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more weight to low-frequency favorable alleles can reduce 
inbreeding rates and loss of favorable alleles in GS.
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Introduction

Since pioneer studies highlighted the potential benefits of 
genomic selection (GS), this strategy has been compared 
to traditional PBLUP selection mainly to assess the gain in 
accuracy achievable with GS (e.g. Hayes et al. 2009; Daet-
wyler et al. 2012). Such focus on accuracy indicates that 
GS has been mostly evaluated with respect to its potential 
to enhance short-term response (Bijma 2012), whereas the 
maintenance of genetic diversity in longer time horizons is 
essential for the sustainability of breeding schemes (Kris-
tensen and Sørensen 2005).

Long-term genetic gains are invariably related to the 
maintenance of effective population size (Ne) large enough 
to cope with this aim, possibly with some sacrifice of short-
term response (Bijma 2012), for instance through restriction 
on inbreeding and optimum contribution selection (OCS). 
Since the efficacy of such strategies relies on accurate esti-
mation of relatedness as well as on the genetic merit of 
selection candidates, genomic information could open new 
opportunities to enhance long-term gains, allowing more 
precise estimation of the aforementioned parameters (Daet-
wyler et al. 2007; Ferencakovic et al. 2013).

Alternative selection criteria have also been proposed 
to increase long-term selection response. Jannink (2010) 
and Sun and VanRaden (2014), trough simulation stud-
ies, highlighted the importance of giving larger weight 
to low-frequency favorable alleles at the beginning of the 
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selection process, to balance long-term and short-term 
responses. Despite the importance of these results, large 
differences in terms of selection schemes and simulation 
attributes (e.g. marker density and population size) hinder 
extrapolating such conclusions to the application of GS 
in cattle.

While the cost-effectiveness of GS is evident for dairy 
cattle (e.g. Schaeffer 2006), its adoption in other livestock 
populations is still limited. In beef cattle, the different 
structure of the breeding schemes, larger effective popu-
lation sizes and shorter generation intervals could result 
in more modest advantage in using GS when compared to 
traditional schemes, especially for traits routinely recorded 
before selection decisions takes place.

According to Carvalheiro et al. (2013), application of 
GS could be envisaged in Brazilian beef cattle, mainly 
due to the large number of animals routinely recorded 
by breeding organizations and to the fact that bulls are 
progeny-tested relatively late in life. In such situations, 
GS schemes would be advantageous especially for traits 
in which the progress achieved by conventional selection 
is currently limited, e.g. for hard-to-measure and late-life 
traits (Muir 2007; Goddard et al. 2010). Thus, it would 
be important to evaluate the impact of GS by simulating 
scenarios mimicking situations of particular importance to 
beef cattle production, aiming to assess long-term conse-
quences of this process. In the present study, we simulated 
phenotypes mimicking female reproduction and meat qual-
ity traits, so that consequences of GS for traits expressed 
late in life and hard to measure traits, respectively, could 
be investigated. The impact of adopting different replace-
ment strategies was also addressed, as more intense use 
of younger bulls can be envisaged for beef cattle selection 
schemes (Carvalheiro 2014).

The simulation of repeated cycles of GS considering 
continuous update of the reference population, as is usual 
in real applications of GS in cattle (e.g. VanRaden et al. 
2013), would contribute to evaluate the feasibility and fur-
ther consequences of application of GS in beef cattle. This 
situation is hard to assess by deterministic predictions, 
especially with respect to inbreeding incidence and genetic 
diversity in the long-term.

The present study used stochastic simulation to: (1) 
investigate the long-term impact of GS compared to tra-
ditional selection, in scenarios mimicking selection for 
female reproduction (E1) and meat quality (E2) under dif-
ferent replacement strategies; (2) evaluate the impact of 
different genomic prediction methods under different sce-
narios of genetic architecture, in terms of genetic progress, 
inbreeding incidence and maintenance of genetic diversity; 
and (3) assess the long-term impact of giving larger weight 
to low-frequency favorable alleles in genomic predictions.

Materials and methods

Simulation design

The stochastic simulation process was carried out in two 
stages. In the first stage of the simulations, the QMSim 
software (Sargolzaei and Schenkel 2009) was employed 
to simulate a beef cattle population (10 replicates). In 
a second stage (described later), starting from the base 
populations generated in the first stage, the recent genera-
tions were simulated, through repeated cycles of selection 
and mating considering different scenarios of prediction 
method and genetic architecture.

The forward-in-time simulation parameters were 
defined in QMSim aiming to mimic the pattern of link-
age disequilibrium (LD) previously reported for real beef 
cattle populations, similarly as described in Brito et al. 
(2011). A first step of simulation of historical generations 
was carried out, in which 1000 historical generations (H1) 
were simulated, with Ne kept constant at 1000. After this 
step, starting from the last generation of H1, 20 historical 
generations (H2) were created, so that a bottleneck was 
simulated, through gradual reduction of Ne from 1000 to 
200. Such a strategy allowed the initial establishment of 
mutation-drift equilibrium and the creation of linkage dis-
equilibrium between the simulated loci. For both H1 and 
H2, the number of animals of each sex was the same. Mat-
ings were simulated assuming random union of gametes.

After that, 100 males and 100 females were randomly 
selected from the last generation of H2 and the popula-
tion was expanded. In this step, three generations were 
simulated under random mating and no selection, so that 
each female produced five offspring per generation and 
the number of females in reproduction increased exponen-
tially at each generation. From the last generation simu-
lated in the expansion step, 40 males and 1000 females 
were randomly selected to compose the base population 
(G0), from which all recent generations (described later) 
were simulated.

The same simulation framework was employed to pro-
duce ten different replicates (base populations), so that 
the same base populations (G0) were used to simulate the 
starting point for different selection scenarios, similarly 
as applied by Bastiaansen et al. (2012). For each scenario 
and base population, 15 recent generations were simulated, 
so that different selection strategies were applied to each 
scenario, which were succeeded by random mating of the 
animals selected to produce the subsequent generation. 
At each generation, it was assumed that each female and 
male in reproduction had 1 and 25 offspring, respectively, 
totaling 1000 progeny produced.
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Simulated genome

The simulated genome was composed by 29 pairs of auto-
somes (BTA), whose individual length varied from 40 
to 146 cM, totaling 2333 cM, similarly as in Brito et al. 
(2011). In the historical generations, a mutation rate (u) of 
10− 4 was simulated for both markers and QTL, to simulate 
the target number of segregating loci in the last generation.

