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Calcium phosphate (CaP) minerals may comprise the main phosphorus (P) reserve in alkaline 16 

soils, with solubility dependent on pH and the concentration of Ca and/or P in solution. 17 

Combining several techniques in a novel way, we studied these phenomena by progressively 18 

depleting P from suspensions of two soils (low P) using an anion exchange membrane (AEM), 19 

and from a third soil (high P) with AEM together with a cation exchange membrane. Depletions 20 

commenced on untreated soil, then continued as pH was manipulated and maintained at three 21 

constant pH levels: the initial pH (pHi), pH 6.5, and pH 5.5. Bulk P K-edge X-ray absorption 22 

near-edge structure (XANES) spectroscopy revealed the main forms of inorganic P in each soil 23 

were apatite, a second more soluble CaP mineral and smectite-sorbed P. With moderate 24 

depletion of P at pHi or pH 6.5, CaP minerals became more prominent in the spectra compared to 25 

sorbed species. The more soluble CaP minerals were depleted at pH 6.5 and all CaP minerals 26 

were exhausted at pH 5.5, showing that the CaP species present in these alkaline soils are soluble 27 

with decreases of pH in the range achievable by rhizosphere acidification.  28 

INTRODUCTION 29 

The concentration of phosphorus (P) in the soil solution of alkaline soils is ultimately 30 

controlled by the dynamics of calcium phosphate (CaP) minerals.
1,2

 However, slow equilibration 31 

rates and ongoing soil processes (sorption, biotic activity) also influence P availability.
3,4

 The 32 

most common CaP minerals found in soil (and molar Ca:P ratios), in order of decreasing 33 

solubility under alkaline conditions, are dicalcium phosphate dihydrate (brushite, 1:1), dicalcium 34 

phosphate (monetite, 1:1), octacalcium phosphate (OCP, 1.33:1), β-tricalcium phosphate (β-TCP, 35 

1:5), hydroxyapatite (HAp, 1.67:1) and fluorapatite (FP, 1.67:1).
5
 In addition, P sorption occurs 36 

on the surfaces of iron (Fe) and aluminium (Al) (oxy/hydr)oxides, calcite, organic matter and 37 
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some clay minerals.
6-10

 As pH decreases from pH  8, the solubility of OCP, β-TCP and apatites 38 

increase more quickly than monetite and brushite.
5
 In alkaline soils, P sorbs rapidly to calcite, 39 

and a small surface area of sorbed P can serve as the nucleus for CaP precipitation, although 40 

modified by the presence of organic ions like citrate.
7,11,12

 Conversely, precipitation of Fe 41 

phosphate minerals on the surface of Fe (oxy/hydr)oxides can occur when Fe minerals dissolve 42 

at low pH.
13

 Sorbed P forms an important pool of P that buffers solution P concentration, and a 43 

recent review of P sorption studies over the last 70 years found that clay minerals may be as or 44 

more important than Fe and Al (oxy/hydr)oxides for binding P.
10

 It is possible that both sorption 45 

and precipitation/dissolution are important processes operating at the mineral-water interface.
14

 46 

 Labile P that replenishes P in solution of alkaline soils is commonly measured using a sodium 47 

bicarbonate extractant.
15,16

 The bicarbonate soil P test is generally considered to extract P sorbed 48 

to the surfaces of Fe and Al (oxy/hydr)oxides and calcite, and some labile CaP minerals.
17

 49 

However, it is well established that plants access acid-soluble pools of P from alkaline and 50 

neutral soils that are not extracted with bicarbonate.
18-27

  Recognising this, commercial soil 51 

testing of alkaline Vertisols
28

 in some regions,
29-31

 includes two targeted tests for soil P. For 52 

example, in the Northern Grains Region of eastern Australia, soils are routinely extracted with  53 

