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I. INTRODUCTION

The problem of the origin of life belongs clearly to physics as well as to
biology and it is not surprising that this question is well appropriate in
discussing the relation between these two disciplines.

It is customary to decompose the general problem of the origin of life
into two parts. On the one side, independently of what a living system
may be, it is clear that its functioning can only be conceived in a medium
already prepared to accept life. A long chemical evolution is therefore a
necessary prerequisite of life and at the same time determines, to a large
extent, the chemical composition of actual living systems. A second and
equally important aspect is to determine the type of events which lead
from inanimate to living objects. Necessarily, this part of the problem is
dealt with by studying the actual biological structures and functions
and then trying suitable extrapolations to the past.

In this review we mainly deal with this second point. Here, discussions
are often centred around a certain number of general themes. This is still
so in most recent publications (Lwoff, 1962; Monod, 1970; Jacob, 1970;
see also the books edited by Whyte, Wilson & Wilson 1969; Grene 1969;
Koestler & Smythies, 1969) and indicates that the questions thus raised
correspond to quite fundamental problems. In this introduction we shall
try to state and briefly comment on some of these topics. We will then
indicate how one can formulate these questions in more precise terms
which permit the construction of models and the deduction of specific
predictions based on thermodynamics of irreversible processes.
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I. 1. What is the status of living objects in respect to the second law of
thermodynamics?

It is generally accepted that the present biological order reflects the effect
of structures acquired during a long evolution (Lwoff, 1962): it is the
capacity to capture and transmit past experience that characterizes the
living systems. The remarkable fact is that this idea of biological evolu-
tion, which emerged in the nineteenth century, appears to be really
conflicting with the idea of evolution formulated in thermodynamics:

(a) In biology or in sociology, the idea of evolution is associated with
an irreversible increase of organization giving rise to the creation of more
and more complex structures.

(6) In thermodynamics and statistical mechanics, the second law is
formulated as the Carnot-Clausius principle. In its modern version, the
content of this law is as follows. There exists a function, the entropy S,
which depends on the macroscopic state of the system. For systems
exchanging energy and matter with the surroundings, the entropy
variation dS during a time dt may be decomposed as

dS =deS+d;S, (1)

where de S is the entropy flow from the surroundings and d; S the entropy
production from irreversible processes inside the system. The second law
then implies that for all physical processes

diS > o, (2)

the equality applying only at equilibrium. In the limit of an isolated
system (energy E is constant) de. S = o and (2) becomes

(dS)g = o. (3)

Entropy therefore increases irreversibly for an isolated system.

Evolution is always directed to a continuous disorganization, i.e. the
destruction of structures introduced by initial conditions. The work of
Boltzmann has added a new important element: irreversibility in thermo-
dynamics expresses a statistical law of evolution to the ‘most probable’
state corresponding to the state of maximum disorder.

Ever since its formulation it was realized that the second law of thermo-
dynamics has wide implications. The extension of the thermodynamic
concept of evolution to the world as a whole leads to the idea that
‘structure’ originated in some distant, ‘golden age’ (Whyte et al. 1969).

8 QRB 4
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Since then this order is annihilated in a progressive chaos corresponding
to the ‘most probable’ state.

The biological evolution points precisely to the opposite direction. Is it
possible to reconcile these two apparently opposite aspects of evolution 2
It is true that biologists insist nowadays on the fact that the second law
applies to a system as a whole-living system + environment (Lwoff,
1962; Monod, 1970; Jacob, 1970) and that this is perfectly compatible
with an entropy lowering in the organism, and that Darwin himself
attributes to natural selection the irreversible evolution to more organized
structures in living systems. In other terms, it is because natural selection
favours exceptional situations corresponding to a sort of ‘statistical
fluctuation’ that exceptions, i.e. organized structures, finally become the
rule in biology (Jacob, 1970). However, these general arguments cannot
suffice for solving the problem. One would like to be more precise and
attribute the effects to definite physical laws. And at this point the conflict
reappears because one is really confronted with different types of be-
haviour. For instance, if we let two liquids mix, diffusion takes place with
a progressive forgetting by the system of its initial conditions. This is a
typical example of situations described by an increase of entropy. On the
contrary, in biological systems heterogeneity is the rule: inequalities
between concentrations are maintained by chemical reactions and active
transport. Coherent behaviour is really the characteristic feature of
biological systems (Weiss, 1968).

What is the attitude to take? Do there exist two different, irreducible
types of physical laws ? The difference in behaviour is so drastic that this
question has been asked repeatedly (Elsasser, 1958).

While a general answer is perhaps too difficult at present, the physicist
may help by pointing out that there exist in physical chemistry a
wealth of systems with two types of behaviour: systems behaving
‘chaotically’ (thermodynamically) in some cases and in a coherent way in
others. At least in these cases there exists then only one type of physical
law but different physical situations. Generally speaking, the destruction
of structures is the situation which prevails in the neighbourhood of
thermodynamic equilibrium. On the contrary, as we shall see in the
subsequent paragraphs, creation of structures may occur, with specific
non-linear kinetic laws beyond the domain of stability of the states showing
the usual thermodynamic behaviour.

* We here follow closely some recent papers by I. Prigogine (19675, 1969) and
the monograph by Glansdorff & Prigogine (1971).
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Closely related to the first theme is the problem of randomness and
order.

1. 2. Randomness and order

The most detailed analysis of order made in physics refers to equilibrium
situations. It is well known that at thermodynamic equilibrium entropy
reaches amaximum for anisolated system, free energy reaches a minimum
for a system of given temperature and volume, and so on. The appearance
of ordered structures is favoured by lowering the temperature. Indeed
equilibrium structures correspond to a competition between energy and
entropy. At sufficiently low temperature energy becomes the dominant
factor (the entropy contribution to free energy being then small) and the
system reaches a configuration favouring a minimum of potential
energy.

We may call this the Boltzmann order principle because it is expressed
through the competition between energy E and temperature in the
Boltzmann factor exp (— E/kT). This competition on the molecular level
is then amplified on the macroscopic level when phenomena such as
phase transitions, ferromagnetism or partial miscibility are involved.

One of the most interesting problems of statistical physics and thermo-
dynamicsis to extend the concept of order to non-equilibrium situations for
systems in which the appearance of ordered structures in thermodynamic
equilibrium would be very unlikely. Even very simple examples show how
subtle one has to be. Consider a horizontal fluid layer heated from below
(Bénard problem). A temperature gradient is created which opposes the
effects due to the gravitational force. For small values of this gradient
(i.e. for states close to equilibrium) what happens is simply a transfer of
heat by conduction in a fluid at rest. But for a critical value of the gradient
there appears an internal convective motion, which is established
spontaneously (Bénard instability). Moreover the convective motion is
organized in the form of very regular patterns, e.g. hexagonal cells. This is
a typical phenomenon of structuration which requires a high degree of
co-operativity from the molecular point of view. Indeed, below instability
the energy of the system is distributed in the random thermal motion of
the molecules. Beyond the Bénard point it appears at least partly as the
energy of macroscopic regular motion. At thermodynamic equilibrium
the probability that a macroscopic number of molecules (of the order of
102%) spontaneously organizes to a regular flow pattern would be vanish-
ingly small. It is only because the external constraint (temperature

8-2
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gradient) drives the system sufficiently far from equilibrium that the
system may give rise to ordered, highly co-operative structures.

In all these phenomena a new ordering principle not reducible to the
Boltzmann order principle appears. In the Bénard instability there
exists also a competition (Glansdorff & Prigogine, 1971) but of completely
different dynamical type, as it involves dissipative processes (in this case
viscous dissipation and dissipation of heat) and convection through
fluctuations. There exists therefore a second ordering principle which we
may call briefly ‘order through fluctuations’.

We shall show in the subsequent paragraphs that such phenomena
may also arise in far from equilibrium chemical processes relevant to
biology.

I.3. Chance or law

The preceding discussion brings up the question of the role of chance
versus the role of deterministic laws in the formation of order; that is,
situations corresponding to a low entropy. This is an especially crucial
point in biology which has been raised repeatedly: What is the type of
description one may apply to the evolution of biological systems? Is
life the realization of the ‘most improbable’ or has it originated with
probability ‘one’ following a ‘deterministic’ course?