Missing genotypes and genotyping errors were not sim-
ulated. Mutation events were only simulated in the his-
torical generations, since the recent population involved a 
small number of generations and thus the effect of muta-
tion could be neglected (Sargolzaei and Schenkel 2009). 
For both markers and QTL, a recurrent mutation model 
was adopted. Markers were simulated as bi-allelic, aim-
ing to resemble SNP markers, while the number of QTL 
alleles at each locus varied from 2 to 4. The markers were 
evenly spaced along the genome, which resulted in a num-
ber of markers per chromosome proportional to length of 
each BTA. While the number of QTL was also propor-
tional to the length of each BTA, QTL positions within 
each chromosome were set randomly.

When a large number of historical generations are 
simulated, aiming to achieve mutation-drift equilibrium, 
a large proportion of non-segregating loci can be obtained 
in the last generation. Thus, in the last historical genera-
tion, 40,000 segregating markers were randomly selected 
among those with MAF > 0.01, in order to simulate the 
information available in marker panels in the recent gener-
ations. In addition, 1000 QTL loci with MAF > 0.01 were 
randomly selected to simulate phenotypes in the recent 
generations. Such procedures allowed to simulate marker 
density similar to that obtained when using commercial 
SNP panels designed for cattle, after the quality control 
of genotypes is carried out (e.g. Sargolzaei et al. 2008; 
Hayes et al. 2009).

For each replicate, 3064 evenly spaced marker loci 
(IBD loci) were used to monitor identity-by-descent: in 
each chromosome, about 100 IBD markers were positioned 
evenly spaced and monitored through the attribution of 
specific tags to each founder allele available in G0, sim-
ilarly as in Sonesson et al. (2012). Markers with MAF 
< 5% were also monitored, aiming to simulate the evolu-
tion of loci potentially associated to deleterious mutations 
(homozygous mutation loci, HML), similarly as in Keller 
et al. (2011). Both IBD and HML loci were not included 
in the set of markers considered in genomic predictions, so 
that they were not directly involved in selection.

A summary of the simulation parameters is available 
in Online Resource 1, whereas a schematic representation 
of the simulation steps is provided in Online Resource 2.

Simulated scenarios

Two selection schemes were simulated, aiming to replicate 
selection for female reproductive traits and meat quality 
(schemes E1 and E2, respectively). A schematic overview 
of such selection schemes is provided in Online Resource 
3. Within a given scheme, each scenario was defined by the 
application of a particular selection criterion, as a way to 
compare genomic prediction under different methods to tra-
ditional PBLUP selection.

Since the version of QMSim employed in this study did 
not allow simulating repeated cycles of selection and mat-
ing using different genomic prediction methods, custom 
routines were coded in R language (R Development Core 
Team 2013) to allow simulation of such scenarios. In order 
to simulate gametogenesis, the recombination was modeled 
by assuming that the number of crossovers follows a Poisson 
distribution with average equal to the chromosome length 
(in Morgans). Crossover positions were randomly assigned 
along each chromosome. For each scenario and replicate, the 
genotypes of animals of a given generation were simulated 
assuming random union of gametes of the selected parents 
(1000 dams and 40 sires).

The true breeding value (TBV) of each animal was calcu-
lated as: TBV=Zv, where Z and v are the incidence matrix 
relating individuals to QTL alleles and the matrix of addi-
tive effects of QTL alleles, respectively. In all scenarios, a 
continuous phenotype Y was simulated by adding an overall 
mean (μ = 10) and a random residual (ε) to the TBV of each 
animal. The residuals were simulated so that ε ~ N (0, σ2

ε), 
in which σ2

ε was defined in each combination of scenario 
and replicate to meet a pre-specified heritability.

The following selection schemes were simulated:
Female reproduction (E1) A continuous trait of herit-

ability equal to 0.15, influenced by 1000 QTL and only 
expressed in females was simulated. QTL effects were 
drawn from a gamma distribution (shape parameter = 0.40). 
The first generation was obtained after the random mating 
of 1000 dams and 40 sires from the base population (G0), 
producing 1000 individuals (G1), about half of each sex. 
After G1 was generated, the following selection criteria 
were employed to select the parents of the next generations 
(G2–G15):

1.	 PBLUP: estimated breeding value (EBV). This crite-
rion intended to evaluate the consequences of traditional 
selection, based on predictions obtained considering 
phenotypic records and pedigree information.

2.	 GBLUP: genomic estimated breeding value (GEBV), 
where GEBV =

∑

xj𝛽j, xj is the genotype for the jth 
marker and 𝛽j is the respective estimated allele substi-
tution effect, obtained using ridge regression (Hoerl 
and Kennard 1970), assuming that the effects of all loci 
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follow a normal distribution. This criterion intended to 
evaluate the consequences of GS schemes.

3.	 wGBLUP: weighted GEBV (wGEBV), where 
wGEBV = xj 𝛽j p

−0.5
j

, in which xj and 𝛽j are the genotype 

and estimated allele substitution effect, respectively, 
similarly as described for GBLUP, and pj is the respec-
tive frequency of the favorable allele for the j-th marker. 
This criterion is identical to that applied by Jannink 
(2010) aiming to reduce the loss of favorable alleles of 
lower frequency, by means of attributing more weight 
to them when computing genomic predictions.

4.	 TBV: true breeding value, as described previously. The 
simulation of this criterion intended to investigate the 
consequences of very high prediction accuracies on 
genetic progress and genetic diversity.

For all scenarios, it was assumed that the phenotype of 
each female would be available only after the selection deci-
sions. Thus, when selecting the parents of generation i + 1, 
genetic predictions for females from generation i were based 
only on the phenotypic information accumulated until gen-
eration (i − 1). After this step, among the females of genera-
tion i, only the phenotypes of those selected for reproduc-
tion were available and considered in the subsequent genetic 
evaluation. For the sake of simplicity, it was assumed that 
each female expressed the phenotype only once during its 
life.

At each generation, the BLUPF90 software (Misztal 
2014) was employed to predict EBVs of all animals. All ped-
igree and phenotypic information accumulated and available 
until each generation was considered in BLUP equations, 
as well as the variance ratios calculated with the simulated 
values for the variance components.

In the scenarios under GS, the 1000 females from G0 
were assumed to be genotyped with a 50 k panel, composing 
the initial reference population employed to estimate marker 
effects. Custom routines were employed to obtain marker 
effect estimates using R software, similarly as described in 
Neves et al. (2012).

Before each new cycle of selection and reproduction, both 
PBLUP and genomic predictions were updated with pheno-
types and genotypes of the females selected in the previous 
generation. In order to select the parents of generation i + 1, 
it was assumed that animals from generation i and their par-
ents were available for reproduction (selection candidates). 
In addition to the females with phenotypes available, all 
selection candidates were assumed to be genotyped. For the 
sake of simplicity, all genotyped animals have genotypes 
available for all simulated markers.