0.5 M bicarbonate,
16

 (Colwell-P), and 0.005 M H2SO4,
32

 (BSES-P). The additional quantity of P 54 

generally measured in the acid extract is termed reserve-P, and  is considered to consist of CaP 55 

minerals as well as some sorbed forms.
33-36

 The mechanism by which plants access  this reserve-56 

P is likely driven by two factors: 1) the replenishment of labile-P via slow dissolution of CaP 57 

minerals
37

 in response to the depletion of P or Ca in the soil solution,
5
 or; 2) direct solubilisation 58 

of CaP minerals by a combination of rhizosphere acidification , and absorption of P and Ca from 59 

the soil solution.
38-41

 60 
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The presence of CaP minerals in soils is commonly inferred via sequential fractionation 61 

schemes (e.g. Hedley et al.
42

 or Williams et al.
43

). However, the forms of P indicated by these 62 

schemes cannot differentiate between P species soluble in each chemical extract, and the 63 

schemes may introduce artefacts of chemical formation during the tests.
44-46

. Mineral solubility 64 

models can indicate the presence of a controlling mineral phase,
1,2,47

 but are limited in their 65 

assessment of some mineral or sorbed phases.
3,4,46,48

 66 

Synchrotron based X-ray absorption near edge structure (XANES) spectroscopy is a powerful 67 

technique for speciating inorganic P in soils. While the approach has limitations (such as the 68 

weakness of the identification of organic P species, statistical limitations of data analysis such as 69 

linear combination fitting (LCF), and detection limit difficulties),
46,49-51

 XANES has enabled 70 

different mineral and sorbed species of soil P to be identified directly, as well as providing some 71 

abundance estimates . 
46,50

 72 

We previously reported on the depletion of P from six alkaline Vertisols as they were 73 

incrementally acidified, during which the concentration of P extracted increased sharply near pH 74 

6.
52

 Subsequently, P extractions of three of the soils at static pH levels suggested dissolution of 75 

distinct CaP species.
53

 Using XANES on one of those soils, McLaren et al.
36

 showed that CaP 76 

species were removed with the BSES extraction, however a high detection limit for P at the 77 

beamline used in that study prevented a more detailed analysis. Most XANES investigations 78 

have been conducted on soils with relatively high P concentrations (e.g. > 800 mg P kg
–1

) or with 79 

the addition of P fertiliser or P-rich amendments as the similar spectral features of CaP species 80 

and the poor spectral quality at P concentrations close to the detection limit of the beamline 81 

limits the accuracy of LCF.
44,51

  Recently, Klysubun et al.
54

 reported P K–edge XANES spectra 82 

collected at low total P concentrations (~50 mg kg
–1

) at beamline 8 (BL8) of the Synchrotron 83 
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Light Research Institute (SLRI, Thailand). This enabled identification of P species
55

 at 84 

concentrations that may be well suited to identifying CaP in P depletion investigations. More 85 

recent synchrotron facilities, such as SLRI, have the capability to analyse soil P in unspiked 86 

situations, while still being able to observe treatment effects that may be difficult to detect in 87 

high resolution µ-XANES facilities.
56

  88 

The current study uses bulk P K-edge XANES spectroscopy at BL8 of the SLRI to investigate 89 

the speciation of P in three alkaline Vertisols as P was partially depleted using anion exchange 90 

membranes (AEM), or combined AEM and cation exchange membranes (ACEM), while 91 

maintaining pH within narrow ranges.
53

 We hypothesise that P K-edge XANES spectroscopy 92 

will show that: 1) several forms of both CaP and sorbed-P species are present in each soil and 93 

that  some sorbed P is preferentially depleted at the initial soil pH (pHi); and 2) some sorbed P is 94 

preferentially depleted ahead of CaP. 95 

METHODS 96 

Soil description, chemical analysis and P depletion. 97 

The soil samples have been described in detail elsewhere (see supporting information, SI).
52

