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Abstract Upscaling of geological models for reservoir simulation is an active and important area of
research. In particular, we are interested in reservoirs where the rock matrix exhibits an intricate network of
fractures, which usually acts as a preferential path to the flow. Accounting for fractures’ contribution in the
simulation of a reservoir is of paramount importance. Here we have focused on obtaining effective parame-
ters (e.g., transmissibility) on a 3-D computational grid on the reservoir scale, which account for the pres-
ence, at a finer spatial scale, of fractures and a network of fractures. We have essentially followed the idea
illustrated in Karimi-Fard et al. (2006), yet this work has some notable aspects of innovation in the way the
procedure has been implemented, and in its capability to consider rather general corner-point grids, like
the ones normally used in reservoir simulations in the industry, and complex and realistic fracture networks,
possibly not fully connected inside the coarse cells. In particular, novel contribution is the employment of
an Embedded Discrete Fracture Model (EDFM) for computing fracture-fracture and matrix-fracture transmis-
sibilities, with a remarkable gain in speedup. The output is in the form of transmissibility that, although
obtained by considering single-phase flow, can be used for coarse-scale multiphase reservoir simulations,
also via industrial software, such as Eclipse, Intersect, or GPRS. The results demonstrate the effectiveness
and computational efficiency of the numerical procedure which is now ready for further testing and
industrialization.

1. Introduction

Reservoir simulation is widely applied in the petroleum industry for the prediction and management of res-
ervoir performance. A primary input to the flow simulator is the geological description of the reservoir,
which is typically provided in the form of a high-resolution geocellular model containing petrophysical (e.g.,
porosity and permeability) data [Durlofsky, 2003]. However, the high-level resolution of this model exceeds
the capabilities of standard reservoir simulators, and ‘‘upscaling’’ or ‘‘scale up’’ techniques are required to
coarsen the reservoir description to scales more suitable for flow computation. A key issue with any upscal-
ing procedure is how well the coarsened (upscaled) model replicates important aspects of the fine-scale
flow behavior, such as total injection or production rate, average pressure or saturation throughout the res-
ervoir, and breakthrough times of injected fluids.

In particular, we are interested in fractured reservoirs, i.e., reservoirs characterized by thousands of intersect-
ing fractures. There are, however, a large number of challenges associated with predicting the flow through
fractured systems. An example is the development of reliable and efficient mathematical models to describe
the fracture networks from their geological representation and the flow through those networks. Actually,
naturally fractured reservoirs exhibit fractures on several scales, which can also be heterogeneous across
these scales and even on each individual scale, so that it is not possible, in general, to associate one distinct
porosity with each fracture. A general approach to deal with such an issue is to first provide a means to clus-
ter fractures at different scales. For example, equivalent homogeneous Dual-Porosity (DP) systems [Warren
and Root, 1963], in the spirit of a dichotomy, subdivide the reservoir in matrix and fractures, because of their
different fluid storage and conductivity characteristics. In this work, we assume that the size of the fractures
is homogeneous. Since the permeability of the fractures is typically orders of magnitudes greater than that
of the rock matrix, water, oil, and gas flow preferably in networks of fractures. An efficient and effective
modeling of fluid flows in fractured media is a complex task due to this highly heterogeneous nature of the
flow processes.
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On the other hand, traditional homogenization techniques are not suitable for fractured systems because
the spatial scales are not highly separated, and the topology of fractures may strongly affect the apparent
(upscaled) permeability. A numerical upscaling technique based on the numerical solution of the fracture
network and matrix flow at a ‘‘local’’ fine scale is preferable. The fluid that flows in fractures, matrix, and
between matrix and fractures has different characteristics. Moreover, fractures distribution in subsurface for-
mations usually displays significant variations in connectivity and size over the formation. Large and strong-
ly connected fractures are typically located near bedding planes and fault zones, while small and
disconnected fractures are usually located away from those regions. The variation in fracture properties,
especially fracture connectivity, requires modeling different fracture zones using different numerical treat-
ments to achieve sufficiently accurate upscaling results. Since fracture permeability is extremely high in
comparison with matrix permeability, a reasonable assumption is that the flow in fractures reaches a pseu-
do steady state (constant rate of change of pressure) just after the global flow starts. Transfer functions or
shape factors [van Heel et al., 2008] can thus be derived to couple the fluid flow in the matrix and fractures
based on the fracture characterization and are used to propagate the fine-scale information to the coarse-
scale reservoir simulation. The assumption of instantaneous pseudo steady state is not valid if the coarse
grid block is large, or the matrix permeability is small, which is usually the case in field-scale reservoir
simulations.

The Discrete Fracture Model (DFM) represents one of the most accurate methodologies for accurately
describing flow in fracture networks as it entails the direct numerical simulation of flow through the frac-
tured porous media. Using DFM, the rock matrix and fractures are represented explicitly and Darcy flow
equations are solved. However, one of the major drawbacks of this method is its high computational cost.
Nevertheless, there has been an increasing interest of the scientific community as well as of the reservoir
engineering community in DFM as a result also of the availability of more powerful computers and more
effective discretization techniques [Li and Lee, 2008; Karimi-Fard et al., 2004]. Although DFMs are becoming
more and more efficient, the application of these methods at field scale is not currently realistic. Yet they
are a valid tool to perform a numerical upscaling.

Pruess and Narasimhan [1985], Pruess [1992], Gong et al. [2006, 2008b, 2008a], and Tatomir et al. [2011],
applied also in Hui et al. [2008, 2013], introduced a systematic upscaling methodology that constructs a
generalized DP model from fine-scale discrete fracture characterizations. In particular, the Multiple INteract-
ing Continua (MINC) method, introduced in Pruess and Narasimhan [1985] and Pruess [1992], is an approxi-
mate method for modeling fluid and heat flow in fractured-porous media, which extends the dual porosity
concept. It is based on the property that fractures have large permeability and small porosity (when aver-
aged over a reservoir subdomain), while the intact rock (the rock ‘‘matrix’’) has the opposite characteristics.
Thus, any disturbance in reservoir conditions propagates fast through the network of interconnected frac-
tures, while it affects the matrix blocks only slowly. According to the resulting model, referred to as ‘‘sugar-
cube,’’ the global flow in a fractured-porous medium occurs exclusively through the fractures, while the
matrix blocks may exchange fluid locally with the fractures. Later, the MINC method has been improved in
Gong et al. [2006, 2008b] and Tatomir et al. [2011]. This technique, referred to as Multiple Sub-Region (MSR)
method, introduces local subregions to resolve dynamics within the matrix and provides appropriate
coarse-scale parameters that describe fracture-fracture, matrix-fracture, and matrix-matrix flow. Unlike the
DP approach, in which the number of subregions inside each coarse block is reduced to one in addition to
that accounting for the fractures, the MSR approach can be viewed as a generalization. In fact, several trans-
missibility terms are computed to represent both the interaction between fracture and matrix, and the
dynamic inside the matrix, whereas, in the DP method, only one term related to fracture-fracture (block-to-
block) and one term related to fracture-matrix (within block) flow is computed. The MSR approach provides
a more realistic characterization of the flux exchange between matrix and fractures since the construction
of the subregions reflects the actual fracture distribution. Moreover, with more than one subregion in each
coarse block, MSR is capable of modeling more accurately the effects of transients inside the matrix. The
upscaled properties, in particular the transmissibility, are computed by solving locally a continuity equation
for the pressure, obtained by plugging Darcy’s law into the mass conservation equation. Extensions of
the aforementioned works are discussed in Hui et al. [2007] and Gong et al. [2011], where additional
connections between the subregions of the coarse cells are considered leading to a Dual-Porosity/Dual-
Permeability (DPDK) model.

