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SUMMARY The lung is the primary site of severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2)-induced immunopathology whereby the virus enters the host cells by
binding to angiotensin-converting enzyme 2 (ACE2). Sophisticated regeneration and repair
programs exist in the lungs to replenish injured cell populations. However, known resident
stem/progenitor cells have been demonstrated to express ACE2, raising a substantial concern
regarding the long-term consequences of impaired lung regeneration after SARS-CoV-2 infec-
tion. Moreover, clinical treatments may also affect lung repair from antiviral drug candidates
to mechanical ventilation. In this review, we highlight how SARS-CoV-2 disrupts a program
that governs lung homeostasis. We also summarize the current efforts of targeted therapy
and supportive treatments for COVID-19 patients. In addition, we discuss the pros and cons
of cell therapy with mesenchymal stem cells or resident lung epithelial stem/progenitor cells ) . )
in preventing post-acute sequelae of COVID-19. We propose that, in addition to symptomatic EA‘EZE&TS g@;ﬁ;iggfﬂzzsza_ew for
treatments being developed and applied in the clinic, targeting lung regeneration is also Address correspondence to Huaiyong Chen,
essential to restore lung homeostasis in COVID-19 patients. huaiyong.chen@foxmail.com.
The authors declare no conflict of interest.
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INTRODUCTION

he mammalian lungs are continuously challenged by environmental particles, pol-

lutants, and pathogens. Epithelia that cover the conducting airways and alveoli space
play multiple roles in maintaining lung hemostasis and building immunity against inhaling
content. Classically, lung epithelial cells with tight junctions are considered to form a “great
wall” that prevents infiltration of inhaled substances and removes them through mucocili-
ary clearance (1). Increasing evidence has shown that the lung epithelium orchestrates the
pulmonary innate immune response because it expresses pathogen-associated molecular
patterns (PAMPs) (2). In host defense against infection, lung epithelial cells are also found
to produce antimicrobial peptides and proteins, antiviral interferons, and chemokines that
drive the recruitment of inflammatory cells (3). As the lungs’ respiratory units, alveoli are
tiny sacs lined by flat and thin alveolar type 1 (AT1) epithelial cells that mediate oxygen/
carbon dioxide exchange. In contrast, AT2 epithelial cells secrete surfactants (SPA, SPB,
SPC, and SPD) to reduce alveolar surface tension. To break through the defense, inhaled
pathogens, including the rising acute respiratory syndrome coronavirus 2 (SARS-CoV-2),
usually invade lung epithelial cells or induce cell apoptosis or death.

Since the first case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
infection was reported in 2019, the number of infections has exceeded 248 million, with
over 5 million deaths worldwide by November 5, 2021 (https://covid19.who.int/). Nasal epi-
thelial cells are the primary target of SARS-CoV-2 because of the expression of viral entry fac-
tors (4-6). Therefore, the nasal mucosa is considered the primary infection site, from which
SARS-CoV-2 can be further transmitted to the respiratory tract (7). This builds a basis for
nasal swabs for the detection of SARS-CoV-2. Evidence suggests that viral load peaks in the
upper airways and elicits a robust interferon response prior to symptom onset (8). However,
the lungs may be the primary site of immunopathology, especially in patients with severe
COVID-19. Sophisticated programs have evolved to maintain lung homeostasis following
lung injury. This review addresses the mechanisms by which the lung epithelium is repaired
after lung injury and how the repair program is disrupted during SARS-CoV-2 infection. We
also discuss current therapeutic efforts for coronavirus disease 2019 (COVID-19) patients and
highlight how targeted lung regeneration strategies with stem cell therapy are important to
maximally restore lung homeostasis in COVID-19 patients.

EPITHELIAL CELLS IN THE LUNG

At present, approximately a dozen main epithelial cell types have been identified in
the lungs. The composition of the lung epithelium is region-specific. The trachea is cov-
ered with a pseudostratified columnar epithelium, and the main cell types are club secre-
tory cells, goblet cells, ciliated cells, and basal cells (Fig. 1) (9). Moreover, there are also
submucosal glands as well as a few neuroendocrine clusters. A more simplified columnar
epithelium defines intrapulmonary conducting airways, including bronchi and bron-
chioles. Ciliated and club cells are the most abundant cell types in this region. There are
two main epithelial cell types in the alveoli: type-1 (AT1) cells, which cover 95% of the al-
veolar surface area and are responsible for gas exchange, and type-2 (AT2) cells, which
generate large amounts of surfactant protein to reduce the surface tension of the alveoli
and prevent lung collapse upon every breath (10, 11).

The current understanding of the mechanisms underlying human lung epithelial mainte-
nance is largely based on the extensive knowledge that has been collected in counterpart
mouse models in past decades. This is because the cellular composition is very similar
between humans and mice, such as the trachea and alveoli. However, it is worth noting that
there are some differences between the intrapulmonary conducting airways of humans and
mice. For example, basal cells are distributed throughout the pseudostratified epithelium
from the trachea to the bronchioles in human lungs; however, in mice, basal cells are re-
stricted to the trachea and proximal extrapulmonary airways (12). In the distal conducting
airways of mice, there are also more neuroendocrine cells than their human counterparts
(13). In addition, the distal conducting airways of mice terminate at the BAL junction, which
contains bronchioalveolar stem cells (BASCs). The distal airways of humans have no evidence
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FIG 1 General epithelial populations in mammalian lungs. Pseudostratified epithelium is observed in the trachea of both human and mice. Basal cells are
situated on basal membrane and serve as stem cells. Basal cells are restricted to the tracheal region in mice but distributed from proximal to distal axis in
human lungs. Club cells and ciliated cells represent two of the most predominant cell types in conducting airways. Bronchioalveolar stem cells (BASCs) are
found in distal conducting airways of mice but not human. Alveolar epithelia in human is similar to that in mice, including AT1 and AT2 cells. Markers and

functions of each epithelial cell type are also indicated.

of BASCs and are connected to the alveoli through the respiratory bronchioles, which are
not found in mice. These differences must be considered in translational lung medicine.

LUNG EPITHELIAL REGENERATION BY ENDOGENOUS STEM/PROGENITOR CELLS

As the inner surface area of an adult lung is approximately 80 to 100 square meters, the
regenerative mechanism in the lung has evolved into a region-specific manner. Unlike other
solid organs, multiple regional lung stem/progenitor cells (LSPCs) are positioned in the lung
epithelium from the proximal to the distal axis to maintain epithelial homeostasis and/or to
perform a repair after lung injury. These stem/progenitor cells include basal cells, club cells,
variant club cells, pulmonary neuroendocrine cells, BASCs, and AT2 cells. Mouse BASCs can
give rise to both airway and alveolar lineages in mice (14, 15). We focused on the three
most studied epithelial stem/progenitor cells in the lungs.

