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Abstract

We investigate the potential bene�ts of introducing meeting points in a ride-sharing

system. With meeting points, riders can be picked up and dropped o� either at their

origin and destination or at a meeting point that is within a certain distance from their

origin or destination. The increased �exibility results in additional feasible matches

between drivers and riders, and allows a driver to be matched with multiple riders

without increasing the number of stops the driver needs to make. We design and

implement an algorithm that optimally matches drivers and riders in large-scale ride-

sharing systems with meeting points. We perform an extensive simulation study to

assess the bene�ts of meeting points. The results demonstrate that meeting points can

signi�cantly increase the number of matched participants as well as the system-wide

driving distance savings in a ride-sharing system.

1 Introduction

In ride-sharing, individuals with matching itineraries and schedules share a ride in a personal

vehicle. The driver and rider(s) typically share the associated costs (e.g. fuel, tolls, parking

fees) so that each bene�ts from the shared ride. Additionally, drivers may save time because
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they are able to use high-occupancy vehicle lanes reserved for the exclusive use of vehicles

with two or more occupants, while riders may appreciate that they do not need to drive or

even own a vehicle.

Ride-sharing can signi�cantly reduce the number of cars needed to satisfy the mobility

needs of participants and, thus, reduce congestion and other externalities related to heavy

tra�c when people rely on individual transportation to satisfy their mobility needs. It will,

at the same time, also reduce the need for parking space, which is becoming an increas-

ingly scarce and expensive commodity in most urban areas. (Congestion and parking are

interrelated as searching for parking space prolongs driving time and can thus contribute

to congestion.) Challenges related to high congestion and limited parking space arise in a

myriad of urban areas around the world. In the USA, for instance, urban congestion is an

acute problem with far-reaching consequences. It is estimated that the cost of extra time and

fuel in 498 urban areas in the USA in 2011 alone was roughly $121 billion. Congestion in the

USA is expected to grow in the foreseeable future in spite of the planned measures to curb

it [Schrank et al., 2012]. In this context, ride-sharing appears as an interesting possibility

since it may result in signi�cant e�ects without large investments.

Ride-sharing services on the market range from simple online bulletin boards to com-

plex systems that can be accessed through web and mobile applications o�ering automated

matching, routing and payment (see Furuhata et al. [2013] for an overview). In this paper,

we focus on systems that o�er automated matching of drivers and riders within an urban

area. An example of a provider o�ering such a service is Flinc (https://flinc.org). The

service provider is receiving a large number of ride-share o�ers and requests from its users.

Riders looking for ride-share opportunities need to be matched with drivers that are o�er-

ing rides and the resulting trips need to be scheduled. Time windows and other restriction

imposed by the system or the users need to be respected.

In ride-sharing, each driver has a speci�c itinerary and is willing to pick-up and drop-o�

riders en route. To accommodate the riders, the driver has to make a detour and make

extra stops. The length of the detour and the number of extra stops depend on the driver's

willingness to extend his trip time. This distinguishes genuine ride-sharing from services in

which the drivers act as de facto taxicab drivers, e.g., Uber (https://www.uber.com). The
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level of service in such systems may be higher due to the �exibility of the drivers, but this

comes at a higher cost to the rider compared to genuine ride-sharing. With the exception of

shared taxi services, such services also do not necessarily reduce congestion.

Limited �exibility in drivers' itineraries and schedules is a major challenge in ride-sharing.

It may result in many drivers and riders not �nding a match. In the simulations performed

by Agatz et al. [2011], approximately 15 to 40 percent of riders and drivers remained un-

matched (depending on the setting of the simulation). The simulations also showed that

the ratio of matched participants predominantly depends on the distribution density of an-

nounced trips in space and time. Settings with very low density (e.g., recently launched

ride-sharing services, o�-peak hours, rural areas) su�er from the so-called chicken-and-egg

problem [Furuhata et al., 2013], where demand for trips is not su�cient to attract su�cient

supply and vice-versa. Such a situation may lead to stagnation or implosion in the number

of users. To overcome such a situation the ride-sharing system has to be designed well and

must employ an e�ective matching algorithm, so as to ensure that the largest possible num-

ber of participants is matched and the system has satis�ed users. Only users that have been

successfully matched and have had a positive experience can be expected to continue to use

the service and promote the ride-sharing service to others. Thus, a high matching rate is a

critical success factor for a ride-sharing service.

That being said, ride-sharing systems also have to minimize the e�ort and inconvenience

for the participants. One way to achieve this is to restrict the number of riders per trip to at

most one rider. In a single rider match, at most one pickup and drop o� take place during a

driver's trip. This minimizes the inconvenience of the driver and also makes it easy to divide

the trip costs between rider and driver.

In this paper, we investigate bene�ts of introducing meeting points to take advantage

of any �exibility on the part of the riders. Meeting points allow the construction of routes

with smaller detours, while maintaining a satisfactory level of service for the riders. Riders

may be picked up and dropped o� at meeting points that are within an acceptable distance

from their origin or destination. (A pick up or drop o� can, of course, still take place at the

rider's origin and destination as well.) By exploiting the rider �exibility, more matches may

be found. Furthermore, meeting points allow a driver to be matched with multiple riders
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without increasing the number of stops on the driver's trip.

Consider the example depicted in Figure 1 with driver d1 and rider r1 and two meeting

points m1 and m2, where the number above an arc represents the time it takes to travel

between the nodes, and where the driver is willing to accept an increase in trip time of at

most �ve minutes. Without the use of meeting points, a match between d1 and r1 is not

r1 r1

m1 m2

d1 d1

3 3

15

14

15

2.5 2.5

5 5

Figure 1: Rider (grey) and Driver (white) traveling from Origin (circle) to Destination
(square) via Meeting Points

feasible because the required increase in trip time (6 min) exceeds the driver's limit. If,

however, the rider is willing to walk 5 minutes to and from a meeting point, a feasible match

between d1 and r1 is possible, because d1 has to make a smaller detour. (The rider's trip will

be 9 minutes longer than if he drove by himself, but he will loose no time �nding a parking

space and he will not be using his own car.)

Note that the savings in driving distance in the example above is about 37% (where

the savings in driving distance is obtained by comparing the driving distance when both

participants drive by themselves to the driving distance when they are matched, i.e., 30

versus 19 in the example above). It is customary to consider a match distance feasible if

there is a positive driving distance savings.

Meeting points can also result in more matches because they allow a driver to be matched

with multiple riders without extra stops. Consider the example depicted in Figure 2 with

driver d1 and riders r1 and r2 and two meeting points m1 and m2, where the number above

an arc represents the distance between the nodes. (As before, the dashed lines represent

walking of riders to and from meeting points.) None of the matches between d1 and r1 and

d1 and r2 (with or without a pickup at m1 and/or a drop-o� at m2) leads to positive savings
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Figure 2: Riders (grey) and Driver (white) traveling from Origin (circle) to Destination
(square) via Meeting Points

in driving distance. However, a multi-rider match between driver d1 and riders r1 and r2

(with a pickup at m1 and a drop-o� at m2) does lead to positive driving distance savings

(15 versus 13).

In the setting we consider in this paper, a driver can be matched with multiple riders,

as long as the capacity of his vehicle is not exceeded, and the riders are picked up at the

same meeting point at the same time and dropped o� at the same meeting point (at the

same time). Allowing only one pickup and one drop-o� point per shared ride ensures that

the trips are easy to execute and minimize the inconvenience for the driver; additional stops

and detours increase the inconvenience for participants and the risk of complications arising

during execution. Multi-rider matches may have other, harder to quantify, bene�ts: waiting

for a ride and sharing a ride as a group may increase the feeling of safety and social cohesion

and might thereby improve the image of ride-sharing.

Meeting points are an integral component of some existing ride-sharing systems, e.g.,

slugging or casual carpooling, where passengers form (slug) lines at speci�c locations and

wait for rides (the incentive to pick up riders is typically that it allows drivers to use faster

HOV lanes and/or share the cost of tolls), and long-distance ride-sharing, which tends to

be scheduled in advance and has less restrictive requirements regarding meeting place and

time. The locations that can be used for meeting points varies by region or country.