Water Resources Research 10.1002/2015WR017729

FUMAGALLI ET AL. UPSCALING FOR FRACTURED RESERVOIRS WITH EMBEDDED GRIDS 6507



With regard to complex three-dimensional problems, a computational grid conforming to the fractures can
be very difficult to generate, due to the small angles that may occur at the intersection of two or more frac-
tures. Moreover, many very small elements could be created which could badly affect the numerical solu-
tion. Finally, since the typical grids used in commercial reservoir software are the so-called corner-point
grids, it is advantageous employing this type of mesh in order to easily interface with these programs. Thus,
in order not to build a conforming mesh and to alleviate the computational cost, we rely on the methodolo-
gy first introduced by Li and Lee [2008] and expanded in Panfili et al. [2013], Moinfar et al. [2014], Panfili and
Cominelli [2014], and de Araujo Cavalcante Filho et al. [2015]. This method, known as Embedded Discrete
Fracture Model (EDFM), allows one to generate the fractures mesh and porous medium grid independently,
thus avoiding the need for a conforming mesh and allowing one to use corner-point grids.

In this work, we have developed an accurate description of fracture networks to obtain an upscaled repre-
sentation of the porous medium system through the use of an MSR technique. We have addressed the
three-dimensional problem directly and considered corner-point grids, typically met in reservoir simula-
tions. The aim was to enable the computation of flow in the upscaled grid (at reservoir scale) by the compu-
tation of appropriate transmissibility between fracture and matrix, among fractures, and among different
matrix blocks. This has required solving different methodological and implementation issues, which are
described in the following sections. In more detail, our original contribution is the employment of EDFM to
compute the fracture-fracture, matrix-fracture, and matrix-matrix transmissibilities in every coarse cell, with
a considerable saving on the computational cost, due to the use of a Cartesian mesh that is built at run
time. Another novelty of our approach is the possibility to deal with locally disconnected fractures, i.e., the
fractures in a given coarse cell or pair of coarse cells need not be fully connected. We point out that also all
of the algorithms that we have devised for detecting intersections between objects of different geometric
nature, e.g., a parametric bilinear surface and a line, are thoroughly original and much of our effort has
been focused on obtaining robust floating-point geometric predicates.

This paper starts with an introduction to the Darcy equations and to their numerical discretization through
a two-point finite volume scheme in section 2. The EDFM method is recalled in section 3, along with its effi-
cient and effective implementation. Section 4 describes the upscaling procedure and the special features
which we have devised, i.e., the multiple subregion approach, and the treatment of the communication
between two adjacent cells. A numerical assessment of the whole procedure is provided in section 5. In par-
ticular, we address (a) the comparison between the computational cost to build a constrained 3-D Delaunay
mesh and the EDFM method for a sample of fractures and (b) the comparison between the proposed
approach and a standard software used in oil industries. Finally, we apply the upscaling procedure to a real-
istic 3-D case in order to study the production oil for a two-phase flow problem. Some conclusions and an
outlook for future developments are gathered in section 6.

2. Governing Equations

Let X � RN , for N 5 2 or 3, be the physical domain, which represents the whole reservoir. To ease the pre-
sentation, we require that X be a regular domain with Lipschitz boundary, denoted by @X with unit out-
ward normal n@X. The reservoir is considered as a fully saturated porous medium. We suppose that it is
possible to define in X the Representative Elementary Volume (REV) [see, e.g., Bear, 1972], such that the
Darcy equation can be applied to describe the fluid flow inside the domain. We are interested in computing
the steady pressure field p (Pa) and the Darcy velocity (or the flux) u (m=s) in the whole domain X governed
by the following Darcy system of equations:

u1
K
l
rp50 in X

r � u5q

p50 on @X

;

8>>><
>>>:

(1)

where q is a source/sink term, K (m2) is the permeability matrix, which is a symmetric and positive definite
tensor, i.e., K 2 RN3N , and l (Pa s) is the viscosity of the liquid. For simplicity, we have supposed that sys-
tem (1) is supplemented with Dirichlet boundary conditions to ensure its well posedness (see, e.g., Brezzi
and Fortin [1991] for a detailed analysis of this problem). We have chosen a numerical scheme that requires
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recasting system (1) in its primal formulation, where only the pressure field p is considered as an unknown.
Instead of considering system (1), we thus solve the following problem:

2r � K
l
rp5q in X

p50 on @X

:

8><
>: (2)

2.1. Numerical Approximation
From the numerical viewpoint, we employ the classical two-point finite volume scheme to solve the prob-
lem (see Eymard et al. [2000] for a detailed description). This is justified by its local mass conservation prop-
erty and by the resulting M-matrix property of the stiffness matrix. Moreover, it can be easily used to
discretize the diffusive term of single-phase as well as multiphase flows, and it is one of the fastest scheme
available in the literature for solving diffusive partial differential equations. We introduce the scheme for a
general grid cell, then the application to a particular problem is straightforward. For each cell K of the com-
putational grid, the scheme can be written as

X
f2F K

Ff ;KðpÞ5
ð

K
qdx;

where F K is the set of facets (edges in 2-D and faces in 3-D) f of the cell K, and Ff ;K (m3=s) is the numerical
flux related to the diffusive operator across the facet f. Given two adjacent cells, K and L, sharing the facet f,
we enforce the local conservation of mass through f: Ff ;KðpÞ1Ff ;LðpÞ50. The two-point flux scheme approxi-
mates the flux in the following way:

Ff ðpÞ :¼ TKL

l
pK 2pLð Þ; (3)

where pK and pL are the pressures in the cells K and L, respectively. Since TKL 5 TLK, with this definition, the
conservation of mass is automatically satisfied. In (3), we have introduced the transmissibility TKL (m3)
between adjacent cells, which is the main ingredient of the two-point flux approximation scheme. The com-
putation of the transmissibility is based on some geometrical quantities of the two cells K and L, as well as
on the permeability tensor. The transmissibility can be computed through the following formula:

TKL5
TK TL

TK 1TL
; (4)

where TK and TL are the so called ‘‘half transmissibilities’’ related to the cells K and L, respectively. These
objects can be computed by

TK :¼ xK 2xfð Þ>

jjxK 2xf jj22
KnK ;f jf j; (5)

with nK ;f the unit outward normal to f 2 F K ; xK the center of gravity of the cell K, and xf the center of grav-
ity of the facet f.