Tracheal Basal Cells

Basal cells, marked by transcription factor transformation-related protein 63 (Trp63 or p63)
and cytokeratin 5 (Krt5), are capable of self-renewal, are multipotent, and generate multiple
types of epithelial cells when necessary, such as club cells, secretory cells, goblet cells, and cili-
ated cells (16, 17). Basal cells are thought to be a homogeneous population. However, using
mouse lineage tracing of Krt5, Watson et al. found that basal cells are heterogeneous and
compirise at least two subsets. One acts more as a self-renewing stem cell, with the other cells
expressing low Krt8 levels, focusing on intracavitary differentiation (18). Through single-cell
transcriptomic analysis and mouse lineage tracing technology, basal cells were shown to pro-
duce tuft cells known as solitary chemosensory cells and may play a role in lung dysplastic
remodeling after injury (19, 20).

Adult basal airway cells normally maintain a quiescent state. Knockout of yes-associated
protein 1 (Yap) results in the loss of mouse basal cells in the airways (21). Intracellular reactive
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oxygen species increase to activate nuclear factor erythroid 2-related factor 2 (Nrf2) to stimu-
late human airway basal cell self-renewal (22). FGFR1 signaling maintains the slow turnover
rate of mouse basal cells through downstream SPRY2 inhibitory regulation of receptor tyro-
sine kinases (23). In contrast, FGFR2 signaling favors mouse airway basal cell self-renewal, and
its ligands, FGF7 and FGF10, can promote basal cell growth (24). In addition, basal cell prolifer-
ation is also facilitated by epidermal growth factor and Wnt/B-catenin signaling pathways,
while restrained by SMAD, bone morphogenetic protein (BMP), and TGF 8 signaling pathways
in mice (25-29). Conditional deletion of Lef-1, a downstream transcription factor of Wnt/
B-catenin, stalls mouse basal cell proliferation (30). B-catenin has also been shown to direct
the differentiation of basal cells into club cells or ciliated cells (31, 32). Notch signaling medi-
ated by NOTCH1 and NOTCHS3 is essential for human basal cell differentiation into ciliated
cells, but sustained activation in human basal cells favors secretory cell differentiation (33, 34).
Interleukin 6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) enhance ciliated
cell differentiation from basal cells in both humans and mice (35).

Airway Club Cells

Club cells are marked by secretoglobin 1a1 (scgb1al or CCSP) and are considered
to be epithelial progenitor cells in bronchial and bronchiolar airways; they exhibit lim-
ited self-renewal capacity but are capable of giving rise to ciliated cells and goblet cells
under both normal homeostasis and injury conditions (36-39). Club cells are heteroge-
neous and distinct in the proximal versus distal conducting airways and show differen-
tial responses to bleomycin-induced lung injury (38). Club cells metabolize lipophilic
compounds through cytochrome P450, making them susceptible to injury by lipophilic
compounds (40). When club cells are damaged, the variant club (vClub) cells, which
are located in the neuroendocrine bodies and bronchioalveolar duct junction (BADJ),
rapidly proliferate and repopulate the lost club cells and ciliated cells (41). Club cells
can de-differentiate into basal cells during influenza virus infection (36, 42, 43).

The tumor suppressor p53 loss maintains the self-renewal and proliferative capacity
of club cells by limiting ciliated cell differentiation (44). BMP signaling is required for
mouse airway club cell regeneration but not for ciliated cell differentiation (45). Notch
jagged ligand blockade induces rapid loss of club cells and drives ciliated cell differen-
tiation but reduces goblet cell metaplasia in a preclinical asthma model (46, 47).
Tyrosine kinase (RYK) is a WNT coreceptor, and goblet cell hyperplasia and mucus over-
production were observed after lung injury in mouse airways when Ryk was genetically
deleted in club cells (48). We adopted a loss-of-function strategy to find that autoph-
agy and glucose metabolism sustain the self-renewal, proliferation, and regeneration
of mouse club cells at a steady state or during lung inflammation (49). Organoid cul-
tures demonstrated that autophagy inhibits ciliated and goblet cell differentiation (49).

Alveolar AT2 Cells

The epithelial repair program in the alveoli is injury-specific. Bleomycin-induced lung
fibrosis is usually associated with apoptosis of alveolar type 2 (AT2) and AT1 cells, replenished
mainly by the surviving AT2 cells, AT2 cell subset, BASCs, and distal airway club cells (10). Rare
integrin B4-positive lineage-negative epithelial stem/progenitor (LNEP) cells have been identi-
fied within the normal distal lung (50). A subset of these cells, which express high H2-K1 levels,
are club-like, differentiate into alveolar epithelial cells, and rescue lung function after bleomycin
injury (51). Lineage-tracing studies have demonstrated that AT1 cells, thought to be terminally
differentiated, proliferate and dedifferentiate into AT2 cells following partial pneumonectomy
(52). Rare Trp63 and Krt5 dual positive basal cells in the bronchioles were shown to respond to
HIN1 infection (53). p63*/Krt5~ cells among LNEP cells can produce Krt5* basal-like pots in
the alveoli after influenza infection (54). This clearly shows the cell plasticity in distal lung
regeneration after injury. It is worth noting that all stem-like progenitor cells generate AT2 cells
under different injury conditions. This is not surprising given that AT2 cells represent an impor-
tant facultative progenitor cell for maintaining alveolar-capillary barrier function.

The regulation of AT2 cell self-renewal, proliferation, and differentiation by distinct
niche cells and signals has been well documented (55, 56). Delta-like 1 homolog (DIk1)
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interacts with Notch to regulate AT1 differentiation in mouse AT2 cells (57). In addition
to its role in basal cell regulation, BMP is active in mouse AT2 cells and favors mouse AT1
differentiation at the expense of proliferation after pneumonectomy (58). During lipopoly-
saccharide (LPS)-induced lung injury, TGF 8 is upregulated in the lung and serves as a halting
signal for AEC2 proliferation; inactivation of TGF 3 allows AT1 differentiation (59). Hippo-
yes-associated protein 1 (YAP1) is increased in AT2 cells after LPS-induced mouse lung
injury, and interfering with YAP1 expression impedes AT2 proliferation (60). Lung micro-
vascular endothelial cells secrete lipid sphingosine-1-phosphate (S1P) to promote AT2 to
AT1 differentiation through STPR2/YAP signaling after bacterial lung injury (61). In addition,
we observed that endothelial thrombospondin-1/CD36 signaling promotes AT2 cell prolifera-
tion (62). Thrombospondin-1 could also be a Wnt signaling target in the regulation of human
AT1 differentiation (63). Activation of Wnt/-catenin signaling promotes AT2 cell survival and
differentiation into AT1 cells during BLM-induced mouse lung injury (64, 65). FGFR2 is also
essential for AT2 survival and prevents lung fibrosis after bleomycin (66). Autophagy is upregu-
lated in surviving AT2 cells and is required for AT2 proliferation during regeneration after lung
injury (67).