For instance, in Slovenia, bus stops and gas stations are commonly used as meeting

points. However, the use of bus stops may be perceived as unsafe and inappropriate in

many parts of the US (or may even be illegal). It is conceivable that fast food restaurants

5



or co�ee shops can act as meeting points in the US, because they are frequented regularly

by commuters. Park & ride facilities and entrances to well-known institutions/buildings are

additional options.

In this paper, we discuss the design and implementation of an algorithm that optimally

matches drivers and riders (based on an extension of the traditional bipartite matching

formulation) in large-scale ride-sharing systems with meeting points. We perform an exten-

sive simulation study (based on real-world tra�c patterns) to assess the bene�ts of meeting

points. The results demonstrate that meeting points can signi�cantly increase the number

of matched participants as well as the system-wide driving distance savings.

The paper is organized as follows. In Section 2, we provide an overview of related

literature and explain how we build upon it. In Section 3, we introduce notation and a

mathematical model of the ride-share optimization problem with meeting points. In Section

4, we detail the solution approach we have developed for this optimization problem. In

Section 5, we motivate and discuss the simulation study we have conducted and we present

and analyze its results. Finally, in Section 6, we summarize the key �ndings and suggest

directions for future research.

2 Literature

Ride-sharing is receiving more and more attention from the transportation optimization

community. Agatz et al. [2012] and Furuhata et al. [2013] provide an overview and di�erent

classi�cations of the various types of ride-sharing systems encountered in practice. Important

dimensions include the dynamics of the system and the number of riders and drivers that are

involved in a ride-share match. The advance of internet-enabled mobile technology makes it

possible to consider more dynamic ride-sharing systems in which riders and drivers announce

non-recurring trips on short notice [Agatz et al., 2011, Amey, 2011].

Agatz et al. [2011] represent the single rider, single driver ride-share matching problem

by a max-weight bipartite matching problem. They explore di�erent approaches to match

drivers and riders in real-time and investigate the impact of di�erent service characteristics

of the system. Their study shows that the success of a ride-sharing system strongly depends

6



on the participation density, e.g., the number of participants per square mile, and that a

minimum participation density is required to ensure a stable system (in which participants

do not leave the system because they repeatedly fail to �nd a match). Wang et al. [2014]

extend this analysis by investigating the trade-o� between matchings that are optimal for

the system as a whole and matchings that are optimal for each of the participants in the

system. They introduce the concept of stable matches in the ride-sharing setting. Lee and

Savelsbergh [2014] consider the employment of a small number of dedicated drivers to serve

riders that would otherwise remain unmatched. The aim is to guarantee a certain service

level (i.e., fraction of riders that is matched) thereby ensuring a stable system.

Another way to increase the number of riders that �nd a match is to allow riders to

transfer between di�erent drivers, i.e., allowing a rider to travel with more than one driver

to reach his destination [Agatz et al., 2012]. Herbawi and Weber [2011] consider a multi-hop

ride-sharing problem in which drivers do not deviate from their routes and time schedules.

As such, the drivers' ride-share o�ers form the transportation network for the rider, who has

to �nd a route that minimizes costs, time, and number of transfers. Drews and Luxen [2013]

extend this work by also allowing reasonable detours and time deviations for the drivers.

While rider transfers might be acceptable to a driver, they are inconvenient for a rider as

they may involve waiting times between rides and they increase the risk of anything going

wrong during execution.

In contrast to the existing work, we explicitly consider a setting in which riders are willing

to walk to and from meeting points to facilitate easy pick up and drop o�. We are aware of

only one paper that considers meeting points in a related context. Kaan and Olinick [2013]

consider vanpooling, in which up to 15 people share a van to travel to a common location.

The commuters in the vanpool drive to a park-and-ride location and then ride together to

a �nal location. The authors consider the problem of assigning commuters and vans to

park-and-ride locations, and present a mixed integer programming formulation and several

heuristics for its solution. The main di�erence with our setting is that, in the end, the vans

provide scheduled transportation. The setting is also simpler in that all riders travel to one

common �nal location.

The use of pickup locations is not unique to the ride-share setting. It is prevalent in
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the school bus transportation in which students in urban areas are assumed to walk to a

bus stop from their homes to take the bus to school. The selection of bus stops and the

assignment of students to bus stops is a subproblem in the school bus routing problem that

is related to our work. While several papers address the school bus routing problem, only

few papers explicitly consider the selection of bus stops [Park and Kim, 2010]. Some recent

papers have integrated the selection of bus stops with the bus route generation using both

exact [Riera-Ledesma and Salazar-González, 2013] and heuristic methods [Schittekat et al.,

2013].

Ride-sharing, especially when incorporating meeting points, requires the coordination of

rider and driver itineraries. This is related to the area of routing problems with synchro-

nization constraints. This line of research deals primarily with vehicle routing problems in

which more than one vehicle may be required to ful�ll certain tasks. For a recent review,

see Drexl [2012]. In general, vehicle routing problems with synchronization constraints are

di�cult to solve so heuristics are most commonly used, see for example Goel and Meisel

[2013] and Meisel and Kopfer [2014].

The ride-sharing setting we consider has a simple routing structure, because we allow

the drivers to make only one pickup and one drop-o�. The number of feasible driver-rider

matches is also relatively small due to capacity and time constraints. As a consequence, we

can enumerate the feasible routes and represent the problem of optimally routing drivers as

a matching problem. This allows us to use an exact approach to solve even large instances

of the ride-share problem to optimality.

3 Problem De�nition

We are provided with a set of trip announcements S. With each trip announcement s ∈ S are

associated, an origin location os and a destination location ds as well as an earliest departure

time es and a latest arrival time ls. We assume the departure times of participants are

somewhat �exible so that the di�erence ls − es is greater than the travel time from origin

to destination. The set of announcements S can be partitioned into D ⊂ S, the set of trip

announcements by the drivers, and R ⊂ S, the set of trip announcements by the riders.
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Each driver i ∈ D also speci�es a maximum trip duration Ti, which implies the extra time

the driver has available to accommodate a ride-share, and a vehicle capacity Ci, which gives

the maximum number of people the driver's vehicle can accommodate. Each rider j ∈ R

also speci�es a maximum distance dmax
j that he is willing to walk to and from a meeting

point. (For presentational convenience, we will sometimes also use oi and di to indicate the

origin and destination of a driver i and oj and dj to indicate the origin and destination of a

rider j.)

We denote the distance from location i to j with dij and the travel time between the

two locations by tij. Furthermore, we denote the set of meeting point locations that can be

reached by at least one rider by M . The set of feasible pickup meeting points for rider j is

Mp
j :=

{
k ∈ M | dkoj ≤ mj

}
, and the set of feasible drop-o� meeting points for rider j is

Md
j :=

{
k ∈ M | dkdj ≤ mj

}
. We introduce the concept of a meeting point arc a to denote

a combination of a pickup point and a drop-o� point. The set of feasible meeting point arcs

for rider j is Aj :=
{
(k, l) | k ∈ oj ∪Mp

j , l ∈ dj ∪Md
j

}
. Thus, each rider j can be picked up

at his origin oj or a meeting point in Mp
j and dropped o� at his destination dj or a meeting

point in Md
j . Let A =

⋃
j∈RAj. Finally, we denote the service time at each meeting point

m ∈M by τm, i.e., the time needed to get into and out of the vehicle at a pick up or drop-o�

meeting point.