2.2. Virtual Fracture Cells Method
Problem (2) can be applied also to describe the flow in the fractures. We suppose that the fractures have an
aperture a (m) of several orders of magnitude smaller than their other characteristic sizes and porous medi-
um grid size. Moreover, we assume that the permeability of the fractures may be several orders of magni-
tude different from the permeability of the surrounding porous medium. Due to the first assumption, from
a geometrical point of view, we represent the fractures by objects of codimension one: surfaces for N 5 3 or
lines for N 5 2. A commonly used approach in the approximation via DFM is based on the construction of
an additional mesh consisting of virtual fracture cells to discretize the problem in each fracture (see Faille
et al. [2016]).

The virtual fracture cells are obtained by extrusion of fracture facets along their normal direction by a thick-
ness 6a=2. The global mesh is obtained by the union of the mesh which discretizes the rock matrix and the
mesh comprising the virtual fracture cells. This approach allows us to treat the elements of the fracture dis-
cretization as any other cell, so that we do not need a special treatment for the fracture cells. In practice,
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the virtual fracture cells are never constructed explicitly, but only introduced to compute the geometric
quantities required by the two-point approximation.

Another approach is to consider the reduced model approximation described in Martin et al. [2005], Angot
et al. [2009], and D’Angelo and Scotti [2012]. Again, we assume that the fractures are represented by objects
of codimension one, but in this case, the construction of the tangential operators and the imposition of suit-
able coupling conditions between the porous matrix and the fractures are required. However, the imple-
mentation of the two approaches does provide the same results.

3. Embedded Discrete Fracture Model

To solve problem (2) by a two-point finite volume scheme, a discretization of both porous medium and frac-
tures is required. We focus our attention on complex three-dimensional problems. A representation of the
computational grid with a conforming mesh that adapts to the fractures may be very complex to generate,
due to the small angles that may occur at the intersection of two or more fractures. Moreover, this proce-
dure could generate many very small elements that could badly affect the numerical solution. Finally, since
the typical grids used in the commercial reservoir software are the so-called corner-point grids, it is conve-
nient to employ such kind of grid in order to easily interface with these programs.

In order to avoid having to build a conforming mesh and to alleviate the computational cost, we rely on the
methodology first introduced by Li and Lee [2008] and expanded in Panfili et al. [2013], Moinfar et al. [2014],
Panfili and Cominelli [2014], and de Araujo Cavalcante Filho et al. [2015]. This method, known as Embedded
Discrete Fracture Model (EDFM), allows one to generate the fractures mesh and porous medium grid inde-
pendently, thus avoiding the need for a conforming mesh and allowing one to use corner-point grids.

Fractures are meshed so that each corner-point cell that they intersect contains one and only one fracture
cell per fracture. We consider only the case of planar quadrilateral fractures but parameterized as bilinear
surfaces to exploit the same intersection algorithm, presented in Appendix A, used for dealing with the
faces of a general corner-point element. Intersections between fractures are computed, but do not affect
the meshing strategy of either fractures or corner-point grid. They are instead used to compute transmissi-
bilities between different fracture cells (see, e.g., Figure 1, bottom right).

A degree of freedom is assigned to each matrix cell and to each fracture cell. This means that transmissibil-
ities between matrix and fracture cells, as well as those between different fracture cells need to be
computed.

3.1. Meshing Algorithm
The first step toward computing all transmissibilities is to actually mesh the fractures. This implies identify-
ing the corner point cells intersected by each fracture, and computing the polygons resulting from the
intersection of the fracture with each cell.

The vertices V of each polygon are the union of three sets of points: fracture vertices lying inside the ele-
ment Vi, intersections between an element face and a fracture edge Vf, and intersections between an ele-
ment edge and the fracture Ve (see, e.g., Figure 1, top right)

V5Vi [ Vf [ Ve:

The second and third set of points, Vf and Ve, can be found by computing the intersections between a line
segment, the fracture edge, or the element edge, respectively, and a bilinear surface, the element face, or
the fracture. Computing these intersections gives rise to a system of nonlinear equations. In Appendix A, we
present an algorithm that provides an explicit solution to this system, avoiding the need for iterative meth-
ods, while taking special care of numerical errors and floating-point arithmetic.

Last, testing whether a fracture vertex lies inside a trilinear element, i.e., finding Vi, can be done using a ray-
casting algorithm. For a detailed presentation [see Shimrat, 1962, Algorithm 112]. In particular, we can build
a line segment going from the element parametric center to the point whose position we want to check.
We can then count the total number of intersections between this segment and each element face, again,
by finding the intersection between a line and a bilinear surface. An odd number of intersections means
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that the point is outside the element, while an even number indicates that it is inside, as stated by the ray-
casting algorithm.

Once we have the set of vertices V, the corresponding fracture cell polygon can be built by ordering the ver-
tices clockwise (or anticlockwise) around their midpoint (computed as their average).

To reduce the number of corner-point cells to be tested for intersections with a specific fracture, a search
structure on the corner-point grid can be used. For this purpose, following the idea presented in Formaggia
[1998], we chose an ADTree, which, given the bounding box of a fracture, provides a possible list of cells
that it intersects.

The intersections between different fracture cells, required to compute transmissibilities, are found by inter-
secting the edges of one fracture with the surface of the other. Since we already know in which corner-
point cell each fracture cell falls, we can restrict the computation of intersections to those in the same
corner-point cell, thus greatly reducing the computational cost.

Remark 1. Because corner point cells are represented as trilinear elements, their faces are bilinear surfaces.
Actually, their intersections with a fracture are therefore nonlinear. In order to avoid having to deal with
complex geometric objects and to be able to use simple closed-formed formulas to compute transmissibil-
ities, these intersections are, however, approximated by straight line segments.