For each selection criterion, two replacement strategies 
were simulated: (1) culling of the worse 20% animals (8 
males and 200 females) among the parents of generation 

i (v1, “fixed replacement rate”) and selection of the top 8 
males and top 200 females from generation i to replace them; 
(2) selection of the top 1000 females and top 40 males for 
that criterion, considering all animals available for reproduc-
tion, regardless of their generation coefficient (v2, “variable 
replacement rate”). Thus, for E1, eight different scenarios 
were simulated, as the combination between selection crite-
rion (PBLUP, GBLUP, wGBLUP or TBV) and replacement 
strategy (v1 or v2), for ten replicates.

Meat quality (E2) Three different traits (A, B and C), 
expressed in both sexes, were simulated with heritability 
equal to 0.35, according to the following scenarios of genetic 
architecture:

A.	 1000 QTL, whose effects were drawn from a gamma 
distribution (shape = 0.40);

B.	 100 QTL, whose effects were drawn from a gamma dis-
tribution (shape = 0.40);

C.	 1000 QTL, five of which had larger effect (“major 
QTL”), each one explaining an arbitrarily large pro-
portion of the additive variance (7%) and with position 
randomly sampled among the QTL loci. The remainder 
QTL (995) had effects drawn from a normal distribu-
tion, scaled so that together they explained the remain-
der 65% of the additive variance. Thus, these traits 
mimicked different scenarios of genetic architecture: 
more polygenic control (A), trait influenced by smaller 
number of loci (B) and trait influenced by large number 
of loci, few of them of large effect (C).

Similarly as in scheme E1, the first generation was 
obtained after the mating between the 1000 females and 
40 males from G0, producing 1000 offspring, about a half 
of each sex. After G1 was obtained the following selection 
criteria were employed to select the parents of the next gen-
eration (G2), as well as those of the following generations 
(up to G15):

(1–4) TBV, PBLUP, GBLUP and wGBLUP (respectively, 
similarly as previously described for E1).

(5) EN: GEBV calculated with estimated marker effects 
obtained using the variable selection method elastic net (EN) 
(Zou and Hastie 2005). This method can be understood as 
an extension of the LASSO method (Tibshirani 1996), in 
which solutions are obtained under constraints imposed 
by a mixed penalty parameter, resultant from the combi-
nation between the LASSO penalty and the ridge regres-
sion penalty. According to Waldmann et al. (2013), setting 
a weight (α) close to 1 for the LASSO penalty makes the 
EN to behave similarly to the LASSO (i.e. strong variable 
selection), while improving robustness to strongly correlated 
predictor variables, as is the case of SNP markers. In the 
present study, α was set to 0.95. Estimation of marker effects 
was carried out using the glmnet R package.
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(6)wEN wGEBV estimated similarly as previously 
described for wGBLUP (larger weight for rare alleles), 
except by the fact that marker effect estimates were obtained 
via EN.

It was assumed that, starting from G1, phenotypes would 
be measured on 250 animals randomly chosen at each gen-
eration, being that phenotyping would require the slaugh-
tering of these animals, as is the case of most carcass and 
meat quality traits. In order to select the parents of genera-
tion i + 1, it was assumed that the parents of generation i 
were available for reproduction, as well as the animals from 
generation i that were not slaughtered. For selection candi-
dates from generation i or older, each selection criterion was 
computed considering all information accumulated until that 
generation (including phenotypes on half-sibs from genera-
tion i).

For scenarios under GS, the 250 phenotypes from G1 ani-
mals comprised the initial reference population, employed 
to estimate marker effects under the different methods previ-
ously described. At each generation, marker effect estimates 
were updated, including the new phenotypes and genotypes 
in the reference set. In addition to the animals slaughtered, 
it was assumed that all animals available for reproduction 
(selection candidates) were genotyped, similarly as in E1.

Aiming to investigate the effect of replacement strategies 
in this scheme, the same strategies previously described as 
fixed (v1) and variable replacement rate (v2) were applied 
to the scenarios with selection for trait A, while only the 
strategy of fixed replacement rate was applied to the traits 
B and C. Thus, for each selection criterion (n = 6), four 
trait-replacement strategy combinations were simulated 
(A_v1, A_v2, B_v1 and C_v1), totaling 24 scenarios, for 
ten replicates.

Criteria for analysis of results

For each scenario and replicate, the following statistics were 
computed at each generation:

–	 deltaG: accumulated genetic gain, computed as the dif-
ference between the average TBV at generation i and 
the average TBV in the respective base population (G0), 
standardized by the SD of TBV in G0.

–	 SD.TBV: standard deviation of the true breeding values 
(TBV) at generation i.

–	 aveL: average generation coefficient of the parents of 
generation i, computed as a proxy for generation interval 
in each scenario.

–	 IBD: Percentage of genome that was homozygous due to 
identity-by-descent, calculated as in Sonesson et  al. 
(2012). For each locus designated to monitor IBD, popu-
lation homozygosity was computed as fj = 

∑

f 2
kj
, where fkj 

is the frequency of the founder allele k at locus j in the 
generation i. The IBD coefficient was calculated as the 
average of fj over all monitored loci.

–	 Fped: average of pedigree-based inbreeding coefficient, 
over all animals from generation i.

–	 HML: Homozygosity at loci potentially associated to 
deleterious mutations. Calculated as the average of the 
homozygosity for the lower frequency variants, i.e. for 
all “homozygous mutation loci” (Keller et al. 2011).

–	 Number of favorable alleles lost (Nlost): the accumulated 
number of favorable alleles lost along the selection pro-
cess.

At each generation, all statistics were computed sepa-
rately for each replicate (population). Aiming to enhance 
objective comparisons among scenarios, the results of each 
statistic were analyzed by fitting the following linear model, 
considering the data regarding to selection for a same trait: 

where sij is the jth observation for statistic s in the ith sce-
nario, ci is the effect of the ith scenario on s, pj is the effect 
of the jth base population and eij ~ N(0,σ2

e). The assump-
tions of normally distributed and homoscedastic residuals 
were checked using Shapiro–Wilk and Breusch–Pagan tests, 
respectively. For each statistic, generation and trait, least 
squares means of each scenario were contrasted using t tests, 
adjusted for false discovery rate (α = 5%). In the case of IBD, 
Fped and HML, each statistic was log transformed in order 
to meet the assumptions of the linear model.