3.1 De�nition of a Feasible Match

A match is de�ned as a combination of driver i ∈ D, a set of riders J ⊂ R, and a meeting

point arc a ∈ A. Hence, it can be de�ned by a triplet (i, J, a). Note that since we do

not allow more than one pick-up and one drop-o� in a match, in a feasible match (i, J, a),

we must have a ∈
⋂

j∈J Aj. Furthermore, a feasible match implies a unique route for the

driver and for every rider. A feasible match (i, J, a) must also have |J | + 1 6 Ci and must

satisfy the time constraints of the participants. A match is time feasible if it is possible for

all participants to traverse the meeting point arc a at the same time, while respecting the

earliest departure times from their origins and the latest arrival times at their destinations

and, for the driver, the maximum ride time.

In order to check the time feasibility of a match (i, J, a), with a = (k, l), we construct an
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implied time window at k for each participant in the match. We denote the implied time

window for a participant p (either i or j ∈ J) at k by [ekp, l
k
p ], where e

k
p = ep + topk and

lkp = lp − (τk + tkl + τl + tldp). To check the time feasibility of the match, the intersection of

the implied time windows has to be non-empty, which implies that we must have

max
(
max
j∈J

ekj , e
k
i

)
≤ min

(
min
j∈J

lkj , l
k
i

)
(1)

When the above inequality holds,max(maxj∈J e
k
j , e

k
i ) is the earliest time, andmin(minj∈J l

k
j , l

k
i )

is the latest time, at which the shared ride can depart from meeting point k. The maximum

ride time for the driver is satis�ed, if

toik + τk + tkl + τl + tldi ≤ Ti. (2)

A match between driver i and riders in J on meeting point arc a = (k, l) has an associated

driving distance savings of σ(i,J,a):

σ(i,J,(k,l)) = doidi −
(
doik + dkl + dldi

)
+
∑
j∈J

(
dojdj − (dojk + dldj)

)
. (3)

A match (i, J, a) is considered distance feasible when σ(i,J,a) > 0. Note the walking distances

are taken into account in (3) to break ties when two or more arcs have similar savings.

3.2 Matching Problem

The single rider, single driver ride-share matching problem can naturally be formulated as

a maximum weight bipartite matching problem (Agatz et al. [2011]). We extend this for-

mulation to the single driver, multiple rider ride-share matching problem. We note that

the formulation introduced below can represent a variety of ride-share matching problems

in which a driver can be matched with multiple riders, because the identi�cation of feasible

matches and the associated routing is handled in a subproblem. By accommodating single

driver, multiple riders matches the formulation becomes a maximum weight bipartite match-

ing problem with side constraints, which, in theory, is no longer solvable in polynomial time,
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but still solves extremely fast in practice. We note too that maximizing system-wide driving

distance savings does not guarantee that a maximum number of participants is matched.

Consider, for example, the situation depicted in Figure 3 with drivers d1 and d2 and riders

r1 and r2 and two meeting points m1 and m2, where the number above an arc represents

the distance between the nodes.

r1 r1

r2 r2

d1 d1

d2 d2

m1 m2

1 1

1 1

4

4

4

4

4

Figure 3: Riders (grey) and Drivers (white) traveling from Origin (circle) to Destination
(square) via Meeting Points

The maximum driving distance savings is achieved when either d1 or d2 is matched with

both r1 and r2 (and, thus, one of the drivers will not be matched). By matching driver d1

with rider 1 and driver d2 with rider r2, all system participants are matched, but with lower

driving distance savings (6 vs 4).

As in Agatz et al. [2011], we create a node for each driver i ∈ D and each rider j ∈ R

and an edge connecting node i and j if there is a feasible match between driver i and rider j.

In addition, we introduce nodes that represent a set of riders J , e.g., a pair of riders, a triple

of riders, etc., and introduce an edge connecting driver i ∈ D and set of riders J , if there is

a feasible match between driver i and the set of riders in J . Each edge e has two weights

associated with it: number of participants in the match νe, and maximum driving distance

savings σe. Note that a particular combination of a driver and a set of riders may have more

than one feasible match because there may exist more than one feasible meeting point arc.

However, we are clearly only interested in the one with the highest driving distance savings.

Let E represent the set of all edges in the bipartite graph and let the binary decision

variable xe for edge e ∈ E indicate whether the edge is in an optimal matching (xe = 1)

or not (xe = 0). Furthermore, let Ei and Ej represent the set of edges in E associated
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with driver i and rider j, respectively. Then, the single driver, multiple riders ride-share

matching problem with the objective of maximizing the number of matched participants can

be formulated as the following integer program:

max z1 =
∑
e∈E

νexe (4)

subject to

∑
e∈Ei

xe ≤ 1 ∀i ∈ D, (5)

∑
e∈Ej

xe ≤ 1 ∀j ∈ R, (6)

xe ∈ {0, 1} ∀e ∈ E. (7)

Objective function (4) maximizes the number of matched participants. Constraints (5) and

(6) assure that each driver and each rider is only included in at most one match in an optimal

matching, respectively.

To obtain a matching that maximizes the driving distance savings, the objective should

be replaced by

max z2 =
∑
e∈E

σexe. (8)

Since both objectives, i.e., maximizing the number of matches and maximizing the driv-

ing distance savings, are relevant in the ride-sharing context, we take both objectives into

account in a hierarchical fashion, where we consider z1 as the primary objective and z2 as

the secondary objective. We �rst solve (4) subject to (5) - (7). Let z∗1 be the number of

matched participants. We then solve (8) subject to (5) - (7) plus the additional constraint∑
e∈E νexe ≥ z∗1 .

Finally, we observe that it is possible to extend the model with a set of participants with

�exible roles F similar to Agatz et al. [2011]. The nodes corresponding to �exible participants

may appear on either side of the bipartition, but can never be connected with an edge. The
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model can be extended by introducing sets Ef representing edges in E associated with �exible

participants and adding another set of constraints
∑

e∈Ef
xe ≤ 1, ∀f ∈ F .

4 Solution Approach

When the number of participants and of meeting points is large, it can become computa-

tionally prohibitive to determine the time and cost feasible single matches (especially since

multi-rider matches have to be considered as well). Therefore, we have implemented this

component of the solution approach carefully and e�ciently. For expository purposes, we

assume that the locations are in a Euclidean plane, that distances are Euclidean, and that

traveling (either walking or driving) occurs at a constant speed. However, most of these

assumptions can relatively easily be relaxed so as to cover more realistic settings.

4.1 Determining Feasible Meeting Points for a Rider

We store the set of meeting points in a k − d tree (Bentley [1990]). K − d trees support

Euclidean distance nearest neighbor search, n nearest neighbors search, and �xed-radius near

neighbor search in logarithmic time. We use the k−d tree to e�ciently �nd, for each rider j,

the meeting points within a radius dmax
j from the rider's origin oj and the rider's destination

dj.

4.2 Determining Time and Cost Feasible Matches

Our approach for determining time and cost feasible matches critically depends on the fol-

lowing observation.

Observation 1. A match between a driver i and a set of riders J ⊆ R with |J | ≥ 2 is time

feasible if and only if the match between driver i and subset of riders J ′ ⊆ J is time feasible

for all J ′ ⊆ J .

Hence, for a match of one driver and two riders to be time feasible, the match of the

driver with each of these two riders must be time feasible as well. Similarly, for a match
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of one driver and three riders to be time feasible, the match of the driver with each of the

possible pairs of riders must be time feasible as well. And so forth.

It is not necessarily the case that in a distance feasible match between one driver and

two riders, the matches between the driver and the individual riders are distance feasible as

well (recall Figure 2). In fact, one of the major bene�ts of meeting points is that this does

not have to be the case.

4.2.1 A Basic Algorithm

The basic algorithm considers drivers one by one and �nds all time and cost feasible matches

for that driver. A straightforward enumeration algorithm with run time complexity O(nmk)

�nds all feasible single-rider matches, where n is the number of drivers, m is the number of

riders, and k is the average number of feasible meeting point arcs per rider.

It follows from Observation 1 that only riders that could feasibly be matched with a

driver have to be considered when constructing matches with two riders for that driver.