One generally associates classical physics with a deterministic causal
description. However, in problems involving a large number of degrees
of freedom such a description may not be sufficient. The main reason is
that the existence of many degrees of freedom implies automatically the
existence of fluctuations, i.e. of spontaneous deviations from some
average, macroscopic behaviour. In most cases the appearance of a
fluctuation of a given type may be treated as a random event obeying
definite probabilistic laws. On the other hand, once the fluctuation arises,
the system responds in some way according to some macroscopic laws.

Let us see on a simple example how these two elements may co-operate
rather than be in opposition. Consider again the Bénard problem. Suppose
that there appears a small fluctuation, 6Exin in the kinetic energy,
tending to establish a macroscopic convection pattern. If §Exin vanishes
for t—o0 the state of fluid at rest will be stable; if 6Exin increases with
time a new state will be reached corresponding to a fluid in convective
motion. As we saw before, this indeed happens beyond the Bénard
instability. In more technical terms, there exists a dimensionless quantity
known as the Rayleigh number, whose value determines the stability
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properties of the system. Beyond the threshold corresponding to a critical
value of this number fluctuations are amplified and the system becomes
unstable.

The main point to realize is therefore the following: a new structure
or organization (such as the cellular convection pattern appearing beyond
the Bénard instability) is always the result of an instability. Itoriginates
in a fluctuation, i.e. in a fundamentally stochastic element. A fluctuation
is usually followed by a response that brings the system back to the
original state and which is a perfectly deterministic process. It is only at
the point of formation of a new structure that fluctuations are amplified,
reach a macroscopic level and finally stabilize to a new regime representa-
tive of the structure arising beyond instability. Once this effect is allowed
by the boundary conditions imposed on the system, it will happen with
probability one, provided the fluctuation is created initially by some
mechanism.

In this example a physical phenomenon involves elements of both
chance and determinism which co-operate rather than conflict. In fact
fluid dynamics contains a wealth of similar examples: laminar-turbulent
transition, formation of finite amplitude surface waves, and so on. This
general feature is a direct consequence of the non-linearity of the equa-
tions of hydrodynamics which implies the existence of many possible
solutions. What decides then the occurrence of a given type of regime is
the stability of the corresponding solution under the conditions imposed
on the system.

One of the aims of this review will be to relate the stability theory of
non-linear systems to thermodynamics of irreversible processes. This
means that one has to incorporate in some way in the thermodynamic
description the response of the system to fluctuations, i.e. to build a
generalized thermodynamics which will also include a macroscopic theory
of fluctuations.

One of the main results of this approach will be to show (cf. §§I11-V)
that most of the properties of hydrodynamic instabilities are shared by
systems obeying non-linear chemical kinetic laws with the additional
important feature that the variety of non-linear situations is by orders of
magnitude greater in chemical kinetics. The evolution of such systems
could then involve a succession of instabilities arising from certain types
of fluctuations (stochastic element) followed by a deterministic evolution
to a new type of regime. Order through fluctuations implies always both a
microscopic and a macroscopic element and therefore both chance and
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law. The implications of this result to the evolution of biological systems
will also be discussed in some detail.

The study of the architecture of ordered systems brings up the fourth
general theme we wish to mention in this introduction.

1. 4. Hierarchical structure organization

It is generally admitted that biological systems consist of a superposition
of co-ordinated structures and functions of increasing complexity. This
hierarchy in structure seems also to be a characteristic feature of other
systems such as systems interacting with gravitational forces (Whyte et al.
1969; Haggerty, 1970). In biology the situation is complicated by the
fact that systems governing fundamental processes appear to be so
strongly connected that one is tempted to think of them as a whole rather
than consisting of more elementary, loosely connected parts.

Many workers in biology have felt that the only appropriate language to
discuss this type of situation is the systems theory description, in particular

the ideas based on automata theory. For a very lucid exposition of this
point of view we refer to R. Rosen (in Whyte et al. 1969). A seemingly
opposed attitude is adopted by molecular biologists claiming that a
knowledge of the lowest relevant level of biological activity (in particular
the information encoded in DNA) determines the properties at higher
levels.

In this review we will approach the problem of hierarchical structures
by trying to relate the existence of different levels of organization to a
succession of instabilities. Indeed, the behaviour of living objects is
largely determined by a number of key chemical reactions and transport
processes. Now, in chemistry non-linearity is a general rule and may
appear in a practically infinite number of varieties by orders of magnitude
more complex than in hydrodynamics. It is therefore likely to have
instabilities and multiple transitions to more and more ordered states.
A state of given complexity would then contain the ‘memory’ of the past
instabilities, each one of which would have contributed in the appearance
of a new feature essential for the stability and maintenance of the final
state. This would be the information which has to be transmitted. We
shall come back to this problem.

After this introduction we shall now discuss briefly, in the next section,
the general ideas of thermodynamics of irreversible processes and their
applications to the study of stability of non-linear systems. In sections III
and I'V we shall develop a few representative examples of chemical systems
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giving rise to ordered structures. In section V we shall try to situate the
living systems in respect to the laws of thermodynamics and compare
some features of biological structures and functions to the behaviour of
the examples of sections III and IV. Section VI will be devoted to
general comments on the implications of the results and on possible
future developments.

II. THERMODYNAMICS OF IRREVERSIBLE PROCESSES

IL. 1. The linear region

The starting-point is to decompose the entropy variation d.S according to
equation (1) and to perform a macroscopic analysis of the two parts
deS and d;S. In classical thermodynamics one deals essentially with
equilibrium situations where the entropy production vanishes. In non-
equilibrium thermodynamics one studies macroscopic states on the basis
of their entropy production.

The explicit form of the entropy production may be derived from the
balance equation of mass, momentum and energy once the assumption of
local equilibrium is made (Glansdorff & Prigogine, 1971). Analytically, this
assumption implies first that a local formulation of non-equilibrium ther-
modynamics is possible. And, secondly, that in this formulation the local
entropy will be expressed in terms of the same relations involving the same
state variables as in equilibrium. It has been shown that the validity of
the local equilibrium assumption implies that collisional effects are suffi-
cient to eliminate large deviations of the momenta distribution functions
from local Maxwellian distribution (Glansdorf & Prigogine, 1971). This
condition is certainly satisfied in dense media or under conditions of
biological interest.

One may now proceed in the calculation of the entropy production per
unit time and volume, o, defined by

P-2-[wre (30 (@)

The final result is
o=2J:X; (5)

We obtain a bilinear form summed over all irreversible processes 7, of

suitably defined flows (or rates) ], assoctated with these irreversible
processes, and of generalized forces X giving rise to these flows. In the
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case of chemical reactions which will be of special interest in this review,
we have

Ji=1;
Vil
o, pil%p
Xi=_7—‘—=_£_7‘-—’ (6)

v, is the reaction rate, &7, the corresponding affinity, T the temperature,
#, the chemical potential of constituent p and v,; the stoichiometric
coefficient of p in the zth reaction.

The first development of non-equilibrium thermodynamics based on
equation (5) was in the linear range defined by the relations (see Prigogine,
1947, 1967 a; de Groot & Mazur, 1962)

Ji= E];Liy‘Xj’ ()

where the phenomenological coefficients L;; are in general functions of the
thermodynamic state variables.

The assumption of linear relations between flows and forces is especially
restrictive in the following two cases:

(a) Inertialeffects. Whenever a system is not at mechanical equilibrium,
the coupling between dissipative and convective processes leads to
effects of a new type which cannot be treated by the methods of linear
theory. An example is the Bénard instability described in the previous
section.

(b) Chemical effects. 'To obtain a linear relation between reaction rate
and affinity we need the condition (cf. equation (6) and assume an ideal

system) \Z|RT) < 1, 8)

where R is the gas constant. Inequality (8) is generally not satisfied except
in the immediate neighbourhood of equilibrium. In the general case, it is
necessary to adopt non-linear phenomenological laws. We notice that
the local equilibrium assumption may still be valid beyond the domain of
linear relations, equation (77) (Glansdorff & Prigogine, 1971).

Within the linear region, two quite general theorems may be proven
which have both wide implications. In the first place, Onsager has shown
that it is always possible to choose the flows and forces such that the
matrix [L,;] be symmetrical (Onsager, 19314, b):

L;=1L,. (9)
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These celebrated Onsager reciprocity relations were later generalized by
Casimir (1945) to a wider class of irreversible phenomena.

