center
datasets.

Second, the system is developed to quantify COVID-19
infections only, and it may not be applicable for quantifying
other types of pneumonia, for example, bacterial pneumonia.
Figure 9 shows some examples on the application of our
model to other lung diseases. From the figure, one may
observe that the model trained with COVID-19 CT images is
able to detect similar symptoms (i.e., ground glass opacities)

FIG. 8. The follow-up study results of a forty-six female patient. Green and red colors indicate ground glass and consolidation opacities, respectively. The POI
values show the progression and gradual recovery of the patient from Jan 25th, Feb 1st, to Feb 5th 2020. [Color figure can be viewed at wileyonlinelibrary.com]
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in CT images from other lung diseases. However, if a tumor
or an infection contains a large portion of homogenous con-
solidation, the model would fail to detect the complete con-
tour as shown in Fig. 9(b) (right lung) and Fig. 9(d) (large
tumor in LIDC dataset43). Since most of COVID-19 infec-
tions in CT consist of ground glass opacities and sometimes a
small portion of inhomogeneous consolidation, there is sel-
dom a large portion of homogenous consolidation associated
with COVID-19. Therefore, the model fails to recognize this
pattern, which often appears in bacterial pneumonia or lung
cancer.

Finally, in our future work, we will extend the system to
quantify severity of other pneumonia using advanced
machine learning methods such as transfer learning and deep
ensemble learning.44

One may argue that the typical cases in Fig. 5 indicate that
the segmentation network may miss small infection in the
lung, implying that the proposed segmentation network
would not be helpful for studying disease progression starting
from early stage. In our opinion, the failure cases of the seg-
mentation model are due to the following two reasons. First,
the GGO is very light and small, and the contrast is insuffi-
cient for the algorithm to draw accurate contour of infection.
Second, the cases with small infection are minority in our
dataset. As our algorithm is learning-based and data-driven,
it did not do quite well on such cases. In the future, such data
will be specifically collected to address this problem.

With this automatic DL-based segmentation, many studies
on quantifying imaging metrics and correlating them with
syndromes, epidemiology, and treatment responses could fur-
ther reveal insights about imaging markers and findings
towards improved diagnosis and treatment for COVID-19.
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