Furthermore, we only need to start from pairs of riders that could feasibly be matched with

a driver when constructing matches with three riders for that driver, and so forth. This

realization is important because, typically, a driver can be feasibly matched with only a

small fraction of the riders. Furthermore, not all pairs of feasible single-rider matches result

in feasible two-rider matches, etc. This greatly reduces the number of combinations of riders

that have to be considered when determining all feasible matches for a driver.

We thus construct feasible matches for a driver i recursively. We �rst �nd all feasible

matches involving only one rider, then �nd all matches involving two riders, etc., up to the

available capacity Ci. If a time and distance feasible match is found, an edge e is added to

the ride-share matching problem with associated coe�cients σe and νe.

4.2.2 A Re�ned Algorithm

The basic algorithm presented in the last section is asymptotically optimal, because all

matches can theoretical be feasible. However, signi�cantly better practical performance can

be achieved with a re�ned algorithm that exploits the structure of the problem and the
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characteristics of an instance. The re�ned algorithm uses the same recursive approach, but

introduces a number of re�nements aimed at reducing the number of driver, rider pairs that

are (fully) evaluated. We provide an outline of the algorithm in Appendix A.

Rider time windows are stored in a memory structure, which allows us to �nd the riders

with time windows that overlap with the time window of a driver in sub-linear time. We

have further enhanced this re�nement by developing a method that reduces the size of the

time windows stored in the memory structure by considering the minimum required overlap

in the time window of a rider and a driver (related to the time a driver and a rider will spend

travelling together in a feasible match). The details are given in Appendix B.

Next, we use the locations of the origin and destination and the time window of a driver

and a rider to recognize that there cannot be a feasible match without considering meeting

point arcs explicitly. The idea is similar to the logic employed to determine the feasibility

of a match (i, J, a), but rather than using a meeting point arc, we calculate an implied time

window considering origin and destination information only - not the actual pickup and

drop-o� points. The implied time window for the driver is calculated assuming that the

rider is picked up and dropped o� on the boundary of his walking range, i.e., on the two

circles around oj and dj in Figure 4.

tojdj − 2tmax
j

toioj − tmax
j tdjdi − tmax

jtoidi

oj dj

oi di

Figure 4: Detecting infeasibility of a match between driver i and rider j without considering
meeting point arcs

Furthermore, we assume that the rider travels to the boundary of his walking range at

driving speed. If there is no feasible match under that assumption, then there is no feasible

match when the rider is walking.

Let tmax
j denote the time needed to drive distance dmax

j , which is the longest distance a

rider is willing to walk to and from a meeting point. Driver i cannot pick up rider j before
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e′i = ei+(toioj−tmax
j ) and he cannot pick up rider j after l′i = li−tojdj−tdidj+3tmax

j if he wishes

to arrive to di in time. We can assume rider j cannot be picked up before e′j = ej + t
max
j and

after l′j = lj − tojdj + tmax
j . If max(e′j, e

′
i) > min(l′j, l

′
i), then there cannot be a feasible match

between driver i and rider j. From Figure 4, it is also clear that there cannot be a feasible

match between driver i and rider j if (toioj − tmax
j ) + (tojdj − 2tmax

j ) + (tdjdi − tmax
j ) > Ti.

Only when the two checks above indicate that there may be a feasible match between a

driver i and a rider j, we examine the matches of driver i and rider j for each meeting point

arc (k, l) where k ∈Mp
j and l ∈Md

j . If a time and distance feasible match is found, an edge

e is added to the ride-share matching problem with associated coe�cients σe and νe.

The last re�nement is based on the following observation.

Observation 2. A match between a driver and a set of riders can only be feasible if the

driver and the riders have at least one meeting point arc in common.

In the basic algorithm, we store, for each feasible match of k riders, all time feasible

meeting point arcs, i.e., not only the time feasible meeting point arc that resulted in the

maximum driving distance savings. These meeting points arcs are used to construct matches

with k + 1 riders. Observation 2 shows that only meeting point arcs that are time feasible

for at least k + 1 riders are relevant. Hence, to construct matches with k + 1 riders, we

iterate over the meeting point arcs with feasible matches involving k riders, rather than over

the feasible matches with k riders, and construct all feasible matches with k + 1 riders on

a meeting point arc, using the riders that are part of k-rider matches on that particular

meeting point arc.

5 A Computational Study

In this section, we report the results of an extensive computational study conducted to assess

the bene�ts of the introduction of meeting points in di�erent ride-sharing environments.

16



5.1 Generation of Ride-share Data Sets

Similar to Agatz (2011), we use the travel demand model for the metropolitan Atlanta region,

developed by the Atlanta Regional Commission, as the basis for generating daily vehicle

trips between di�erent travel analysis zones (TAZs) within the region. For a subset of TAZs

within the city of Atlanta, we generate �ve random streams of trips as follows. Each TAZ is

a possible origin and a possible destination for a trip. For each origin-destination pair, we

calculate an expected number of daily trip announcements by multiplying the average number

of single-occupancy home-based work vehicle trips with a �xed percentage of vehicle-trips

that we assume might consider participating in a ride-sharing system. Then for each pair, we

determine the number of actual trip announcements using a Poisson random variable with

expected value equal to the computed expected number of trips. For each trip announcement,

we generate the origin and destination points within a �xed radius of 1.1 mile around the

center of the travel analysis zone based on a uniform distribution. Each trip announcement is

equally likely to be a rider announcement or a driver announcement. The minimum distance

of a ride-share trip is 4 miles, i.e. we only consider trips between origins and destinations

that are at least 4 miles apart. For each TAZ, we also randomly generate 4 meeting points

around its center within a �xed radius of 1.1 mile.

Trip timing information is not available from the travel demand model. Therefore, we

create the time windows for each announcement as follows. For each trip, we draw the earliest

departure time from a normal distribution with mean 7:30 a.m. and standard deviation of

half an hour to model a typical travel peak and calculate the earliest arrival time by adding

the direct travel time to the earliest departure time. Subsequently, we calculate the latest

departure (arrival) time by adding �xed time �exibility to the earliest departure (arrival)

time. We assume the �xed time �exibility to be 30 minutes for all participants. The di�erence

between the latest arrival time and earliest departure time is hence equal to the sum of the

direct travel time from origin to destination and the �xed time �exibility. (Note that this

means that we are investigating a morning commute.)

The travel distances between all points are computed using the haversine formula with a

30% uplift. To compute travel times, we assume a driving speed of 15 miles per hour (we are
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considering an urban area). For each driver i ∈ D, we de�ne a limit on the total duration of

his trip Ti = toi,di+min(4+cflex ·toi,di , 20). Coe�cient cflex is the driver �exibility parameter

- our assumption about how the willingness of the drivers to make detours depends on their

original trip duration (�xed at 0.25 in base case - see below). The maximum trip duration

for driver i is thus de�ned as his original trip duration plus an additional time that positively

depends on his original trip duration. We assume that each driver that wishes to participate

in ridesharing is always ready to extend his trip by at least 4 minutes, which is the time

associated with one pick-up and one drop-o� operation. We also assume that drivers are not

willing to extend their original trips by more than 20 minutes, irrespective of their original

trip length.

We assume a walking speed of 4 feet per second (LaPlante and Kaese, 2007). The

maximum walking distance for the rider to or from a meeting point is 0.5 miles, which

correspond to 11 minutes of walking at this speed. In addition, we impose the constraint

that the total walk time cannot exceed the total time in a ride-share trip for a rider. In other

words, the time that is spent walking in a trip must not exceed the time that is spent in

the vehicle. This constraint can be manipulated by adjusting the rider �exibility parameter

(assumed 1.0) which is the maximum ratio of the travel time to and from a meeting point

to the time spent in the shared ride. (This additional restriction is enforced when searching

for feasible meeting point arcs in the k − d tree for each rider j ∈ R.)