A second theorem proves the existence of a general variational principle
for irreversible processes in the linear domain. The problem is formulated
as follows. Consider a non-isolated system, e.g. a closed system which
can exchange energy with the outside world, or an open system which
can exchange both energy and matter (de S = o). In this case, and pro-
vided the boundary conditions imposed on the system remain time-
independent, the system may tend to a permanent regime other than
equilibrium. This will be a steady non-equilibrium state. Let us choose the
flows {J,} such that at this state one has

Jo = ZLia'Xa'(O) =0 (I=1,..,7), (10)
7

and at the same time the coefficients L;; become constants. Consider
finally the entropy production o per unit volume and time as a function
of the generalized forces {X;}(¢ = 1, ...,7). It has then been proven by
I. Prigogine (1947; see also Glansdorft & Prigogine, 1971) that o is a
minimum at the steady state with respect to variations of the generalized
forces compatible with the boundary conditions. This minimum entropy
production theorem proves that o is a non-equilibrium state function
playing the same role as the thermodynamic potentials in equilibrium
theory. In particular the minimum property guarantees the stability of
the steady state. Alternatively, the theorem provides an evolution criterion,
as it implies that a physical system will necessarily evolve to the steady
non-equilibrium state starting from an arbitrary state close toit. The whole
evolution is thus cast in a compact thermodynamic principle. Analytically
this may be expressed in the form

[dVdojdt <o. (11)

In spite of the interest of such general properties it is necessary to
recognize that in the linear range the possibility of formation of new,
ordered structures has to be ruled out. By its very stability, the linear
domain is an extrapolation of the equilibrium regime and implies a
monotonic approach to a single steady state, once equilibrium itself is
stable. In order to relate the concept of ewvolution to the concept of
structure it will now be necessary to generalize thermodynamics to the
non-linear region.
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I1.2. Non-linear thermodynamics

We have already stressed earlier in this section that in order to deal’
with inertial or chemical effects it will be necessary to extend thermo-
dynamics to include non-linear phenomena. An interesting point is that
it is still possible to analyse this domain by the methods of macroscopic
physics. The reason for this is that the local equilibrium assumption
remains valid for all phenomena of fluid dynamics described by the
Stokes~Navier equations and in all chemical reactions involving activa-
tion energies of the order of several RT’s (Glansdorft & Prigogine, 1971).

We shall now briefly describe an extension of thermodynamics to
non-linear phenomena which has been worked out during the last years
by Glansdorff & Prigogine (1g71). The main idea of the approach is to
extend in some sense the minimum entropy production theorem.

It is straightforward to verify that inequality (11) does not extend
trivially beyond the linear region. Instead, one may proceed as follows.
Recalling the general expression (5) for o we decompose do as follows:

do=d;o+dxo,
dyo= ZXid]i’
7

dXO' = Z]‘idX’i'
i

Consider first purely dissipative systems without convective motion. One
then proves that, provided these systems are subject to time-independent
boundary conditions and the equilibrium state remains stable, the
following inequality is always satisfied

[dVdgo <o. (13)
The equality applies in the steady state only. Inequality (13) will be
referred to as the evolution criterion. We see that in the non-linear domain
one has to split the entropy production variation in order to obtain a
general inequality. For systems undergoing mechanical motion in-
equality (13) extends in a more complicated form which will not be
discussed here (Glansdorft & Prigogine, 1971).

The mathematical analysis of the differential form dy o shows that, in
general, dx o is not a total differential of some state function. In the
domain of local equilibrium assumption the effects which are responsible
for this property are due to chemical reactions. It is only in the limit of
linear phenomena and of validity of the Onsager relations that dyo
becomes the differential of a state function, the half of entropy production.

(12)
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In this case the evolution criterion reduces to the theorem of minimum
entropy production. In a few exceptional cases it is also possible to
transform dx o to a total differential by introducing suitable integrating
factors.

The property of dx o not to be a total differential implies that no true
variational principle exists far from equilibrium and therefore that the
stability of steady states is not always ensured. One is thus led to the
search for independent stability criteria. We shall outline the derivation
of a stability criterion in the limit when only chemical reactions are
considered. This is not a very serious restriction: we have just seen that it
is mainly because of chemical reactions that dy o becomes a non-total
differential.

We first give the explicit form of inequality (13) for chemical reactions.
Referring to equations (6) and (12) and assuming that the system is
maintained at constant temperature we obtain

Suv,d#; <o
i at the steady state. (14)

Z 2,8de;, =0

In (14) it is understood that 7 is such that the affinities &7, are all inde-
pendent. This may always be achieved by forming suitable linear com-
binations of velocities and affinities of the individual reactions. With this
choice of v;, &7, the equality in (14) implies that

9 = 0 at the steady state. (15)

Imagine now that the steady state of the system is perturbed as a result of
a random fluctuation or of an external disturbance. Let dv;, 827, be the
fluctuations in v;,&;:

v, = 0,0+ 0v; = by,

Ay =+, (x6)

The variation of entropy production due to the fluctuations of the
affinities will be (cf. equations (12) and (16))

Suppose now 85 0 < 0. Then according to inequality (14) its variation
will also be negative and 0y o will never go to zero. In other words, the
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fluctuation will never be damped. We obtain therefore the stability
criterion (Prigogine, 1969; Glansdorff & Prigogine, 1971)

Téxo=3dv 0, 20 (18)

for all fluctuations compatible with the equations of evolution.

This criterion may also be formulated in terms of the entropy excess due
to fluctuations. Let s, be the specific steady-state entropy, s the specific
entropy of a state reached by a random fluctuation. We expand s around s,
and take the limit of small fluctuations:

§=85,+0s+30%+.... (19)
From equilibrium stability theory one has (Glansdorff & Prigogine, 1971)
0% < o. (204)

On the other hand, one can show straightforwardly (Glansdorff &
Prigogine, 1971) that

4% = bxo = FEdvidt, (208)
dx o is the excess entropy production due to fluctuations. Inequalities
(204) and (18) constitute an equivalent stability criterion, much in the
spirit of Lyapounov stability theory (Minorski, 1962). 8% is seen to play
the role of a thermodynamic Lyapounov function.

Inequality (18) contains a complicated interplay between the different
reactions. The stability of the system will be threatened as soon as there
are processes contributing a negative amount to the excess entropy
production. A more detailed study shows that this is indeed true for
autocatalytic and for some type of cross-catalytic reactions. We again find
in more precise terms what was already conjectured in §I, i.e. that non-
linearities are necessary for the occurrence of instabilities. Of equal
importance of course, is the fact that the system operates at a finite
distance from thermodynamic equilibrium.

It is instructive to look at the stability criterion from still another
standpoint— that of fluctuation theory. Consider first an isolated system in
equilibrium. It has been shown by Einstein that the probability of
fluctuations around equilibrium is given by

Poc exp [AS/R] (214a)

(see Glansdorff & Prigogine, 1971) where AS is the entropy change
around equilibrium (AS < o for a fluctuation) and & is Boltzmann’s
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constant. For small fluctuations AS may be expanded to second-order
quantities.? Since for an isolated system at equilibrium S is 2 maximum,
equation (21 a) can be reduced to

Poc exp [(62S)eq/2k]. (21b)

Recently it has been shown (Glansdorff & Prigogine, 1971; Lax, 1960;
Nicolis & Babloyantz, 1969; Nicolis, 1971) that Einstein’s fluctuation
theory may be extended to non-equilibrium states, at least for wide
classes of model systems. Equation (215) is now replaced by

Poc exp [(62S)y/2k] (22)

where (02S), is calculated around a steady non-equilibrium state. Com-
paring with equation (20) we see that one can now understand the
mechanism of an instability in terms of fluctuation theory. Starting with
(0%S), < o around some reference state, the system will always remain
close and finally decay to this state which will correspond to the most
probable configuration, as long as (9/0¢) (62S), is positive. On the other
hand, for (9/9t) (62S), negative, P will first decrease. The system will then
evolve to a new regime corresponding to the most probable state.