 98 

Briefly, soil samples (0-10 cm) were collected from sites used for cereal and oilseed cropping 99 

with fertilizer inputs of <10 kg P ha
–1

 y
–1

 for at least 30 y. Soil characterisation analyses (Table 100 

1) were performed as detailed in Rayment and Lyons
57

. Reserve-P was calculated as the 101 

difference between Colwell-P and BSES-P.
33

 Organic P was measured as the difference in the 102 

concentration of P extracted from a 1:50 (g:mL) sample with 0.5 M H2SO4 for 16 h before and 103 

after ignition at 550 °C for 1 h.
58

 The oxalate tests were performed in duplicate, and all other 104 

tests were performed in triplicate. Concentrations of molybdate-reactive P were measured using 105 
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the malachite green method of Motomizu et al.
59

 Inorganic carbon measured previously on these 106 

soils was < 0.04% of soils 1 and 2, and not detected in soil 3.
52

 107 

Total P was measured by portable X-ray fluorescence (PXRF) spectroscopy using a Bruker 108 

Tracer IV SD according to McLaren et al.
60

. However, the PXRF signal for P in soil 3 was 109 

outside the calibration range. Therefore, total P in soil 3 was measured by aqua regia digestion 110 

followed by inductively coupled plasma optical emissions spectroscopy (See SI).
36,61

 111 

Table 1. Initial soil pH, Colwell-P, reserve-P, Total P, molar Ca: P ratio of the BSES extract, and 112 

oxalate extractable Al and Fe. 113 

Soil pH Colwell-P Reserve-P Organic P Total P BSES Oxalate 

          Ca:P Al Fe 

  1:5w                                   mg/kg                          .                mg/kg      . 

1 8.1 96 306 164 788 12.7 782 911 

2 8.4 50 289 130 806 21.9 1833 990 

3 7.8 79 6534 1749 8922 2.9 1473 2000 

 114 

Particle size distributions were measured using the pipette method after dispersing the soil in 115 

sodium hexametaphosphate.
62

 The clay activity ratio was calculated as the ECEC divided by % 116 

clay to provide an indication of clay mineralogy.
63,64

 Sample mineralogy was quantitatively 117 

measured by X-ray diffraction (XRD)
65

 (see SI). 118 

Phosphorus was depleted from each soil in 18 h steps, for 288 h (16 cycles, soils 1 and 2) or 119 

306 h (17 cycles, soil 3).
53

 Briefly, P was extracted with AEM in the Cl
–
 form,

66
 and from soil 3 120 

with AEM plus CEM (K
+
 form), in 1:80 soil:water suspensions (see SI). The proportion of 121 

reserve-P that was extracted with AEM in soil 3 was low, whereas a larger proportion of reserve-122 
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P was extracted with ACEM. Therefore, the results of the latter are focused on in the current 123 

study.  124 

Phosphorus reference materials. 125 

Sixteen reference materials were selected from different mineral and sorbed P phases to 126 

represent a range of mineral, sorbed and organic P species (see SI). 127 

Phosphorus K-edge XANES spectroscopy. 128 

All samples and standard compounds were analysed by bulk XANES spectroscopy at the P K -129 

edge on BL8 of the SLRI (1.2 GeV) in Nakhon Ratchasima, Thailand, in a He filled chamber. In 130 

the photon energy region for P K-edge analysis, the photon flux was approximately 2x10
10

 131 

photon s
–1

 at 100 mA using an InSb(111) crystal.
54

 The beam size at the target was 14 mm x 132 

1 mm. A 13-element Ge detector was used to collect spectra in fluorescence yield mode. 133 

Radiation damage was not evident as the spectra had good reproducibility.
44

 At least two spectra 134 

were acquired for each reference material, and three for each unknown sample.  135 

