
The URScript Programming Language

For version 1.3

CONTENTS CONTENTS

Contents

Contents 2

1 The URScript Programming Language 3
1.1 Introduction . 3
1.2 Connecting to URControl . 3
1.3 Numbers, Variables and Types . 3
1.4 Flow of Control . 4
1.5 Function . 4
1.6 Scoping rules . 5
1.7 Threads . 6

1.7.1 Threads and scope . 7
1.7.2 Thread scheduling . 8

1.8 Program Label Messages . 8

2 Module builtin 8
2.1 Functions . 9
2.2 Variables . 21

2 URScript

The URScript Programming Language

1 The URScript Programming Language

1.1 Introduction

The Universal Robot can be controlled a three different levels: The Graphical User-Interface
Level, the Script Level and the C-API Level. URScript is the robot programming languange
used to control the robot at the Script Level. Like any other programming language URScript
has variables, types, flow of control statements, function etc. In addition URScript has a number
of built-in variables and functions which monitors and controls the I/O and the movements of
the robot.

1.2 Connecting to URControl

URControl is the low-level robot controller running on the Mini-ITX PC in the controller
cabinet. When the PC boots up URControl starts up as a daemon (like a service) and PolyScope
User Interface connects as a client using a local TCP/IP connection.

Programming a robot at the Script Level is done by writing a client application (running at
another PC) and connecting to URControl using a TCP/IP socket.

• hostname: ur-xx (or the ip-adresse found in the about dialog-box in PolyScope if the
robot is not in dns.)

• port: 30002

When connected URScript programs or commands are sent i clear text on the socket. Each line
is terminated by ’
n’.

1.3 Numbers, Variables and Types

The syntax of arithmetic expressions in URScript is very standard:

1+2-3
4*5/6
(1+2)*3/(4-5)

In boolean expressions the boolean operators are spelled out:

True or False and (1 == 2)
1 > 2 or 3 != 4 xor 5 < -6
not 42 >= 87 and 87 <= 42

Variable assignment is done using the equal sign ’=’:

foo = 42
bar = False or True and not False
baz = 87-13/3.1415
hello = "Hello, World!"

3 URScript

Flow of Control The URScript Programming Language

l = [1,2,4]
target = p[0.4,0.4,0.0,0.0,3.14159,0.0]

The fundamental type of a variable is deduced from the first assignment of the variable. In the
example above foo is an int and bar is a bool. target is a pose, a combination of a position
and orientation.

The fundamental types are:

• none

• bool

• number - either int or float

• pose

• string

A pose is given as p[x,y,z,ax,ay,az], where x,y,z is the position of the TCP, and ax,ay,az

is the orientation of the TCP, given in axis-angle notation.

1.4 Flow of Control

The flow of control of a program is changed by if-statements:

if a > 3:
a = a + 1

elif b < 7:
b = b * a

else:
a = a + b

end

and while-loops:

l = [1,2,3,4,5]
i = 0
while i < 5:
l[i] = l[i]*2

end

To stop a loop prematurely the break statement can be used. Similarly the continue statement
can be used to pass control to the next iteration of the nearest enclosing loop.

1.5 Function

A function is declared as follows:

def add(a, b):
return a+b

4 URScript

Scoping rules The URScript Programming Language

end

The function can then be called like this:

result = add(1, 4)

It is also possible to give function arguments default values:

def add(a=0,b=0):
return a+b

end

URScript also supports named parameters. These will not be described here, as the implemen-
tation is still somewhat broken.

1.6 Scoping rules

A urscript program is declared as a function without parameters:

def myProg():

end

Every variable declared inside a program exits at a global scope, except when they are declared
inside a function. I that case the variable are local to that function. Two qualifiers are available
to modify this behaviour. The local qualifier tells the runtime to treat a variable inside a
function, as being truly local, even if a global variable with the same name exists. The global
qualifier forces a variable declared inside a function, to be globally accessible.

In the following example, a is a global variable, so the variable inside the function is the same
variable declared in the program:

def myProg():

a = 0

def myFun():
a = 1
return a

end

r = myFun()
end

In this next example, a is declared local inside the function, so the two variables are different,
even though they have the same name:

def myProg():

a = 0

5 URScript

Threads The URScript Programming Language

def myFun():
local a = 1
return a

end

r = myFun()
end

Beware that the global variable is no longer accessible from within the function, as the local
variable masks the global variable of the same name.

1.7 Threads

Threads are supported by a number of special commands.

To declare a new thread a syntax similar to the declaration of functions are used:

thread myThread():
Do some stuff
return

end

A couple of things should be noted. First of all, a thread cannot take any parameters, and
so the parentheses in the declaration must be empty. Second, although a return statement is
allowed in the thread, the value returned is discarded, and cannot be accessed from outside
the thread. A thread can contain other threads, the same way a function can contain other
functions. Threads can in other words be nested, allowing for a thread hierarchy to be formed.

To run a thread use the following syntax:

thread myThread():
Do some stuff
return

end

thrd = run myThread()

The value returned by the run command is a handle to the running thread. This handle can
be used to interact with a running thread. The run command spawns off the new thread, and
then goes off to execute the instruction following the run instruction.

