

Taking RISC-V to Mainstream ASICs

Charlie Su, Ph.D.
CTO and SVP of R&D
2017/05/09

Biography, Dr. Charlie Hong-Men Su 蘇泓萌

Technical Areas:

- ◆ Architecture and HW/SW Interaction of Processors and SoC's
- ◆ SoC Design for Multimedia and Networking

***** Experience:

- ◆ Andes Technology, 2005: Cofounder, CTO and SVP of R&D
- ◆ Faraday Technology, 2003: Principal Architect for ARM and DSP cores
- ◆ **Afara/Sun**, 2000: Senior Staff for Niagara T1000/T2000 processors, a 32/64-thread 8-core 64-bit Ultrasparc server-on-chip
- ◆ C-Cube, 1996: Director of Architecture/Validation for leading MPEG codec's
- ◆ **SGI/MIPS**, 1993: Architecture/Verification group for 64-bit MIPS R10K (4-way out-of-order processor) and its follow-on
- ◆ Intergraph, 1991: Architecture group for Clipper C4 superscalar and C5 VLIW processors

& Education:

- ◆ PhD, Computer Science, Univ. Illinois at Urbana-Champaign (UIUC)
- **◆ MS, Computer Science, National Tsing-Hua University (NTHU)**
- ◆ BS, Electrical Engineering, National Taiwan University (NTU)

Taking RISC-V to Mainstream ASICs

Agenda –

- Introduction to Andes
- Highlights of Andes Processor Solutions
- ❖ AndeStar™ Architecture and V5
- ❖ New AndesCore™ NX25
- Concluding Remarks

Introduction to Andes

Overview of Andes Technology Corporation

Andes Mission

• Innovate **performance-efficient** processor IP Solutions

Andes Highlights

- Founded in 2005 in Hsinchu Science Park, Taiwan
- Core R&D team from AMD, DEC, Intel, MIPS, nVidia, Sun
- EETimes' Silicon 60 Hot Startups to Watch (2012)
- TSMC OIP Award "Partner of the Year" for New IP (2015)
- A founding member of RISC-V Foundation (2016)
- IPO on TWSE in March 2017

Comprehensive Processor IP Solutions

smw.adm \$r1,[\$sp],\$r5,0x0
smw.adm \$sp,[\$sp],\$sp,0x2
addi \$sp,\$sp,-8
sethi \$r1,0x50a
lwi \$r1,[\$r1+#0x98]
mov55 \$r2,\$r0
mov55 \$r0,\$r1
lwi \$r1,[\$r1+#0x8]
addi \$r3,\$sp,12

AndesCore uCore

Processor IP's

Development Platforms AndeShape

Development Tools

AndeSight™

SW Stacks AndeSoft™

Business Status Overview

- Over 120 commercial licensees
 - Taiwan, China, Korea, Japan, US, Europe
 - >2B Andes-Embedded™ SoCs shipped
- Andes-Embedded
 N13/D10/N10/
 N9/N8/E8/S8/N7

- **❖** AndeSight™ IDE:
 - >11,000 installations
- Ecosystem
 - >100 partners
- Diversified applications based on Bare Metal, RTOSes, and Linux

Executive Summary

- New-generation AndeStar V5 adopts RISC-V
 - As its architecture kernel
- AndesCores expand from 32 bits to 64 bits
 - Based on AndeStar V5 architecture
- Andes brings rich processor solutions to RISC-V

Andes is the 1st major CPU IP vendor adopting RISC-V

Introduction to Andes

(Devices with Andes Embedded™)

Andes Embedded™ in SmartPhones

Andes Embedded in IOT and Sensor Fusion

WiFi Chips for IoT (also 802.15.4, Cat-M/NB-IOT) **3G** WiFi **IP Cam** 11 **Smart Lighting Air Purifier Smart Plug**