Data processing and statistical analyses. 136 

The concentration of P remaining in each P-depleted soil sample was calculated as the 137 

difference between the total P in the untreated soil and that extracted with AEM or ACEM. The 138 

concentration extracted was the cumulative total P eluted from the membranes and the P 139 

remaining in solution after each extraction. 140 

The XANES data were processed using Athena.
67

 Replicate spectra were aligned and merged, 141 

the pre-edge and post-edge were normalised from zero to one, and then calibrated to the P K-142 

edge (E0, 2145.5 eV). A short list of reference compounds of interest for each sample was 143 

selected based on visual assessment of prominent spectral features. The P species likely present 144 

in the unknown samples were determined through a sequence of LCF procedures (see SI). Linear 145 
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combination fitting was performed repeatedly for each unknown sample, each time excluding 146 

reference materials that received negative weightings, until only components with positive 147 

weights remained. The final LCF was performed between 2147.5 and 2175.5 eV (see SI). The 148 

sum of weights was then normalised to 1, and the percentage of the weight assigned for each P 149 

species was multiplied by the total soil P in the sediment in order to calculate an indicative 150 

concentration (mg kg
–1

). The normalised data of each spectra and fit was exported from Athena, 151 

and the figures were constructed using R (version 3.1.0).
68

 152 

RESULTS 153 

Soil solution chemistry and physical characteristics. 154 

All soils were alkaline. Concentrations of Colwell-P were greatest in soils 1 and 3. The 155 

concentration of reserve-P, organic P and total P were an order of magnitude greater in soil 3 156 

than in soils 1 and 2, and soil 3 had a lower Ca:P ratio (Table 1). Soil 1 contained the lowest 157 

concentrations of oxalate extractable Al and Fe (Table 1) and the clay activity ratio (see SI). The 158 

XRD analyses indicated  and quartz were common components of the soils, with hematite and 159 

apatite and feldspars (albite/anorthite, orthoclase/sanidine) also notable (see SI). 160 

Soil pH manipulation and P extraction. 161 

In all soils, the amount of P extracted with AEM or ACEM increased with each decrease in 162 

soil pH (Table 2). The cumulative concentration of P depleted at pH 5.5 exceeded the 163 

concentration of BSES-P (Table 2). The proportion of total P in the pH 5.5 sediments compared 164 

to that in the untreated soils ranged from 25 – 49 % across all soils (Table 2). 165 

Table 2. The concentration of total P in each soil after depletion at each pH level. 166 

Soil P remaining (mg kg
–1

) 
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  Untreated pHi pH 6.5 pH 5.5 

1 788 586 460 351 

2 806 719 589 395 

3 8922 6861 3527 2219 

 167 

Bulk P K-edge XANES spectroscopy. 168 

Phosphorus K-edge XANES spectroscopy on the P reference materials revealed a prominent 169 

white line energy peak (ii in Figure 1), representing excitation of 1s electrons and subsequent 170 

fluorescence as the K orbital is filled, and constructive and destructive interference at higher 171 

energy levels from neighbouring atoms.
46

 Notwithstanding variation observed in the literature 172 

between spectra collected for the same nominal material,
51

 the CaP reference materials (Figure 1, 173 

a and b) display the features commonly associated with CaP minerals, i.e. a post white line 174 

shoulder (iii), and a secondary peak (iv).
51

 The shoulder feature is commonly associated with Ca 175 

content, and the secondary peak with the degree of crystallinity.
69

 The secondary peak (iii) in 176 

brushite was at a slightly lower energy than the other CaP minerals, as commonly observed.
51,70

 177 

The increased intensity in the wide energy band (v) is attributed to oxygen oscillation.
51

 The 178 

spectrum of calcite-P had similar features to that observed for CaP minerals. The other sorbed P 179 

species, ferrihydrite-P, hematite-P, humic-P, and smectite-P, had similar, generally featureless 180 

spectra. Similarly, phytate lacked distinct spectral features although there was some change in 181 

the white line energy peak (ii) and oxygen oscillation peak (v), which were broader compared to 182 

the sorbed P species. The intensity pre-edge (-1 to -5 eV relative to E0) of ferrihydrite-P3 was 183 

slightly elevated, though not to the degree of FePO4.4H2O, nor was this higher than the samples. 184 