Results

Linkage disequilibrium and summary statistics

In the base generation (G0), the average (SD) linkage dis-
equilibrium (LD) between adjacent markers over the 29 
simulated chromosomes, measured by the r2 statistic (Hill 
and Robertson 1968), was 0.23 (0.24), while the average 
(SD) of homozygosity was around 0.65 (0.01). The pattern 
of LD decay with genomic distance (data not shown) was 
also consistent with that previously reported for beef cattle 
breeds (e.g. Lu et al. 2012).

Selection for female reproduction (E1)

Genetic progress

For a same selection criterion, greater genetic progress was 
achieved under the scenarios with variable replacement 
rate, being that the superiority over scenarios with fixed 
replacement rate reached 20% in the last generation (Fig. 1; 

sij = ci + pj + eij,,
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Table 1). The greater genetic progress achieved with vari-
able replacement rate is consistent with the smaller genera-
tion interval (aveL) in the scenarios with this replacement 
strategy (Fig. 1; Table 1). Conversely to what was observed 
for PBLUP (for which aveL remained nearly constant since 
generation 7), there was a slight trend of reduction in aveL 
until the last generations of GS scenarios.

Genetic diversity and inbreeding

Starting from generation 7, the increase in the average 
inbreeding coefficients based on IBD loci was larger in 
the scenarios under PBLUP selection, especially when 
this method was applied without constraint on the replace-
ment rate (v2), reaching values close to 15% in generation 
15 (Table 1). The smallest inbreeding levels (according to 
IBD) were achieved under selection based on TBV (Fig. 1).

Trends for homozygosity at HML loci and average of 
Fped coefficients were very similar to the trends for IBD, 
being that the largest values were equal to 0.45 and 15%, 
respectively, for PBLUP at generation 15 (Table 1). The 
number of favorable alleles lost exhibited a quadratic 
trend, with more pronounced losses after generation 10 
(Fig. 1).

Contrasts at generation 15

For the sake of brevity, and since the focus of this study 
is on long-term consequences of the different strategies 
under investigation, detailed results for contrasts between 
scenarios at generation 15 are presented in this section.

Fig. 1   Trends for genetic 
progress and genetic diversity* 
under different scenarios** of 
selection for female reproduc-
tion trait. *deltaG accumulated 
genetic gain (in units of addi-
tive SD of the base popula-
tion), aveL average generation 
interval, SD.TBV 10 × SD of 
true breeding values (TBV), 
IBD proportion of genome 
that is homozygous due to 
identity-by-descent, in %, Fped 
average of individual pedigree-
based inbreeding coefficients, 
in %, HML homozygosity for 
alleles potentially associated 
to deleterious mutations, in %. 
Nlost accumulated number of 
favorable alleles lost. Averages 
of 10 replicates are plotted for 
each statistic and generation. 
**Each scenario is defined by 
combination of: replacement 
strategy (replacement rate fixed 
at 20% or variable rate, v1 and 
v2, respectively) and selection 
criterion: TBV, estimated breed-
ing value (PBLUP), genomic 
estimated breeding value 
using GBLUP (GBLUP) and 
GBLUP giving more weight to 
low-frequency favorable alleles 
(wGBLUP)
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Replacement strategy

Variable replacement rate (v2) resulted in larger genetic 
gain than that achieved with replacement rate fixed at 
20% (v1), irrespective of selection criterion (Table 1). 
The genetic gain accumulated until generation 15 was 
about 40% greater for v2 under selection based on 
PBLUP, while with GS this difference was 30%. The 
variable replacement rate (v2) resulted in smaller genetic 
variability for the scenarios under selection based on TBV 
and GBLUP (Table 1). Under PBLUP selection, there was 
no significant difference in inbreeding incidence between 
replacement strategies, whereas under GS, smaller 
inbreeding levels were obtained with variable replace-
ment rate (Table 1), notably in the case of Fped.

PBLUP vs GS

Genomic selection resulted in genetic progress signifi-
cantly greater than selection based on PBLUP (Table 1), 
so that the genetic gain accumulated up to generation 15 
was between 25 and 40% greater for GS. GS methods 
resulted in pedigree-based inbreeding coefficients sig-
nificantly smaller than PBLUP (between 25 and 54% 
smaller), regardless of the replacement strategy. How-
ever, at generation 15, under fixed replacement rate, only 
wGBLUP resulted in estimates significantly lower than 
PBLUP for estimates of IBD, HML and number of alleles 
lost (Nlost) (Table 1).

Weighting on low frequency favorable alleles (wGBLUP vs 
GBLUP)

There was no significant difference between GBLUP and 
wGBLUP in terms of genetic progress (Table 1). Regard-
ing to inbreeding incidence, wGBLUP resulted in smaller 
averages of Fped and HML (both about − 15%), under fixed 
replacement rate. Under variable replacement rate, wGB-
LUP resulted in average IBD coefficients 15.5% smaller than 
GBLUP (Table 1).

Selection for meat quality (E2)

Genetic progress

Because the results pertaining to the comparison between 
replacement rates in scheme E2 were quite similar to those 
previously reported for female reproduction (scheme E1, 
Fig. 1; Table 1) only the results of genetic progress and 
genetic diversity obtained with one of the replacement strat-
egies (v1) will be detailed (Figs. 2, 3).

Regardless the simulated genetic architecture, GS out-
performed PBLUP in terms of genetic progress (Fig. 2; 
Table 2). For trait B (100 QTL), the similarity between dif-
ferent GS methods in terms of genetic progress was evi-
dent, while a slightly difference between them was observed 
for traits A and C (Fig. 2), for which, in terms of deltaG, 
GBLUP outperformed EN (Fig. 2). When GS was applied, 
a trend of reduction in the generation interval (aveL) was 
observed for all traits, especially after generation 10 (Fig. 2).

Table 1   Genetic progress 
and genetic diversity1 under 
different scenarios2 of selection 
for female reproduction trait at 
generation 15*

1 deltaG accumulated genetic gain (in units of additive SD of the base population), SD.TBV standard devia-
tion of true breeding values, aveL average generation interval, IBD proportion of genome that is homozy-
gous due to identity-by-descent, in %, Fped average of individual pedigree-based inbreeding coefficients, in 
%, HML homozygosity for alleles potentially associated to deleterious mutations, in %. Nlost accumulated 
number of favorable alleles lost
2 Each scenario is defined by combination of: (a) replacement strategy (Repl.): fixed rate (20%, v1) or 
variable rate (v2) and (b) selection criterion: TBV, estimated breeding value (PBLUP), genomic estimated 
breeding value using GBLUP (GBLUP) and GBLUP giving more weight to low-frequency favorable 
alleles (wGBLUP)
*Averages of ten replicates (standard error, SE, within brackets). For a same statistic (column), averages 
with the same superscript letter do not differ (t-test, adjusted p-value > 0.05)