Sensor Fusion chips are used in Notebook PCs from Acer, Asus, HP, Lenovo

Andes Embedded with N7, N8, N9, N13

Mastech MS6531 IR Thermometer: ADC MCU

Nyquest Speech Synthesizer: MCU

Nisan X-Trail: ADAS Ctlr

Toshiba SD Card: Flash Ctlr

AndesCore is Learning

Dataflow Processing Unit (DPU) Architecture

Scalable Machine Learning Computers for Data Center

16ff CMOS Process Node	16K Processors, 8192 DPU Arithmetic Units	Self-timed, MPP Synchronization		
181 Peak Tera-Ops	16 MB Distributed Data Memory	8 MB Distributed Instruction Memory		
1.71 TB/s I/O Bandwidth	270 GB/s Peak Memory Bandwidth	2048 Outstanding Memory Requests		
4 Billion 16-Byte Random Access Transfers/s	4 Hybrid Memory Cube Interfaces	2 DDR4 Interfaces		
PCIe Gen3 16-lane Host interface	32-b Andes N9 MCU	1 MB program store for paging		
Hardware engine for fact of AES encrypted progr	32 Dynamic Reconfiguration Zones	Variable fabric dimensions (user programmable at boot)		

AndesCore as System Ctl Processor to control their 16,384 tiny processors

שריטווע Innovations™

Highlights of Andes Processor Solutions

Supporting to Reach 2-Billion Units

Andes Products and Open Source

- Several Andes products are built on open source and prior art:
 - AndeSight IDE: Eclipse, GCC, LLVM, GDB/OpenOCD
 - AndeSoft Stack: FreeRTOS/OpenRTOS, eCos, Contiki, Linux, middleware
 - AndeShape Andino boards: Arduino-compatible
 - AndeStar ISA: RISC architectures

Our innovations started, not stopped, here

AndesCore™ N/D/E/S Series

Novel processors with high efficiency, PowerBrake, StackSafe™, CoDense™ (N7, N8, N9, N10, N13, N15)

DSP-capable processors with cost-efficient pipeline (D10, D15)

Extensible processors for applicationspecific acceleration and code security (E8)

Security processors for best protection (58)

Advancement in Compiler Optimizations

■ Andes compiler improvement measured by EEMBC:

■ 9-year overall improvement vs. A-Company

■ Speedup: Andes +68% verses +34%

■ Code size: Andes -52% verses -16%

■Today, Andes has about

- 40% higher performance efficiency
- ■20% smaller code size

Compilation Improvement Code Size Reduction Performance Increase

AndeSight IDE: Rich Features

Project Setup:

- Linker Script Editor
- Flash ISP

Debug Support:

- RTOS-Awareness
- Registers w/ Bitfield View

Program Analysis

- **■** Function Profiling
- Code Coverage
- Performance Meter
- Function Code Size
- (Static) Stack Size

Custom Plugin Intf

Andes Custom Extension™ (ACE)

Verilog user.v
concise RTL

operands, C semantics, test-case spec

ACE script

Automated Env. For Cross Checking

Test Case Generator

Extended RTL

Extended ISS

COPILOT

<u>Custom-OP</u>timized <u>Instruction deve</u><u>LO</u>pment <u>Tools</u>

Extended Tools

Compiler Asm/Disasm Debugger IDE Extended ISS

CPU ISS (near-cycle accurate)

Extended RTL

CPU RTL

Extensible Baseline Components

Source file

ACE Features

Items	Description					
Instruction	Scalar	Single-cycleMulti-cycle (interruptible or non-interruptible)				
	Vector	- `for' loop - `do while' loop				
	Background	- Issued and retired immediately from CPU pipeline, but continue the remaining execution in background				
Operand: Explicit or Implied	Standard	Immediate constantGPR (up to 3R2W)Baseline memory (accessed thru CPU)				
	Custom	- ACR (ACE Register)- ACM (ACE Memory)- ACP (ACE Port)				

- Auto-Generation
 - Opcode selection (optional)
 - All required tools/simulator with fast turnaround time
 - RTL for instruction decoding, operand mapping and accesses, dependence checking, and result gathering.

