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The role of reticulation in the rapid diversification of organisms is attracting greater 

attention in evolutionary biology. Evidence of genetic exchange between diverging taxa is 

reported frequently, although most studies fail to show how hybridization and 

introgression contribute to the adaptation and differentiation of introgressed taxa. Here, 

we report a population genomics approach to test the role of hybridization and 

introgression in the evolution of the Picea likiangensis species complex, which comprises 

four taxa occurring in the biodiversity hotspot of the Hengduan-Himalayan mountains. 

Based on 84,793 SNPs detected in transcriptomes of 82 trees collected from 35 localities, 

we identified 18 hybrids (including backcrosses) distributed within the range boundaries 

of the four taxa. Coalescent simulations, for each pair of taxa and for all taxa taken 

together, rejected several tree-like divergence models and supported instead a reticulate 

evolution model with secondary contacts occurring during Pleistocene glacial cycles after 

initial divergence in the late Pliocene. Significant gene flow occurred among some taxa 

after secondary contact according to an analysis based on modified ABBA-BABA statistics 

that accommodated a rapid diversification scenario. A novel finding was that introgression 

between certain taxa can contribute to increasing divergence (and possibly reproductive 

isolation) between those taxa and other taxa within a complex at some loci. These results 

illuminate the reticulate nature of evolution within the P. likiangensis complex and 

highlight the value of population genomic data in detecting the effects of introgression in 

the rapid diversification of related taxa.  

 

KEY WORDS: Coalescent analyses, genetic divergence, introgression, Picea, population 

genomics, reticulate evolution  

 

Clarifying evolutionary processes that initiate and maintain species diversity is a central aim 

of natural biodiversity studies (Givnish & Sytsma 2000; Andrew et al. 2013; Grant & Grant 

2017). Because hybridization can generate genetic variation acted on by selection at higher 

rates than mutation, it has been proposed that it may often play an important role in 

evolutionary divergence, adaptation and speciation (Seehausen 2004; Mallet 2007; 
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Rieseberg & Willis 2007; Abbott et al. 2013; Arnold & Kunte 2017). In the last twenty years 

or so, considerable evidence of gene exchange between diverging taxa has accumulated 

(Harrison & Larson 2014; Abbott 2017; Suarez-Gonzalez et al. 2018a), leading to the belief 

that a reticulate pattern of evolution (particularly apparent for closely related taxa) is a 

more reasonable evolutionary paradigm than a tree-like pattern within many groups of 

organisms (Linder & Rieseberg 2004; Arnold 2015). However, to date, the contribution of 

hybridization and introgression to the diversification of extant taxa has not been verified in 

detail, largely because appropriate methods of analysis and genome-scale datasets were 

unavailable until recently (Abbott et al. 2016; Lexer et al. 2016; Payseur & Rieseberg 2016; 

Pease et al. 2016; Leroy et al. 2017; Suarez-Gonzalez et al. 2018b). Thus, no empirical study 

has yet indicated how introgression across the genome may have altered the genetic 

composition of recipient taxa and increased their divergence within a species complex 

during the course of its evolution.  

In the present study, we used the Picea likiangensis species complex of spruce taxa as a 

system for testing if evolutionary divergence within this complex followed a reticulate or 

tree-like pattern, and secondly to clarify the role of introgression in promoting 

differentiation between diverging taxa. Traditionally, the Picea likiangensis species complex 

has been thought to comprise three varieties of the species (rubescens, likiangensis and 

linzhiensis) that exhibit reduced density of stomatal lines on the abaxial surfaces of leaves 

relative to most other Picea species (Fu et al. 1999). Recent studies, however, indicate that 

P. brachytyla var. complanata, which has no stomatal lines on its abaxial leaf surfaces, 

should also be included in this complex (Ru et al. 2016). These four taxa occupy sites that 

differ in environmental conditions and have distinct geographical ranges (Fig. 1), spanning 

the Hengduan-Himalayan biodiversity hotspot in Asia (Fu et al. 1999; Li et al. 2010; Li et al. 
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2013; Lockwood et al. 2013; Wang et al. 2017). Analyses of molecular genetic variation have 

shown that the taxa are genetically differentiated (Li et al. 2013; Ru et al. 2016), however 

their evolutionary relationships remain incompletely resolved. Nuclear phylogenies have 

short branch lengths and vary in topology according to the nuclear genes analysed (Li et al. 

2013; Ru et al. 2016), indicating that the four taxa may have diversified rapidly and that 

hybridization and gene flow occurred during diversification (Li et al. 2013; Lockwood et al. 

2013; Ran et al. 2015; Ru et al. 2016).  

Here, we examine these possibilities further through population genomic analysis. First, 

we test whether the P. likiangensis species complex originated by means of rapid 

diversification involving hybridization among the four taxa or alternatively in a tree-like 

scenario of evolutionary divergence in which hybridization played no substantial role during 

diversification. Second, having shown that reticulation was important in the evolution of the 

P. likiangensis species complex, we examine how introgression contributed to the 

divergence of taxa within the complex.  

 

Methods  

PLANT MATERIAL AND RNA SEQUENCING 

 

We collected young leaves from 62 trees throughout the range of the P. likiangensis species 

complex (Table 1). Trees from each population were spaced at least 100 m apart. We also 

sampled leaves from one P. breweriana tree used as an outgroup. We extracted RNA from 

fresh mature leaf needles collected from first year branches of each selected tree and 

stored it in liquid nitrogen in the field. Libraries were constructed individually using a 
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NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (NEB, USA). Subsequently, standard RNA-

seq procedures (Wang et al. 2009; Jiang et al. 2011) and an Illumina HiSeq 2500 platform 

were used to generate paired-end raw reads. We deposited the 62 novel transcriptomes in 

BioSample. For analysis, we added to these 20 transcriptomes of P. brachytyla var. 

complanata, and P. likiangensis vars. rubescens, likiangensis and linzhiensis available from a 

previous study (Ru et al. 2016). Thus a total of 83 transcriptomes were used in analyses with 

average number of raw bases obtained per individual >6 Gb (Table S1, Supplementary 

material).  