Amongst the sorbed-P species in Figure 1a, the intensity of ferrihydrite-P was slightly greater in 185 
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the valley between (iii) and (iv), while humic-P was slightly lower in the oscillation range (v). 186 

The remaining spectra were not included in the LCF (Figure 1c) after a preliminary fit displayed 187 

distinctive features that differed from the unknown samples (Figure 2). These included 188 

fluctuations in intensity between the shoulder (iii) and secondary (iv) peaks, and a distinctive 189 

pre-edge feature (i) characteristic for FePO4.4H2O.
50

 190 

 Figure 1 near here 191 

Figure 1. Normalised spectra of P reference materials analysed. a) spectra fitted to samples in 192 

LCF, b) spectra used in LCF though not fitted to any samples, and c) spectra exhibiting features 193 

distinctly different to the unknown samples so  not included in LCF. Dashed lines indicate 194 

spectral features at: i, 2143 eV (pre-edge); ii, 2146.5 eV (white line); iii, 2148.7 eV (shoulder); 195 

iv, 2157 eV (secondary peak); and v, 2163 eV (oscillation). 196 

The LCF provided good fits across the broader energy range even though they were performed 197 

on the post-white line energy range (Figure 2). In soils 1 and 2, the secondary peak (iii) became 198 

most distinct at pH 6.5. The signal to noise ratio in soils 1 and 2 decreased with P depletion at pH 199 

6.5 as the sorbed P became less important (Tables 4 and 5). The shoulder and secondary peak 200 

were most prominent in the untreated, the pHi and the pH 6.5 treatments of soil 3. The shoulder 201 

(iii) and secondary peaks (iv) were absent in the pH 5.5 extraction of all 3 soils, whereas the 202 

white line energy peak (ii) and broad oscillation peak (v) were still present. 203 

 Figure 2 near here 204 

Figure 2. Normalised P K-edge XANES spectra of untreated soil samples and soil residues after 205 

acidification to three levels of soil pH (pHi, pH 6.5 and pH 5.5) and removal of P using AEM 206 

(soils 1 and 2) or ACEM (soil 3). Linear combination fits using standards are detailed in Tables 207 
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4, 5 and 6 for the three soils. The fit to AEM pH 5.5 for soil 2 is the spectrum of smectite-P, the 208 

only non-negative reference material in the LCF. Dashed lines indicate spectral features at ii, 209 

2146.5 eV (white line); iii, 2148.7 eV (shoulder); iv, 2157 eV (secondary peak); and v, 2163 eV 210 

(oscillation). 211 

The LCF identified smectite-P as the dominant component in the untreated sample of soil 1, 212 

along with apatite and the more soluble brushite (Table 3). Both CaP minerals and sorbed-P 213 

contributed to the concentration of P extracted at pHi (Table 3). Linear combination fitting 214 

revealed that brushite was absent after extraction at pH 6.5, and that apatite had become the 215 

dominant remaining component with an increasing indicative concentration in soil 1. In the most 216 

depleted sample at pH 5.5 of soil 1, no CaP minerals were identified, while the indicative 217 

concentration indicated an increase in sorbed P and the presence of humic associated P (Table 3). 218 

Table 3. Linear combination fitting components for each treatment: LCF weight, LCF R-factor, 219 

delta-R, indicative concentration of P in each phase (mg kg
–1

), and ranked importance of the 220 

reference compounds to the LCF for soil 1. 221 

Soil Sample   Apatite Brushite Humic-P Smectite-P R-factor 

1 untreated weight 0.188 0.091   0.766 0.03727 

delta-R 0.00296 0.00040 0.08150   

mg kg
–1

 142 69 578   

rank 2 3 1   

pHi weight 0.329 0.105   0.637 0.02351 

delta-R 0.00983 0.00057 0.06092   

ppm 180 57 349   

  rank 2 3   1   
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pH6.5 weight 0.589     0.456 0.03148 