Maturity and Stability

- Silicon-proven and mass production records
- It's about maturity and stability
 - → Most users don't want to upgrade w/o clear benefits
 - Open-source strategy: adopt a stable version in a managed pace
- Product verification
 - Heavy simulation and model checking for RTL design
 - → Going thru standard EDA tool flow
 - Compiler test suites: open-source, commercial and in-house
 - Debugger/ICE test suites
 - AndeSight IDE: commercial GUI testing tools
 - Linux: LTP and more
- It's also about long-term commitment to IP business

AndeStar Architecture

A Closer Look at AndeStar

- Andes Sixteen and Thirty-two Architecture
 - 16-bit and 32-bit instructions
- RISC architecture
- Characteristics of AndeStar's "RISC kernel"
 - Intermixable 16-bit and 32-bit instructions
 - 16- and 32- GPR configurations
 - No delayed branch, no predicated execution, no condition code
 - \$PC isn't a GPR, and \$r0 isn't hardwired to 0
 - Basic ALU, loads/stores, branches
- Instructions with longer immediate
- Load/store with additional addressing modes
- Patented load/store multiple words
 - Characteristics of major commercial RISC architectures are all different
 - RISC-V is most similar to AndeStar except \$r0 is 0

AndeStar™ ISA: V1 to V3

coDenserm StackSaferm PowerBrake Custom Ext.
DSP/FP Ext.
Security Ext.

Secure Rior to Secure Rios

Full Feature

Baseline

RISC Kernel

AndeStar™ ISA: Next Generation

coDensem StackSafem PowerBrake Custom Ext.
DSP/FP Ext.
Security Ext.

Secure Ribraries

Full Feature

Baseline

RISC Kernel

AndeStar™ ISA: V5

V5m+ more Andes Ext.

RV64IMAC + Andes Ext.

coDensem StackSafem PowerBrake Custom Ext.
DSP/FP Ext.
Security Ext.

COPILOT tool Secure Ribraries

Full Feature

Baseline

RISC-V Kernel

Adopting RISC-V as Natural ISA Evolution

AndeStar embraces RISC-V as its subset

- Common directions: compact kernel, modularity, extensibility, 64 bits
- Good momentum behind the RISC-V ecosystem
- → Andes Sixty-four and Thirty-two Architecture

Bringing AndeStar strength to RISC-V through V5

- Architecture beyond the kernel for diversified requirements
- Efficient processor pipeline for leading PPA
- Platform IP support to help speed up SoC construction
- AndeSight IDE, and compiler/library optimizations
- RTOS and Linux support, and middleware (such as IoT stacks)
- Commercial-grade verification for all products
- Professional supporting infrastructure

Adopting RISC-V as Natural ISA Evolution

AndeStar embraces RISC-V as its subset

- Common directions: compact kernel, modularity, extensibility, 64 bits
- Good momentum behind the RISC-V ecosystem
- → Andes Sixty-four and Thirty-two Architecture

Bringing AndeStar strength to RISC-V through V5

- Architecture beyond the kernel for diversified requirements
- Efficient processor pipeline for leading PPA
- Platform IP support to help speed up SoC construction
- Ande Ant Complete Rackage !
- RTOS and Linux support, and middleware (such as Io1 stacks)
- Commercial-grade verification for all products
- Professional supporting infrastructure

New AndesCore NX25

AndesCore NX25

- AndeStar V5m 64-bit architecture
- 5-stage pipeline
- Dynamic branch prediction
- Local Memory (LM) and caches
 - With parity and ECC error protection
- AXI64/AHB64 with >32 address bits
- JTAG debug module
- **❖** CoDense[™], StackSafe[™] and PowerBrake
- PLIC (Platform Interrupt Controller):
 - Up to 1023 sources, 255 priority levels, and 16 targets
 - Efficient interrupt nesting with priority-based preemption
 - SW interrupt generation
- **❖ 28nm (RVT)**:>1 GHz (worst case), 67 K gates, 17 uW/MHz