 

READ MAPPING AND VARIANT CALLING 

 

By controlling the Phred score, sequence length and percentage of ambiguous bases, raw 

reads were filtered using fastq_quality_trimmer (parameters -v -t 20 -l 30), 

fastq_quality_filter (-v -q 20 -p 90) and fastq_masker (-q 20 -v) elements of the FASTX 

Toolkit (from http://hannonlab.cshl.edu/fastx_toolkit/). Raw reads for each sample were 

mapped to the reference transcriptome of P. abies (Nystedt et al. 2013) using BWA-MEM 

ver. 0.7.10 (Li & Durbin 2009). Possible fungal transcripts in the P. abies transcriptome were 

deleted (Delhomme et al. 2015), and only the longest transcript of each gene was retained. 

Reads were sorted in BAM format using SAMTOOLS ver. 0.1.19 (Li et al. 2009) with duplicate 

reads marked by Picard tools (version 1.106) and excluded from further analysis. Genotypes 

and single-nucleotide polymorphisms (SNPs) were called using READS2SNPS v2.0 

(Tsagkogeorga et al. 2012; Gayral et al. 2013). The minimum read depth was set to 10, 

minimum mapping quality to 20, minimum base quality to 20 and the number of threads to 

10. When the posterior probability of the best-supported homozygote or heterozygote was 
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below 0.95, the base was treated as missing. After deleting sites with missing bases in all 83 

individuals, 4743 loci without missing bases remained (Table 2). Tests of Hardy-Weinberg 

equilibrium implemented in vcftools0.1.12b (Danecek et al. 2011) were used on these loci to 

filter out polymorphic sites that deviated significantly (P < 0.05). A total of 3646 loci with 

length > 200 bps and at least one polymorphic site was retained for further analysis (Table 

2).  

 

ANALYSES OF NUCLEOTIDE DIVERSITY AND CLUSTERING  

 

To examine nucleotide diversity and skew of the site frequency spectrum, we computed the 

number of segregating sites (S), π per site (Nei 1987), Tajima’s D (Tajima 1989), Fay and 

Wu’s H  (Fay & Wu 2000) for each taxon in turn. We used the maximum frequency of 

derived mutation (MFDM) method to test the neutrality of the frequency spectrum for each 

locus (Li 2011) with homozygous bases in the transcriptome of P. breweriana used to 

determine ancestral states.  

Individual-based clustering analysis was conducted using the maximum-likelihood 

approach implemented in ADMIXTURE ver. 1.23 (Alexander & Lange 2011). The data file was 

converted using VCFTOOLS ver. 0.1.12b and PLINK ver. 1.07 (Purcell et al. 2007; Danecek et 

al. 2011) and cross-validation was used to explore convergence and determine the optimum 

number of clusters (K, from 1 to 10, with the optimum K value indicated by lowest cross-

validation error). One hundred datasets were generated using random sampling with 

replacement to calculate the confidence bounds of Q-values for each individual tree.  
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TESTING RETICULATE EVOLUTION AND TREE-LIKE DIVERGENCE MODELS  

To determine the evolutionary relationships among all four taxa, we used FASTSIMCOAL2 

(Excoffier et al. 2013) to compare different evolutionary models based on the site frequency 

spectrum (SFS) and coalescent simulations. We performed 200,000 simulations to calculate 

the expected SFS using the infinite site model (-I) and 200 ECM cycles to estimate 

parameters with the highest likelihood for each possible divergence model and the 

reticulation model that allowed gene flow among taxa after secondary contact (Fig. 2 and 

Text S1). The reticulate evolutionary model included 19 parameters (Text S1): the effective 

population size for each taxon and their ancestral population, 12 migration rate parameters 

for each pair of taxa, time of initial division (TDIV), and time of secondary contact (TSC). We 

also computed the relative TSC as TSC / TDIV. The stopping criterion in parameter optimization 

was set to 10-5. We collapsed all SFS entries less than 5 into a single category (–C5 of 

fastsimcoal2) with number of monomorphic sites considered. The mutation rate was set to 

4 × 10-8 substitutions per site per generation (De La Torre et al. 2017), and 50 years per 

generation was assumed (Li et al. 2010). AIC values for all models were computed and used 

to determine the best model. We estimated parameters in this best model and the standard 

deviations by setting variable “C” parameters from 1 to 20. 

 

TESTING INTROGRESSION PATTERNS BETWEEN EACH PAIR OF TAXA  

Although gene exchange had been reported among the four taxa of the P. likiangensis 

species complex, the frequency and timing of such introgression remain unknown. We 

carried out a statistical comparison of four models of introgression during speciation (Fig. 3) 

for each of the six possible pairs of taxa. The four models included, (i) complete isolation 
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(CI), (ii) continuous migration (CM), (iii) introgression during primary contact (PC), and (iv) 

introgression following secondary contact (SC).  

Each of the four models included the division of an ancestral population with population 

size NA into two daughter populations with population sizes N1 and N2 at time T. In the CI 

model, hybridization between the two daughter populations was prohibited. In the CM and 

PC models gene flow occurred after division, continuing to the present time in the CM 

model, but stopping at time Tpc in the PC model. In the SC model, secondary gene flow 

occurred from Tsc to the present time following an intial allopatric phase. 