 Repl. Criterion deltaG SD.TBV aveL IBD (%) HML (%) Fped (%) Nlost

v1 PBLUP 2.8(0.15)e 0.51(0.02)a 3.6(0.03)a 14.1(0.07)ab 0.43(0.06)ab 13.8(0.07)a 30.3(1.69)cd

v1 GBLUP 4.0(0.12)d 0.51(0.01)a 3.3(0.02)b 12.5(0.09)bc 0.41(0.05)ab 10.2(0.08)b 28.3(1.83)cde

v1 TBV 7.6(0.08)b 0.50(0.01)ab 3.1(0.00)c 7.1(0.04)e 0.26(0.03)d 5.8 (0.03)e 21.6 (0.95)f

v1 wGBLUP 4.0(0.17)d 0.51(0.01)a 3.4(0.03)b 10.9(0.06)cd 0.34(0.06)c 8.7 (0.06)c 26.5(1.40)de

v2 PBLUP 3.9(0.15)d 0.50(0.01)a 1.8(0.03)d 16.0(0.08)a 0.46(0.07)a 15.0 (0.09)a 37.9(1.32)a

v2 GBLUP 5.4(0.10)c 0.48(0.01)b 1.6(0.02)e 11.1(0.04)c 0.38(0.03)bc 8.0(0.04)cd 35.0(2.02)ab

v2 TBV 9.7(0.12)a 0.40(0.01)c 1.5(0.01)f 5.7(0.03)f 0.25(0.04)d 4.2(0.03)f 26.2(2.08)e

v2 wGBLUP 5.1(0.08)c 0.49(0.01)ab 1.6(0.01)e 9.4(0.04)d 0.34(0.03)c 6.9(0.04)d 31.5(1.34)bc
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Genetic diversity and inbreeding

For all simulated traits, PBLUP selection resulted in more 
pronounced increase in inbreeding coefficients (Fig.  3; 
Table 3), while the selection for TBV resulted in the smallest 

inbreeding incidence. For trait A, EN and wEN resulted in 
more inbreeding than the other GS methods. For traits B and 
C, lower inbreeding incidence was obtained with wGBLUP 
and wEN, when compared to GBLUP and EN, respectively 
(Fig. 3; Table 3).

Fig. 2   Trends of genetic progress and genetic variability* for dif-
ferent scenarios** of selection for meat quality traits (a, b, c)***. 
*deltaG accumulated genetic gain (in units of additive SD of the base 
population), aveL average generation interval, SD.TBV SD of true 
breeding values (TBV), Averages of 10 replicates plotted for each sta-
tistic and generation. **Each scenario is defined by a selection crite-

rion: TBV, EBV (PBLUP), GS using GBLUP or EN (GBLUP or EN) 
and GBLUP or EN giving more weight to low-frequency favorable 
alleles (wGBLUP or wEN). ***Trait A (1000 QTL), trait B (100 
QTL), trait C (1000 QTL, five of which had larger effect and each 
explained 7% of the additive variance). A fixed replacement rate of 
20% was adopted (v1)



93Genetica (2018) 146:85–99	

1 3

Fig. 3   Trends for genetic diversity* under different scenarios** 
of selection for meat quality traits (a, b, c)***. *IBD proportion of 
genome that is homozygous due to identity-by-descent, in %, Fped 
average of individual pedigree-based inbreeding coefficients, in %, 
HML homozygosity for alleles potentially associated to deleterious 
mutations, in %. Nlost accumulated number of favorable alleles lost. 
Averages of 10 replicates are plotted for each statistic and generation. 

**Selection criteria: true breeding value (TBV), estimated breeding 
value (PBLUP), genomic estimated breeding value using GBLUP or 
EN (GBLUP or EN) and GBLUP or EN giving more weight to low-
frequency favorable alleles (wGBLUP or wEN). ***Trait A (1000 
QTL), trait B (100 QTL), trait C (1000 QTL, five of which had larger 
effect and explained 7% of the additive variance). A fixed replace-
ment rate of 20% was adopted (v1)
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Contrasts at generation 15

Replacement strategy

For a given selection criterion, significantly larger genetic 
progress was obtained with variable replacement rate 
(Table 2), confirming the same trend verified in the scheme 
mimicking selection for female reproduction (E1). Inbreed-
ing incidence (Fped, IBD and HML) was also greater under 
variable replacement rate than with fixed replacement 
(Table 2).

At generation 15, there was no difference between 
replacement strategies in terms of IBD and Fped, while the 
variable replacement rate resulted in significantly greater 
loss of favorable alleles (v2, Table 2).

PBLUP vs GS

Most GS scenarios resulted in genetic progress signifi-
cantly greater than achieved in correspondent scenarios 
under PBLUP selection, being that the advantage of GS 
over PBLUP in terms of genetic progress reached + 40% in 
generation 15 (Table 3). The smallest advantage of GS over 
PBLUP in terms of genetics progress was verified for trait 
C, for the scenario in which breeding values were predicted 
using EN (15.6%).

As a general rule, for all scenarios of genetic architec-
ture, lower levels of inbreeding were obtained under GS 
compared to PBLUP. In generation 15, the averages of the 
pedigree-based inbreeding coefficients were between 34% 
(EN) and 42% (wGBLUP) lower under GS scenarios, when 
compared to PBLUP, in the scenario in which more poly-
genic background was simulated (trait A, Table 3). For all 
measures associated to inbreeding (Fped, HML and IBD), 
the advantage of GS over PBLUP was even greater when a 
smaller number of QTL (trait B) or major QTL were simu-
lated (trait C) (Table 3).

Variable selection methods vs GBLUP

For the more polygenic trait (trait A), the selection based on 
EN prediction resulted in genetic progress between 16 and 
11% lower than GBLUP, being these differences significant 
(Table 3). At generation 15, EN also resulted in inbreeding 
coefficients larger than GBLUP, although such differences 
were not significant (Table 3).