Inflammatory cytokines produced by locally injured lung tissues directly or indirectly
affect the proliferation and differentiation of airway and alveolar epithelial cells. After
pneumonectomy, activated platelets secrete stromal-cell-derived factor-1 through its receptor
on pulmonary endothelial cells to trigger AT2 cell proliferation and differentiation through the
membrane-type matrix metalloproteinase (MMP14) (68). Macrophages and C motif chemokine
receptor 2 (CCR2)™ monocytes are recruited to the lung after pneumonectomy and differenti-
ate into M2-like macrophages in the presence of IL-13, which is produced by group-2-innate
lymphoid cells and promotes lung regeneration (69). Trefoil factor 2/Wnt signaling in macro-
phages is essential for stimulating epithelial proliferation and promoting epithelial barrier res-
toration following lung injury (70). The expression of IL-18 and tumor necrosis factor-alpha
(TNF-a) is promoted in the AT2 niche following influenza-induced injury, enhancing the prolif-
eration of surviving AT2 cells and sustaining their differentiation potential (71).

IMMUNE RESPONSE TO SARS-CoV-2 IN THE LUNG

The homotrimers of the spike glycoprotein (S protein) constitute the spikes on the
surface of SARS-CoV-2 and are responsible for binding to the host receptor angiotensin-
converting enzyme 2 (ACE2) (72). In addition, transmembrane serine protease (TMPRSS)
11A, TMPRSS11D, and TMPRSS2 are proteases on the cell surface that cleave the SARS-CoV-2
S protein (73). TMPRSS2 is now known as the main host protease that activates S proteins and
mediates virus entry into cells (74). FURIN and cathepsin L are intracellular proteases that
cleave the coronavirus S protein through the endolysosome pathway to allow SARS-CoV to
enter the cell (75).

Animal models have been established to facilitate the understanding of SARS-CoV-
2 induced immunopathology and accelerate the testing of vaccines and therapeutics.
Mice, nonhuman primates, hamsters, ferrets, and others have been adopted in COVID-
19 research for different purposes (76-80). The comparison of these animal models for
SARS-CoV-2 infection has been studied and reviewed (81-84).

As part of innate immunity, lung epithelial cells are the first line to sense invading
SARS-CoV-2 through ACE2 and TMPRSS2. SARS-CoV-2 cell entry and infectivity can be
facilitated by TMPRSS2, the cysteine protease cathepsins B and L, and furin, or neuropilin-1
(85, 86). Cytokines, chemokines, and growth factors are then produced by the infected epi-
thelium and resident immune cells in the acute immune response. This leads to the recruit-
ment and activation of various infllmmatory cells, including neutrophils, monocytes, and
natural killer cells, to build a powerful innate immune defense system (87). Many immune
cells in the lungs express CD147, which may mediate infection by SARS-CoV-2, but do not
express ACE2 or TMPRSS2 (88). In infected cells, single-stranded RNA from the virus can be
recognized by pattern recognition receptors (PRRs), including Toll-like receptor 7 (TLR7) and
TLR8, whereas double-stranded RNA during replication is sensed by TLR3, retinoic acid-induci-
ble gene | (RIG-)), and melanoma differentiation-associated protein 5 (MDAS5) (89). Antiviral
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expression of type | and lll interferons (IFNs) is then triggered by downstream activation of the
transcription factor interferon regulatory factor-3 (IRF-3)/IRF-7 via TIR-domain-containing
adapter-inducing interferon-B (TRIF). In addition, nuclear factor kappa light-chain-enhancer
of activated B cells (NF-«B) is activated via myeloid differentiation factor 88 (MyD88) and
translocated to the nucleus to stimulate the production of pro-inflammatory cytokines/che-
mokines (e.g., TNF-a, CCL-2, and CXCL-8) (90).

Neutrophils are the first immune cells recruited to the lungs upon infection; they
ingest microbes and kill them with reactive oxygen species, antimicrobial proteins, and
degradative enzymes. Neutrophils also act as antigen-presenting cells. Neutrophils
amplify inflammation by releasing chemokines to attract monocytes and dendritic cells.
Monocyte-derived macrophages and alveolar macrophages present antigens, phagocy-
tose microbes, or apoptotic cells. They can be polarized into the pro-inflammatory M1
phenotype in the presence of LPS, IFN-y, or an anti-inflammatory phenotype in IL-4 and
IL-13 (91). M1 macrophages secrete TNF-¢, IL-18, and IL-6, causing tissue injury, while
M2 macrophages produce IL-10 and TGF- 3, associated with tissue repair and fibrosis
(92). Degranulated mast cells mediate a potent inflammatory response by releasing
many inflammatory factors, including histamine, proteases, leukotrienes, cytokines,
and chemokines (93). In addition to promoting the killing of inhaled microbes, vasoac-
tive contents of mast cell granules may also induce lung tissue damage by affecting
the vascular tone, smooth muscle, and mucous glands. Like neutrophils, eosinophils
also contain granules but are filled with different components contributing to immune
defense and tissue damage (94, 95). Other innate immune cells include basophils,
innate lymphoid cells, and dendritic cells (87, 96, 97). Dendritic cells serve as messen-
gers between innate and adaptive immune systems. Dendritic cells recognize, ingest
microbes, and present antigens. Compared with adults, children with mild COVID-19
exhibit reduced circulating monocytes, dendritic cells, and natural killer cells during
acute SARS-CoV-2 infection (98).

In adaptive immune response, viral antigen presentation triggers both T cell-mediated
cellular immunity and B cell-mediated humoral immunity (99). T cells, macrophages, and
natural killer cells secrete IFN-y to exert antiviral effects. Successful host defense prevents
the invasion of microbes-induced lung tissue damage. Complete removal of invading
microbes, apoptosis of inflammatory cells, and switching from a pro-inflammatory to an
anti-inflammatory state leads to the resolution of acute inflammation. However, chronic
inflammation occurs when any of these inflammation resolution processes fail. Lung tissue
damage is often seen in chronic inflammation, prolonging disease progression and mak-
ing the tissue susceptible to challenges from other respiratory microbes.