3.2. Computation of Transmissibilities
Once we have defined all fracture cells and found the intersections between them, we can proceed to com-
pute the transmissibilities. Let us denote with ARK the surface area of the fracture cell R contained in a
matrix block K, with aR its aperture and with nR the unit normal vector to the fracture surface. The transmis-
sibility between a matrix cell and a fracture cell contained in it is computed using the formula proposed in
Li and Lee [2008]

Figure 1. Example of meshing using EDFM. (top left) The two input intersecting fractures and the corner-point grid (23232). Only inter-
sections between the fractures and between each fracture with the coarse cell need to be computed. (top right) The three types of points
found by intersecting a fracture, in gray, with a corner-point cell: Vi in red, Vf in green, and Ve in blue. The resulting fracture cell is the one
with the blue edges. (bottom left) The resulting fracture meshes. (bottom right) The two intersection segments (with yellow endpoints)
between the fracture cells.
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TKR5ARK
n>RK � nR

dKR
;

where dKR denotes the average distance between a generic point of the fracture cell and the fracture plane.
The transmissibility between two fracture cells, R and H, is instead computed similarly to (4)

TRH5
TRTH

TR1TH
: (6)

First we consider two fracture cells belonging to the same fracture and sharing the edge r. However, r is
the representation of two distinct edges, rH and rR, with their own normals nrH and nrR , respectively. The
half transmissibilities, TR and TH, are computed locally and are given by the formula derived from the two-
point flux approximation found in Karimi-Fard et al. [2004]

TH5
jrHjkHaH xrH 2xHð Þ � nrH

dHrH jjxrH 2xHjj2
:

A similar formula can be provided for TR. In the previous formula, kH; aH , and xH are the permeability, aper-
ture, and center of gravity, respectively, of fracture cell H, xrH is the center of gravity of rH, and dHrH is the
average distance between a generic point of H and rH, computed by

dHrH 5
1
jHj

ð
H
jjxrH 2xjj2dx:

A similar formula can be used for R.

For a generic fracture cell R belonging to different fractures and intersecting each other on line segment s,
the half transmissibility is instead computed as

TR5
jsjkRaR

dRs
;

where dRs is the average distance of a generic point of R to the line to which s belongs.

EDFM has multiple advantages that come in handy to make the MSR upscaling methodology as robust and
fast as possible. On the one hand, its ability to handle complex fracture geometries allows us to handle any
configuration. On the other hand, its speed in generating meshes and computing transmissibilities makes it
particularly suitable to be used in a scenario like that of Multiple Sub-Regions upscaling, where a multitude
of problems need to be solved, and where it can also help in identifying fracture networks, i.e., all those
fracture cells that are somehow connected one to another.

4. Upscaling Procedure

In the case of applications, where thousands of fractures are considered, it is very costly to construct a con-
forming mesh with a good quality to approximate and solve problem (2) with the virtual fracture cells.
Moreover, due to the uncertainty in the underground, it can be necessary to perform a multiple scenario
analysis by changing the fractures position, thus making it unreasonable and unaffordable to build a differ-
ent mesh for each realization. For these reasons, we have chosen a different strategy to solve the global
problem, considering an upscaling technique to derive effective model parameters, at a coarser scale, which
accurately represent the fine scale model. An exhaustive presentation of the classical upscaling techniques,
both numerical and analytical, in unfractured porous media, can be found in Durlofsky [2003]. Nevertheless,
in this work we focus our attention on fractured reservoirs. The main idea of the numerical upscaling is to
consider a global coarse grid G which describes the upscaled reservoir and that it is geometrically indepen-
dent of the domain’s fractures Xf. Typically, G is a corner-point grid, which represents the different sedimen-
tary layers of the reservoir. The upscaling procedure computes the following upscaled properties: the
transmissibility between adjacent coarse blocks, the depth, and the porous volume of each coarse block.
However, the methods described in Durlofsky [2003], as many other techniques proposed in the literature,
do not explicitly consider the presence of the fractures. For this reason, we have considered the upscaling
procedure proposed in Karimi-Fard et al. [2006], Gong et al. [2006], and Tatomir et al. [2011].
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To ease the presentation we recall the basic ideas of the upscaling scheme, extended by adding a matrix-
matrix connection between coarse cells.

4.1. Multiple Subregions
In this section, we present the upscaling procedure proposed by Karimi-Fard et al. [2006] and Tatomir et al. [2011].
Considering two adjacent coarse cells of the global mesh G, the main assumption of the scheme is that the flow
across the two cells takes place only through the fractures networks and not through the porous medium. This
hypotheses is motivated by the fracture permeability, which is several orders of magnitude greater than the per-
meability of the rock matrix. Moreover, we assume that the interchange of flow between the fractures and the
rock matrix is localized only inside each coarse cell. The method of multiple subregions, introduced in the afore-
mentioned work, considers a subdivision of each coarse cell to enhance the description of the porous medium
and to obtain better results. The resulting degrees of freedom (d.o.f.) of the coarse model are associated with
each coarse cell and represent the pressure inside the local fractures networks and the pressure in each subregion
of the rock matrix. With ‘‘local network,’’ we refer to the set of fractures that are connected inside a specific cell or
pair of cells. Thus, in general, inside a cell or a pair of cells, we can distinguish several local networks, one for each
group of connected fractures. Following the idea proposed in Karimi-Fard et al. [2006], the upscaled model could
be sketched with a graph, where each node represents a degree of freedom, and each link represents the con-
nection, i.e., the transmissibility, between the degrees of freedom. For example, in Karimi-Fard et al. [2006, Figure
2], the graph represents five coarse cells in which each of them contains a system of fractures and three porous
matrix subregions. The communication between the coarse cells occurs only through the fractures.

In the sequel, to compute the upscaled quantities we solve local problems involving single cells, or pairs of
cells. Considering a general coarse block K 2 G, we need to build a finer grid, indicated by MK , consisting
of CK polyhedra in 3-D, polygons in 2-D, or briefly cells, indicated by k, such that

�K 5 [
CK

i51
ki ;

which is used to solve the local problems. In the case when two adjacent coarse blocks K ; L 2 G are involved in
the computation, we construct the fine mesh, indicated by MKL, as the union of each submesh
MKL5MK [ML . The interface CKL between K and L is then honored by the discretization and, for simplicity,
we require that the resulting mesh be conforming. In each pair of coarse cells, it is possible to identify NKL local
networks of fractures. We indicate byN i

KL the mesh associated with the discretization of the ith local network of
fractures inside the pair of cells K and L. The global set of fractures for pair of cells is denoted byN KL . We have

N KL5 [
NKL

i51
N i

KL and N i
KL \ N

j
KL51 for i 6¼ j:

We indicate also by N i
K and N K the restriction of N i

KL and N KL to the single coarse cell K, respectively. We
indicate by EK the set of edges of the meshMK . Finally, given a fracture edge r, we denote byMr the set
of fracture cells having r as an edge.