A rider may be picked up at a meeting point or at his origin and dropped o� at a meeting

point or at his destination. A match involving two or more riders always starts and ends at

a meeting point. Irrespective of the pickup or drop-o� location, we always assume a service

time per stop of 2 minutes. Each driver has a capacity of 3 spare seats. We limit ourselves

to matches with no more than three riders, since this is the number of free seats in a typical

sedan if the driver is driving alone. Also, back benches in most personal vehicles typically

cannot accommodate three adults without compromising comfort.

The characteristics of the base case instances are summarized in Table 1.
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Table 1: Characteristics of the base case instances.

Trip pattern: suburb to center
Avg. number of participants: 2849.4
Avg. number of drivers: 1425.8
Avg. number of riders: 1423.6
Avg. trip distance for driver: 7.58 mi
Avg. trip distance for rider: 7.64 mi
Avg. trip duration for driver: 30.34 min
Avg. trip duration for rider: 30.56 min
Max. distance to a meeting point: 0.5 mi
Travel (walk) speed to/from meeting point: 4 ft/s
Max. walk time to meeting point: 11 min
Driving speed: 15 mi/h
Rider �exibility parameter: 1.0
Driver �exibility parameter: 0.25
Maximum �exibility of driver: 20 min
Vehicle capacity: 3 seats

5.2 Performance

Both the algorithm for generating feasible matches and the simulation framework are imple-

mented in Python 2.7. CPLEX 12.6 is used for solving matching problems.

The base case instances solve in less than 150 seconds on a quad-core i5-3360M machine

with 4GB of RAM. CPLEX solves the two integer programs (recall that we employ hierar-

chical optimization) in a few seconds in all settings; virtually all the time for these instances

is spent generating feasible matches. Instances with increased rider �exibility (Section 5.5)

and increased participant density (Section 5.6) take more time, up to 10 minutes in a few

cases, because the number of feasible matches increases.

These run times suggest that the algorithm is appropriate for use in practice. The

instances used in our computational study represent trip announcements accumulated over

several hours. In practice, in a dynamic setting, instances with a much smaller set of driver

and rider announcements have to be solved at any one time. Furthermore, instead of having

to generate a set of matches from scratch for each optimization, the existing set of matches

has to be updated given any new information that has become available (e.g., matches

involving certain riders and drivers have to be deleted and new matches involving riders and

drivers that have just announced their trips have to be generated). This will be a matter of
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seconds rather than minutes. Performance wise, we expect to see similar results in a dynamic

setting (albeit somewhat worse). For an environment without meeting points, Wang et al.

[2014] have shown that the gap between a dynamic rolling horizon solution and a static

benchmark is quite small. The gap will likely increase somewhat in an environment with

meeting points, because some of the matches have to be committed to earlier (i.e., at the

time that the rider has to start walking towards the meeting point).

5.3 Experiments

The main aim of this research is to analyze and quantify the bene�ts that meeting points can

bring to a ride-sharing system. The solution approach that has been implemented provides

a good basis for this, because it not only provides an optimal set of matches (for di�erent

objectives), but also furnishes the set of all feasible matches. We use the instance data and

the set of feasible matches to compute and evaluate a number of metrics that provide insight

into the quality of the optimal matching. In all the experiments, we either use the base

case setting or a setting in which one of the characteristics is changed in order to assess the

sensitivity of an optimal matching to this characteristic.

We evaluate and compare solutions using the following metrics: (1) the matching rate

for participants, i.e., the fraction of participants that are matched, (2) the matching rate

for drivers, i.e., the fraction of drivers that are matched, (3) the matching rate for riders,

i.e., the fraction of riders that are matched, (4) the mileage savings, i.e., the relative mileage

savings � system-wide vehicle-miles savings as a fraction of system-wide vehicle-miles when

all participants drive alone, (5) the driver trip time increase, i.e., the average relative increase

in the trip time of a driver � driver trip time increase as a fraction of original trip time, (6)

the rider trip time increase, i.e., the average relative increase in the trip time of a rider �

rider trip time increase as a fraction of original trip time, and (7) the walking time, i.e., the

average walking time for a matched rider with a match that involves at least one meeting

point.
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5.4 Bene�ts of Meeting Points

As mentioned above, this research focuses on analyzing and quantifying the bene�ts of

meeting points in a ride-sharing system. In Table 2, we compare the solution for the base

case setting without meeting points to the solutions for the base case settings with 1,2 and

4 meetings points per TAZ, averaged over 5 randomly generated instances. To gain further

insight, we also report statistics for two additional settings: in the �rst setting (labeled 4*),

there are 4 meeting points per TAZ, but only single rider � single driver matches are allowed,

and in the second setting (labeled 4**), there are 4 meeting points per TAZ, but only rider �

driver matches using the closest meeting point to a rider's origin and destination are allowed.

This re�ects a setting in which the riders specify a particular meeting point upfront.

Table 2: Results for di�erent numbers of meeting points and types of matches.

0 1 2 4 4* 4**

System:

Matching rate (%) 68.00 71.14 72.90 74.83 74.13 69.71
Mileage savings (%) 27.39 28.36 28.93 29.63 29.24 27.59
Drivers:

Matching rate (%) 67.96 70.93 72.45 74.08 74.08 69.65
Trip time increase (%) 25.45 25.98 26.31 26.41 26.19 25.77
Riders:

Matching rate (%) 68.11 71.43 73.43 75.65 74.26 69.84
Trip time increase (%) 13.09 19.27 22.74 26.54 16.43 16.42
Walk time (min:sec) - 8:06 8:28 8:56 8:45 5:06

We see that the introduction of meeting points results in a substantial increase in the

number of participants matched (our primary objective) as well as in the mileage savings (our

secondary objective). The matching rate increases by 6.8% when there are 4 meeting points

per TAZ. The matching rate increase is slightly larger for riders than for drivers, because of

matches involving more than one rider. The average trip time for matched drivers increases

less than one percent (from 25.45% to 26.41%), but, as expected, the average trip time

for matched riders increases noticeably, by slightly more than 12 percent (from 13.09% to

26.54%). This increase is due to the walking that is required for certain riders to or/and

from a meeting point; on average the total walking time is between 8 and 9 minutes, which

corresponds to a distance of about 0.4 miles. Riders with a match involving a pickup meeting
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point need to plan and execute their trips more carefully so as to ensure that they arrive

at the meeting point in time. This may be considered an inconvenience, but, on the other

hand, the service level (in terms of the chance of being matched) improves signi�cantly. The

results also suggest that most of the bene�ts can be achieved with single rider � single driver

matches (4*) and that it is essential to consider all meeting points within range of a rider's

origin or destination (4**).

Figure 5 shows the number of single, double, and triple rider matches in the optimal

solution for di�erent numbers of meeting points. We see that the number of participants

0 1 2 4 4* 4**
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Figure 5: Number of single, double, and triple matches for di�erent numbers of meeting
points.

in matches with two or three riders is quite small, 2.5% and 0.2%, respectively, of the total

number of matched participants when there are 4 meeting points per TAZ. This suggests

that the primary bene�t of the introduction of meeting points is an increase in the number of

single rider � single driver matching opportunities (rather than being able to create multiple

rider � single driver matches). However, to some extent, this result may be a consequence

of our choice of objective hierarchy: maximize the number of matched participants followed

by maximizing the mileage savings. When the number of drivers and riders in the system

is roughly the same (as in our base case instances), it is more desirable to have single rider

� single driver matches. That is, if it is possible to match two riders with the same driver,

but it is also possible to match the two riders with di�erent drivers, then the latter option

is preferred as it results in four matched participants while the former results in only three

matched participants. We take a closer look at the impact of the choice of objective hierarchy
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in Section 5.7.

Next, we examine the use of meeting points in more detail. In Figure 6, we show how

many of the matches in the optimal solution use two meeting points, only a pick-up meeting

point, only a drop-o� meeting point, or no meeting points at all. As expected, the fraction

0 1 2 4 4* 4**
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Figure 6: Use of meeting points in matches for di�erent numbers of meeting points.

of matches involving meeting points increases as the number of meeting points per TAZ

increases. The fact that the fraction of matches that use only a drop-o� point is much larger

than the fraction of matches that use only a pickup point is a consequence of the fact that

the instances represent trips during a morning commute with destinations mostly in the

center of Metro Atlanta, which has a higher concentration of TAZs (each covering a smaller

geographic area) and consequently a higher concentration of meeting points.