III. CHEMICAL INSTABILITIES IN HOMOGENEOUS MEDIA

When a reference state of a system becomes unstable, the system tends to
a new regime which may correspond to a completely different type of
behaviour. In order to investigate the various possibilities, we first
formulate the problem of instabilities in a somewhat more general form.
Consider a non-linear system of chemical reactions describing, e.g. the
conversion of a set of initial products {4} to the final products {#} and let
{X, Y, ...} represent the values of concentrations of the intermediates.
In a ‘black box’ notation:

{A} ‘ {x)

Fig. 1

? In fluctuation theory S is considered to be a function of a set of macroscopic
observable quantities {a,, ..., a@,}, with n <€ N; N being the number of degrees of
freedom of the system.
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It is understood that the system {X, Y,...,} is open to {4}, {F} and
subject to time-independent conditions. It is convenient to measure the
deviation from equilibrium by the value of some parameter R which
depends on the overall affinity, i.e. on the ratios of {4},{F} and on the
equilibrium constant. The first point to notice in the system just described

Req Re R

Fig. 2. Steady-state concentration of a chemical intermediate as a function of
the parameter R measuring the deviation from equilibrium. Broken lines
correspond to unstable solutions of the kinetic equations.

is that, owing to the non-linearity of the equations of evolution of the
intermediates, there is a possibility, a priorz, for more than one steady
state. At equilibrium (R = Req) the correct solution is known indepen-
dently as the one minimizing the free energy (at constant temperature and
volume). Imagine now that R deviates more and more from Req. For
|R—Req| ‘small’ the equilibrium solution first changes smoothly and
we obtain a branch referred to as the thermodynamic branch. All states on
this branch are stable by the minimum entropy production theorem.
Again, amongst all possible regimes, this theorem determines, indepen-
dently of the details of the kinetics, the correct steady-state solution.
As |R— Req| now gets larger, the stability of the states of the thermody-
namic branch is no longer automatically ensured. If at some point R, the
excess entropy production (20b) may become negative, the system may
leave abruptly the thermodynamic branch and go to a new state which
now becomes stable.
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The transition value R, is a thermodynamic threshold for the appearance
of instabilities. Its explicit value depends on the deviation from equili-
brium, i.e. on the level of dissipation. In addition, it depends strongly on
the detailed kinetics of the chemical reactions. This is to be contrasted
with the behaviour prevailing in fluid dynamics. The Stokes-Navier
equations satisfy a set of similitude theorems, which define a restricted
number of dimensionless parameters influencing the stability properties.
In chemical kinetics the variety of non-linear situations is practically in-
finite and the stability properties are strongly dependant on the kinetics.

What are the properties of the new states arising beyond the instability
of the thermodynamic branch? Is it possible to associate with these
instabilities the appearance of ordered structures of a new type? Such
non-equilibrium structures would differ from equilibrium ones (such as
crystals) in that their maintenance would necessitate the continuous
exchange of energy and matter with the outside world. For this reason,
they can be called dissipative structures.

The detailed study of non-equilibrium instabilities has shown that
such structures are indeed possible. Generally speaking, one can show
that on the new branch, one may have one of the following possibilities:
(a) time organization, (b) space organization, (¢) multiple steady states.

We will briefly discuss these possibilities on a simple example, assuming
that the initial and final product concentrations are maintained space and
time-independent. The more realistic case of inhomogeneous media is
studied in the following section.

We consider the following reaction scheme

A=—=2X,
B+X==Y+D,
2X+Y—=3X,
X+==E. (23)

The autocatalytic step involving a trimolecular reaction is a convenient
way to introduce non-linearity which, as we saw earlier, is a necessary
prerequisite for the occurrence of instabilities. The system is open to
A, B, D, E, which are maintained space and time-independent. Let us
for simplicity set all kinetic constants equal to unity. The deviation of
the state of the system (23) from equilibrium is then given by the
concentration ratios 4/E and B/D. Equilibrium itself corresponds to

(%)eq - (%)eq - (244)
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The study of the system is greatly simplified in the limiting case
D—o, E-—o. (24b)

Physically, this implies that products D and E are removed as soon as they
are produced. The affinity of the corresponding reactions tends then to
infinity, i.e. the system operates at ‘infinite distance’ from equilibrium.
Once this is admitted, a further simplification will be adopted which con-
sists in neglecting back reactions in the remaining two steps involved in
(23). The scheme thus becomes completely irreversible. Still, it is
possible to define the continuation of the thermodynamic branch, which
is simply given by the homogeneous steady-state solution

X,=A, Y,=BA. (25)

Let us assume for simplicity that the system evolves in a single space-
dimension, r. The chemical kinetic equations representing (23) read
(we take the limit of an ideal mixture):

o0xX . X

oY \ 2Y
% = BX-X*V+Dy—s.

(26)

Dx, Dy are the diffusion coefficients of X and Y. One of the most
important questions in the far from equilibrium behaviour of the system
of equations (26) concerns the stability of the thermodynamic solution
(25). To answer this question, we have to test the behaviour around (25) of
all kinds of fluctuations that may be present. This can be carried out either
by explicitly solving equations (26) or by the thermodynamic methods
outlined in the previous section, i.e. by determining the conditions for
which the excess entropy production vanishes. We briefly describe below
the results corresponding to two largely different types of fluctuations.
(a) Suppose first that the initial fluctuation is practically independent
of space (Glansdorff & Prigogine, 1971). In this case it is sufficient to
study equation (26) after suppressing the diffusion terms. One then
finds that for
B> B, B.=A4%+1 (27)

state (25) is unstable. Beyond instability, the system evolves to an un-
damped periodic regime which is represented in Fig. 3. One shows that
this regime is attained independently of the initial conditions. Its
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characteristics, for instance, the period or amplitude of the osciliation, are
therefore intrinsic properties of the system and do not depend on the
initial conditions: we have what is known in non-linear mathematics as a
limit cycle behaviour (Minorski, 1962).

X
B)

r @ 5

(1)

1 | ] i
Y 1 2 3 4 Y

Fig. 3. Approach to a limit cycle in the model (23) for 4 = 1, B = 3 and for
different initial conditions.

Beyond instability fluctuations behave therefore in a completely
different way as around equilibrium or below instability. In the latter
cases, fluctuations either decay exponentially or at most they spire
around the steady state by performing damped oscillations. Far from
equilibrium and beyond instability, the fluctuations are amplified. The
system leaves the steady state and goes to a uniquely determined orbit
(in our example) or to a discrete set of orbits (in general). This kind of
‘ergodic’ behaviour is characteristic of a chemical clock. It may be shown
that the orbit representing the clock is always asymptotically stable. In
conclusion, a chemical clock is characterized by a markedly coherent
behaviour. The somewhat more familiar periodic behaviour observed in
conservative systems (small or finite amplitude oscillations of the pendu-
lum, Volterra-Lotka oscillators, etc.; see Minorski, 1962) is, on the
contrary, typically incoherent: a continuum of amplitudes and periods is

9 QRB 4
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available and the corresponding orbits are not asymptotically stable
(Minorski, 1962 ; Lefever & Nicolis, 1971). Conservative systems may not
exhibit the coherent behaviour characteristic of a chemical clock.

(6) Suppose now that the initial fluctuation is non-uniform in space.
Again one shows that the steady state (25) becomes unstable for values
of B beyond some critical value B,. This time B depends on 4 as well as

-

“’ Ll (i Tl I

it

Space (arbitrary units)

Concentrations

[y

0

Fig. 4. Space-dependent steady-state distribution for system (23) arising
beyond a symmetry-breaking instability. The concentrations of X and Y in
the boundaries are maintained equal to the homogeneous steady-state values
X =2, Y = 2:62. The numerical values chosen for the different para-
meters are: A = 200, B = 524, Dx = 16 x107%, Dy = 8 x 1073,

on the diffusion coefficients Dy, Dy. For B slightly beyond By, fluctua-
tions with wavelength around a critical value A depending on 4, Dx, Dy
are amplified and the system leaves state (25). It finally stabilizes to a new
steady state which now is space-dependent (Lefever, 19684, b). Figure 4
represents the spatial distribution of X and Y in this state. The wave-
length of the spatial periodicity is roughly determined by Ae, which is the
wavelength of the fastest-growing fluctuation beyond the transition.
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We obtain. a spatial structure arising beyond an instability which
changes the symmetry properties of the system, as the latter becomes
spontaneously inhomogeneous (symmetry breaking instability). Its
properties are markedly different from the classical behaviour of equili-
brium structures. In particular, its formation requires a thermodynamic
threshold corresponding to a minimum level of dissipation: the dissi-
pative structure is a giant fluctuation stabilized by the flow of energy and
matter from the outside world. It is easily verified that the configuration
represented in Fig. 4 has alower entropy compared to the uniform steady-
state entropy. This entropy decrease is translated by the emergence of
space order. We have here an example of ‘order through fluctuations’.