Figure 2. Examples of the four possible configurations of pair of coarse cells in which we consider the matrix-matrix connection.
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4.1.1. Intercell Upscaled Transmissibility
To compute the upscaled transmissibility between two coarse blocks K ; L 2 G, which represents the link
between the coarse degrees of freedom associated with the local fractures sets of the two cells, we solve a
diffusion problem where a pressure gradient is imposed across the boundary of the cell. In practice, we
solve the system of equations (2), by the virtual fracture cells approach, with a pressure gradient along the
direction of the two coarse cells and a no-flux boundary condition over the remaining boundaries. We
employ a ghost-cell approach for both fracture and matrix cells to impose the boundary conditions [see
LeVeque, 2004]. The upscaling procedure is based on the formula (3), where averaged and global quantities
are considered. Once the numerical solution is computed, it is possible to calculate the average pressure on
each coarse cell and the flux across the coarse cells interface. The number of local networks of fractures
which actually cross the interface CKL is indicated by NC

KL, and for a given j51; . . . ;NC
KL, we denote with N j

KL

5N j
K [N

j
L the jth local network contained in the pair of cells K and L. For each local network of fractures of

the coarse cell K, the averaged pressure �pj
K is computed by

�pj
K 5

X
n2N j

K

jnjpnX
n2N j

K

jnj
for j51; . . . ;NC

KL;

where n is a fracture cell of the mesh associated with N j
K . The same formula is applied analogously for L. It

is important to remark that only the fracture cells are involved in the computation of �pj
K and �pj

L. The total
flux, indicated by Fj

KL, through each fractures network N j
KL across the interface between the two cells is

computed by

Fj
KLðpÞ5

X
r2E j

C

Tnm pn2pmð Þ for j51; . . . ;NC
KL;

where E j
C :¼ EN j

K
\ EN j

L
is the set of the interface edges and n (m) represent the fracture cell of the mesh

associated with N j
K (N j

L) such that n (m) 2Mr. Finally, the upscaled transmissibility between K and L can
be computed considering

TKL5l
XNC

KL

j51

��� Fj
KLðpÞ

�pj
K 2�pj

L

���: (7)

Referring only to the fracture boxes in Karimi-Fard et al. [2006, Figure 2], each node represents the system
of fracture inside the coarse cell, while each link between the nodes represents the connection, i.e., the
transmissibility.

Remark 2. Conceptually, formula (7) describes more accurately the flux exchange across the interface since
all the fractures entering the interface are treated like conductances in parallel.
4.1.2. Intracell Upscaled Transmissibility
Once the upscaled transmissibility is computed for each pair of cells in the coarse grid, the multiple subre-
gion approach subdivides each single coarse cell K 2 G into several parts and computes the upscaled trans-
missibility between the degrees of freedom associated with the fractures set of the cell and the first
subregion, as well as the transmissibilities between a subregion and the subsequent one. To split the coarse
cell, Karimi-Fard et al. [2006] propose considering the compressible single-phase flow equation for the
generic coarse cell K 2 G

/c
@p
@t

2r � K
l
rp5qf in K for t > 0

2
K
l
rp � nK 50 on @K for t > 0

p50 in K for t50

;

8>>>>><
>>>>>:

(8)

where / is the porosity, c (Pa21) the compressibility, and qf is a piecewise constant source term strictly posi-
tive inside the fractures and zero elsewhere. This equation is solved until a pseudo steady state is reached,
i.e., until the following condition is fulfilled:
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@p
@t

5c15const:

Problem (8) is weakly coercive and the numerical errors accumulated during the temporal loop may alter
the computed solution. Finding the pseudo steady state solution of problem (8) can be proved to be equiv-
alent to finding the solution of the following stationary problem:

2r � K
l
rp5qf 2

/Ð
K /

ð
K

qf in K

2
K
l
rp � nK 50 on @K

Ð
K p50

:

8>>>>>><
>>>>>>:

(9)

Since only homogeneous Neumann boundary conditions are considered for the previous system, the last
condition is needed to ensure the uniqueness of the pressure. To reduce the computational time, in all the
tests performed, we will consider only the stationary formulation (9) of problem (8). To numerically solve
problem (9), we consider again a fine meshMK built from K, and we use the two-point flux approximation
to compute the numerical solution. We consider SK subregions for the coarse cell K 2 G. The last subregion
is related to the fractures’ set. The other SK 21 are defined through the iso-pressure contours on the fine
grid MK . Practically, we divide the pressure range, only for the matrix, uniformly in SK 21 parts. Thanks to
the characteristics of problem (8), each subregion is linked between the previous and the subsequent one.
Once the subregions are defined, it is possible to compute the transmissibility between each pair of subre-
gions considering a proper generalization of formula (3). We indicate byMi

K the cells of the fine meshMK

related to the subregion i and by F i
K the facets related toMi

K . We consider also the set of facets between
two subregions as F i;i11

K 5F i
K \ F i11

K . Finally, we set MSK
K 5F SK 21;SK

K the mesh related to N K . We compute
the mean pressure for each subregion i as

�pi
K 5

X
k2Mi

K
jkjpkX

k2Mi
K
jkj

for i51; . . . ; SK ;

as well as the flux between the subregions i and i 1 1 as

Fi;i11
K ðpÞ5

X
f2F i;i11

K

Tkl pk2plð Þ for i51; . . . ; SK 21;

where k 2Mi
K and l 2Mi11

K are two fine cells. The upscaled transmissibility between the subregions i and
i 1 1 is computed by

T i;i11
K 5l

��� Fi;i11
K ðpÞ

�pi
K 2�pi11

K

���: (10)

Considering only one fracture branch in Karimi-Fard et al. [2006, Figure 2], it presents the case of a single
coarse cell with the fractures and the subregions. The link between the node related to the fractures and
the first subregion represents the fracture-matrix transmissibility, while the remaining links represent the
transmissibility between subsequent subregions.

Remark 3. The fractures that are fully immersed, i.e., the fractures that are contained only in one coarse cell,
are considered as part of the subregion to which they belong (see the immersed fracture contained in the
left coarse cell of the bottom left of Figure 2 which belongs to the green matrix subregion). In this case the
source term, in (8), associated with these fractures is set to zero.

Remark 4. The assumption of logically one-dimensional connectivity, made in Gong et al. [2006, 2008b] and
Tatomir et al. [2011], does not hold any more. We allow that each subregion can be linked to all the other
subregions. This is particularly important when the local mesh of each coarse cell contains few cells.
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4.2. Matrix-Matrix Communication
In this section, following the idea presented in Hui et al. [2007], we introduce an extension of the previous
algorithm to deal with disconnected networks of fractures in the upscaling procedure. Disconnected net-
works of fractures occur when there are pairs of coarse cells where the local set of fractures does not inter-
sect the interface between the coarse cells. In this case, the previous algorithm does not compute any
upscaled transmissibility since one of the hypotheses of the standard multiple subregions method is that
the flow, between adjacent coarse cells, takes place only through the fractures. Figure 2 shows this kind of
configurations. In particular, we subdivide the cells into three cases: both cells do not contain any fracture;
only one cell contains the fractures; both cells contain fractures but they do not cut the common interface.
Besides these cases, for a more accurate representation, we extend the procedure described below also to
the case in which the common interface is cut by the fractures.