Table 3 provides further information regarding the matches in an optimal solution.

Speci�cally, we report the fraction of matches in the optimal solution that did not involve a

meeting point, the fraction of matches in the optimal solution for which the mileage savings

are higher because of the use of meeting points, and the fraction of matches in the optimal

solution that would have been infeasible if it were not for the use of meeting points. For the

latter set, we also identify the reason(s) that the use of meeting points resulted in a feasible

match, i.e., the driver detour would have been infeasible without the use of meeting points,

the participants' time windows would have been incompatible without the use of meeting

points, the distance savings would have been negative without the use of meeting points.
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Table 3: Charateristics of the matchings in the optimal solution in terms of their use of
meeting points for di�erent numbers of meeting points.

0 1 2 4 4* 4**

No meeting points used (%) 100.00 73.31 60.38 47.57 48.72 76.98
Higher mileage savings (%) - 23.26 35.13 47.77 47.45 20.17
Feasible because of meeting points (%) - 12.75 19.40 25.30 24.75 7.47

- Detour became feasible (%) - 11.89 18.14 23.41 22.75 6.77

- Time windows became feasible (%) - 1.58 2.17 3.20 3.23 0.84

- Mileage savings became positive (%) - - - - - -

Note that a match can be counted in several categories, e.g., a match that is feasible because

of the use of meeting points, could have been detour infeasible and time window infeasible.

Note that all matches involving multiple riders are (by de�nition) feasible because of the

use of meeting points and, for simplicity, all such matches are considered to have resulted in

higher mileage savings.

We observe that when there are 4 meeting points per TAZ, the fraction of matches in

the optimal solution that do not use meeting points is a little less than 50% and the fraction

of matchings that would have been infeasible without meeting points is a little more than

25%. Furthermore, the use of meeting points makes matches feasible predominantly because

it allows a smaller detour for the driver (only in a few cases, it makes rider and driver time

windows compatible).

The fact that the fraction of matches in the optimal solution that do not use meeting

points is close to 50% suggests that a more careful selection of meeting point locations may

result in larger mileage savings. (Recall that meeting points have been selected randomly

within a TAZ in these instances.)

Finally, in Table 4, we take a look at the number of additional feasible matching options

generated by the introduction of meeting points. We show the number of riders (or pairs of

riders or triples of riders) with at least one feasible match and the total number of feasible

matches. Without meeting points, approximately 90.6% of the riders have at least one

feasible match. With meeting points, this fraction increases to approximately 92.5%. We

see too that as the number of meeting points increases, the number of feasible matches

grows steadily. There are about 27.5% more feasible matches for riders when there are
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Table 4: Analysis of the number of feasible matches for di�erent numbers of meeting points.

0 1 2 4 4* 4**

Single riders with feasible match 1290.6 1302.6 1308.4 1316.0 1316.0 1302.0
Number of single rider matches 20253.0 22940.6 24297.0 25836.0 25836.0 21565.0
Pairs of riders with feasible match - 9.8 28.6 53.4 - 0.6
Number of rider pair matches - 145.4 481.2 994.6 - 9.0
Triples of riders with feasible match - - 0.8 2.4 - -
Number of triple rider matches - - 10.8 28.6 - -

4 meeting points per TAZ. Not surprisingly, the increases are even more pronounced for

matches involving pairs and triples of riders. This demonstrates that to increase the number

of multi-rider matches, it will be critical to have a large number of carefully located meeting

points.

5.5 Impact of Time Flexibility

In this section, we study the impact of the time �exibility of the participants on the per-

formance of the system and the bene�ts of meeting points. We separately vary the time

�exibility of the drivers and the riders.

In the base case, we consider a driver time �exibility of 25% of the original trip time

(cflex = 0.25). This time �exibility cflex refers to the maximum extra trip time the drivers

are willing to accept to serve one or more riders. Furthermore, all participants are assumed

to have 30 minutes of �exibility in their trip departure time. To assess the impact of the time

�exibility on the performance of a ride-sharing system, we evaluate the system performance

when the time �exibility is lower, i.e., cflex = 0.15, and when the time �exibility is higher,

i.e., cflex = 0.35. We note that extra trip time for drivers (and extra trip time for riders)

always includes the service time incurred at a pick-up and a drop-o� location. The results

of these experiments are found in Table 5.

We see that the willingness of drivers to accept a larger extra trip time has a substantial

e�ect on the matching rate and the mileage savings. We also see that the negative impact of

a decrease in time �exibility is larger than the positive impact of an increase, which suggests

that there will be diminishing returns from increasing time �exibility. We observe too that
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Table 5: E�ects of driver time �exibility.

cflex = 0.15 cflex = 0.25 cflex = 0.35
0 4 0 4 0 4

System:

Matching rate (%) 56.68 64.96 68.00 74.83 75.41 82.11

Mileage savings (%) 23.70 26.65 27.39 29.63 29.23 30.89

Drivers:

Matching rate (%) 56.66 64.27 67.96 74.08 75.36 81.19

Trip time increase (%) 19.35 20.66 25.45 26.41 30.65 32.31

Riders:

Matching rate (%) 56.77 65.71 68.11 75.65 75.54 83.11

Trip time increase (%) 13.09 25.01 13.09 26.54 13.09 27.91

Walk time (min:sec) - 8:52 - 8:56 - 9:08

the bene�t of meeting points is negatively correlated with the time �exibility of the drivers.

That is, the di�erence in participant matching rates is highest for the most constrained case

(8.28%) and smallest for the least constrained case (6.70%). This points to the fact that

meeting points are most valuable when drivers are reluctant to add extra time to their trip

(e.g., on their way to work in the morning).

In the next set of experiments, we vary the time �exibility of the riders. In particular, we

vary the travel speed and the travel range of the riders, i.e., the time it takes a rider to reach

a meeting point and the distance a rider is willing to travel to reach a meeting point. Such

an increase may be possible if riders use other modes of transportation instead of walking to

get to a meeting point, e.g. using a (folding) bike, public transport, riding with a member of

their household, etc. We increase the speed from the speed of walking (4 ft/s) to the speed

of a cyclist (12 ft/s), and we increase the allowable range for the meeting points from 0.5

(base case) to 0.75 miles. Note that we maintain the assumption that the total travel time

to and from a meeting point cannot exceed the time spent in the shared ride. We report

selected results for this experiment in Table 6.

We see that the willingness to consider more distant meeting points combined with the

ability to get to a meeting point faster than by walking can greatly increase system perfor-

mance. The matching rates are much higher and also the number of feasible double and

triple matches increases signi�cantly. It is important to observe that only increasing the

walking range results in improved system performance.
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Table 6: E�ects of rider time �exibility.

Travel speed to meeting point - Low High
Maximum distance to meeting point (mi) - 0.5 0.75 0.5 0.75
System:

Matching rate (%) 68.00 74.83 79.84 76.17 83.84

Mileage savings (%) 27.39 29.63 31.32 30.01 32.14

Drivers:

Matching rate (%) 67.96 74.08 77.72 75.14 81.5

Trip time increase (%) 25.45 26.41 28.02 26.85 27.33

Riders:

Matching rate (%) 68.11 75.65 82.02 77.26 86.22

Trip time increase (%) 13.09 26.54 38.78 16.88 21.27

Trip time to/from m. point (min:sec) - 8:56 13:13 3:11 5:56

Trip distance to/from m. point (mi) - 0.40 0.59 0.43 0.70

If we examine the structure of the optimal matchings in the most �exible scenario in more

detail, we �nd that 74.47% of the matches use meeting points, compared to 52.4% in the base

case (see Figure 6). Also, we �nd that 45.11% of these matches would be detour-infeasible

without the meeting points, compared to 23.41% in the base case (see Table 3).