When 100 QTL were simulated (trait B), there was no 
significant difference between EN and GBLUP in terms of 
genetic progress (Table 3). It is worth to emphasize that in 
the first simulated generations, deltaG was slightly lower 
for EN (data not shown). As more animals were included 
in the reference population, the genetic progress achieved 
with EN was comparable to GBLUP (Table 3). For this same 

Table 2   Genetic progress 
and genetic diversity1 under 
different scenarios2 of selection 
for meat quality trait at 
generation 15*, for different 
replacement rates

1 deltaG accumulated genetic gain (in units of additive SD of the base population), SD.TBV standard devia-
tion of true breeding values, aveL average generation interval, IBD proportion of genome that is homozy-
gous due to identity-by-descent, in %, HML homozygosity for alleles potentially associated to deleterious 
mutations, in %. Fped average of individual pedigree-based inbreeding coefficients, in %, Nlost accumu-
lated number of favorable alleles lost
2 Each scenario is defined by combination of: (a) Repl. = replacement strategy (fixed rate = 20%, v1) or 
variable rate (v2) and (b) selection criterion: TBV, estimated breeding value (PBLUP), genomic estimated 
breeding value using GBLUP or EN (GBLUP) and GBLUP or EN giving more weight to low-frequency 
favorable alleles (wGBLUP or wEN). The selection for a trait influenced by 1000 QTL was simulated (trait 
A) *
*Averages of 10 replicates (standard error, SE, within brackets). For a same statistic (column), averages 
with the same superscript letter do not differ (t-test, adjusted p-value > 0.05)

Repl. Criterion deltaG SD.TBV aveL IBD (%) HML (%) Fped (%) Nlost

v1 PBLUP 2.8(0.13)i 0.50(0.01)ab 3.8(0.07)a 14.0(0.06)a 0.41(0.06)b 12.9(0.07)a 21.6(1.72)de

v1 GBLUP 4.0(0.07)efg 0.50(0.01)ab 3.3(0.02)b 9.6(0.03)c 0.33(0.04)def 7.8(0.03)bc 21.6(1.16)de

v1 EN 3.6(0.12)h 0.50(0.01)ab 3.3(0.02)b 10.4(0.07)bc 0.34(0.06)cdef 8.5(0.06)bc 18.7(1.13)ef

v1 wGBLUP 3.9(0.14)fgh 0.50(0.01)a 3.4(0.03)b 6.2(0.04)d 0.26(0.04)g 5.0(0.04)d 19.1(1.20)ef

v1 wEN 3.7(0.09)gh 0.50(0.01)abc 3.3(0.03)b 9.0(0.07)c 0.30(0.04)f 7.4(0.06)c 15.9(1.40)f

v1 TBV 7.0(0.08)b 0.48(0.01)c 3.1(0.01)c 10.3(0.09)bc 0.32(0.06)ef 8.3(0.08)bc 19.3(2.30)ef

v2 PBLUP 4.1(0.20)ef 0.50(0.01)ab 2.2(0.04)d 16.3(0.06)a 0.49(0.06)a 15.0(0.06)a 36.4(1.54)a

v2 GBLUP 5.1(0.10)c 0.48(0.01)bc 1.9(0.01)e 10.3(0.07)bc 0.36(0.07)bcd 7.9(0.07)bc 29.0(2.59)bc

v2 EN 4.7(0.18)d 0.49(0.01)abc 1.9(0.04)e 11.8(0.09)b 0.41(0.08)b 8.9(0.09)b 30.1(2.95)b

v2 TBV 8.6(0.08)a 0.42(0.01)d 1.7(0.01)f 4.9(0.03)e 0.22(0.02)h 3.6(0.03)e 16.4(1.11)f

v2 wGBLUP 5.3(0.11)c 0.50(0.01)ab 1.9(0.02)e 10.2(0.06)bc 0.37(0.04)bc 7.6(0.07)bc 24.6(1.78)d

v2 wEN 4.3(0.19)e 0.49(0.01)abc 1.8(0.01)e 11.7 (0.11)b 0.35(0.07)cde 8.7(0.09)b 25.6 (1.80)cd
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trait, there was also no significant difference between EN 
and GBLUP in terms of inbreeding incidence (Table 3).

When five major QTL were simulated in a scenario with 
1000 QTL (trait C), EN resulted in genetic gain significantly 
lower than GBLUP (difference about 10%, Table 3). In this 
situation, while inbreeding incidence was significantly lower 
for EN in the first generations (data not shown), such differ-
ences tended to diminish along the selection process, so that 
there was no difference between EN and GBLUP in terms of 
inbreeding incidence at generation 15 (Table 3).

Weighting on low frequency favorable alleles (wGBLUP 
and wEN)

In all scenarios of genetic architecture, there was no signifi-
cant difference between GBLUP and wGBLUP in terms of 
genetic gain, what also occurred when EN and wEN were 
contrasted (Table 3). For the more polygenic trait, although 
the averages of Fped and IBD were slightly lower for wGB-
LUP and wEN (compared to GBLUP and EN, respectively), 
such differences were not significant (trait A, Table 3), being 

that the only benefit of weighting on low-frequency favora-
ble alleles was obtained for wGBLUP with respect to the 
number of favorable alleles lost (Nlost 26% lower at genera-
tion 15, compared to GBLUP).

For the less polygenic traits (B and C), inbreeding inci-
dence was significantly lower under wGBLUP in the last 
generations (Table 3). No significant difference was found 
between wEN and EN for all statistics related to inbreeding 
incidence (Table 3).

Discussion

Long‑term consequences of GS

For schemes simulating selection for female reproduction 
(E1) and meat quality (E2), GS allowed considerable gains 
in terms of genetic progress, regardless of the time horizon 
considered. In these situations, the genetic gain accumulated 
until the last generation (15th) was up to 40% greater for GS 
when compared to selection based on PBLUP.

Table 3   Genetic progress 
and genetic diversity1 under 
different scenarios2 of selection 
for meat quality traits3 at 
generation 15*

1 deltaG accumulated genetic gain (in units of additive SD of the base population), SD.TBV SD of true 
breeding values (TBV), IBD proportion of genome that is homozygous due to identity-by-descent, in %, 
HML homozygosity for alleles potentially associated to deleterious mutations, in %. Fped average of indi-
vidual pedigree-based inbreeding coefficients, in %. Nlost accumulated number of favorable alleles lost. 
aveL average generation interval, ȳ average of 10 replicates, SE standard error
2 Each scenario is defined by a selection criterion: TBV, estimated breeding value 
(PBLUP), genomic estimated breeding value using GBLUP or EN (GBLUP or EN) and 
GBLUP or EN giving more weight to low-frequency favorable alleles (wGBLUP or wEN)                                                                                                                                                                                                                                        
3trait A (1000 QTL), trait B (100 QTL), trait C (1000 QTL, five of which had lager effect and explained 7% 
of the additive variance). A fixed replacement rate of 20% was adopted
*Averages of 10 replicates (standard error, SE, within brackets). For a same statistic (column), averages 
with the same superscript letter do not differ (t-test, adjusted p-value > 0.05)

Trait Criterion deltaG SD.TBV aveL IBD (%) HML (%) Fped (%) Nlost

A PBLUP 2.8(0.13)e 0.50(0.01)a 3.8(0.07)a 14.0(0.06)a 0.41(0.06)a 12.9(0.07)a 21.6(1.72)a