To handle these cases, we take advantage of the created subregions during the computation of the
upscaled transmissibilities inside each coarse cell. Given a pair of adjacent coarse cells, where their networks
of fractures are disconnected, we solve the diffusion problem (2), where a pressure gradient is imposed
across their boundary. Once the solution is obtained, we compute the transmissibilities between each sub-
region of the first coarse cell which faces, through the interface between the coarse cells, any subregions of
the other coarse cell. An example is given in Figure 2 (bottom left), where the subregions of a pair of coarse
cells are represented. The graph depicts the logical connections between the d.o.f. associated with the sub-
regions: the subregions of the left cell (indicated with 1) are linked to the subregions of the right cell (indi-
cated with 2). For each link we have a transmissibility value. Considering the two fine meshesMK andML

associated with the pair of coarse cells K and L 2 G, it is possible to define the subregions as explained in
the previous section obtaining SK and SL subregions for the two coarse cells K and L, respectively. As in the
previous section, the upscaled transmissibility is based on a proper generalization of equation (3). We com-
pute the mean pressure for each subregion i of the coarse cell K as

�pi
K 5

X
k2Mi

K
jkjpkX

k2Mi
K
jkj

;

and analogously for the coarse cell L. We indicate the set of facets of the subregion i of the coarse cell K
which faces the subregion j of the coarse cell L as F i;j

KL. The total flux, indicated by Fi;j
KL, through the interface

between the cells of the subregion i, referred to the coarse cell K, and the subregion j, referred to the coarse
cell L, is computed by

Fi;j
KLðpÞ5

X
f2F i;j

KL

Tkl pk2plð Þ;

where every fine cell k 2Mi
K belongs to the subregion i of the coarse cell K, and every fine cell l 2Mj

L

belongs to the subregion j of the coarse cell L. Finally, the upscaled transmissibility between the subregion i
of the coarse cell K and the subregion j of the coarse cell L can be computed considering

T i;j
KL5l

��� Fi;j
KLðpÞ

�pi
K 2�pj

L

���:
It is important to notice that the procedure does not increase the number of degrees of freedom but only
their connections. In the particular case when one of the two coarse cells does not contain fractures, as rep-
resented in Figure 2 (top right), we assume that the latter has only one subregion and the upscaling algo-
rithm remains the same. All the subregions facing the interface between the coarse cells of the left coarse
cell are connected with the unique subregion of the right coarse cell. This procedure is particularly impor-
tant in the ‘‘boundary’’ of a fractures network to allow the spreading of the flow in the neighboring coarse
cells, and to link different networks of fractures.

To complete the upscaling procedure for a general reservoir, it is possible that some pairs of coarse cells do
not contain any fracture. In this case, we consider the standard formula (4) and (5), with the geometric prop-
erties related to the coarse mesh G. This case is represented by the graph shown in Figure 2 (top left). The
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degrees of freedom related to the fractures are not considered, and for each coarse cell there is a single
d.o.f. associated with the unique matrix subregion, i.e., the entire coarse cell. Hence, the link between the
coarse cells is due to the flow through the porous matrix.

Finally, to improve the accuracy of the procedure, we compute the matrix-matrix transmissibility also in the
case of pair of cells in which the common interface is fractured. Indeed, though most of the flow goes
through the fractures, the interface area associated with the porous matrix may be very large with respect
to the one related to the fractures, so that the flow transmitted by the matrix may be significant. An exam-
ple of this case is shown in Figure 2 (bottom right): besides the fracture-fracture transmissibility, a communi-
cation between the subregions of the two coarse cells is taken into account.

Remark 5. With the basic algorithm presented in Gong et al. [2006] and Tatomir et al. [2011], it is possible to
locally eliminate the matrix d.o.f. in favor of the fracture d.o.f., reducing the upscaled system. It is worth
noticing that considering matrix-matrix communication among adjacent coarse cells prevents this possibili-
ty to occur, and the number of unknowns in the coarse system may increase considerably.

Remark 6. To speed up the resolution in the implementation of the algorithm, it is possible to avoid the
computation of the transmissibilities among the subregions if the local set of fractures belongs to the same
global network of fractures. This hypotheses is reasonable since the transmissibility of the fractures is sever-
al orders of magnitude greater than the transmissibility of the rock matrix.

The whole procedure presented in this section is summarized in Algorithm 1.

5. Numerical Examples

In this section, we present several numerical examples to assess the performance and the validity of the
method presented in the previous sections. In section 5.1, we compare the computational cost of the EDFM
procedure with respect to the constrained Delaunay algorithm. We then proceed in section 5.2 to show the
convergence of the upscaled transmissibilities computed with EDFM with respect to the grid refinement. In
section 5.3, we compare the numerical solution obtained with Intersect, that uses Oda’s method to compute
the transmissibilities, the one obtained with Eclipse and by computing the upscaled transmissibilities
with the commercial software Petrel, and finally the numerical solution obtained with Eclipse but by com-
puting the upscaled transmissibilities with our upscaling procedure. In section 5.4, we assess the upscaling

Algorithm 1. Upscaling procedure

Require: coarse grid, fractures

Ensure: transmissibility, porous volume, depth

1: for all coarse cell do

2: compute intersection among the local grid and fractures

3: solve problem (9)

4: compute the subregions

5: compute the porous volume and the depth for each region

6: compute intracell upscaled transmissibility

7: end for

8: for all pair of coarse cells do

9: compute intersections among the local grid and fractures

10: solve the problem (2) by enforcing a pressure jump

11: compute intercell upscaled transmissibility for both the fracture and the matrix

12: end for
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procedure in a complex 3-D framework and, in particular, we compare the numerical solution obtained with
GPRS by considering a different number of subregions during the upscaling procedure. In sections 5.3 and
5.4, we refer to the two-phase problem described in Bastian [1999, p. 27, equation (1.41)].

5.1. Computational Efficiency of EDFM
We present a comparison of the computational cost between EDFM, introduced in section 3, and a classical
constrained Delaunay approach. We consider two test cases: the first is a set of 64 fractures (Figure 3, top),
the second a set of 1024 fractures (Figure 3, bottom). For the generation of the Dealunay meshes, the popu-
lar TetGen program [Si, 2015] is employed. This generates tetrahedral meshes of arbitrary 3-D polyhedral
domains using exact constrained Delaunay tetrahedralizations, boundary conforming Delaunay meshes,
and Voronoi partitions. The resulting Delaunay meshes consists of 92,367 rock matrix cells for the test case
with 64 fractures, and 1,363,190 cells for the test case with 1024 fractures. For each test case, EDFM was run
using two different Cartesian grids. It is worth to notice that we do not exploit the fact that the meshes are
Cartesian but we use the algorithms for general corner-point grids. The first was chosen so that it matched
approximately the number of elements obtained using the Delaunay approach (80380316 cells for the 64
fractures case and 20032003200 for the 1024 fractures case). The second was instead chosen to match the
constraint on the cell size imposed by TetGen (2032034 cells for the 64 fractures case and 50350310 for
the 1024 fractures case).