For each pair of taxa, we computed the likelihoods of the observed SFS underlying the 

four models using FASTSIMCOAL2 (Excoffier et al. 2013). For each of the four models, we 

performed 200,000 simulations to calculate the expected SFS using the infinite site model, 

and estimated parameters with the highest likelihood in 300 ECM cycles. The stopping 

criterion in parameter optimization was set to 10-5. The number of monomorphic sites was 

included. Mutation rate was again set to 4 × 10-8 substitutions per site per generation (De La 

Torre et al. 2017), and 50 years per generation was assumed (Li et al. 2010). The “C” 

parameter in FASTSIMCOAL2 (the minimum size of entry of the observed and simulated SFS) 

was set from 1 to 20. The four models were ranked according to the Akaike Informartion 

Criterion (AIC) values for each pair of taxa and each “C” value, and documented estimated 

values of parameters of the best-fit model. Standard deviations were determined from 

estimates of different C parameter settings.  

TESTING GENE FLOW USING A MODIFIED ABBA-BABA TEST  

The ABBA-BABA test provides a powerful means for detecting inter-taxon gene flow by 

examining excess allele sharing between two taxa (L1 and L2), utilizing a sister taxon (L0) that 

is more closely related to one of them. A high level of gene flow between L1 and L2 relative 
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to between L0 and L2 would lead to a positive ABBA-BABA statistic, given that derived alleles 

in L2 matched derived alleles in L0 and L1 with equal probability (Durand et al. 2011; Martin 

et al. 2015). However, the original formulae of the test assume a phylogeny with 

dichotomous topology, which was rejected here. Thus, we extended the test to 

accommodate a radiation divergence scenario with four taxa and an outgroup-species (here 

P. breweriana) used to determine the ancestral nucleotide state. We assumed that SNPs 

were genotyped in P. brachytyla var. complanata (L1), and  P. likiangensis vars. likiangensis 

(L2), linzhiensis (L3) and rubescens (L4) and denote the observed frequency of SNP i in taxon 

Lj as pij. Because we used only homozygous bases in P. breweriana’s transcriptome, the 

observed frequency of SNP i in P. breweriana would be zero and was reduced in the 

following expressions.  
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The positive statistic DIJ represents excess allele sharing between taxa LI and LJ, indicating 

inter-taxon gene flow. We tested the significance of DIJ statistics for each pair of taxa 

employing a jackknife bootstrap test using density distributions. In this test, 1000 pseudo-

replicates from the original dataset were generated by the jackknife algorithm, and DIJ 

values on the basis of each pseudo-replicate were computed using custom R scripts. The R 

scripts used for this are available online (Script S1 and S2 in Supplementary material). 

According to the calculated DIJ values and density distributions, loci with positive DIJ values 

higher than the 97.5% quantiles were identified as introgressed between taxa LI and LJ. 

Having detected loci showing signals of introgression in this way, we computed population 

differentiation (ΦST) between each pair of taxa using PopGenome (Excoffier et al. 1992; 

Pfeifer et al. 2014), at each of these loci, and then compared values of ΦST between 

different taxon pairs. Such comparisons were used to examine whether introgression 

between two taxa at a particular locus resulted in higher divergence of the introgressed 

taxon from a third taxon of the complex at this locus than at other loci. BLAST2GO (Conesa 

et al. 2005) was used to annotate the possible functions of putatively introgressed genes, 

while FLOR-ID (Bouché et al. 2016) was employed to examine the orthology of some of 

these genes to flowering-time genes in Arabidopsis thaliana.  

 

Results  

VARIANT CALLING, GENETIC DIVERSITY AND CLUSTERING  

RNA-seq produced an average of 53.49 million (M) raw reads with an average of 4.73 gillion 

(G) clean bases for each sampled individual of the P. likiangensis species complex, and 90.68 

M raw reads with 6.48 G clean bases for the one sample of P. breweriana (Table S1). Variant 
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calling analysis identified 480,258 SNPs with a total length of 16.30 Mb in all samples of the 

P. likiangensis species complex. After excluding loci indicative of paralogous signals or 

unequal expression bias, and sites not present in at least one of the 82 individuals of the 

species complex, 4743 loci with a total length of 11.9 M bases were left (Table 2). After 

filtering out polymorphic sites that deviated from Hardy-Weinberg equilibrium and loci <200 

bps in length, 3646 loci containing 84,793 SNPs remained for analysis. Final numbers of SNPs 

identified for each variety are listed in Table 2. 

Estimates of nucleotide diversity were similar in all four taxa (Table 2). Tajima’s D values 

were negative in all taxa, while Fay and Wu’s H was negative in var. complanata, var. 

likiangensis and var. linzhiensis, but positive in var. rubescens. However, MFDM tests 

showed no signal of positive selection in any taxon, in accordance with the large SDs 

calculated for both D and H (Table 2).  