Further comments on the significance of dissipative structures are
given in the next section. We close this paragraph by observing that the
system described by scheme (23) leads to a single uniform steady state.
It is possible to construct non-linear chemical models which, under the
influence of non-equilibrium constraints, may acquire multiple steady
states and exhibit transitions between these states. A detailed study of a
number of models may be found in the book by Glansdorff & Prigogine

(1971).

IV. LOCALIZED DISSIPATIVE STRUCTURES IN INHOMOGENEOQOUS
MEDIA

IV.1. Stability analysis

We shall now discuss the implications of instabilities in the more general
case where the condition of a uniform initial and final product distribution
is relaxed. This certainly corresponds to a more realistic situation. Most of
the systems realized in laboratory experiments or operating under
physiological conditions are subject to a flow of energy or matter arising
from the maintenance of non-uniform constraints. In addition, we will
see in this section that the non-uniformity of initial and final product
distribution introduces essentially new features and is responsible for the
appearance of new types of solution of the kinetic equations.

We again illustrate the different types of behaviour on the simple
example introduced in the previous section, equation (23). The kinetic
equations giving the time evolution of X and Y are still given by (26).
This time, however, the concentration of products A and B, which appear
as parameters, depends on . We observe that product B is coupled to X
through the term BX, whereas product A appears additively. To avoid

9-2
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the complication arising from this B-X coupling we assume that B is
still maintained uniform and only let 4 be distributed non-uniformly.
According to scheme (23) the evolution of 4 will be given by the equation

2A(r,1) _

2A(r, 1)
ot )

or?

—A(r,t)+ D, (28)
The simplicity of equations (26) and (28) lies thus in the fact that 4 obeys
a closed equation which may be solved to completely determine A(r, z).
System (26) is then to be solved for X and Y only, 4 being a given
function of 7.

The solution of equations (26) and (28) will be subject to the following
boundary conditions:

Aoy = A(l)= 4
X(0)=X(l)=X} (o<7 <) (29)
Y(o)=Y()=Y

We first study the steady-state solution of equations(26)and (28) reducing
to state (25) in the limit D, —00, corresponding to a uniform distribution
of A. This generalized ‘thermodynamic solution’ corresponds now to a
non-uniform configuration and cannot be determined exactly. Rather,
ithas been necessary to perform numerical calculations combined with the
use of the local potential variation technique (Herschkowitz-Kaufman &
Platten, 1971). The result is shown in Figs. 5 and 6. We notice that the
form of X and Y is still very closely approximated by equation (25)
(with 4 now depending on r) and is only slightly modified by diffusion.

The next step is to study the stability of the profiles shown in Fig. 6.2
Again the problem cannot be solved exactly because of the space-depen-
dence of the coefficients of equation (26). It is still possible, however, to
apply the same variational technique as before (Herschkowitz-Kaufman
& Platten, 1971). The result is the non-equilibrium phase diagram shown in
Fig. 7. For simplicity the parameters 4, D, and Dx have been held
constant. We see that one may define on Fig. 7 three domains:

(@) A stable domain, I. Fluctuations around steady states belonging to
this domain regress in time.

(b) An unstable domain, II, where steady states undergo instabilities.
The increase of fluctuations is monotonic in this domain.

4 Equation (28) determines a single steady-state profile for A(r) (Fig. 5) which is
always stable.
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Fig. 5. Steady-state profile of 4 for 4 = 14:0 and D, = 197 X 1073,
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Fig. 6. Steady-state ‘solution of equations (26) reducing to the ‘thermo-
dynamic’ solution (23) in the limit of uniform distribution of A. The following
numerical values have been chosen: Dx = ro5x107% Dy = 525X 1078,
B = 260, X = 140, Y = 1-86.
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Fig. 7. Stability diagram in the B-Dy plane for 4 = 140, D, = 197 x 1079,
Dy = 105 X107,
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(¢) A second unstable domain, III, where fluctuations are amplified
and undergo at the same time oscillations.

We shall now describe in some detail the behaviour of the system
beyond instability for steady states belonging to domains II and III.

IV.2. Localizedsteady-statedissipative structures (Herschkowitz-Kaufman
& Nicolis, 1971)
We set

A =Ayr)+afr,t),
X = Xy(r)+x(r, 1), (30)
Y = Yy(r)+y(r,1),

where 4, X, Y, are the steady-state solutions represented in Figs. 5
and 6. We have chosen

(31)

Dy =1-05x107% Dy =13525x103
X Y »

D,=197x1073, A =140,
X=A4=140, Y=BJ4A= 1-86.}

We imagine that as a result of a fluctuation the steady state is perturbed
and we follow by the Runge-Kutta method the time evolution of the
perturbation as defined in equation (30). The numerical analysis carried
out on the CDC 6400 computer of the University of Brussels shows that
for B < 22-0 the perturbations die out and the original state is restored.
On the contrary, for, e.g. B = 26-0, the perturbations are amplified and
the original state (X, Y,) which now belongs to the domain II of Fig. 7
is unstable.®

The numerical analysis shows that the system finally attains a new
steady state. The latter is represented in Fig. 8. For convenience the
space 0 € 7 < I = 1 has been divided into 78 equal intervals defined by
points 1~79. As in § ITI, we again observe that the system has reached an
ordered state corresponding to a spatial organization of components X
and Y, which organization is maintained by the flow of matter through
the boundaries. In this respect this state is a dissipative structure of the
type similar to the state shown in Fig. 4.

The new and very important feature appearing, however, in Fig. 8§ and
which was absent in earlier investigations is that the dissipative structure

5 Equations (26) have been integrated numerically by setting A at its steady state
(cf. Fig. 5). This is justified by the fact that 4, is always a stable configuration and by
the choice D, » Dy, Dy which implies that the concentration profile 4 relaxes very
rapidly to A,.
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is localized in space. It seems as if, depending on the values of parameters
such as B, Dx and Dy, the system determines its own ‘natural’ boun-
daries (points 20 and 59 in Fig. 8), which are distinct from the boundaries
corresponding to points o and /= 1. It is within this characteristic
domain that the system develops a sharp, short wavelength structure.
This interesting localization effect which is clearly due to the non-uniform
distribution of A4 in the system, becomes less pronounced as B increases

&
T
1

15

—_
o

Concentration of X
u

1
0 05 1
Space (arbitrary units)

Fig. 8. Localized steady-state dissipative structure arising beyond the point
of instability of the profile shown in Fig. 6. The numerical values of the
various parameters are the same as Fig. 6.

and Dy increases with respect to Dx. For instance, it disappears for
B 2 50. The dependence on B may easily be understood on the basis of
the stability analysis of the homogeneous steady-state solution (Lefever,
1968 a, b), which shows that the system becomes unstable for B sufficiently
large compared to A. If now B exceeds the critical homogeneous value
corresponding to the largest 4 in the system (i.e. the value 4 of 4 at the
boundaries) the instability and the subsequently occurring dissipative
structure will extend throughout the system. Similarly the dependence on
Dy is due to the fact that for Dy close to Dx the system can no longer
sustain a steady-state dissipative structure. For decreasing Dy the
dissipative structure region therefore shrinks until it disappears for
Dy Dx.