Remark 7. While the comparison between a Delaunay approach and EDFM using roughly the same number
of cells might provide results about the efficiency of our implementation of EDFM, the comparison between
meshes with the same cell dimensions is the one proving the usefulness of EDFM: while Delaunay needs to
refine the mesh in the proximity of the fractures, using EDFM avoids the need for any refinement of the
rock matrix mesh.

For the test case with 64 fractures, TetGen runs in 0:44s, while EDFM takes 0:82s for the 80380316
corner-point grid, and 0:04s for the 2032034 grid. When run on the test case with 1024 fractures,
instead, TetGen takes 16:94s and EDFM takes 10:26s for the 20032003200 grid, and 0:45s for the 20320
34 grid.

Even when the comparison was made using the same number of cells, EDFM still performs better than a
constrained Delaunay approach, even though this is generally not a realistic usage of EDFM, as one of its
main advantages is indeed the fact that it does not use a conforming mesh, eliminating the need for such a
refinement. The fact that EDFM performs better with a greater number of fractures, moreover, is a sign of
its better scalability when compared to a conforming meshing strategy such as a Delaunay
tetrahedralizations.

Figure 3. (top) Test case with 64 fractures, meshed using a constrained Delaunay approach (left), EDFM with approximately the same number of elements (middle) and EDFM with the
same maximum element volume imposed with the Delaunay triangulation. (right) bottom: test case with 64 fractures, meshed using a constrained Delaunay approach (left), EDFM with
approximately the same number of elements (middle) and EDFM with the same maximum element volume imposed with the Delaunay triangulation (right).
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Remark 8. Both fracture sets where generated so that no intersections between fractures occurs. This was
necessary as TetGen is not capable of handling intersecting faces, nor did we have any such tool at our dis-
posal. Note, however, that should the fractures intersect each other, this would not affect significantly
EDFM, while it could prove a major obstacle for a Delaunay mesh builder.

5.2. Convergence of the Upscaled Fracture-Matrix Transmissibility Computed With EDFM
In order to ascertain the validity of our approach (i.e., the use of EDFM to compute upscaled transmissibilities),
we consider a test case with a 232 grid and four fractures (see Figure 4, top). The domain is a cube of edge
length 1 m and the fractures have an aperture of 0:1 m. The matrix permeability is 10212 m2 while the frac-
ture permeability is 1028m2. For each coarse cell, we evaluate the transmissibility between the degree of free-
dom associated with the set of fractures of the cell and the first subregion, see (10), by applying EDFM with
different local grid refinements. In particular, for each coarse cell, the refined grid is generated as a Cartesian
grid with n 3 n elements, for n55; 25; 50; 75; 100. This computation is done for a number of matrix subre-
gions equal to 1, 3, and 5. It can be seen from Figure 4 that for each of the four coarse cells and for each of
the three number of subregions tested, the computed transmissibility converges toward a single value.

Remark 9. Transmissibilities computed for different number of subregions are expected to be different from
one another as the shape of the first matrix subregion differs depending on the selected number of subregions.

Figure 4. 2 3 2 test case (top) used to show the convergence of the upscaled transmissibility between the fractures of a coarse cell and the
first subregion. The four graphs show the computed transmissibility, respectively, for the top left, top right, bottom left, and bottom right cell.
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5.3. Comparison With a Standard Industrial Simulator
In this section, we compare the result obtained with the upscaling procedure [Petrel, 2014], considered as a
standard simulation tool in oil industry, against a reference solution. The upscaling considers only one
porous matrix subregion since, as shown in the previous part, increasing the number of subregions, we
expect a better representation of the coarse solution. The test domain is represented in Figure 5 (left),
where the fractures and the 20 3 20 coarse mesh are represented. The fracture permeability is 5 orders of
magnitude greater than the matrix permeability and the fracture thickness is on the order of centimeters.
The reference solution is computed using EDFM with 100 3 100 Cartesian cells. Petrel uses the geometry-
based Oda’s method [Oda, 1985], to compute a representative permeability tensors initially defined in the
discrete fracture network. The Kazemi formula is used to compute the transmissibility between the fractures
and the rock matrix [Kazemi et al., 1976]. As in the previous test case, we consider an incompressible two-
phase flow simulation where the reservoir and the fractures are filled with oil. Water is pumped in at a con-
stant rate in the injection well, I, whereas the production well, P, is operating at a constant pressure. Both
wells are completed in fracture. For the computation of the saturation field, we use Eclipse [Eclipse, 2014]
for both the upscaling and Petrel solutions and Intersect [Intersect, 2014] for the reference solution. The
comparison of the field oil efficiency (FOE) for the three approaches is reported in Figure 5 (right). The FOE
defined as

FOEt5
OIPt502OIPt

OIPt50
;

where OIP is the so-called oil-in-place, which refers to the total oil content of a reservoir. In the beginning of
the simulation, the three solutions are comparable. However, after 400 days the solution computed using
upscaling approximates better the reference solution than the one computed using Petrel. In Figure 6, the
oil saturation profile for the three methods is provided at the same time level. Even though the upscaled
solution shows a delay compared to the reference solution, it is able to better recover the oil dynamic than
Petrel.

Figure 5. Left: coarse mesh and fractures for the comparison between the upscaling procedure and Petrel. Right: comparison of the field
oil efficiency for the upscaling, Petrel and the reference solution.

Figure 6. Representation of the oil saturation in the porous matrix at the same time level. Reference solution (left), solution obtained using
Petrel (middle), and solution obtained using the upscaling (right).
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5.4. Realistic Three-Dimensional Case
The General Purpose Reservoir Simulator (GPRS), first introduced in Cao [2002], is a general purpose
research simulator developed and maintained by Stanford University’s Reservoir Simulation (SUPRI-B) Indus-
trial Affiliates Program. GPRS incorporates all techniques of modern reservoir simulations such as black oil
or compositional fluid modeling, employment of several adaptive implicit formulations, management of
structured and unstructured grids, two-point and multipoint flux discretizations, and so on.