Genetic clustering of the 82 individuals using ADMIXTURE showed that the cross-

validation error was lowest when the number of genetic clusters (K) was 4. With K = 4, most 

individuals of a taxon were assigned to a particular genetic cluster representing that taxon 

(Fig. 1), thus showing consistency with the morphologically-based classification of taxa (Fu 

et al. 1999). However, 18 individuals (22% of the total) showed significant signals of 

admixture (Q-values < 0.99; Bootstrap test, P < 0.05; Fig. 1) and therefore were taken to be 

hybrids. Five of these were hybrids between var. complanata and var. likiangensis, three 

were hybrids between var. complanata and var. linzhiensis, six were hybrids between var. 

likiangensis and var. rubescens, and four were hybrids between var. linzhiensis and var. 

rubescens. No hybrid was detected between var. complanata and var. rubescens or between 

var. likiangensis and var. linzhiensis among the individuals surveyed. 
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TESTING RETICULATE EVOLUTION AND TREE-LIKE DIVERGENCE MODELS  

For all four taxa, a comparison between reticulate and tree-like models of divergence 

showed that the AIC value of the reticulate model (Fig. 2) was the lowest (Table 3), 

suggesting that secondary contacts occurred after the four taxa diverged from the common 

ancestor of the P. likiangensis species complex. This initial divergence time (TDIV) was dated 

to 2.75 (± 0.03) million years ago (Mya), during the late Pliocene period, while the time of 

initial secondary contact between taxa (TSC) was dated to 0.77 Mya, i.e., during the mid-

Pleistocene, with relative TSC (the relative timing of secondary contacts to divergence time, 

TSC / TDIV) estimated to be 0.28 (± 0.3) (Table 4). The maximum effective population size (Ne) 

of var. rubescens (45,939 ± 15,840) and minimum effective population size in var. linzhiensis 

(10,685 ± 104) were consistent with previous estimations for these taxa (Li et al. 2013). The 

Ne of the ancestral population was estimated to be 50,163 (± 6106) (Table 4). 

In the reticulate model, the estimated immigration rate into any taxon from the three 

other taxa combined was higher than one individual per generation during the period of 

secondary contact (Table 4b). In addition, our results indicate highly asymmetric gene flow 

between some taxon pairs. For example, the mean migration rate from var. likiangensis to 

var. complanata was higher than in the reverse direction. Furthermore, gene flow from vars. 

likiangensis and linzhiensis into other taxa was greater than that from var. complanata and 

var. rubescens into other taxa, although corresponding standard deviations were very large 

(Table 4a). 

 

INTROGRESSION PATTERNS BETWEEN EACH PAIR OF TAXA  

For each of the six pairs of taxa, we tested for patterns of introgression using coalescent 

simulations. The Secondary Contact (SC) model (Fig. 3) had lower AICs than the Complete 
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Isolation (CI), Continuous Migration (CM) and Primary Contact (PC) models for each taxon-

pair and each “C” parameter value (Table S2), indicating again that a period of secondary 

contact occurred between all four taxa during the history of the P. likiangensis species 

complex. Although, in the SC model the estimated divergence time between var. linzhiensis 

and var. likiangensis was smaller than those between var. linzhiensis and either var. 

complanata or var. rubescens, more recent divergence times were evident between var. 

likiangensis and both var. complanata and var. rubescens, indicating that times of initial 

divergence between each pair of taxa were similar and unordered (Table S3).  

 

INTER-TAXON GENE FLOW AND TAXON DIFFERENTIATION  

Analysis by means of modified ABBA-BABA statistics and jackknife tests of signicance 

showed that gene flow between vars. complanata and likiangensis (D12 = 0.288) and 

between vars. linzhiensis and rubescens (D34 = 0.098) was significant (Fig. 4). By comparing 

the density distribution and DIJ values of all 3646 loci, we identified a total of 3314 genes 

that showed signals of introgression between each of 6 taxon pairs. Following this, we 

examined the frequency-dynamics of such introgressed alleles by comparing taxon 

differentiation (ΦST) per locus between each pair of taxa in turn (Fig. 4). When ΦST between 

vars. linzhiensis and complanata was compared with ΦST between vars. linzhiensis and 

likiangensis, it was evident that 32 genes, showing signals of introgression between vars. 

complanata and likiangensis, were located in the highest 5% tail of taxon differentiation 

between vars. complanata and linzhiensis and also in the highest 5% tail of taxon 

differentiation between vars. likiangensis and linzhiensis. This indicates that these 32 alleles 

occur at high frequencies in both vars. complanata and likiangensis as a result of 

introgression between these two taxa. Moreover, because of this, both taxa are highly 
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differentiated from var. linzhiensis which may contain the same alleles at either low 

frequency or not at all. Thus, it is apparent that in this case introgression most likely resulted 

in an increase in divergence of the introgressed pair (var. complanata and var. likiangensis) 

from var. linzhiensis. Similarly, significant gene flow between var. linzhiensis and var. 

rubescens likely resulted in this taxon pair becoming highly differentiated from var. 

complanata at 24 putatively introgressed loci between var. linzhiensis and var. rubescens. 

We annotated the functions of 53 of these putatively introgressed genes (Table S4) and 

found that three were highly orthologous to certain genes involved in flowering time in 

Arabidopsis (identified by FLOR-ID with E-value >5), suggesting that they might, in turn, be 

involved in controlling flowering time differences and therefore prezygotic reproductive 

isolation among the four taxa comprising the P. likiangensis complex (Table S4).  

 

Discussion  

Our population genomic analysis combined with tests of different evolutionary scenarios 

using coalescent simulations indicated that the Picea likiangensis complex, comprising three 

varieties of P. likiangensis  (vars. likiangensis, linzhiensis, and rubescens) and one variey of P. 

brachytyla (var. complanata), originated rapidly at the end of the Pliocene and beginning of 

the Pleistocene. Following an initial allopatric phase, our analyses indicate that the four taxa 

came into secondary contact during the mid-Pleistocene and that their divergence, 

thereafter, has been influenced by hybridization and gene exchange (see Leroy et al. 2017, 

for a similar example of allopatric divergence followed by secondary contact among oaks). 