A very interesting question is the stability and uniqueness of the
dissipative structures represented in Fig. 8. In the homogeneous case
D, -0 it has been shown (Lefever, 19684, b) that for a discrete system
of two boxes permeable to substances X and Y there were two symmetric
steady states beyond instability, both extremely stable for perturbations
smaller than their average separation. In the case of 78 intervals con-
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sidered in Fig. 8 and more generally in the limit of a continuous system
the situation is more complex. Preliminary investigations have shown
(Herschkowitz-Kaufman & Nicolis, 19715) that the system admits
several forms of dissipative structures, each one depending on the type of
initial fluctuation and being stable for certain classes of perturbations
only.®

We therefore begin to understand, in quantitative terms, the role of
the statistical element in the description of a system such as the one
studied in this section. In addition to the ‘ causal laws’ given by equations
(26) we have to know, e.g. the position in which the system is more likely
to be disturbed by a random fluctuation. The probability of this event
will determine the subsequent evolution by choosing one among the
many possible solutions a priori available for the system. This choice,
which appears as a simplified type of ‘information’, represents the
historical element which has to be added to the system to determine, to-
gether with the causal laws, its future evolution. Recalling the discussion
of points 2~4 in the Introduction we are led to a first parallelism between
dissipative structure formation and certain features occurring in early
stages of biogenesis and the subsequent evolution to higher forms. The
analogy would even become closer if the model we discuss has further
critical points of unstable transitions. One would then obtain a hierarchy
of dissipative structures each one enriched further by the information
content of the previous ones through the ‘memory’ of the initial fluctua-
tions which created them successively. We come back to this point in
section VI.

IV. 3. Concentration waves (Herschkowitz-Kaufman & Nicolis, 1971)

We now place ourselves in the unstable domain III of Fig. 7 and more
specifically in the domain of B large and Dy close to Dx. To be specific,
we keep the same values of 4, X, Y, D,, Dx as before and set

B =770, Dy =066x1073 (32)

The problem is, again, to study the evolution in time of the perturbations
x(r,t) and y(r,t) around the steady-state profiles of X and Y. For the
numerical values given in (32) the latter are of a form similar to that given
in Fig. 5 and are not reproduced here. The space o <7 <! =1 is now
divided into 39 intervals by points 1-40. The numerical calculations

¢ This non-uniqueness property is a direct consequence of the non-linearity of the
system.
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have again been performed on the CDC 6400 computer of the University
of Brussels.

‘The result is, first, that the steady state is unstable and the system now
attains asymptotically, a dissipative structure which is both space and
time-dependent. This regime is rapidly stabilized to a time periodic
state. Figs. g-12 show the space-dependence of X corresponding to
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Fig. 9. Spatial distribution of X at a certain stage of its periodic evolution.
A well is formed and propagates outwards., The following numerical values
of the parameters have been chosen: Dy = 1-05 X 1073, Dy = 066 X 10~3,
B = 770, X = 140, Y = 1:86.
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Fig. 10. Spatial distribution of X during the part of the period corresponding
to a slow build-up of X at points ¢ and 31.

certain characteristic stages of temporal evolution. Imagine that at ¢ = ¢,
we start with a profile of roughly the same type as in Fig. 6. A well is then
formed around the point in the middle and propagates outwards (Fig. g).
After a time interval Az ~ 1-47 propagation stops at two points (points g
and 31 for the numerical values given in equation (32)). At these points X
starts building up slowly during an interval At ~ 4-10 (cf. Fig. 10). As
soon as X reaches a maximum value a new propagation stage starts, this
time directed towards the middle point. This part of the motion is
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extremely rapid; it only lasts At ~ 0-33 (cf. Fig. 11). Finally (cf. Fig. 12)
the two propagating fronts ‘collide’ and X decreases slowly to the initial
profile. The duration of this part is At ~ 2-50. After this the whole
phenomenon repeats and the system passes through exactly the same
stages.
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Fig. 11. Spatial distribution of X during the rapid propagation of the two
wavefronts toward the middle point.
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Fig. 12. Spatial distribution of X during the slow overall decrease of con-
centration to the initial profile.
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The results reported in Figs. g-12 imply that the system exhibits a
wave-like solution. This is also confirmed by the observation that in the
region between the two build-up points (cf. Fig. 10) the system performs
locally discontinuous or relaxation oscillations (Lavenda, Nicolis &
Herschkowitz-Kaufman, 1971). Fig. 13 represents the form of these
oscillations for the middle point zo. Oscillations also extend a little

60 4
40

20

SR I R O

8 12 16 20 24 28
Time (arbitrary units)

Concentration of X at the middle

Fig. 13. Time variation of the concentration of X at the middle point (point 20).

farther than the build-up points but in the form of small amplitude,
smooth periodic motions. The main point is, however, that these local
oscillations do not organize to form a standing wave. Rather, during a
part of the overall motion, there are two stages corresponding to the
propagation of wavefronts, either outwards (cf. Fig. g) or inwards (cf.
Fig. 11). The velocity of propagation of these fronts, in addition to its
dependence on the parameters, depends also on the local concentration
of X. For instance at the build-up point g (cf. Fig. 10), where propagation
first starts, the maximum value of concentration, i.e. the concentration
at the wavefront, is Xy ~ 43-0 and the propagation velocity is ¢; ~ 0-66.
At point 11, X;; ~ 58-0and ¢}, ~ 0-9o, while at point 16, X ¢ ~ 625 and
15 =~ 0-94. We see that the propagation velocity increases with concen-
tration and rapidly reaches a saturation value. This property is the result
of the non-finear character of the wave due to the non-linearity of the
chemical kinetic equations (26).
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For the same values of the parameters the velocity of spread of X due

to a simple diffusion would be

Cait ~ -g—f AL x1—10‘3 )
39

or Cait ~ 004.

We see that the wave-like propagation of X is faster by at least one order
of magnitude compared to diffusion. In addition, diffusion would always
direct X to a low concentration region. For the propagation along the
wavefront the situation may be the opposite; an example is seen in Fig. 9.

In addition to the propagation the wave also is found to go through
stages with a slow evolution of concentration which apparently is domi-
nated by diffusion. Still, however, during these steps the system performs,
locally, relaxation oscillations.

Let us also compile a few other characteristic properties of these
concentration waves:

(i) During the fast build-up of X in the region about the middle (cf.
Figs. 11, 13) the overall concentration X+ Y remains practically con-
stant, i.e. the system obeys a conservation condition. The meaning of this
condition has been analysed by Lavenda et al. (1971).

(i) For given values of the parameters the position of the two points
71, 75 of build-up of the maxima of X (cf. fig. 10) are automatically deter-
mined. The system has again, as in the previous subsection, a natural
boundary separating a region of dissipative structure (r, <7 < 7,)and a
region where the continuation of the thermodynamic close to equilibrium
behaviour prevails (r close to the boundaries o and 1). For 4, Dx given,
the position of the points 7, and 7, depends strongly on the ratio Dy/Dx.
For Dy/Dx = 1, 1, 7, coincide with the points which are at a state of
marginal stability with respect to limit cycle formation according to
the criterion of stability of the homogeneous steady-state solution (cf.
equation (27)). For Dy/Dx # 1 the points move outwards and the wave
becomes more and more delocalized as Dy becomes very small.

(iif) The period of oscillation at the various points of the dissipative
structure becomes longer as Dy/Dx — 1.

Also between different points there seems to be a synchronization
leading to a single overall period of oscillation. On the other hand there is
a fairly pronounced phase difference from point to point. For instance,
in the case of the numerical values given in equation (32), for points g and
20 the delay between the two maxima formation is approximately of
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At ~ 0-33 or 13°. For the same choice of numerical values the overall
period of the wave is equal to 8-4. The dependence of the phase difference
on the local value of concentration is non-linear. Let us emphasize that
the existence of a phase difference seems to be due to diffusion rather
than to any difference between periods of oscillations of the individual
points. In fact, as we observed before, individual periods synchronize to a
single, overall period characteristic of the wave.

The result that a set of chemical kinetic equations such as equations (26)
which form a parabolic system, may give rise to wave-like solutions is due
to some very interesting analytic properties of these equations. A detailed
analytic study, however, meets with several difficulties and is presently
under investigation by Narasimha, Nicolis & Herschkowitz-Kaufman
(1971). We only notice here that preliminary studies indicate that during
the propagation phases (cf. Figs. 9, 11) the system of equation (26)
behaves as a hyperbolic system. On the other hand, during the build-up
phase (cf. Fig. 10) and the slow-motion phase represented in Fig. 12 the
motion is practically determined from the local limit cycle behaviour and
from diffusion, whose effect is to modify the amplitude of oscillations and
give rise to phase differences between various points.