In this example, the goal is to perform a numerical simulation on a complex three-dimensional set of
fractures in order to test the robustness and the efficiency of the procedure. Moreover, we assess the
dependence of the numerical solution with respect to the number of subregions. We consider a test
case with a realistic fracture distribution where the coarse grid is Cartesian made of 30325315 cells
which contains a set of 4241 fractures. The domain is about 7 km along its diameter. In the solution of
the local problems, each coarse cell is divided into 400 fine cells, the matrix permeability is set equal to
9:868310215 m2, the matrix porosity equal to 0.25, the fracture permeability is 9:868310210 m2, the
fracture porosity equal to 0.8 and a fracture aperture in between 0:1 and 0:3 m. GPRS is used to simulate
a two-phase (oil-water) flow in a fractured porous medium with the upscaled values of transmissibility,
porous volumes, and mean depths. In particular, we consider the reservoir saturated by oil, with density
equal to 786 kg=m3, in which water is pumped in, with density equal to 1038 kg=m3. The injector well
operates at a fixed flow rate equal to 11 m3=s, while the producer well works at a fixed bottom-hole
pressure equal to 689,476 Pa. The wells are completed in the fractures contained in the coarse cell, with
a transmissibility high enough so that the dynamics between the well and the fractures is instanta-
neous. The rock compressibility is set to 1:45310210 Pa21. Moreover, we neglect the residual saturation
for both phases and the capillary pressure, we assume a simple linear relation for the relative perme-
ability and we apply a hydrostatic pressure as initial pressure condition. We place the water injector
well in the upper part on the left corner of the grid and the production well in the lower part on the
right corner of the grid, referring to Figure 7 (left). In this test, we perform the upscaling procedure four
times by changing the number of subregions, from one to four in a dual porosity-dual permeability
framework. Figure 7 (right) shows the amount of oil produced from the production well with different
number of subregions. We note that by increasing the number of subregions, the oil produced
increases. Regarding the computational effort, the upscaling procedure requires 2176s, 2157s, 2157s,
and 2158s for the case of 1, 2, 3, and 4 subregions, respectively. In particular, 10 s are required to solve
all the single cell problems and 48 s to solve all the pair cell problems. The computational time is inde-
pendent of the number of subregions. Instead, the computational time employed to solve the two-
phase flow simulation with GPRS is 378s, 724s, 1236s, and 1903s for the case of 1, 2, 3, and 4 subregions,
respectively.

6. Conclusions

In this work, we presented a novel efficient upscaling procedure to derive a coarse-scale model for a natural
fractured reservoir. The main objective of the proposed scheme is to compute the upscaled parameters in
an efficient and effective way. These parameters are computed via local problems which involve single or

Figure 7. (left) Sketch of the fractures and location of the injector well (blue) and production well (red). (right) Oil produced by the produc-
tion well as a function of time by considering different number of subregions.
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pair of coarse cells. To achieve a good efficiency, we have considered, in the solution of these problems, a
nonconforming coupling between the bulk grid and the fracture grids by means of the embedded discrete
fracture model method. Moreover, we considered an extension of the standard MSR algorithm considering
the full connection of the subregions among facing cells. As the numerical tests show, the upscaled prob-
lem turns out to be a reasonable and correct approximation for this class of problems. Moreover, the meth-
odology introduced yields better results than the standard software used in oil industry to solve similar
problems. In a forthcoming work, we will introduce a parallelization of the global algorithm to increase the
efficiency and applicability to real problems.

Appendix A: EDFM Intersection Algorithm

We describe here the algorithm used to compute the intersections between a bilinear surface and a seg-
ment. Given the parameterization of a bilinear surface of vertices a, b, c, and d

rðu; vÞ5v½ub1ð12uÞa�1ð12vÞ½uc1ð12uÞd�;

finding the intersections with a line segment

sðtÞ5tp1ð12tÞq;

with endpoints p and q, entails solving the nonlinear system

rðu; vÞ5sðtÞ: (A1)

In order to solve (A1), we need to know how to solve two subproblems.

A1. Bilinear System of Equations

The first is finding the solution to the following nonlinear system of equations for the variables u and v:

a0u1b0v1c0uv1d050

a1u1b1v1c1uv1d150
;

(
(A2)

which we will refer to as a bilinear system. Despite being nonlinear, this type of system can be solved explic-
itly using the decision tree depicted in Figure 8. Particular care has to be taken to deal with numerical errors
and floating-point arithmetic.

A2. Parameterization of a Point

The second subproblem is finding the parameterization of a point x with respect to a given bilinear surface
rðu; vÞ. This means solving rðu; vÞ5x, which is a system of three equations in two variables (u and v)

ðbx2axÞu1ðdx2axÞv1ðax2bx1cx2dxÞuv1a5xx

ðby2ayÞu1ðdy2ayÞv1ðay2by1cy2dyÞuy1a5xy

ðbz2azÞu1ðdz2azÞv1ðaz2bz1cz2dzÞuz1a5xz

:

8>><
>>: (A3)

This is solved by considering each possible pair of equations, finding their solutions, and then check-
ing whether the third equation holds (to within a given tolerance) for the solutions found. Each pair
of equations is a bilinear system that can be solved as described in Figure 8. Usually, we are only
interested in solutions lying inside the unit square ½0; 1�2, as these are the ones inside the fracture or
face.

A3. Solving the Nonlinear System of Equations

Equation (A1) is a system of three equations in three variables (u, v, and t)
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Figure 8. Decision tree used to solve bilinear systems. Given the eight coefficients a0, b0, c0, d0, a1, b1, c1, and d1, one can walk the decision
tree from its root to one of the leaves evaluating the condition on the coefficients. Each round node of the tree represents the evaluation
of a condition (i.e., an if statement) and the relative subtree is visited only if that condition holds.
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ðbx2axÞu1ðdx2axÞv1ðax2bx1cx2dxÞuv1ax5px1ðqx2pxÞt

ðby2ayÞu1ðdy2ayÞv1ðay2by1cy2dyÞuy1ay5py1ðqy2pyÞt

ðbz2azÞu1ðdz2azÞv1ðaz2bz1cz2dzÞuz1az5pz1ðqz2pzÞt

:

8>><
>>: (A4)

Here the three subscripts x, y, and z denote the three components of a point. We assume that at least one
of the three coefficients of t is non-null, otherwise the segment is degenerate and we can simply solve (A3)
to check whether the point belongs to the surface. We can therefore solve one equation for t, and substi-
tute what we obtain into the other two equations. If, for instance, qz2pz 6¼ 0, then we have

ððbx2axÞu1ðdx2axÞv1ðax2bx1cx2dxÞuv1aÞðqz2pzÞ5px1ðqx2pxÞððbz2azÞu1ðdz2azÞv1ðaz2bz1cz2dzÞuz1aÞ

ððby2ayÞu1ðdy2ayÞv1ðay2by1cy2dyÞuy1aÞðqz2pzÞ5py1ðqy2pyÞððbz2azÞu1ðdz2azÞv1ðaz2bz1cz2dzÞuz1aÞ
:

(

What we obtain is a bilinear system which can once again be solved as in Figure 8. If infinitely many solu-
tions are found, then the segment lies on the bilinear surface, in which case we are only interested in find-
ing the portion of the segment lying inside the four vertices. The endpoints of this intersection are either
given by the intersection of the segment with the edges of the bilinear surface, or by the endpoints of the
segment itself if they are inside the four vertices of the bilinear surface. This last check can be performed by
finding the parametric coordinates of the endpoints by solving (A3).
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