Signatures of high levels of gene flow were evident between vars. rubescens and linzhiensis 

and between vars. complanata and likiangensis that would explain the incongruent 
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phylogenetic relationships resolved among the four taxa in previous studies (Li et al. 2013; 

Ru et al. 2016). Importantly, our analyses indicated that some introgressed alleles reached 

high frequencies in certain taxon pairs (vars. complanata and likiangensis, and vars. 

rubescens and linzhiensis, respectively) causing both taxa of such pairs to show increased 

divergence when compared with other taxa of the complex in which the same alleles were 

at low frequency or absent. To our knowledge, this is the first study to show that 

hybridization during secondary contacts can promote differentiation among multiple related 

taxa as a result of introgression occurring between particular taxon pairs within a complex.   

 

RAPID DIVERSIFICATION AND RETICULATION  

Rapid diversification giving rise to an evolutionary radiation has traditionally been inferred 

from a phylogenetic pattern where the number of DNA substitutions accumulated among 

taxon sequences is small causing branching to be compressed and nodes often poorly 

supported (Richardson et al. 2001). However, such poorly resolved or unresolved 

phylogenies can also arise from hybridization and introgression (Szöllősi et al. 2015). Indeed, 

evidence for hybridization among taxa has been detected in some groups where 

evolutionary radiations have occurred (Comes & Abbott 2001; Seehausen 2004; Wan et al. 

2014; Lamichhaney et al. 2015). Therefore, it is necessary to consider the possible effects of 

hybridization and gene flow when investigating the diversification of groups of closely 

related taxa.  

Using the P. likiangensis species complex as a case study, we tested which evolutionary 

model best explained its origin and evolution. We concluded that following an initial phase 

of rapid divergence in allopatry, the evolution of the four taxa within this complex was 

influenced by hybridization and gene flow based on the following evidence. First, 
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approximately 22% of the 82 trees examined in the complex were identified as hybrids (or 

backcross descendents) according to ADMIXTURE analysis. These putative hybrids occurred 

in regions where the distributions of different taxa were adjacent or overlapped, indicating 

that different pairs of taxa hybridize when in contact. Second, a comparison of possible 

evolutionary relationships among all four taxa showed that a reticulate model involving 

initial divergent radiation followed by secondary contact and gene exchange among taxa 

was best supported (Fig. 2, Table 3). Third, coalescent simulations for each pair of taxa 

consistently suggested that models allowing gene flow between taxa were better supported 

than a model assuming complete isolation (CI, Fig. 3). Furthermore, a model assuming 

secondary contact (SC, Fig. 3) following an initial period of allopatric divergence was better 

supported (Table S2), than those assuming continual migration (CM, Fig. 3) or initial 

divergence with gene flow followed by complete isolation (Primary Contact, PC, in Fig. 3).  

Analyses using modified ABBA-BABA statistics showed significant signatures of gene flow 

had occurred between vars. rubescens and linzhiensis and between vars. complanata and 

likiangensis, respectively (Fig. 4). Generally, it is assumed that gene flow will lead to a 

reduction of population differentiation between related taxa in areas of overlap and gene 

exchange (Abbott et al. 2013; Arnold 2015). However, it is feasible that such gene flow could 

increase the divergence of a hybridizing taxon pair from other taxa in a complex at loci 

where introgression has occurred. Our results showed this was the case for 32 genes 

introgressed between vars. complanata and likiangensis. For these genes this pair of taxa 

showed significantly increased divergence from var. linzhiensis. Similarly, for 24 genes 

introgressed between vars. rubescens and linzhiensis, these taxa showed significantly 

increased divergence from var. likiangensis (Fig. 4). Because our coalescent simulations 

indicated that the major direction of introgression was from var. likiangensis to var. 
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complanata in this pair of taxa, and from var. linzhiensis into var. rubescens in this taxon pair 

(Table 4), it seems that introgression from var. likiangensis will have increased the 

divergence of var. complanata from var. linzhiensis, while introgression from var. linzhiensis 

has elevated divergence of var. rubescens from var. likiangensis. Although the functions of 

these introgessed genes within the complex require detailed analysis, we found that three 

of them were orthologous to those involved in the control of flowering time in A. thaliana 

(Table S4). It is possible, therefore, they are similarly involved in controlling differences in 

flowering time within the P. likiangensis complex and consequently might play a partial role 

in the evolution of prezygotic reproductive isolation between taxa. In summary, our results 

are consistent with the hypothesis that gene flow occurring among taxa comprising the P. 

likiangensis complex will have greatly influenced their pattern of divergence.  

 

EVOLUTION OF THE P. LIKIANGENSIS SPECIES COMPLEX 

We dated the origin and initial divergence of taxa within the P. likiangensis complex to the 

late Pliocene, 2.75 (± 0.03) Mya, which is broadly consistent with a previous estimate of 

2.05-5.2 Mya based on population variation for 13 nuclear genes (Li et al. 2013). According 

to palynological records, Picea pollen was widespread in the Hengduan and Himalayan 

mountain regions from the Pliocene into the Pleistocene (Lü et al. 2001; Jiang et al. 2010; Xu 

et al. 2010). Therefore, the ancestor of the P. likiangensis complex might have been widely 

distributed in this region before undergoing rapid divergence and speciation over a 

relatively short timescale triggered by climatic shifts and possible geographical changes 

occurring during the Pliocene-Pleistocene period (Spicer et al. 2003; Clark et al. 2005; Wang 

et al. 2012; Wang et al. 2014a; Wang et al. 2014b). According to our analysis, this divergence 

most likely occurred initially under conditions of spatial population isolation and therefore 
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in the absence of gene flow as assumed in the SC model (Figs. 2, 3). Under such conditions 

of allopatry, isolated populations may have diverged rapidly in response to selection for 

adaptation to different ecological niches and the effects of genetic drift (Li et al. 2013; Wang 

et al. 2017).  