We conclude this discussion of localized dissipative structures by
stressing once more the striking differences in the functions performed by
the system in these states and in the states on the thermodynamic branch.
First, it is reasonable to expect that localization is a plausible mechanism
for stabilizing a dissipative structure with respect to abrupt changes of
the chemical environment. On the other hand, a characteristic property
of localized structures is to produce great amounts of a particular sub-
stance during a short period of time (cf. Fig. 13) and in a limited region of
space (cf. Figs. 8, 11). This is a very efficient way to perform regulatory
functions involving thresholds and being sharply localized in space and
time. Finally, concentration waves are a plausible mechanism for propaga-
tion and transmission of information in the form of chemical signals,
whereas the steady-state localized structures could be useful, as we saw
before, for the storage of information. The biological significance of such
functions will be discussed in §§ V and VI.
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V. FURTHER EXAMPLES AND EXPERIMENTAL EVIDENCE OF
DISSIPATIVE STRUCTURES

V. 1. Theoretical models and oscillations in organic reactions

One of the first examples of instabilities in dissipative systems is due to
Turing (1952), who was also able to study approximately the subsequent
evolution to a space-dependent state. The development of irreversible
thermodynamics and the examples outlined in §§III and IV show that
the appearance of ordered structures beyond instabilities is a far more
general phenomenon than originally thought by Turing, who was
interested in special forms of morphogenetic patterns during the embry-
onic development.

The experimental evidence for oscillations in cellular control processes
has stimulated a great number of authors to investigate models which may
give rise to limit cycle behaviour. These models are mostly inspired from
the Jacob—-Monod model of induction or repression (Monod & Jacob,
1961) and usually fall into two general classes. In the first class, studied by
Griffith (1968), one considers a repression process involving a protein,
E, encoded by the mRNA, M, and a metabolite, P, formed under the
catalytic control of the protein and acting as repressor.

Using linear stability analysis and qualitative theory based on Ben-
dixson’s criterion (see Minorski, 1962) Griffith finds strong evidence for
limit cycle formation provided the parameters satisfy certain conditions.
A second class of chemical control models is considered by Walter
(1969). Let S, be a set of metabolites. The scheme reads

s, b,
& T TraS,y

. (33)
ds;

T baSia—biS: (=2 .,n+1)

Walter shows that for #, p sufficiently large (in any case n > 2, p > 2) a
limit cycle is possible. Further examples of limit cycles in catalytic
reactions involving negative feedback have been worked out by Sel’kov
(1968 a, b), Spangler & Snell (1961, 1967), Morales & McKay (1967).
As we saw in §§ 11T and IV, if a non-linear chemical system operating
far from equilibrium becomes unstable with respect to some type of
fluctuation (leading, for example, to limit cycle formation), it is quite
likely that for different boundary conditions it also gives rise to other
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Fig. 14. Different stages of formation of the dissipative structure shown in
Fig. 15. First-stage: temporal oscillation. Second stage: appearance of a
small inhomogeneity. Last four stages: appearance and propagation of spatial
patterns in the form of horizontal bands. Temporal oscillations are still
present.
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Fig. 15. Spatial dissipative structure for the Zhabotinski reaction: the
Ce?+ and Ce'* ions are assembled in alternative horizontal bands (dark lines
represent an excess concentration of Ce?t),

QUARTERLY REVIEWS OF BIOPHYSICS, 4, 2 & 3
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types of instabilities (leading, for example, to a spatially ordered state). We
may thus expect that most of the models discussed above will also provide
examples of symmetry-breaking instabilities. This has been verified ex-
plicitly (Prigogine et al. 1969) for Sel’kov’s models (Sel’kov, 1968a, b).

A number of examples of instabilities leading to multiple steady-state
transitions is also available. For more details see Glansdorff & Prigogine
(1971, chapter xvI).

Let us now turn to the experimental aspects of dissipative structures.
There are at present two sources of experimental evidence for dissipative
structure formation coming, respectively, from organic and biochemical
reactions. '

The best-known organic example is a reaction in which cerium ions
catalyse the oxydation of analogs of malonic acid by bromate(Zhabotinski,
1964). When this reaction occurs in a continuously stirred medium,
sustained oscillations in the concentration of intermediates are observed
for certain ranges of values of initial product concentration and tempera-
ture. The stability and perfect reproducibility of the results suggest
beyond doubt that they correspond to limit cycle type oscillations, i.e.
that they really occur beyond a dissipative instability. For slightly dif-
ferent values of concentrations an evolution to a spatially organized state
is observed (Busse, 1969; Herschkowitz-Kaufman, 1970). Figs. 14 and 15
show respectively the intermediate stages of evolution and the stabilization
of the system to the final steady state. Dark lines correspond to an excess
of Ce?+ and light ones to an excess of Ce*+.” Of special interest is the fact
that the spatially ordered structure (Fig. 15) is attained only after the
thermodynamic branch becomes unstable with respect to oscillations
(first two stages shown in Fig. 14), which in turn become unstable with
respect to diffusion (last stages shown in Fig. 14).

The experiments described by Herschkowitz-Kaufman (1970) and
Zhabotinski (1964) have been carried out in closed system. As a result the
structure is maintained for a limited time (of the order of hours).® How-
ever, the sharpness of the structure, the reproducibility of the results and
the rapid emergence or disappearance of the patterns shown in Fig. 15in
comparison with their lifetime suggest that the effect is really a dissipative
structure arising beyond a symmetry-breaking instability. We have

? In the experiment of Herschkowitz-Kaufman (1970) a redox indicator was used
(ferroine). As a result only the Ce®+ and Ce** concentrations were observed locally
corresponding, respectively to red and blue colours.

8 Recently Vavilin, Zhabotinski & Zaikin (1968) reported an experiment carried out
in an open system.
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concrete, experimental evidence of a coherentbehaviour which s perfectly
compatible with the laws of thermodynamics and chemical kinetics. The
properties of the system in this state are so different compared to the
properties in the original, homogeneous mixture that one really may think
of the configuration shown in Fig. 15 as a new state of matter.

While the usual phase separation or partial miscibility is a macroscopic
manifestation of Boltzmann’s order principle, the partial phase separation
in the Zhabotinski reaction corresponds to a macroscopic amplification of
fluctuations. It illustrates in a most striking way the ‘order from fluctua-
tions’ principle.

Finally, when the same reaction occurs in a thin layer of unstirred
solution, a propagation of wavefronts initiated from different centres is
observed (Zaikin & Zhabotinski, 1970). At every point in space the system
undergoes relaxation oscillations involving a short oxydation phase and a
longer reduction phase. For long times the waves coming from different
centres ‘collide’ and mutually annihilate. When a wave from a high-
frequency centre reaches a low frequency one the overall phenomenon
eventually synchronizes at the highest frequency. Qualitatively, these
observations are very similar to the picture given in Figs. g-13 and to the
synchronization of the various oscillation centres at a single overall
period shown in the model of §IV.

It is curious to observe that the same system may give rise to several
types of dissipative structures by only slight changes of the boundary
conditions. Together with the results of §§11I and IV, this implies that
systems showing a limit cycle behaviour are also likely to occur, at
different experimental conditions, in spatially ordered states. This is an
important point since, as we shall now see, the experimetal evidence of in-
stabilities in biochemical reactions is practically limited to the observation
of sustained oscillations. Weshall discussseparately evidence related tothe
three types of dissipative structures developed in the previous sections.

V.2. Oscillations in the enzymatic reactions

Experimentally, sustained oscillations have been observed and established
beyond doubt for glycolysis. Most of the experiments have been carried
out by Hess (1962) and Betz & Chance (1965). Theoretical studies
attribute these oscillations to the enzyme phosphofructokinase, which is
an allosteric enzyme and may be activated by the products ADP and FDP
and inhibited by the substrate ATP. Sel’kov (1968a, b) and Higgins
(1964) have worked out models to represent the observed oscillations. In
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particular, Sel’kov was able to show that the experimental data can be
interpreted in terms of a mechanism involving an unstable transition
point and a limit cycle thereafter. In his model the allosteric character
of phosphofructokinase is taken into account through a phenomenological
factor, y, describing the stoichiometry of its activation by ADP (y > 1).
Recently, Goldbeter & Lefever (1971) have constructed a model taking
into account explicitly the allosteric effects and which is free from pheno-
menological factors. Again the agreement between the predictions and the
experimental data is very satisfactory.

Oscillations have also been reported to occur in the synthesis of en-
zymes in thecellular level. Theoretical studies attribute these effects to the
induction and repression mechanisms of the Jacob—-Monod type (Monod
& Jacob, 1961; Griffith, 1968). We do not expand this point here, as the

experimental evidence is much weaker than for enzymic reactions.