An exaggerated innate immune response, delayed adaptive immunity, or altered coordi-
nation between innate and adaptive immunity may induce pathogenic inflammation in the
lungs of patients with COVID-19 (100). The disease severity of COVID-19 is determined by
the balance between an effective antiviral response and a dysregulated immune response.
Aberrant activation of macrophages and neutrophils has been observed in patients with
severe COVID-19 and contributes to the development of acute respiratory distress syndrome
(ARDS) (101-103). The T-cell count was low, especially in severe COVID-19 patients (104). As
evidence accumulates, it is becoming clear that longer hospitalization and higher incidence
of critical disease are related to reduced and delayed neutralizing antibody response or
production of IFN-A and type | IFN, along with the rampant production of pro-inflamma-
tory cytokines, such as TNF, IL-6, and IL-8 (105-109). Furthermore, downregulation of
specialized pro-resolving lipid mediators also contributes to increased disease severity
and dysregulated phagocyte function in COVID-19 (110). Recent studies have suggested
that eosinopenia confers a higher risk of severe progression (111). The nasopharyngeal
microbiome has been shown to regulate local and systemic immune responses and
impact disease outcomes in acute SARS-CoV-2 infection (112, 113). Post-acute sequelae
of COVID-19 (PASC) are associated with the severity of acute SARS-CoV-2 infection, pre-
existing medical conditions, immune exhaustion, or abnormal immunometabolism and
mitochondrial dysfunction (114, 115).
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TABLE 1 Lung epithelial cells that SARS-CoV-2 targets®

Cell type Host Tool ACE2 TMPRSS2 FURIN Reference
Basal cells Human RNA-seq, scRNA-seq and microarray \/ Zhang et al. (118)
Intermediate cells  Human RNA-seq, scRNA-seq and microarray \/ Zhang et al. (118)
Mucous cells Human RNA-seq, scRNA-seq and microarray N Zhang et al. (118)
Club cells Human and nonhuman RNA-seq, scRNA-seq and microarray, N J N Zhang etal. (118),
primates (M. mulatta whole-mount immunostaining, qRT- Hou et al. (120),
and M. fascicularis) PCR, immunohistochemistry, scRNA- Ziegler et al. (122),
ISH, Western blotting, snRNA-seq Lukassen et al. (123)
Ciliated cells Human and nonhuman RNA-seq, scRNA-seq and microarray, \/ \/ \/ Zhang et al. (118),
primates (M. mulatta whole-mount immunostaining, qRT- Hou et al. (120),
and M. fascicularis) PCR, immunohistochemistry, scRNA- Ziegler et al. (122),
ISH, Western blotting, snRNA-seq Lukassen et al. (123)
AT1 cells Human and nonhuman scRNA-seq, whole-mount J J J Hou et al. (120),
primates (M. mulatta immunostaining, qRT-PCR, Ziegler et al. (122),
and M. fascicularis) immunohistochemistry, scRNA-ISH, Lukassen et al. (123)
Western blotting, snRNA-seq
AT2 cells Human and nonhuman scRNA-seq, whole-mount J N J Hou et al. (120),
primates (M. mulatta immunostaining, qRT-PCR, Ziegler et al. (122),
and M. fascicularis) immunohistochemistry, scRNA-ISH, Lukassen et al. (123),
Western blotting, snRNA-seq, multiplex Zou etal. (121),
RT-PCR, immunofluorescent staining Mossel et al. (246)

9RNA-seq, RNA sequencing; scRNA-seq, single-cell RNA sequencing; snRNA-seq, single-nuclei RNA sequencing; qRT-PCR, quantitative real-time PCR.

SARS-CoV-2 INDUCED LUNG EPITHELIAL INJURY

When lung epithelial cells, the initial source of inflammatory cytokines, are infected
by SARS-CoV-2, they interact with the recruited immune cells, contributing to inflammatory
lung damage and respiratory failure (116). This mechanism has been suggested by single-
cell RNA sequencing analyses of lung samples from COVID-19 patients (117). Prolonged and
uncontrolled cytokine storm may lead to epithelial barrier damage; lung fibrosis progresses
once lung epithelial regeneration is suppressed under such conditions.

SARS-CoV-2 injures a variety of lung epithelial cells because of the expression of
ACE2 or TMPRSS2 (Table 1). In the airway epithelium, ACE2 is expressed on basal cells,
intermediate cells, club cells, mucous cells, and ciliated cells (118). A single-cell RNA
sequence analysis suggested that the proportion of ACE2 in mucous cells was higher
than in other epithelial cells (119). Both AT2 and AT1 cells can be infected with SARS-
CoV-2, and AT2 cells appear to be the first to become infected (120). However, it has
been suggested that only a small portion of AT2 cells express ACE2 (121). In contrast,
TMPRSS2 is expressed at low levels in the basal cells of the undifferentiated airway epi-
thelium and is more clearly expressed in differentiated airway epithelium. TMPRSS11A,
TMPRSS11D, TMPRSS2, FURIN, and cathepsin L are expressed in the small airway epi-
thelium (118). TMPRSS2, FURIN, and ACE2 co-express in club cells, ciliated cells, AT1,
and AT2 cells (122, 123).

After SARS-CoV-2 infection, the lung initiates the regeneration and repair mechanism,
and obvious proliferation of LSPCs appears in the trachea, large and small airways, and
alveoli (124). Basal cell proliferation is evident in both the trachea and the large airways.
AT2 cell proliferation increases in the alveoli, and AT2 differentiation is initiated by the
38th day after the onset of initial symptoms (125). Analysis of serum cellular markers in
115 COVID-19 patients indicated that damage to AT1 cells and endothelial cells was no
longer evident 2 weeks after virus clearance (126). However, the damage to the AT2 cells
and lung structures persisted. However, the time scale for complete lung regeneration
remains unknown. The lung histopathological characteristics of COVID-19 patients include
diffuse alveolar damage (DAD), reactive alveolar hyperplasia, and fibroblast hyperplasia
(127). Significant exudation of proteins and fibrin has also been observed (128). SARS-
CoV-2 infection induces fibronectin production in alveolar epithelial cells, and its depo-
sition may lead to pulmonary fibrosis in COVID-19 patients (129). Based on a recent cohort
study, pulmonary impairment was reported in COVID-19 survivors 6 months after acute
infection (130).
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CURRENT PREVENTION AND TREATMENTS FOR COVID-19

SARS-CoV-2 infection usually causes fever, cough, dyspnea, pneumonia, and other clinical
symptoms, while some mild patients have no obvious symptoms. Elderly patients or patients
with underlying medical conditions have a higher chance of developing severe conditions,
including myocardial damage, acute respiratory distress syndrome, septicemia, septic shock,
secondary infection, and acute heart injury, with a high mortality rate.