Initial secondary contact among the four taxa was dated to approximately 0.77 (± 0.10) 

Mya (Table 4), coinciding with the start of the major glacial cycles during the Pleistocene 

(Elderfield et al. 2012; Martínez-Botí et al. 2015). The relative distributions of the different 

taxa are likely to have been markedly affected by Pleistocene climatic oscillations causing 

taxa to come into secondary contact at different times allowing hybridization and gene 

exchange to occur (Arnold 2016). Previous studies of the P. likiangensis complex indicated 

that changes in the distributions of taxa most likely occurred in response to climate change 

during recent glacial cycles (Li et al. 2013; Sun et al. 2015). Such cycles,  beginning in the 

mid-Pleistocene, are likely therefore to have played a critical role in shaping the reticulate 

evolution of the P. likiangensis species complex.  

Our coalescent estimations suggest that gene exchange among the four taxa continued 

over a lengthy period, approximately 0.77 million years, representing  28% of the period 

after the taxa first diverged from each other (Table 4). Theory predicts that some alleles 

would be fixed or increase to high frequencies within different taxa over such a timescale by 

random drift and/or other evolutionary drivers (Durrett 2008). Pairwise comparisons 

between taxa showed divergence among taxa was not elevated by the introgression of 

many alleles, with introgression restricted to areas of parapatry (Fig. 1 and 4). Nonetheless, 

some introgressed alleles showed high levels of divergence among certain taxon pairs (Fig. 

4), indicating that introgression of these alleles had contributed to divergence within the 

complex (see above). Although the MFDM test showed no obvious signal of selection for 
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each introgressed gene, a recent investigation proposed that uncertainty in the inference of 

derived states from one outgroup may lead to low accuracy in detecting such signals 

(Keightley et al. 2016). Consequently, detailed investigations of selection are required to 

determine whether or not introgressed alleles that contributed to divergence have been 

subject to selection.  

Our refined understanding of reticulate relationships among the four taxa comprising the 

P. likiangensis complex helps shed new light on the origin of variation in density of leaf 

stomatal lines within the complex, which might be critical for adaptation to past and future 

changes in environmental moisture level (Beerling & Kelly 1997; Chen et al. 2017). Whereas 

vars. rubescens, likiangensis and linzhiensis of P. likiangensis show a reduced density of 

stomatal lines on the abaxial surfaces of leaves, they are completely absent from leaves of 

P. brachytyla var. complanata. Ru et al. (2016) previously suggested that adaptive 

introgression may have caused the trait to be absent in var. complanata (Ru et al. 2016), 

however the secondary contact model supported by the present population genomic 

analysis suggests that variation in density of stomatal lines on the abaxial surfaces of leaves 

could have been present among ancestral populations that gave rise to the four taxa. Thus, 

the loss of stomatal lines from leaves in extant populations of var. complanata could have 

arisen at an early stage in the formation of the four taxa and before they came into 

secondary contact approximately 0.77 Mya.  

In summary, our study has shown that a population genomic analysis combined with 

coalescent simulations provides a powerful means of statistically detecting signals of 

reticulate evolution and distinguishing between this type of evolution and a tree-like pattern 

within closely related groups of taxa. In particular, our analysis has provided a deeper 

understanding of the reticulate relationships among the four taxa comprising the P. 
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likiangensis complex, and how reticulate evolution within the complex may have been 

affected by climatic oscillations and geological changes that occurred in the Hengduan and 

Himalayan regions during the Pleistocene.  
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Table 1. Locations of the 35 populations sampled within the Picea likiangensis species complex plus 

the collection site of one P. breweriana tree sampled. Numbers in brackets indicate samples 

previously examined by Ru et al. 2016.  

 

 

Population Collection site Latitude Longitude Altitude (m) n 

P. breweriana (Bre) Common garden, Gansu N35°55′59″ E104°9′0.3 1774 1 

P. likiangensis var. rubescens (RUB) 22 (5) 

1 MSZ-01 Airport, Kangding, Sichuan N30°7′14.1″ E101°45′22″ 4221 1 

2 MSZ-02 Tacheng, Kangding, Sichuan N30°17′41.9″ E101°36′34″ 3978.51 3 (1) 

3 MSZ-03 Tagongsi, Sichuan N30°16′27.7″ E101°31′19.2″ 3589.66 1 (1) 

4 MSZ-04 Jianziwan mountain, Sichuan N29°59′58.5″ E100°52′17″ 4178.94 2 (1) 

5 MSZ-05 Heni, Sichuan N30°17′13″ E99°31′9.2″ 4289.50 4 (1) 

6 MSZ-06 Zongla mountain, Sichuan N29°43′47.4″ E98°37′47.1″ 4026.58 3 (1) 

7 MSZ-07 Rumei, Tibet N29°36′40.6″ E98°9′25″ 4104.20 2 

8 MSZ-08 Zuogong, Tibet N29°40′59.6″ E97°55′54.9″ 4122.95 2 

9 MSZ-09 Ranwu, Tibet N29°33′20.8″ E96°46′38.4″ 4186.15 2 

10 MSZ-35 Ranwu lake, Tibet N29°29′24.6″ E96°40′20.2″ 3920.11 2 

     var. linzhiensis (LIN) 21 (5) 