These �ndings stress the importance of encouraging riders to consider more distant meet-

ing points and of encouraging drivers to accept longer detours. A ride-sharing service may

investigate the bene�ts of incentive payments to riders and drivers that are willing to be

more �exible as a way to increase the matching rate and the mileage savings.

5.6 E�ect of Trip Patterns and Density

In this section, we study the e�ect of the number of participants in the system and their trip

patterns on the system performance. Table 7 gives an overview of the characteristics of the

instances that we generated for this purpose. First, we consider a setting with twice as many

participants than in the base case (denote by 2 : 2). We also consider a setting with twice

as many riders but the same number of drivers as in the base case (denoted by 1 : 2). This

represents an environment in which the pool of ride-share participants is skewed towards

the riders, who have more to gain from participating. To study the e�ect of a di�erent trip

patterns, we create a set of instances in which participants travel along a narrow South-
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Table 7: Characteristics of instances with di�erent trip patterns and densities.

drivers : riders
1 : 1 2 : 2 1 : 2 1 : 1c

Trip pattern default default default corridor
Avg. number of participants 2849.4 5578.6 4272.4 2594.4
Avg. number of drivers 1425.8 2777.8 1425.8 1295.4
Avg. number of riders 1423.6 2800.8 2846.6 1299.0
Avg. trip distance for driver (mi) 7.58 7.60 7.58 9.36
Avg. trip distance for rider (mi) 7.64 7.62 7.64 9.35
Avg. trip duration for driver (min) 30.34 30.39 30.34 37.43
Avg. trip duration for rider (min) 30.56 30.47 30.56 37.38

North corridor in the Atlanta region. While in the base case (denoted by default) the area is

shaped like a square with trips originating in suburban areas and heading towards the urban

center, the corridor instances represent trips that occur in a narrow rectangle. To allow for

a fair comparison, the geographic area covered in the �ve corridor instances is roughly the

same as in the base case, and, similarly, the number of trips, TAZ locations, and meeting

points is roughly the same as in the base case (this setting is denoted by 1 : 1c). Table 8

presents the results for the di�erent experiments.

Table 8: E�ects of trip patterns and density.

drivers : riders
1 : 1 2 : 2 1 : 2 1 : 1c

0 4 0 4 0 4 0 4

System:

Matching rate (%) 68.00 74.83 75.02 82.91 52.40 59.75 72.16 78.26
Mileage savings (%) 27.39 29.63 31.06 33.65 21.83 25.42 31.35 33.26
Drivers:

Matching rate (%) 67.96 74.08 75.34 81.57 78.49 84.22 72.31 77.51
Trip time increase (%) 25.45 26.41 25.75 27.43 25.45 26.13 22.56 23.46
Riders:

Matching rate (%) 68.11 75.65 74.73 84.26 39.35 47.52 72.23 79.21
Trip time increase (%) 13.09 26.54 13.13 28.16 13.09 29.22 10.70 21.54
Walk time (min:sec) - 8:56 - 9:19 - 9:41 - 9:00

As expected, we see that the matching rate increases with the number of participants.

More surprising is the fact that the relative advantage of the use of meeting points in terms

of the overall matching rate also seems to increase slightly with the density. A potential
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explanation for this is that opportunities for matches with multiple riders increases.

With twice as many riders than drivers in the system, we see that 47.52% of the riders

are matched, which is almost best possible (50%) if we ignore the possibility of double and

triple matches. The number of double and triple matches has increased compared to the

base case, but it is still relatively small. This suggests that the full potential of the meeting

points cannot be achieved unless the meeting point locations are carefully chosen and both

riders and drivers have su�cient time �exibility.

For the corridor instances, we see that both the matching rate and the mileage savings

are approximately 4% higher than for the default instances, and that the bene�ts of the

meeting points are similar. The same holds for the trip time increase for drivers and the

walking distance for riders.

5.7 The Impact of Objective Hierarchies

All the results discussed so far were obtained using the objective hierarchy in which the num-

ber of matches (z1) is maximized �rst followed by maximizing the mileage savings (z2). We

observed in Section 5.4 that this objective hierarchy tends to favor solutions involving single

matches. In this section, we compare the system performance for three natural objective

hierarchies. The �rst (Hierarachy 1 ) is the default one, and maximizes participant matches

followed by mileage savings, the second (Hierarachy 2 ) maximizes mileage savings followed

by participant matches, and the third (Hierarachy 3 ) maximizes rider matches followed by

mileage savings. The latter may be more desirable than the default hierarchy, in which the

primary objective is maximizing participant matches, because unmatched riders may not

necessarily have the option of using their own car to perform their trip. The results for the

�ve base case instances and 4 meeting points per TAZ can be found in Table 9.

We see that the di�erence for all but one of the system performance metrics for the three

objective hierarchies is less than one percentage point. The exception is the matching rate

for the drivers, which for the default objective hierarchy (Hierarchy 1 ) is 1.42% larger than

for the objective hierarchy in which the primary focus is on maximizing mileage savings (Hi-

erarchy 2 ). This re�ects the structural di�erence in the optimal matchings: there are almost
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Table 9: Results for di�erent objective hierarchies.

Hierarchy 1 Hierarchy 2 Hierarchy 3
(Matches � Savings) (Savings � Matches) (R. Matches � Savings)

System:

Matching rate (%) 74.83 73.88 74.36
Mileage savings (%) 29.63 29.79 29.74
Drivers:

Matching rate (%) 74.08 72.66 73.14
Trip time increase (%) 26.41 25.58 26.09
Riders:

Matching rate (%) 75.65 75.17 75.65

Trip time increase (%) 26.54 26.01 26.41
Walk time (min:sec) 8:56 8:51 8:57
Matching:

Num. of single matches 1037.4 1003.8 1011.0
Num. of double matches 17.8 30.6 30.4
Num. of triple matches 1.0 1.4 1.4

twice as many double matches when the primary objective is to maximize mileage savings.

Interestingly, the matching rate for riders does not increase when maximizing the number

of matched riders is taken as the primary objective (rather than maximizing the number of

match participants). Triple matches are still rare in all solutions. From a ride-sharing ser-

vice provider's perspective, the default objective hierarchy is likely to be preferred, as their

revenue is linked to the participant matching rate. However, from a societal perspective,

the alternative objective hierarchy in which the number of riders matched is the primary

objective is probably preferable, as it strikes a better balance between rider mobility and

mileage savings (which are linked to congestion and emissions).

Since the number of matched participants is an integer, it is relatively easy to compute the

Pareto frontier that characterizes the trade-o� between the number of matched participants

and the mileage savings. Figure 7 depicts the Pareto frontier for the third of the �ve base case

instances (the frontier for the other base case instances look similar). As already indicated by

the small di�erences in the values of the performance metrics in Table 9, the two objectives

are well aligned. This is also re�ected in the small number of points that constitute the

Pareto frontier.

Figure 8 provides more detail regarding the change in the structure of the optimal match-

30



71.4 71.6 71.8 72 72.2

28.54

28.56

28.58

28.6

28.62

Matched participants (%)
D
is
ta
n
ce

sa
v
in
gs

(%
)

Figure 7: Pareto frontier for the third base case instance.

ings as we move from a solution obtained with the default objective hierarchy to a solution

obtained with the alternative objective hierarchy in which the primary focus is on mileage

savings. We see that single rider � single driver matches are replaced by matches involving

two or three riders. As a consequence, the number of drivers with matches decreases. Sur-

prisingly, the number of riders with matches also decreases, which indicates that in many

situations riders are �competing� for the same drivers.
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Figure 8: Matching rates for Pareto e�cient points for the third base case instance.

6 Concluding Remarks

In this study, we have shown that the introduction of meeting points in a ride-sharing

system can substantially improve a number of critical performance metrics, i.e., percentage
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of matched riders, percentage of matched participants, and mileage savings. The price that

has to be paid to achieve these performance increases is minor: riders may have to walk

a short distance and may have to plan their time more carefully so as to ensure that they

arrive on time at the meeting point where they are to be picked up (it is unlikely that

drivers will be willing to wait for a rider at a pickup point for more than a minute or two).