Vaccines

Safe and effective SARS-CoV-2 vaccines are game-changing tools in the fight against
the COVID-19 pandemic. To date, more than a dozen COVID-19 vaccines have been approved,
including mRNA vaccines (BNT16b2 and mRNA-1273), viral vector vaccines (AZD1222, Sputnik
V, Sputnik V Light, Ad5-nCoV, Ad26.COV2.S), inactivated and live-attenuated vaccines
(CoronaVac, BBIBP-CorV, Wuhan Sinopharm inactivated vaccine, Covaxin, QazVac, KoviVac,
COViran Barekat), and protein-based vaccines (EpiVacCorona, ZF2001, Abdala). A narrative
review of these vaccines has been conducted in terms of their safety and effectiveness in
preventing severe COVID-19, hospitalization, and death against all variants of concern (131).
Over 7 billion vaccine doses had been administered by November 5, 2021, according to the
World Health Organization (WHO). As long-lasting B-cell and T-cell immunity to SARS-CoV-2
is established by vaccination globally, we do not have far to go to bring the pandemic under
control. To achieve this goal, there is still much to do regarding booster doses, dosing inter-
vals, and duration of vaccine immunity against variants of concern (132).

Targeted Therapies

Approximately 5% to 10% of COVID-19 patients have severe or even life-threatening ill-
nesses that require urgent intervention. Early antiviral treatment for these COVID-19 patients
is essential, especially in the presence of poor prognostic predictors (133). The antiviral drug
remdesivir, previously tested against Ebola virus infection, was approved by the Food and
Drug Administration in October 2020 to treat hospitalized COVID-19 patients. Its activity
against SARS-CoV-2 infection has been demonstrated in Vero E6 cells (134). In an animal
model of SARS-CoV-2 infection, remdesivir treatment was shown to lower viral titers and
prevent lung tissue damage (135). Pooled observational clinical studies have indicated that
remdesivir may shorten the median recovery time of adult patients with severe COVID-19
(136). Similar to remdesivir, the anti-malarial drugs chloroquine (CQ) or hydroxychloroquine
(HCQ) have been assessed in several clinical trials regarding their efficacy, effectiveness, and
safety managing COVID-19. CQ is a proton-base that can concentrate in acidic organelles
and have glycosylation interactions with the ACE-2 receptor, thus preventing viruses from
binding and fusing into the cells (133). However, the results of clinical trials were conflicting
due to the improper design of the studies and the small cohort of patients in most of these
studies (137). Other anti-SARS-CoV-2 drug candidates, including umifenovir, lopinavir/ritona-
vir, darunavir, favipiravir, and nitazoxanide, have also been recently reviewed (138).

SARS-CoV-2 elicited a humoral immune response by generating abundant immuno-
globulin M (IgM) antibodies approximately 2 weeks after infection, followed by the produc-
tion of IgA- and IgG-protective neutralizing antibodies that remain in the blood of recovered
COVID-19 patients for months (139). Therefore, convalescent plasma transfusion (CPT) has
naturally raised the potential to tackle the COVID-19 pandemic. CPT therapy has been previ-
ously evaluated in patients with SARS and Ebola (140, 141). Based on the limited clinical trials
available, CPT therapy appears to be safe in treating COVID-19 patients. It effectively elimi-
nates SARS-CoV-2 RNA, increasing neutralizing antibody titers, improving oxygen and lym-
phocyte counts, downregulating inflammatory markers, alleviating clinical symptoms, and
reducing mortality (142). Early transfusion of high-titer convalescent plasma may prevent
severe progression in older adults (143). It is difficult to use CPT therapy as the main inter-
vention method for COVID-19 because of its obvious limitations. For example, convalescent
plasma is a mixture of antibodies created in response to the virus infection. The titer of neu-
tralizing antibodies in donated plasma varies from donor to donor, posing a huge obstacle
to the standardization of CPT therapy. The constituents of non-antibody fractions in plasma
and their long-term deleterious effects on recipients are not fully understood. To overcome
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these shortcomings, monoclonal neutralizing antibodies should be isolated from convales-
cent plasma or developed experimentally to block SARS-CoV-2 pathogenicity (144). Most
of the research conducted screened neutralizing antibodies that bind to the SARS-CoV-2
receptor-binding domain (144, 145). Casirivimab and imdevimab have recently been rec-
ommended for emergent use to treat COVID-19 patients with mild to moderate symp-
toms. Although monoclonal antibodies are very effective in neutralizing the virus, large-
scale production of monoclonal antibodies is usually expensive and is time-consuming.
Secondary antibody responses are usually induced in recipients to target these monoclonal
antibodies to limit their therapeutic effects. Impaired and exhausted NK cells are associated
with the severity of COVID-19 (146, 147). NK-based therapies could be developed to promote
early viral control.

Immunomodulatory Therapies

Impaired innate and adaptive immunity and unwanted inflammatory cytokine storms
drive disease progression after SARS-CoV-2 infection. A decrease in the counts of T and B
lymphocytes and natural killer cells was more obvious in severe patients than in mild cases
(148, 149). Pro-inflammatory cytokines (e.g. IL-2, IL-6, IL-8, and TNF) are significantly
increased in the plasma of patients with severe symptoms (150). In addition, IL-6 targeting
monoclonal antibodies, such as tocilizumab and sarilumab, can reduce acute inflammatory
responses in COVID-19 patients (151, 152). Ciclesonide, an inhaled glucocorticoid, reduces
local inflammation through its anti-inflammatory properties and inhibits viral replication
by targeting the SARS-CoV-2 NSP15 endonuclease (153, 154). A retrospective cohort study
by Yamasaki et al. indicated that the incidence of severe pneumonia was lower in COVID-
19 patients treated with ciclesonide than in the control group (155). Dexamethasone and
cortisone inhibit systemic inflammatory responses (156). Although steroids do not signifi-
cantly reduce mortality, they effectively stabilize hemodynamics and shortening mechani-
cal ventilation in patients (157). Although many drugs have been proposed to enhance
antiviral immunity and eliminate the inflammatory cytokine storm (149), only a few drugs
are recommended for certain COVID-19 patients to relieve severe symptoms. JAK signaling
inhibitors such as baricitinib and tofacitinib act on multiple critical pathways to suppress
cytokine production, modulate interferons and IL-6, and interfere with viral infection (149).
Baricitinib treatment has been shown to resolve inflammation in severe COVID-19 patients
or SARS-CoV-2-infected rhesus macaques (158, 159). Adult COVID-19 patients who
received oral tofacitinib exhibited a lower risk of death or respiratory failure through day
28 than placebo (160).