11 MSZ-15 Milin, Linzhi, Tibet N29°11′5.1″ E93°58′42.8″ 2988.12 3 (1) 

12 MSZ-25 Milin, Linzhi, Tibet N29°27′48.2″ E94°37′3.9″ 2913.14 2 (1) 

13 MSZ-26 Qiangna, Linzhi, Tibet N29°27′52.2″ E94°35′36.6″ 2919.63 1 (1) 

14 MSZ-29 Nixi, Linzhi, Tibet N29°45′20.8″ E94°15′36.1″ 3042.92 2 
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15 MSZ-30 Sejila mountain, Linzhi, Tibet N29°34′10.6″ E94°33′28.7″ 3421.91 3 (1) 

16 MSZ-31 Sejila mountain, Linzhi, Tibet N29°40′26.1″ E94°43′12.1″ 3663.20 5 (1) 

17 MSZ-32 Lulang, Tibet N29°49′32.2″ E94°44′23.2″ 3125.35 2 

18 MSZ-33 Bomi, Tibet N29°53′25.8″ E95°31′23.8″ 2698.53 1 

19 MSZ-34 Bomi, Tibet N29°49′25.8″ E95°42′41.5″ 3262.82 2 

     var. likiangensis (LIK) 24 (5) 

20 MSZ-41 Pudacuo, Yunnan N27°41′35.1″ E100°0′54.6″ 3208.26 3 (2) 

21 MSZ-42 Pudacuo, Yunnan N27°34′8.4″ E100°1′25.8″ 3025.85 1 

22 MSZ-44 Daju mountain, Yunnan N27°13′12.5″ E100°15′58.1″ 2993.41 2 (1) 

23 MSZ-45 Daju mountain, Yunnan N27°12′13.5″ E100°16′33.9″ 3132.56 2 

24 MSZ-46 Daju mountain, Yunnan N27°11′54.1″ E100°16′43.9″ 3260.41 2 

25 MSZ-47 Yulongxue mountain, Yunnan N27°7′53.8″ E100°13′58.9″ 2947.51 4 (1) 

26 MSZ-48 Yulongxue mountain, Yunnan N27°8′31.7″ E100°14′0.6″ 3197.45 3 

27 MSZ-50 Yuhu village, Yunnan N27°1′30.3″ E100°12′32.3″ 2845.13 4 (1) 

28 MYs Mianya south, Sichuan N27°31′9″ E101°21′34″ 3300 3 

    P. brachytyla var. complanata (COM) 15 (5) 

29 MSZ-38 Deqin, Yunnan N28°24′25.4″ E98°59′16.6″ 3882.86 1 

30 MSZ-40 Napahai, Yunnan N27°55′51″ E99°36′59.3″ 3511.80 2 

31 MY Mianya, Sichuan N27°33′49″ E101°21′34″ 3511 1 (1) 

32 NPH Napahai, Yunnan N27°55′40″ E99°36′51.2″ 3506 2 (1) 

33 XGLL Xianggelila, Yunnan N27°48′ E99°39′ 3329 2 (1) 

34 XSQ Xinshengqiao, Yunnan N26°27.43′ E99°18.83′ 2925 4 (1) 

35 Zhong Xiaozhongdian, Yunnan N27°27.399′ E99°53.588′ 3128 3 (1) 
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Table 2. Summary statistics obtained from an analysis of sampled transcriptomes  

  

All samples var. complanata var. likiangensis 
var. 

linzhiensis 
var. rubescens 

Full data seta 

  

  

  

 

Number of (No.) loci 20743 16178 16558 17086 16775 

 

No. alignment 

positions 
16297461 13873969 14040232 14375147 13990046 

 

No. SNPs 480258 207857 217561 192168 284698 

Reduced data setb 

  

  

  

 

No. loci 4743 5640 5574 6307 6092 

 

No. alignment 

positions 
3438344 4217541 4819161 6017771 5782898 

 

No. SNPs 93245 59158 65631 60640 111561 

Reduced data setc 

  

  

  

 

No. loci 3646 3646 3646 3646 3646 

 

No. alignment 

positions 
3325106 3325106 3325106 3325106 3325106 

 

No. SNPs 84793 37549 38258 27722 55893 

 

π ± SD (×100) 0.256 ± 0.196 0.237 ± 0.193 0.219 ± 0.187 0.185 ± 0.176 0.264 ± 0.197 

 

Tajima’s D ± SD -1.211 ± 0.712 -0.598 ± 0.910 -0.514 ± 0.948 -0.204 ± 1.033 -1.054 ± 0.759 

 

Fay&Wu ’s H ± SD -0.091 ± 0.780 -0.030 ± 0.978 -0.137 ± 1.070 -0.211 ± 1.192 0.012 ± 0.790 

a 
All loci after deleting contigs in the reference transcriptome without mapped reads.  

b 
Only sites without missing data.  

c 
84793 SNPs retained across 3646 loci that met the following criteria: Hardy-Weinberg Equilibrium 

test (P > 0.05), length of locus > 200 bps, at least one segregating site per locus, no missing sites 

among four varieties.  
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Table 3. AIC values for the reticulate model and all possible tree-like models for the evolution of the 

four taxa. Bold type indicates the lowest AIC value. Abbreviations are: COM = var. complanata, LIK 

= var. likiangensis, LIN = var. linzhiensis, RUB = var. rubescens.  