V. 3. Symmetry-breaking instabilities and concentration waves

The intimate relation between limit cycle and spatial structure formation
which was repeatedly stressed in this section suggests that the systems
under V. 2 could also give rise to spatially ordered states. This point was
further developed by Prigogine et al. (1969). In particular it was shown
that for values of the parameters in the physiological range, Sel’kov’s
model for glycolysis predicts a symmetry-breaking transition. An experi-
mental verification of this prediction is, however, lacking.

The emergence of spatial order and the transmission of informationina
previously homogeneous system is also a central problem in embryo-
genesis and, more generally, in all problems involving cell differentiation.
The localized dissipative structures of the type studied in §IV may
provide the basis for a quantitative study of such information transfer
processes. Moreover the existence of chemical waves substantiates the
concept of ‘organizing waves’ recently postulated in the literature
(Wolpert, 1968; Cohen, 1969). The main feature of these waves is that
the concentration of a characteristic morphogen is periodic and the phase
of the oscillation is controlled via a wavelike propagation mechanism. In
§IV we have shown that all these features may arise in certain classes of
non-linear chemical reactions operating beyond instability.®

? An analysis of morphogenetic processes in terms of the stability properties of the
evolution equations has also been made by Thom (1971). Furthermore, Keller & Segel
(1970) have been able to analyse the first stages of slime mold aggregation in terms of
the stability properties of the equations of evolution of the chemical substances
mediating the aggregation.

10 QRB4
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The question of space order formation in the cellular and macro-
molecular level is one of the deepest problems in biology which remains
practically open. Intuitively it is difficult to avoid the feeling that spatial
dissipative structures have not contributed, in an essential way, to the
first biogenetic steps and therefore implicitly, to the formation of the
macromolecular and cellular structures themselves. In particular, the
possibility of creating, in a limited region of space, concentrations of
certain key substances by order of magnitudes larger than in the homo-
geneous, prebiotic mixture, may be very significant in the process of
evolution. Once these substances are assembled together the probability
for certain important reactions is enhanced and the system begins to
evolve to biologically relevant configurations.!

The whole point requires further study. Additional comments are also
made in the subsequent section.

V. 4. Multiple steady states

The problem of multiple steady states is of primary importance in all
phenomena involving the ‘all-or-nothing’ type of transition. For instance,
for suitable critical values of parameters a system may depart abruptly
from a steady state and go to a new one which has, roughly speaking, the
same symmetry as the former but differs in the level of concentration of
certain characteristic substances.

There exist at least two types of all-or-nothing effects in biology: the
process of differentiation in higher organisms and the functioning of
excitable membranes.

(1) Theproblem of differentiation. Monod & Jacob (1961) have proposed
a number of models describing differentiation. One of these models has
been analysed by Cherniavskii, Grigorov & Polyakova (1967) and by
Babloyantz & Nicolis (1971). They find indeed that there exist critical
regions where the system can switch to a regime such that a given type of
substance is produced preferentially. A different type of model, also
suggested by Monod & Jacob, is completely independent of the metabolic
activity of the enzymes, and describes a system which is switched on from
one ‘inactive’ state to a second ‘active’ one by contact with a specific
inducer.

(ii) Excitable membranes. Roughly speaking, a biological excitable
membrane, such as the membrane of a nervous cell, may exist in two
permanent states: one polarized (associated with the maintenance of

10 We are indebted to Professor M. Eigen for this remark.
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different ionic charges in the two sides) and one depolarized state
resulting from the former upon passage of a pulse or upon a change in
permeability. Blumenthal, Changeux & Lefever (1970) have shown
recently that this depolarization may be quantitatively interpreted as a
transition arising beyond the point of instability of the polarized state
which lies beyond the thermodynamic branch. This instability is due to
the difference in the ionic concentrations, which play here the role of the
constraint keeping the system in a far from equilibrium state. On the
other hand, experimental observations establish that the transition is
indeed in the form of an all-or-nothing effect both for biological and
artificial membranes.

VI. CONCLUDING REMARKS AND FURTHER DEVELOPMENTS

A characteristic feature of chemical instabilities is that their occurrence
depends on a minimum level of dissipation and on specific non-linear
types of kinetics. The dissipative structure attained subsequently is a
really new state of matter induced by a flow of free energy under non-
equilibrium conditions. In this new state we have a new physical chemistry
on a supermolecular level while the laws referring to the molecular level
remain unchanged and given by the quantum mechanical or classical
equations of motion.

As we have seen in the previous section, it is quite plausible to expect
that, in the prebiological stage, the occurrence of dissipative structures
may have enabled the system to reach and maintain the far from equili-
brium conditions necessary for the occurrence of certain key reactions
permitting further evolution. In addition, we have shown that pre-
dictions based on the concept of dissipative structure permit to interpret
a number of biological functions on the cellular level observed on actual
living systems (e.g. glycolytic oscillations, membrane excitation, and
so on).

On a more general level, we may say that the ideas developed in this
review provide an answer to some of the philosophical questions raised in
the introduction. The emergence of order, the role of probabilistic and
causal events, the dependence of structure on the previous history, the
hierarchization of structures, are all seen to be consequences of far from
equilibrium thermodynamics applied to certain types of non-linear
systems. No reference to concepts other than the laws of chemical
kinetics and fluctuation theory had to be made.

I0-2
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Looking now on future developments, we feel that the theory of
dissipative structures has to be developed along at least three major
directions.

In the first place the problem of fluctuations in chemical composition
and in the chemical mechanism itself requires further study. Of particular
interest is the behaviour of fluctuations in the neighbourhood of un-
stable transitions. To a great extent, it will determine the mechanism by
which the system leaves the unstable state and evolves to a dissipative
structure. Some preliminary results in this direction have been obtained
recently by the authors (Nicolis & Prigogine, 1971).

The problem of stability and fluctuations is closely related to the
problem of evolution in biology. Broadly speaking, to discuss evolution
one has to develop a more synthetic view of the ideas outlined in the
foregoing sections, covering large classes of systems and including the
possibility of a succession of instabilities. More specifically, we may
divide the general question into two parts, corresponding to the most
primitive and to the most advanced stages in prebiotic evolution:

(a) The formation of relatively high polymers having a certain biologi-
cal function that the constituting monomers are unable to perform. An
obvious example is the problem of polymerization leading to macro-
molecules which have the ability to serve as templates for their own
reproduction and for the synthesis of other macromolecules.

(6) Assuming that a population of macromolecular species including
the necessary apparatus for synthesis on templates is present, what is the
direction of the subsequent evolution?

Both aspects have received attention recently. Concerning point (a) we
have considered the simplest possible problem of formation of a low
homopolymer. The specific question is to determine the type of processes
leading to an enhancement of the polymer population which would not be
possible in a usual linear polymerization process. Preliminary investiga-
tions by Goldbeter, Babloyantz & Nicolis (1971) show that the conditions
for this increased efficiency are essentially twofold. First, it is necessary
to subject the system to a non-equilibrium flow of monomers. Secondly,
autocatalytic processes such as the increase of reaction rate for poly-
merization due to already synthesized polymers are also very important.
Under these two conditions, it is possible to construct several chemically
plausible schemes having multiple steady states and the ability to jump
from a ‘thermodynamic’ branch of low polymer concentration to a new
state where the polymer population may increase by orders of magnitude.
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Further study is necessary to extend the model to high homopolymers
and to include several types of monomers.

Point (b) has been investigated quite recently by Eigen (1971). He
assumes that the macromolecular species undergo a kinetics of competing
populations. He is then able to show that the system may evolve, by a
mechanism of successive instabilities, to a final state characterized by
some type of genetic code.

Finally, large-scale processes such as growth and development in
higher organisms are another type of example where the concept of
instabilities seems to be of importance. Of particular interest is the
possibility of transfer of information over macroscopic distances in the
form of chemical signals (cf. §IV).

The realization of the programme outlined in this section requires
clearly a close collaboration between physicists, organic chemists,
biochemists and molecular biologists.

We want to thank the Fonds de la Recherche Fondamentale Collective,
the General Motors Research Laboratories and the Welsh Foundation
for generous support of the research summarized in this review.
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