mg kg
–1

 259 201   

  rank 1     2   

pH5.5 weight     0.461 0.518 0.05821 

mg kg
–1

 165 186   

    rank     1 2   

 222 

A
Rank determined by delta R when at least 3 reference compounds were included in the LCF, 223 

otherwise determined by weight assigned by LCF or sole component. 224 

The depletion of P from soil 2 resulted in similar changes to the identified components as 225 

occurred in soil 1. Smectite-P was the dominant component in the untreated sample, along with 226 

apatite and brushite (Table 4). All forms of soil P identified by LCF in the untreated sample 227 

contributed to the concentration of P extracted at pHi. Brushite was not identified after extraction 228 

at pH 6.5 for soil 2, in which apatite was the dominant component with an increased indicative 229 

concentration. Extraction of P with AEM at pH 5.5 left smectite-P as the only component 230 

identified by LCF (Table 4). 231 

Table 4. Linear combination fitting components for each treatment, LCF weight, LCF R-factor, 232 

delta-R, indicative concentration of P in each phase (mg kg
–1

), and ranked importance of the 233 

reference compounds to the LCF for soil 2. 234 

Sample   Apatite Brushite Smectite-P R-factor 

untreated weight 0.427 0.067 0.589 0.0373 

delta-R 0.02125 0.00021 0.05369   

mg kg
–1

 318 50 438   

rank 2 3 1   
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pHi weight 0.442 0.068 0.572 0.0475 

delta-R 0.02267 0.00001 0.04457   

mg kg
–1

 294 45 380   

  rank 2 3 1   

pH 6.5 weight 0.694   0.405 0.0464 

mg kg
–1

 372 217   

  rank 1   2   

pH 5.5 mg kg
–1

      395   

 rank   1  

 235 

The high concentration of P in the untreated sample of soil 3 was dominated by apatite, with 236 

smectite-P and OCP also identified by LCF (Table 5). Depletion with ACEM at pHi extracted P 237 

from all phases, leaving the sorbed-P as the least important component, while there was an 238 

anomalous increase in the indicative concentration of OCP (Table 5). As with soils 1 and 2, the 239 

more soluble CaP phase (OCP) was removed by extraction at pH 6.5. Also, depletion of P at pH 240 

5.5 removed all CaP minerals, and in this most P depleted sample there was an apparent increase 241 

in the indicative concentration of sorbed P. A minor component of brushite was also identified in 242 

the pHi extraction with AEM in soil 3 (indicative contribution of 78 mg kg
-1

), verifying the 243 

components identified at the Australian synchrotron.
36

 244 

Table 5. Linear combination fitting components for each treatment, LCF weight, LCF R-factor, 245 

delta-R, indicative concentration of P in each phase (mg kg
–1

), and ranked importance of the 246 

reference compounds to the LCF for soil 3. 247 

Sample   Apatite OCP Humic-P Smectite-P 

Ferrihydrite 

-P R-factor 
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untreated weight 0.863 0.044   0.144   0.0154 

delta-R 0.02903 0.00008 0.00113   

mg kg
–1

 7326 374 1222   

rank 1 3 2   

pHi weight 0.822 0.123   0.034   0.0029 

delta-R 0.03463 0.00051 0.00010   

mg kg
–1

 5761 862 238   

  rank 1 2   3     

pH 6.5 weight 0.781     0.221   0.0088 

mg kg
–1

 2749 778   

  rank 1     2     

pH 5.5 weight     0.679   0.233 0.0314 

mg kg
–1

 1652 567   

  rank     1   2   

 248 

DISCUSSION 249 

Release of P into solution. 250 

We identified both sorbed P and CaP phases in each of the untreated soils, highlighting the 251 

complexity of assessing P mobility in these soils. The depletion of P at pHi suggests that the 252 

release of P to the soil solution could occur through the process of slow replenishment of labile 253 

pools from either sorbed
71

 or mineral
36

 phases.
72,73

 Additional P was extracted at pH 6.5 and pH 254 

5.5, which suggests that rhizosphere acidification could be an important process for P uptake in 255 

these soils. Rhizosphere acidification of up to 2.7 pH units has been reported for various crops
74