Model Topology AIC 

Reticulate see figure 2 3403620 

Polytomous (COM,LIK,LIN,RUB) 3485790 

AB_C_D (((COM,LIK),LIN),RUB) 3590390 

AB_CD ((COM,LIK),(LIN,RUB)) 3723828 

AB_D_C (((COM,LIK),RUB),LIN) 3546428 

AC_B_D (((COM,LIN),LIK),RUB) 3580112 

AC_BD ((COM,LIN),(LIK,RUB)) 3773072 

AC_D_B (((COM,LIN),RUB),LIK) 3602820 

AD_B_C (((COM,RUB),LIK),LIN) 3560660 

AD_BC ((COM,RUB),(LIK,LIN)) 3763128 

AD_C_B (((COM,RUB),LIN),LIK) 3675782 

BC_A_D (((LIK,LIN),COM),RUB) 3588372 

BC_AD ((LIK,LIN),(COM,RUB)) 3614766 

BC_D_A (((LIK,LIN),RUB),COM) 3581342 

BD_A_C (((LIK,RUB),COM),LIN) 3585060 

BD_AC ((LIK,RUB),(COM,LIN)) 3617176 

BD_C_A (((LIK,RUB),LIN),COM) 3600046 

CD_A_B (((LIN,RUB),COM),LIK) 3611890 

CD_AB ((LIN,RUB),(COM,LIK)) 3592800 

CD_B_A (((LIN,RUB),LIK),COM) 3587710 

Note: model AB_CD indicates that the divergence time between varieties A and B was more recent 

than divergence between C and D; model AB_C_D indicates that the first divergence event in 

coalescent time occurred between A and B, as shown in the topology.  
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Table 4a. Estimated parameters of the reticulate evolutionary model illustrated in Figure 2. A 

generation time of 50 years (y) per generation (g) was assumed.  

 

Parameter NCOM  NLIK  NLIN  NRUB  Nanc  Relative Tsc  Tsc (g) TDIV (g) Tsc (y) TDIV (y) 

Mean 28,036 17,881 10,685 45,939 50,163 0.28 15,364.50 55,091.05 768,225 2,754,553 

S.D. 3,564 645 104 15,840 6,106 0.03 1,902.30 647.28 95,115 32,364 

 

 

 

Table 4b. Mean migration rates per million generations and corresponding standard deviations (S.D.) 

for each pair of varieties in Figure 2.  

 

Migratio

n rate 

matrix 

  Mean   S.D. 

  
From 

COM 

From 

LIK 

From 

RUB 

From 

LIN 
  

From 

COM 

From 

LIK 

From 

RUB 

From 

LIN 

MCOM  

 

– 225.42 0.05 105.04 

 

– 201.88 0.04 135.18 

MLIK  

 

0.74 – 0.33 84.66 

 

0.71 – 0.43 132.75 

MRUB  

 

0.07 130.32 – 64.70 

 

0.13 88.65 – 101.33 

MLIN    33.41 159.57 0.51 –   102.57 129.41 0.73 – 

 

 

FIGURES 

Figure 1. (A) The distribution of the sampled 82 trees within the Picea likiangensis species complex. 

Each tree is represented by a bar indicating its inferred ancestry. The dotted lines indicate boundaries 

of the Himalayan mountains, Hengduan mountains and Qinghai-Tibet Plateau (QTP). (B) Assignment 

of individuals to different genetic groups (K) when K = 4 as inferred by ADMIXTURE. Each 

individual is represented by a vertical bar displaying the individual’s probability (Q-value) belonging 
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to one or another cluster (genetic group). Individuals with Q-values < 0.99 (bootstrap test, P < 0.05) 

are indicated by solid circles and considered to be hybrids. 

 

 

 

Figure 2. The most likely reticulate evolutionary model involving a period of secondary contact 

among the four taxa comprising the Picea likiangensis species complex. The top layer (parallelogram) 
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indicates the divergence time of the four taxa at TDIV, when the four taxa diverged from an ancestral 

population with size Nanc. The middle layer indicates the time (TSC) that secondary contact was 

initiated among taxa. Arrows indicate genetic exchange among taxa from initial secondary contact 

(TSC) to the present. For each pair of taxa, two free migration parameters in different directions are 

assumed, indicating 12 parameters in the migration matrix (Text S1). Current population sizes of the 

four taxa are represented by NCOM, NLIK, NLIN and NRUB. 

 

 

Figure 3. Four models (evolutionary scenarios) used to test temporal patterns of divergence and 

migration: Complete isolation (CI), Continuous migration (CM), Primary contact (PC), and 

Secondary contact (SC). T is the divergence time in all models. TPC is the time when the two 

populations stopped exchanging migrants. TSC is the time when the two populations began exchanging 

migrants. NA, N1 and N2 are the effective population sizes (for haploid genome) of the ancestral 

population and two daughter populations, respectively. The migration rates per generation per 

individual are denoted by m1 and m2.  
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Figure 4. Tests of gene flow among each pair of taxa and population differentiation at putatively 

introgressed loci. Abbreviations for the four taxa: 1 = var. complanata, 2 = var. likiangensis, 3 = var. 

linzhiensis, 4 = var. rubescens. Positive DIJ represents gene flow between a pair of taxa I and J (I = 1, 

2, 3; J = 2, 3, 4). For each pair of taxa, 1000 jackknife replicates were used to generate each density 

distribution, where the broken lines indicate the 95% confidence intervals and solid triangles denote 

observed value for each pair (shown on left side of each panel, A-F). For each pair of taxa, we also 

computed the ΦST per locus and then plotted values for a particular taxon pair against another pair 

where one taxon was common to both pairs while the other two taxa involved were different (shown 

on right side of each panel, A-F). This was done for both putative introgressed loci (blue squares) and 

non-introgressed loci (black crosses). Thus, in panel A the plot is shown of values of ΦST per locus for 

var. likiangensis verus var. linzhiensis against ΦST values for var. complanata versus var. linzhiensis. 

Broken lines within each plot represent the 95% ΦST-quantiles for all loci. Blue integers represent the 

number of putative introgressed loci for which ΦST is higher than 95% ΦST-quantiles in two 

dimensions.  

 

 