GBLUP 4.0(0.07)b 0.50(0.01)a 3.3(0.02)b 9.6(0.03)b 0.33(0.04)bc 7.8(0.03)bc 21.6(1.16)a

EN 3.6(0.12)d 0.50(0.01)a 3.3(0.02)b 10.4(0.07)b 0.34(0.06)b 8.5(0.06)b 18.7(1.13)ab

TBV 7.0(0.08)a 0.48(0.01)b 3.1(0.01)c 6.2(0.04)c 0.26(0.04)d 5.0(0.04)d 19.1(1.20)ab

wGBLUP 3.9(0.14)bc 0.50(0.01)a 3.4(0.03)b 9.0(0.07)b 0.30(0.04)c 7.4(0.06)c 15.9(1.40)b

wEN 3.7(0.09)cd 0.50(0.01)ab 3.3(0.03)b 10.3(0.09)b 0.32(0.06)bc 8.3(0.08)bc 19.3(2.30)ab

B PBLUP 2.7(0.11)c 0.45(0.03)ab 3.7(0.06)a 13.8(0.08)a 0.41(0.08)a 13.1(0.09)a 3.0(0.76)a

GBLUP 3.7(0.21)b 0.43(0.03)b 3.4(0.04)b 10.2(0.06)b 0.32(0.05)b 8.1(0.06)bc 2.4(0.48)ab

EN 3.7(0.21)b 0.38(0.02)cd 3.3(0.03)c 10.1(0.09)bc 0.34(0.06)b 8.4(0.08)b 2.1(0.59)ab

TBV 6.1(0.28)a 0.36(0.02)d 3.1(0.01)d 6.7(0.04)d 0.25(0.03)c 5.3(0.04)d 1.4(0.48)b

wGBLUP 3.7(0.17)b 0.46(0.02)a 3.4(0.03)b 8.5(0.04)c 0.31(0.04)b 6.9(0.03)c 1.5(0.34)b

wEN 3.8(0.23)b 0.40(0.02)c 3.3(0.02)c 9.0(0.08)bc 0.30(0.07)b 7.3(0.07)bc 1.9(0.59)ab

 C PBLUP 3.2(0.13)d 0.53(0.01)a 3.7(0.07)a 15.2(0.06)a 0.44(0.06)a 14.5(0.07)a 25.7(1.55)a

GBLUP 4.2(0.07)b 0.53(0.01)a 3.4(0.02)bc 10.4(0.03)b 0.35(0.04)b 8.6(0.03)b 22.2(1.61)ab

EN 3.7(0.12)c 0.50(0.01)ab 3.3(0.02)cd 10.2(0.07)b 0.32(0.06)bc 8.3(0.06)bc 22.1(1.20)abc

TBV 7.1(0.08)a 0.47(0.01)b 3.1(0.01)e 6.2(0.04)d 0.25(0.04)d 5.0(0.04)d 20.9(1.51)bc

wGBLUP 4.2(0.14)b 0.53(0.01)a 3.4(0.03)b 8.5(0.07)c 0.30(0.04)c 7.1(0.06)c 18.4(1.31)c

wEN 3.9(0.09)bc 0.49(0.01)b 3.3(0.03)d 9.4(0.09)bc 0.30(0.06)c 7.5(0.08)bc 19.8(2.00)bc
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As a general rule, for scenarios in which greater genetic 
progress was achieved using GS, smaller pedigree-based 
inbreeding coefficients were also estimated, which were 
relatively consistent with the smaller levels of homozygo-
sity due to identity-by-descent tracked by the simulation of 
IBD loci. The relative benefit of GS in terms of inbreeding 
incidence increased along the generations, so that inbreed-
ing levels estimated using pedigree or IBD information 
were at least 25% smaller under GS in the last generation, 
when compared to similar figures estimated under PBLUP 
selection. Similarly, GS also allowed significant benefits in 
terms of diminishing the loss of favorable alleles as well as 
reducing homozygosity for alleles potentially associated 
to deleterious mutations.

Such results partially confirm the theoretical expecta-
tions found in Daetwyler et al. (2007) and Dekkers (2007), 
who suggested that lower levels of inbreeding could be 
achieved through the application of GS, as a result of the 
lower emphasis on family information under this strategy, 
due to the possibility of obtaining better estimates of the 
Mendelian sampling (MS) term.

The comparison between different scenarios of genetic 
architecture (scheme E2) suggests that larger advantage 
of GS over PBLUP in terms of inbreeding incidence can 
be expected under less polygenic background. The largest 
benefit for GS over PBLUP in terms of inbreeding levels 
was observed for the scenarios where a smaller number of 
QTL or QTL of larger effect were simulated. Neverthe-
less, while Bastiaansen et al. (2012) also reported lower 
incidence of inbreeding for GS when compared to PBLUP, 
these authors did not find any evidence of association 
between genetic architecture and inbreeding incidence.

When different replacement strategies were compared, 
larger genetic progress was achieved in scenarios with-
out restriction on the replacement rate, what, in practice, 
meant that a larger proportion of younger animals were 
selected. For both schemes in which replacement strate-
gies were compared (E1 and E2), a larger replacement rate 
resulted in larger benefit for PBLUP scenarios, where the 
accumulated genetic gain was about 40% larger compared 
to a situation when a fixed replacement rate of 20% was 
applied (v2 vs v1). Under GS scenarios, the advantage 
in terms of accumulated genetic gain attributable to the 
allowance of variable replacement rate was about 30%.

Conversely, the inbreeding coefficients were larger for 
most of the scenarios in which a larger replacement rate 
was applied, and noticeably larger for selection based on 
PBLUP. The larger reduction in generation intervals under 
the scenarios with no constraint on the replacement rate 
would imply in a larger increase in inbreeding levels. Gen-
eration intervals were smaller for GS scenarios than for 
PBLUP in most situations and regardless of the replace-
ment strategy.

According to Pryce et  al. (2012), selection schemes 
in which the annual increase in inbreeding is high would 
require strategies such as OCS, which can be more effective 
to manage genetic diversity. In the present study, although a 
considerable advantage was associated to a larger replace-
ment rate in terms of genetic progress, the sharp reduction 
in the generation intervals under this strategy and the conse-
quent increase in inbreeding rates draw attention for the need 
to design alternative GS schemes aiming to prevent severe 
increases in inbreeding levels, possibly considering OCS.