 256 

and is feasible in these soils with moderate pH buffering capacity.
52

 Truog,
34

 considered that P 257 

soluble in dilute H2SO4 is readily available because the pH of saturated carbonic acid, as may be 258 
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found near the root tip, is approximately 3.7. This is well below the approximate threshold of pH 259 

6 where large increases in resin-extractable P were measured during a process of incremental 260 

acidification.
52

 In addition, the mobilisation of soil P by plants would be enhanced by the co-261 

removal of Ca, as shown by the increased concentrations of P removed with ACEM.
53

 The 262 

presence of organic acids (e.g. citrate) in the rhizosphere would also influence dissolution of CaP 263 

minerals, as previously shown for brushite.
41

 Both acidification due to proton extrusion and the 264 

presence of organic acids are likely to affect P mobility of P in the rhizosphere of alkaline soils, 265 

and the potential interaction is an area where research may be advanced. 266 

Mineral P. 267 

The acidification of soils to pH 6.5 and 5.5 resulted in the preferential extraction of CaP and 268 

sorbed P phases. Increased dissolution of CaP was expected, as acidification from the initially 269 

alkaline levels increases the solubility of CaP minerals.
5
 The preferential depletion of the two 270 

identified CaP phases was detected by the combination of XANES and the acidification 271 

experiment, and would not have been detected using more standard chemical extractions.
34,46

 The 272 

identification of the two CaP phases of different solubility in each soil explains the increased 273 

concentration of P that was extracted from soils with the addition of acid.
53

 The less soluble 274 

apatite may represent native CaP minerals that have low solubility at the high pH levels in these 275 

soils.
5
 The high rank assigned to apatite in soil 3 was supported by the Ca:P ratio in the BSES 276 

extract in soil 3. This ratio is relatively close to that in CaP minerals, and much lower than 277 

reported for other alkaline soils.
5,37

 This suggests that CaP minerals may be the dominant forms 278 

of P that comprise reserve-P in this soil.
75,76

 The more soluble CaP phase in each soil, and 279 

perhaps others not identified by LCF such as calcite-P or amorphous CaP, may represent 280 

fertiliser reaction products that form intermediate CaP minerals that slowly transforms to less 281 
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soluble forms.
77-79

 The presence of more soluble CaP phases showed that at least a portion of the 282 

reserve-P could be more available in the rhizosphere in alkaline soils than previously 283 

considered.
33

 284 

The increased concentration of CaP minerals as P was depleted from the untreated sample to 285 

pHi and pH 6.5 in soils 1 and 2 may reflect the limitations of LCF (see SI), or re-precipitation by 286 

CaP. As it is unlikely that the reference materials can truly represent all components in a soil, 287 

and LCF is not sensitive to minor components, errors in estimating the indicative concentrations 288 

are likely.
49,75

 For instance, the absence of amorphous CaP, β-TCP, monetite or calcite-P from 289 

the LCF does not preclude their presence, nor can we observe their depletion. Alternatively, an 290 

artefact may have been introduced during the extractions, where increased Ca in solution may 291 

have precipitated P before the AEM could remove it from suspension.
80

 292 

Sorbed P. 293 

The identification of P sorbed to clay is an important novel finding of this research, and lends 294 

support to recent re-analyses of sorption data indicating the importance of clays to P sorption.
10

 295 

The change in sorbed species as P was extracted indicated that the depletion of the sorbed-P 296 

phases involved more complexity than the single species (smectite-P) identified by LCF in the 297 

untreated soils. The soils were dominated by the clay fraction with a high proportion of smectite , 298 

so sorption to clay surfaces is likely.
6,10,81

 The preferential extraction of sorbed-P that resulted in 299 

it becoming less dominant at pH 6.5 in soils 1 and 2 indicated that at least a portion of the sorbed 300 