Symptomatic and Supportive Therapies

Symptomatic therapy remains the leading solution to relieve the clinical symptoms
associated with SARS-CoV-2 infection. For example, certain medicines can reduce fever
and pain, suppress cough, and stop nausea, vomiting, and dyspnea when necessary.
Fluid supplementation and nutritional support are critical for meeting the needs of the
body’s metabolism. Psychological assistance, usually ignored, is also necessary to tackle the
anxiety normally observed in COVID-19 patients (161).

Microbial coinfection occurs in some cases of COVID-19, including respiratory
viruses, fungi, and bacteria (162). Symbiotic ecosystems in the lung are restored or maintained
by the proper administration of antibacterial drugs for therapeutic or prophylactic use. Some
COVID-19 patients may require intubation and mechanical ventilation to relieve hypoxia symp-
toms (163). Trioxy therapy, known as trioxy autohemotherapy or immunotrioxy transfusion
therapy, is a raised and tested COVID-19 treatment because of its potential capacity to stimu-
late the innate immune system (164).

Possible Effects of Existing Treatments on Lung Regeneration

Whether or not such mixed interventions may result in long-term side effects is missing.
Many lung epithelial cells, including stem/progenitor cells, are targeted and injured by
SARS-CoV-2. The plasma AT2 injury marker was observed to maintain a high level even
after SARS-CoV-2 was cleared (126). Alveolar epithelial cell injury has been observed in
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mechanically ventilated COVID-19 patients (165). It remains unknown whether such injury is
due to an inflammatory storm and/or clinical treatments. In vitro experiments suggested
that dexamethasone or transdehydroandrosterone significantly decreased lung epithelial
injuries associated with mechanical ventilation, but this was not tested in vivo, especially dur-
ing viral infections (166). An ambidirectional cohort study showed that three-quarters of sur-
viving COVID-19 patients retained at least one common symptom 6 months after discharge
(130). The length of these significant sequelae remains unclear. As we learned from SARS in
2003, a significant proportion of surviving patients still had respiratory and cardiac problems
12 years after recovery (167). The lung is the most severely damaged organ in these patients;
thus, treatments for COVID-19 must choose medical options that do not impair lung regen-
eration. Lung injury could be caused by hyperbaric oxygen during ventilation therapy due
to the toxicity of the drugs administered or from a virus-associated inflammatory storm
(168). Therefore, the ideal therapy for COVID-19 does not sacrifice lung regeneration.

STEM CELL THERAPY AND COVID-19
Mesenchymal Stem Cell-Based Therapy

Mesenchymal stem cells (MSCs) can be obtained from various tissues, including the
stroma of the bone marrow, adipose tissue, placenta, umbilical cord tissue, or amniotic
fluid. MSCs are multipotent and can differentiate into multiple types of cells within the
body, including osteoblasts, chondroblasts, adipocytes, cardiomyocytes, hepatocytes, renal
tubular epithelial cells, and pancreatic islet beta cells (169). In this regard, MSC therapy has
led to a robust clinical agenda for treating various diseases associated with tissue damage
(170). MSCs exert their functions through paracrine factors (soluble mediators), including
anti-inflammatory cytokines, anti-apoptotic and antimicrobial peptides, angiogenic growth
factors, and extracellular vesicles (171, 172). Exosomes and microvesicles carry transcription
factors, cytokines, growth factors, miRNAs, and mRNAs to affect target cells upon binding or
internalization (173). MSC-derived extracellular vesicles (MSC-EVs) exhibit exceptional immu-
nosuppressive capacities by regulating the migration, proliferation, activation, and polarization
of various immune cells and promoting a tolerogenic immune response (174).

The SARS-CoV-2 infection causes injury to multiple organs, including the lungs,
heart, brain, intestine, kidney, liver, other blood vessels, pancreas, bile ducts, and conjunctiva
(175). Therefore, MSC-based therapy has become an attractive and promising strategy for
the treatment of COVID-19 and was immediately raised at the beginning of the pandemic
(176). ARDS is associated with high mortality and morbidity in many pulmonary diseases,
including COVID-19. MSC-based therapy provides a potential alternative strategy for treating
ARDS by targeting the pathological events associated with ARDS, as reviewed by Qin and
Zhao (177). The compassionate use of MSC-based therapy for COVID-19 patients in the ab-
sence of pre-clinical data was encouraged by its application in ARDS induced by lipopolysac-
charide (LPS), Escherichia coli, and influenza virus. In preclinical animal studies, administration
of MSCs derived from bone marrow, adipose, menstrual blood, or umbilical cord was dem-
onstrated to reduce lung inflammation, mitigate lung damage, and improve lung function
during LPS-induced ARDS in animals (178-182). Similar benefits were observed in MSC ther-
apy for ARDS induced by Escherichia coli in animals (183-188).

The therapeutic effects of MSCs were obvious in HON2 and H5N1, but not HIN1
influenza virus-induced acute lung injury in mice (189-191). In H5N1-induced acute lung
injury in mice, the therapeutic effect of umbilical cord MSCs was better than that of bone
marrow MSCs, attributed to higher levels of angiopoietin-1 and HGF (191). In clinical trials,
the transplantation of MSCs derived from bone marrow or adipose tissue was tolerated in
patients with ARDS without adverse effects (192, 193). Moreover, a phase 2a safety trial of
bone marrow MSC therapy for ARDS showed that patients’ plasma angiopoietin 2 (a media-
tor of lung epithelial injury) decreased and oxygenation improved (194). Using MSCs to treat
ARDS caused by H7N9 infection, Chen et al. found that the transplantation of allogeneic
menstrual blood-derived MSCs significantly decreased the mortality of the experimental
group, and no harmful effects were observed in four patients within the 5-year follow-up
period (195). As for the cell-free strategy, MSC-derived extracellular vesicles or exosomes
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have shown good therapeutic effects in acute lung injury induced by Escherichia coli,
LPS, or influenza virus (196-200).