Even though the number of possible matches increases signi�cantly with the introduction of

meeting points, our computational experiments have demonstrated that all feasible matches

can be generated e�ciently with a carefully designed and implemented algorithm.

The observed increases in performance of a ride-sharing system resulting from the intro-

duction of meeting points may even be greater when the meeting points are chosen carefully

based on observed travel patterns. This is an interesting opportunity for further research.

As expected, driver and, especially, rider �exibility strongly impact the performance of a

ride-sharing system. This points to two additional and interrelated future research directions:

(1) how to stimulate (and reward) riders to increase their �exibility and be willing to use

more distant meeting points, and, similarly, how to stimulate (and reward) drivers to increase

their �exibility and be willing to make longer detours, and (2) how to (better) integrate ride-

sharing systems with other available transportation systems, e.g., bike-sharing systems, so

as to ensure that riders can reach meeting points that are further away fast and easy.
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Appendix A

Algorithm 1: Re�ned Feasible Match Generation

1 build k − d tree with meeting points ;

2 build interval container with rider time windows ;

3 for each rider do

4 query k − d tree and store feasible meeting point arcs ;

5 end

6 for each driver do

7 query interval container to obtain compatible riders ;

8 for each compatible rider do

9 for each rider meeting point arc do

10 if match driver, rider, meeting point arc is time feasible then

11 store meeting point arc ;

12 compute driving distance savings ;

13 if driving distance savings > best match driving distance savings then

14 update best match driving distance savings ;

15 update best match ;

16 end

17 end

18 end

19 if best match driving distance savings > 0 then

20 append best match to match list ;

21 append rider to feasible rider list ;

22 end

23 end

24 if number of feasible riders > 1 then

25 for k = 2, . . . , Ci − 1 do

26 Retrieve meeting point arcs ;

27 Remove meeting point arcs that are feasible for less than k riders ;

28 ... ;

29 if driving distance savings > 0 then

30 append match to match list ;

31 end

32 end

33 end

34 end

35 return match list ;
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Appendix B

Interval trees are designed to e�ciently �nd intervals that overlap. It takes O(log(m)) time to

�nd an overlapping interval in a balanced interval tree, where m is the number of intervals in

the tree. Unfortunately, in the ride-sharing setting, as many as 1/2 of the rider time windows

may overlap with a driver time window on average. Hence, if we denote the expected ratio

of overlapping rider intervals by rexp, we cannot expect the performance to be better than

O(rexp · log(m)) with a standard interval tree. In practice, the performance of an interval

tree might even be inferior to linear search due to issues with locality of reference.

A query in a standard interval tree returns all overlapping intervals � including those

with a very small overlap. However, the time window of a driver and a rider have to overlap

by at least the time needed to complete the shared part of their trip.

Consider Figure 9. Let tmax
j denote the time needed to drive distance dmax

j , the longest

distance rider j is willing to walk to and from a meeting point. Thus, the minimum time the

toj ,dj − 2tmax
j

oj dj
o′j d′j

Figure 9: Minimum shared ride time for rider j

rider and driver will share is tmin
j = toj ,dj − 2tmax

j . Therefore, we rede�ne the time window

for rider j to be [ej + tmax
j , lj − tmax

j ].

Now consider Figure 10. It shows three possible ways in which the time window of a

rider j can overlap with the time window of a driver i. The interval of the rider is stored in

the memory structure, and the three intervals related to drivers i, i′, and i′′ represent three

possible queries. The overlap can be from the right of interval [ej, lj], as with [ei′ , li′ ], it can

be from the left of interval [ej, lj], as with [ei′′ , li′′ ], or it can span the entire interval [ej, lj],

as with [ei, li].

Using this simple observation, we see that if the overlap in the query has to be at least

tmin
j , then we can shorten the rider intervals [ej, lj] in our memory structure by tmin

j . We

can shorten the rider intervals from the left and from the right. That is, we shorten the

intervals by adding tmin
j to the lower end and by subtracting tmin

j from the upper end, i.e.
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Figure 10: Overlaps of the time interval of rider j with queries corresponding to three drivers
i,i′,i′′

[e′j, l
′
j] = [ej + toj ,dj − tmax

j , lj − toj ,dj + tmax
j ]. This may result in: (1) e′j < l′j or (2) e

′
j ≥ l′j.

For each of these two cases, we analyze the three possible types of driver queries.

Figure 11 depicts Case (1): the intervals of drivers i, i′, and i′′, represent all possible

types of overlap. Queries in an interval tree with reduced rider intervals for drivers i′ and

t

ej lj

ei′ li′ei′′ li′′

e′j l′j

ei li

tmin
jtmin

j

Figure 11: Shortening the time interval of rider j and overlaps with queries corresponding
to drivers i, i′, and i′′

i′′ will not return rider j as a compatible rider. The query for driver i on the other hand,

will return rider j, since the overlap is greater than tmin
j . Thus, using reduced intervals in a

standard interval tree produces the desired results.

Let us now consider Case (2). If e′j ≥ l′j (as in Figure 12), we have an inverted interval

[l′j, e
′
j]. In such a situation, there is su�cient overlap only if interval [l′j, e

′
j] is a sub-interval of

interval [ei, li]. The intervals of drivers i
′ and i′′ have some overlap with the inverted interval

[l′j, e
′
j], but only the interval of driver i has su�cient overlap.

Queries using a standard interval tree with reduced time windows will return all time

feasible riders for a driver, but, unfortunately, may also return some time infeasible riders
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Figure 12: Inverted time interval of rider j and overlaps with queries corresponding to drivers
i, i′, and i′′

(i.e., the driver's interval is too small to accommodate the rider). This disadvantage is

outweighed by the fact that the intervals in the interval tree are much smaller and, thus, the

queries are much faster. However, the number of riders returned can be quite large. Below,

we propose an alternative approach that uses sorted lists.

We maintain a list of intervals, each with a lower end l and an upper end u. We �rst

sort the intervals in non-decreasing order of their lower end. We then recursively compute

an auxiliary upper end u∗ for each interval in the sorted list. The auxiliary upper end is

de�ned as u∗i = max(u∗i−1, ui) for an interval in position i in the list (for all positions i ≥ 1)

and u∗0 = u0 for the interval in position 0. Intervals for which u = u∗ are super-intervals �

they are not a sub-interval of any other interval in the list. Intervals for which u < u∗ are

sub-intervals � they are a subset of at least one interval in the list.

If we are in Case (1), we �nd all intervals that potentially overlap with [tlow, thigh] by

�nding the position of the leftmost interval in the sorted list with tu∗ ≥ tlow and the position

of the rightmost interval in the sorted list with tl > thigh using binary search. The two

positions de�ne the sublist we want. For Case (2), the query is even simpler: we �rst �nd

the position of the leftmost interval in the sorted list with tl ≥ tlow and the position of the

rightmost interval in the sorted list with tl > thigh. These positions de�ne the sublist that

contains all potential sub-intervals of [tlow, thigh]. We add the two resulting lists together and

further re�ne them.

The speed of the search may be further improved by breaking up the sorted list into

sublists. For each super-interval, we create a sublist containing all its sub-intervals. We
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Figure 13: Interval list
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only keep the super-intervals in the original list. Each sublist may be further broken down

to a desired level of granularity (i.e., minimum number of intervals in a sublist). We know

that all the intervals in a sublist of an interval are within its bounds, so we may use this

information to explore only the relevant sublists. This approach can improve the search

in large data sets, especially when super-intervals are large compared to sub-intervals. We

managed to improve the query times by implementing this approach, but the run-times were

only approximately 5 − 10 % faster than with a single sorted list. We did not investigate

this further, since the performance of the solution algorithm is not our major focus at this

point in time.
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