Genomic information was assumed to be available for 
all selection candidates in the present study. Although the 
strategic use of imputation, with genotyping of all selection 
candidates from an extremely-low density has been sug-
gested as a cost-effective strategy in swine breeding (Huang 
et al. 2012), this can be judged as a scenario still hard to be 
met in some real beef cattle populations, given the costs 
involved in genotyping and considering that extremely-
low density panels may not be feasible to apply in some 
populations, because of large effective population size and 
smaller extent of linkage disequilibrium. Previous studies 
on long-term consequences of GS also assumed all selec-
tion candidates being genotyped (e.g. Sonesson et al. 2012; 
Bastiaansen et al. 2012). Such assumption was judged to be 
suitable to allow testing the hypotheses investigated in the 
present study and making it possible to compare its results 
to those from studies carried out under similar conditions.

Performance of GS methods under different scenarios 
of genetic architecture

For the meat quality selection scheme (E2), where different 
scenarios of genetic architecture were simulated, no signifi-
cant benefit was found for variable selection methods over 
GBLUP in all time horizons considered. Especially for the 
scenario where 100 QTL were simulated, we expected larger 
accuracy for the predictions obtained with EN (Daetwyler 
et al. 2010; Clark et al. 2011).

The EN method, such as implemented in this study (i.e. 
weight for LASSO penalty close to 1), was possibly more 
sensitive to the small size of the reference population size 
in the first generations simulated. It is known that LASSO 
method selects at most as many variables as there are obser-
vations in the reference population (Zou and Hastie 2005; 
Ogutu et al. 2012). It can be expected that, in the first gener-
ations, due to the small size of the reference population, the 
number of markers selected by EN may have been smaller 
than needed to cover all QTL regions, resulting in smaller 
accuracy for EN prediction compared to PBLUP. The con-
sideration of a small weight to the ridge penalty in the EN 
predictions in the present study aimed to alleviate this prob-
lem, but it did not seem to be effective. Such hypothesis 
could be corroborated by the fact that, as the reference 
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population increased, the genetic gain accumulated under 
EN prediction was slightly larger than that under GBLUP, 
when 100 QTL were simulated. Even though the difference 
was not significant, this result would suggest some benefit 
of EN prediction in this scenario, also drawing attention for 
the limitations of attributing large weight for the LASSO 
penalty when reference populations are small.

No significant differences between EN and GBLUP were 
found in terms of inbreeding incidence, although for the trait 
under more polygenic control (E2, trait A) the inbreeding 
levels were slightly larger for EN. Bastiaansen et al. (2012) 
also reported that larger pedigree-based inbreeding coeffi-
cients were obtained under two variable selection methods 
(Bayesian regression and partial least squares), when com-
pared to GBLUP (coefficients about 10% larger), although 
differences between methods in terms of genomic inbreeding 
were not reported.

Sonesson et al. (2012) simulated a trait influenced by 
1000 QTL, which was measured on full-sibs of the selec-
tion candidates. In this situation, using a variable selection 
method (Bayes B) to compute genomic predictions did not 
result in larger genetic progress when compared to GBLUP, 
under truncation selection, while it resulted in larger IBD 
coefficient (+ 12% in the last generation simulated). Accord-
ing to these authors, this result was associated to the fact 
that variable selection methods apply larger selective 
pressure nearby QTL of larger effect, increasing the lev-
els of homozygosity in these regions (phenomenon known 
as “hitchhiking effect”, Smith and Haigh 1947) and thus 
increasing IBD coefficients. In the present study, the larger 
estimates of IBD obtained for EN in the last generations of 
a scenario with comparable genetic architecture (E2, trait A) 
would corroborate such hypothesis.

Impact of weighting on low‑frequency favorable alleles

There was no conclusive evidence in favor of the hypothesis 
that attributing more weight to favorable alleles of lower 
frequency (as applied in the definition of wGBLUP and 
wEN) would enhance long-term genetic gain, although in 
most of the scenarios using this weighting strategy tended 
to produce lower levels of inbreeding and reduced the loss 
of favorable alleles. When traits under less polygenic control 
were simulated, slightly larger genetic gain was achieved 
with wGBLUP, when compared to GBLUP at generation 
15, but such differences were not significant. Under a more 
polygenic scenario (3000 QTL), simulated by Sun and Van-
Raden (2014), the weighting strategy employed in wGBLUP 
lead to smaller accumulated genetic gain compared to an 
unweighted scenario, although these authors simulated a 
more simplistic situation, where true QTL effects (and not 
estimated marker effects) were considered in predictions.

Conversely, Jannink (2010) reported that greater long-
term genetic gain was achieved under adoption of a selection 
criterion similar to wGBLUP. Some of the explanations for 
such divergences could be related to the genetic architecture 
of the simulated traits in each case. This author simulated 
100 QTL all explaining an equal proportion of the addi-
tive variance, in a way that QTL of lower MAF had larger 
allele substitution effects. This constraint was not applied 
in the present study, what could have reduced the relative 
importance of losing favorable QTL alleles that did not con-
tribute much to the additive variance. Moreover, Jannink 
(2010) simulated bi-allelic QTL with same properties of the 
markers, suggesting that this approach may have resulted 
in higher LD between QTL and markers than in a situation 
in which they had different properties, as is the case of the 
present study.

In addition, due to the quadratic trend observed for Nlost, 
it could be expected that more pronounced differences 
between methods (e.g. GBLUP vs wGBLUP) in terms of 
loss of favorable alleles could be observed if more genera-
tions were simulated. Another point that is worth to mention 
is that the function employed to derive wGBLUP, attributing 
more weight to low-frequency favorable alleles, could have 
been ineffective to ensure optimal weighting in the simu-
lated population. Sun and VanRaden (2014) suggested new 
functions that would allow better balance between short-and 
long-term gains. Further studies are needed to investigate 
alternative weighting strategies, possibly exploring the alter-
natives proposed by Sun and VanRaden (2014), in scenarios 
mimicking beef cattle populations.

In the present study, effects of inbreeding depression were 
not simulated, what means that larger levels of inbreeding 
in a given scenario did not reflect in worsen phenotypic per-
formance. Because inbreeding coefficients under wGBLUP 
(and wEN) tended to be smaller, the benefit of weighting 
on low-frequency favorable alleles could be larger for traits 
affected by inbreeding depression. Thus, future studies could 
investigate the consequences of selection based on criteria 
similar to wGBLUP also considering some form of discount 
rate for losses due to inbreeding incidence, e.g. similarly as 
in Pryce et al. (2012).

Conclusions

GS allowed considerable long-term benefit to female repro-
duction and meat quality traits, when compared to PBLUP.

In terms of controlling inbreeding rates, larger advantage 
for GS over PBLUP was obtained for less polygenic traits.

More weight for favorable alleles of lower frequency 
tended to produce lower levels of inbreeding and to reduce 
the loss of favorable alleles in GS.
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