By November 9, 2021, 365 clinical trials were registered on ClinicalTrials.gov, and 53
studies were completed. Among these, three trials reported death, but two trials reported that
death was unrelated to MSC administration (Table 2) (201, 202). The side effects associated
with MSC therapy include transient facial flushing, fever, transient hypoxia, liver dysfunction,
heart failure, and allergic rashes (203, 204). Other published clinical trials reported no side
effects or deaths, suggesting that MSCs are well tolerated and relatively safe for COVID-19
treatment (Table 2). COVID-19 patients in most of these trials included both male and
female adults in severe or critical conditions. The sources of MSCs included umbilical cords,
menstrual blood, bone marrow, or adipose tissue, while some studies did not indicate their
sources. MSC exosomes were used in one study. Most trials delivered MSCs to COVID-19
recipients intravenously at 1 to 2 million cells per kilogram of body weight. Approximately
half of the MSC therapy trials had no placebo control. After the administration, typical
symptoms of SARS-CoV-2 infection, including fever, weakness, fatigue, and shortness of
breath, were shown to be improved, and inflammatory indicators showed reductions, oxy-
genation indices improved, lymphocyte counts increased, and ground-glass opacities and
pneumonia infiltration were reduced on chest radiographs (Table 2).

Multiple potential mechanisms are underlying MSC-based therapy for COVID-19.
MSCs have the potential to differentiate into AT2 cells. MSCs derived from bone marrow,
decidua, or amniotic fluid were induced by Wnt/B-catenin to express AT2 cell markers and/
or secret surfactants in vitro (205-209). MSC-derived secretomes contain soluble factors (che-
mokines, growth factors, etc) and extracellular vesicles that may control cytokine storm,
reduce apoptosis of alveolar epithelial cells and endothelial cells, and promote angiogenesis
and alveolar epithelial regeneration in COVID-19 patients (210-212). MSC or MSC exosomes
also reduced fibroblast activation and ECM deposition (213-216). In addition, MSC-EVs were
shown to fuse with lung epithelial cells, thereby inhibiting influenza virus replication in a
swine model of acute lung injury (200). It remains unknown whether MSC-EVs play a similar
role in COVID-19.

Although the sympathetic application of MSCs appears to be promising in COVID-19
treatments, there are still several issues that need to be addressed: (i) the rational strategy
of using MSCs against SARS-CoV-2 infection is based on the proven beneficial effects of
MSC therapy in treating ARDS, but they lack relevant pre-clinical studies; (ii) the number of
recruited COVID-19 patients was small, and most of the completed clinical trials had no
control group, making the efficacy of MSC therapy plausible; (iii) MSCs accumulate in the
lung after intravenous transplantation, creating a favorable opportunity to reclaim the pul-
monary microenvironment. However, severe to critical COVID-19 patients are usually in
various degrees of hypercoagulable states and are at high risk for thromboembolism and
thrombotic multi-organ failure. Patients’ intravascular coagulation needs to be evaluated
when standardizing a safe and effective dosage of MSCs; (iv) many companies are com-
mercializing MSC-based cell therapies. However, the translation of such cell-based therapy
is impaired by many steps that introduce batch heterogeneity to MSCs; (v) different sour-
ces of MSCs have been used in clinical trials, but no comparison has been conducted; and
(vi) studies have demonstrated that priming steps are critical for improving the therapeutic
effects of MSCs (217). Altogether, much work needs to be done considering the consis-
tency and uniformity of MSC quality in future cell therapy for COVID-19.

Rational LSPC Therapy for COVID-19

The restoration of lung immunological homeostasis is only part of the entirety of lung
recovery in COVID-19 patients. The epithelium injured by SARS-CoV-2 in both the airways
and alveolar spaces must be repopulated to limit lung vulnerability to inhaled microbes
and substances and prevent the progression of lung fibrosis in these patients. Increasing
evidence strongly suggests that the restoration of the lung structure is far less efficient
than expected, possibly contributing to sequelae observed in recovered COVID-19 patients
(126, 130). Therefore, LSPC-based therapy is also needed to improve the quality of life of
recovered COVID-19 patients, in addition to MSC therapies.
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Screening for small molecules that can promote the regenerative potential of LSPCs would
be an effective strategy. This strategy is beneficial not only for COVID-19 patients but also for
others with regenerative lung defects. In the past decade, tremendous efforts have been made
to identify the signaling pathways that regulate the functions of LSPCs in animal models.
Emerging and recently sophisticated in vitro three-dimensional organoid technology provides a
powerful platform for large-scale drug screening in regenerative medicine (218, 219). The most
likely candidates are the existing drug candidates for COVID-19 that have been demonstrated
to tackle the SARS-CoV-2 life cycle (219). In addition to small molecules, we could screen active
ingredients of MSC-derived exosomes and microvesicles favorable for lung epithelial repair.

Unlike MSCs, transplantation of tissue stem/progenitor cells is not often observed in clinical
trials. One concern is the potential of implanted LSPCs for neoplasms in recipients if mutations
are introduced into the genome during the myriad of isolation and expansion steps. LSPCs
are possible cells of origin in lung cancer (11). In addition, tens of millions of LSPCs are needed
for transplantation, but establishing a well-controlled method for in vitro expansion has been
challenging for autologous cell transplantation. Furthermore, multiple LSPCs that can repair al-
veolar epithelia are targeted by SARS-CoV-2. Transplanting a mixture of LSPCs is impractical in
clinical practice. It is relatively more feasible to test individual types of LSPC in clinical trials fol-
lowing reliable pre-clinical studies. In 2007, Serrano-Mollar found that intratracheal transplanta-
tion of AT2 cells reduced the bleomycin-induced severity of pulmonary fibrosis in rats (220).
The beneficial effects of AT2 cell therapy could be associated with the restoration of AT2 cell
abundance and lung surfactant protein levels, which is critical for proper respiratory function
(221). Based on this, this group underwent allogeneic AT2 cell transplantation through fiberop-
tic bronchoscopy in 16 patients with moderate and progressive lung fibrosis. They observed
that AT2 cell therapy was well tolerated in these patients (222). More recently, autologous
human SOX9-positive basal cells were isolated by bronchoscopic brushing, expanded in vitro,
and transplanted into two bronchiectasis patients (223). High-resolution computed tomogra-
phy and spirometry tests indicated an improvement in pulmonary function. However, the
safety and efficacy of this strategy require additional verification in a much larger cohort.