Pre-integrated Platform Based on NX25

RTOS Awareness Debugging: FreeRTOS

task name	number	priority	start of stack			top of stack	status
□ "IDLE"	' 3	0	0x208438 <w< td=""><td colspan="2">xIdle TaskStack.2447></td><td>0x208af0 <</td><td>Running</td></w<>	xIdle TaskStack.2447>		0x208af0 <	Running
□ "Task 2	2" 2	2	0x200cf8 <uc< td=""><td colspan="4">0x200cf8 <ucheap+2272> 0x2013d0 .</ucheap+2272></td></uc<>	0x200cf8 <ucheap+2272> 0x2013d0 .</ucheap+2272>			
(<u>H</u>)	Clic	k to sho	w register	list			
■ "Task 1	." 1	\$x1	001660000000	\$x2			\$x*ayed
±		\$x5	02166000000000	0x002013d0000000000 \$x6	0x00200800000000000 \$x7		0 x(************************************
□ "TmrS	vc" 4	0x000 \$x9	00000100000000 0x00200008000000				permed
4	4		0269000000000	\$x10		1 000000000000000000000000000000000000	\$x
Even		\$x13		\$x14 \$x			\$x
Task Lis	st C	0x0020150800000000		0x0020150800000000 0x		0200060000000000) 0x1
		\$x17		\$x18 \$:		9	\$x
queue name		0x0000000900000000		0xa5a5a5a5a5a5a5a5 0xa		585858585858585	0xxes waiting
□ "TmrQ"	□ "TmrQ"		70	\$~??	φ? Δ	2	⊕ √
	task name	number					
	"Tmr Svc"						

Concluding Remarks

Concluding Remarks

Open source

- A platform for technology advancement and coopetition
- Open source spirit (reflecting J.F. Kennedy)
 - Ask not what the community can do for you
 - Ask what you can do for the community

Andes has been actively contributing to the RISC-V toolchain:

- Ported/integrated GCC testing framework and testsuites
- Fixed 100+ failures due to GCC testsuite regressions
- Contributed 20+ bug fixes to official RISC-V toolchain
 - ◆2nd major contributor
 - ◆Serving as co-maintainer

Concluding Remarks

- RISC-V has a great start
 - Open, compact, modular, extensible, 64-bit
- *Advance Beyond Free (ISA) into Risk-Free (SoC)
- The current environment for RISC-V is
 - Good for CPU experts
 - Not for majority of SoC design teams, who demand
 - ◆ Faster time-to-market
 - ◆High stability, quality and comprehensive support
 - ◆Lower total cost of product development/maintenance
- Need experienced IP vendors to bring it to the mass
- Andes aims to address it with AndeStar V5
 - Started with an efficient 64-bit implementation in NX25
 - Bring V3 features and new features to V5 processors

Thank You !!

Taking RISC-V to Mainstream ASICs

With AndeStar™ V5

www.andestech.com knect.me

Abstract

❖ Andes is the Taiwan-based CPU IP company with about 2-billion Andes-Embedded SoCs shipped for diversified applications from wireless connectivity, touch controllers, storage, video codec, IoT, to deep learning and datacenter routers. As a Founding Member, Andes would like to help bringing RISC-V to those markets with the infrastructure we developed in the past 12 years.

ACE: A Half-Page Example


```
madd32.ace
                                                                     madd32.v
insn madd32 {
                                             //ACE BEGIN: madd32
   operand= {io gpr acc,
                                              assign acc out = acc in
             in gpr dat, in gpr coef);
                                                    + dat[15:0] *coef[15:0]
   csim= %{
                                                    + dat[31:16] *coef[31:16];
      acc+= (dat & Oxffff) * (coef & Oxffff)
         + (dat >>16) * (coef >>16);
                                             //ACE END
   8);
   latency= "1";
};
```

❖File madd32.ace: ACE definition script

- ■insn: instruction name, "madd32"
- **■op(erand)**: operand names and attributes (in/out/io gpr, imm, etc.)
- **Ecsim**: instruction semantics in C for instruction set simulator
- ■latency: estimated cycles spent on instruction execution; default is 1.
- ❖File madd32.v: concise Verilog RTL
 - ■//ACE_BEGIN . . . //ACE_END: instruction-specific Verilog logic