P was more readily extracted and therefore more available than the mineral CaP phases and 301 

remaining sorbed phases.
82

 It is likely that the extraction of this P represents P bound 302 

electrostatically or by monodentate bonds.
10,83

 Clays such as these Vertisols with coatings of Fe-303 

hydroxides have high P sorption capacity,
84

 and may involve synergistic effects with desorption 304 

Page 17 of 36

ACS Paragon Plus Environment

Environmental Science & Technology



17 

 

of Ca from association with (oxy/hydr)oxides in soils as pH decreases can result in decreased P 305 

sorption.
6
 Release of Ca associated with (oxy/hydr)oxides may explain some of the Ca that 306 

yielded the high Ca:P ratios in the BSES extracts. 307 

After the more labile forms of sorbed-P were removed, the concentration remaining in the 308 

most P depleted samples at pH 5.5 represent forms more resistant to extraction with the 309 

technique used. In so far as the approach mimicked plant uptake of P, the remaining 310 

concentrations were also probably resistant to plant uptake.
66

 Where the remaining P was 311 

identified as smectite-P or ferrihydrite-P, it may represent occluded P, or bidentate bound P.
85

 312 

Where the remaining P was identified as humic-P, it may represent ternary complexes, or may be 313 

an artefact of the extraction process.
86

 In soils 1 and 3, the LCF identified additional sorbed-P 314 

phases. This appearance of new phases in a more depleted soil may well occur, as a phase needs 315 

to comprise approximately 10-15% of the P to be identified by LCF.
49

 The higher concentration 316 

of oxalate extractable Fe in soil 3, compared to soils 1 and 2, supports the identification of 317 

ferrihydrite–P.
5
 This Fe associated P may be strongly sorbed in micropores of crystalline 318 

(oxy/hydr)oxides,
87

 resulting in it being present after depletion of other P phases. Due to the 319 

limitations of LCF, and the absence of extra reference spectra of P sorbed to phases (such as 320 

different clays, gibbsite or goethite), it is possible that other sorbed-P species were present in the 321 

soil, and may play a role in P mobility at low pH.
10,49

 Further investigation into the role of sorbed 322 

P should be a subsequent focus of work using the combination of approaches put forward in this 323 

study in addition to plant-based studies. 324 

The identification of humic-P by LCF in soils 1 and 3 at pH 5.5 may also be due to relative 325 

resistance to extraction at lower the pH level. Humic associated P (as opposed to the P sorbed to 326 

humic substances reference material) has been identified with solution 
31

P-NMR in alkaline 327 
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Vertisols.
88

 However, as the humic-P reference material XANES spectrum is broad and without 328 

other defining features, its identification may represent a range of organic or possibly even 329 

inorganic P species.
46,89

 The forms of P identified in the most depleted samples may alternatively 330 

be an artefact of the extraction process, whereby some repartitioning of dissolved P may have 331 

occurred during the extractions with sorption to pH dependent surfaces or the formation of 332 

ternary complexes.
86,90-92

 This warrants further detailed investigation. 333 

Implications for P testing and interpretation in alkaline Vertisols. 334 

A number of studies
40,74,93,94

 suggest that release of reserve-P by temporary rhizosphere 335 

acidification is within the conditions observed in these soils, and may provide the mechanism by 336 

which at least some of the P taken up by plants is accessed. Our results support previous studies 337 

that the contribution of acid-soluble P to crop nutrition can be important in alkaline soils,
19,23-27

 338 

as the depletion of the approximate equivalent concentration of BSES-P at pH 5.5 with a root 339 

analogue occurred within the range achievable by rhizosphere acidification.
34,74

 This supports the 340 

use of the BSES test to  estimate  plant available reserve-P,
23,34

 but does illustrate that the BSES-341 

P test does not discriminate between the more readily available and less readily available forms 342 

of reserve-P. 343 
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