MSC/LSPC Therapy for COVID-19 Patients

COVID-19 patients with prolonged immunological alterations without available treat-
ment options may consider MSC-based therapies. Efficient and robust epithelial regenera-
tion contributes to the resolution of lung inflammation and limits fibrotic lung progression.
LSPC-based therapy can be used to treat COVID-19 patients with persistent lung epithelial
damage. Cell damage results in the release of cell-specific proteins into the circulation. For
example, the receptor for advanced glycation products (RAGE) is a well-characterized marker
to evaluate AT1 cell injury; we and others showed that RAGE is elevated in the plasma of
COVID-19 patients and associated with ARDS outcome in these patients (126, 224). In addi-
tion, we found that plasma SPD also has prognostic and pathogenic values in evaluating
AT2 cell injury in COVID-19 patients (126). In this study, we observed that plasma SPD
remained at a high level 2 weeks after discharge. When lung structural damage and immu-
nological alterations occur in patients after SARS-CoV-2 infection, MSC-based therapy alone
may not be sufficient to restore lung homeostasis. MSC/LSPC double cell therapy may be a
solution when no effective treatments are available to prevent lung fibrosis development
and critical condition progression. PASC patients with persistent lung injury will most likely
require MSC/LSPC-based stem cell therapies. This MSC/LSPC double stem cell therapy strat-
egy targets two important pathological elements of COVID-19 simultaneously: immunologi-
cal imbalance and structural distortion of the lung tissue.

Contribution of Other Stem/Progenitor Cells to Lung Repair

The successful in vitro differentiation of induced pluripotent stem cells (iPSCs) and
embryonic stem cells (ESCs) into lung epithelial cells has ushered in a new era of regenerative
medicine (225). This suggests that iPSCs and ESCs have great potential as sources of MSCs or
LSPCs for stem cell therapy. When Mou et al. transplanted lung progenitor cells derived from
human iPSCs into immunodeficient mice, they found that these cells formed the respiratory
epithelium (226). Finn et al. successfully differentiated human pluripotent stem cells into basal
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FIG 2 SARS-CoV-2 induced lung pathology and treating strategy. SARS-CoV-2 infection causes massive damage to lung epithelium,
followed by inflammation storms and possible tissue disruptions. Lung stem/progenitor cells (LSPC) are injured due to the surface
expression of ACE2. Monotherapy may not be sufficient to restore lung homeostasis. Combined interventions can be considered
including targeted therapy with anti-SARS-CoV-2 infection drugs or monoclonal antibodies, inflammation suppression and host immunity
boosts such as corticosteroids, lung structural recovery with LSPC, or MSC therapy. In addition, supportive treatments (for example,
mechanical ventilation) are also necessary in the clinical care of COVID-19 patients.

cells (227). Pooja et al. proposed a method to differentiate iPSCs into pulmonary neuroendo-
crine cells (228). Yamamoto et al. described a strategy for obtaining alveolar epithelial cells
and alveolar organoids derived from human iPSCs (229). In addition, many studies have shown
that embryonic stem cells can generate respiratory epithelial cells (226, 230-233).

Bone marrow-derived endothelial progenitor cells (EPCs) are generally considered to be
involved in angiogenesis and regulation of vascular homeostasis (234, 235). However, lung injury
animal models have shown that EPC treatment is beneficial to lung repair after injury and the
recovery of lung function. For example, exosomes derived from EPCs improve LPS-induced
acute lung injury in mice (236). Ju et al. found that EPC transplantation improved ventilator-
induced lung injury (237). Studies have also suggested that pulmonary capillary endothelial cells
can stimulate epithelial progenitor cells, including bronchoalveolar stem cells and alveolar epi-
thelial cells, to proliferate, promoting alveolar regeneration by producing paracrine growth fac-
tors (238). EPC therapy is also considered a potential treatment for cell-based pulmonary hyper-
tension (239, 240). These cell-based therapy strategies may inspire the treatment of COVID-19.

Host Response to Stem Cell Therapy
The efficacy of stem cell therapy is greatly influenced by host factors. As seen in many cell
therapies, one of the main challenges in stem cell therapy is the rapid and massive loss of
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exogenously delivered cells in the recipient. This is presumably caused by the potential immu-
nogenicity of stem cells and their differentiated products, which can be cleared by the host
innate and/or adaptive immune systems (241). In addition, it may also be due to the altered
hostile tissue environments, such as in COVID-19, inflammatory, fibrotic, and oxidative niche,
which is not conducive for the implanted LSPCs or MSCs to engraft and survive (242, 243).
Although MSCs exhibit potent immunoregulatory abilities, the contribution of surviving MSCs
(only a small portion of the implanted MSCs) to the therapeutic benefits for COVID-19 patients
is questionable. In clinical trials without appropriate controls, the efficacy of MSC-based cell
therapy must be evaluated cautiously. Excessive reactive oxygen species are known to induce
cell senescence, which may abrogate the regenerative capacity of LSPC (67, 244). High levels
of reactive oxygen species cause DNA damage and promote MSC aging via multiple mecha-
nisms, including DNA methylation and histone acetylation (245). COVID-19 patients who need
stem cell therapy are usually older with oxidative imbalance; therefore, much work remains to
prepare the host tissue for stem cell therapy. There are many ways to improve the efficacy of
stem cell therapy. Genetic modification of stem cells may minimize their immunogenicity to
avoid rejection (241). The immune responsiveness of the host can be modified by the use of
immunosuppressive drugs prior to implantation. These must be verified by preclinical animal
studies before clinical trials of stem cell therapy for COVID-19 patients can be initiated.

CONCLUDING REMARKS

To eliminate the virus and inflammation associated with infection and restore immune
homeostasis and repair the structure of the lung, it is beneficial not only to regain lung func-
tion in COVID-19 patients but also to better control the proven sequela in these patients after
recovery. However, any single intervention may not be sufficient to ensure full recovery of
lung homeostasis. In addition to targeted therapy being developed and symptomatic treat-
ments being applied, future therapeutic efforts targeting lung tissue regeneration are also im-
portant to restore lung homeostasis and function in COVID-19 patients (Fig. 2). The ideal
COVID-19 treatment formula could include: (i) antiviral targeted drugs or neutralizing antibod-
ies to eliminate the virulence of SARS-CoV-2; (ii) immune-targeted therapies including oral cor-
ticosteroids or MSC administration to enhance the host's immunity and limit lung inflamma-
tion; (iii) stem cell therapy, either MSCs, MSC exosomes, or LSPCs, if available and appropriate,
to enhance the recovery of lung homeostasis. Drugs that boost stem cell therapy should be
developed, and (iv) supportive care (for example, mechanical ventilation) is also necessary
when required. Continuous optimization of clinical treatment strategies will certainly reduce
the severity and mortality of COVID-19 patients and improve their prognosis after discharge.
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