AndesCore is Learning

Dataflow Processing Unit (DPU) Architecture

Scalable Machine Learning Computers for Data Center

9 (4) (4)		16ff CMOS Process Node	16K Processors, 8192 DPU Arithmetic Units	Self-timed, MPP Synchronization					
41	ı	181 Peak Tera-Ops	16 MB Distributed Data Memory	8 MB Distributed Instruction Memory					
	ı	1.71 TB/s I/O Bandwidth	270 GB/s Peak Memory Bandwidth	2048 Outstanding Memory Requests					
		4 Billion 16-Byte Random Access Transfers/s	4 Hybrid Memory Cube Interfaces	2 DDR4 Interfaces					
T COLUMN		PCIe Gen3 16-lane Host interface	32-b Andes N9 MCU	1 MB program store for paging					
		Hardware engine for fact of AES encrypted progr	32 Dynamic Reconfiguration Zones	Variable fabric dimensions (user programmable at boot)					
S	VS	AndesCore	e as						
AndesCore as System Ctl Processor									

RTOS Awareness Debugging: FreeRTOS

task name	number	priority	start of stack	top of stack	status
□ "IDLE"	3	0	0x208438 <uxidletaskstack.2447></uxidletaskstack.2447>	0x208af0 <	Running
□ "Task 2"	'Task 2" 2 0x200cf8 <ucheap+2272></ucheap+2272>				Delayed
1		ow register list	0x2013d0		
□ "Task 1"	1	1	0x200430 <ucheap+24></ucheap+24>	0х200ъ08	Delayed
_	"Tmr Svc" 4 6		0x208c38 <uxtimertaskstack.2454></uxtimertaskstack.2454>	0x209ac0 <	Suspended

Task List

Event List

queue na	me	handler address	max length	item size	messages waiting
□ "Tmr(રૂ"	0x200378	5	32	0
	task name	number			
	"Tmr Svc"	4			

RTOS Awareness Debugging: FreeRTOS

task name	num	ber priority	start	of stack			top o	f stack	status
□ "IDLE"	" 3	0	0x20	8438 <uxidletaskstack.2447></uxidletaskstack.2447>		0x208af0 <		Running	
□ "Task 2	2" 2	2	0x20	0x200cf8 <ucheap+2272></ucheap+2272>			0x2013d0		Delayed
(H)		Click to sho	w re	egister list					
□ "Task i	1"	\$x1		\$x2		\$x3		\$x4	
_ 103K		0x00002166000	00000	0x002013d000000	000	0x0020080000000000		0x00200800000000000	
±		\$x5		\$x6		\$x7 \$		\$x8	
□ "Tmr S	UM 0 U		00000	0x0020000800000	000	0x0000000100000000		0х000026Ъ0000000000	
4		\$x9		\$x10		\$x11		\$x12	
		0x0000269000000000		0x000000000000000	000	0x000000000000000000000000000000000000		0x00201508000000000	
		\$x13 0x0020150800000000		\$x14		\$x15 0x00200060000000000		\$x16	
Task Lis	st			0x0020150800000	000			0x00000000000000000	
		\$x17		\$x18		\$x19		\$x20	
queue nam	e	0x0000000900000000		0xa5a5a5a5a5a5a5a5		358585 0x85858585		5a5a5a5a5a5	
□ "TmrQ"	□ "TmrO" \$x21		\$x22 \$x23		\$x23	\$x24			
8	0205050505050		a5a5 0xa5a5a5a5a5a5a5a5 0x		0xa5a5a5a5a5a5a5a5 0		0xa5a5a5a5a5a5a5a5		
	task :	\$x25		\$x26		\$x27		\$x28	
		0xa5a5a5a5a5a5a5	a5a5	0xa5a5a5a5a5a5a5	a.5	0xa5a5a5a5a5a	5a5a5	0x00000	07300000000
	"Tm:	\$x29		\$x30		\$x31		\$EPC	
		0x00000046000	00000	0x0000004e000000	000	0x0000006e00	000000	0x00002	166000000000