To wait for a running thread to finish, use the join command:

thread myThread():
Do some stuff
return

6 URScript

Threads The URScript Programming Language

end

thrd = run myThread()

join thrd

This halts the calling threads execution, until the thread is finished

executing. If the thread is already finished, the statement has no effect.

To kill a running thread, use the kill command:

thread myThread():
Do some stuff
return

end

thrd = run myThread()

kill thrd

After the call to kill, the thread is stopped, and the thread handle is no longer valid. If the
thread has children, these are killed as well.

To protect against race conditions and other thread related issues, support for critical sections
are provided. A critical section ensures that the code it encloses is allow to finish, before another
thread is allowed to run. It is therefore important that the critical section is kept as short as
possible. The syntax is as follows:

thread myThread():
enter_critical
Do some stuff
exit_critical
return

end

1.7.1 Threads and scope

The scoping rules for threads are exactly the same, as those used for functions. See section 1.6
for a discussion of these rules.

7 URScript

Program Label Messages Module builtin

1.7.2 Thread scheduling

Because the primary purpose of the urscript scripting language is to control the robot, the
scheduling policy is largely based upon the realtime demands of this task.

The robot must be controlled a frequency of 125 Hz, or in other words, it must be told what to
do every 0.008 second (each 0.008 second period is called a frame). To achieve this, each thread
is given a “physical” (or robot) time slice of 0.008 seconds to use, and all threads in a runnable
state is then scheduled in a round robin1 fashion. Each time a thread is scheduled, it can use
a piece of its time slice (by executing instructions that control the robot), or it can execute
instructions that doesn’t control the robot, and therefor doesn’t use any “physical” time. If
a thread uses up its entire time slice, it is placed in a non-runnable state, and is not allowed
to run until the next frame starts. If a thread does not use its time slice within a frame, it is
expected to switch to a non-runnable state before the end of the frame2. The reason for this
state switching can be a join instruction or simply because the thread terminates.

It should be noted, that even though the sleep instruction doesn’t control the robot, it still
uses “physical” time. The same is true for the sync instruction.

1.8 Program Label Messages

A special feature is added to the script code, to make it simple to keep track of which lines are
executed by the runtime machine. An example Program Label Message in the script code looks
as follows;

sleep(0.5)
$ 3 "AfterSleep"
digital_out[9] = True

After the the Runtime Machnie executes the sleep command, it will send a message of type
PROGRAM LABEL to the latest connected primary client. The message will hold the number 3 and
the text AfterSleep. This way the connected client can keep track of which lines of codes are
being executed by the Runtime Machine.

2 Module builtin

This module contains functions and variables built into the URScript programming language.

URScript programs are executed in real-time in the URControl RuntimeMachine (RTMachine).
The RuntimeMachine communicates with the robot with a frequency of 125hz.

Robot trajectories are generated online by calling the move functions movej, movel and the
speed functions speedj, speedl and speedj init.

Joint positions (q) and joint speeds (qd) are represented directly as lists of 6 Floats, one for
1Before the start of each frame the threads are sorted, such that the thread with the largest remaining time

slice is to be scheduled first.
2If this expectation is not met, the program is stopped.

8 URScript

Functions Module builtin

each robot joint. Tool poses (x) are also represented as 6 Floats. The first 3 coordinates is a
position vector and the last 3 an axis-angle (http://en.wikipedia.org/wiki/Axis angle).

Version: 1.2

Author: Universal Robots <esben@universal-robot.com>

Copyright: (C) 2008 Universal Robots Aps

2.1 Functions

movej(q, a=3, v=0.75, t=0, r=0)

Move to position (linear in joint-space)

Parameters
q: joint positions
a: joint acceleration of leading axis [rad/sˆ2]
v: joint speed of leading axis [rad/s]
t: time [S]
r: blend radius [m]

movel(pose, a=1.2, v=0.3, t=0, r=0)

Move to position (linear in tool-space)

Parameters
pose: target pose
a: tool acceleration [m/sˆ2]
v: tool speed [m/s]
t: time [S]
r: blend radius [m]

servoj(q, a=3, v=0.75, t=0)

Servo to position (linear in joint-space)

Parameters
q: joint positions
a: NOT used in current version
v: NOT used in current version
t: time [S]

9 URScript

Functions Module builtin

speedj(qd, a, t min)

Joint speed
Accelerate to and move with constant joint speed

Parameters
qd: joint speeds [rad/s]
a: joint acceleration [rad/sˆ2] (of leading axis)
t min: minimal time before function returns

speedj init(qd, a, t min)

Joint speed (when robot is in ROBOT INITIALIZING MODE)
Accelerate to and move with constant joint speed

Parameters
qd: joint speeds [rad/s]
a: joint acceleration [rad/sˆ2] (of leading axis)
t min: minimal time before function returns

speedl(xd, a, t min)

Tool speed
Accelerate to and move with constant tool speed
http://axiom.anu.edu.au/˜roy/spatial/index.html

Parameters
xd: tool speed [m/s] (spatial vector)
a: tool acceleration [/sˆ2]
t min: minimal time before function returns

stopj(a)

Stop (linear in joint space)
Decellerate joint speeds to zero

Parameters
a: joint acceleration [rad/sˆ2] (of leading axis)

stopl(a)

Stop (linear in tool space)
Decellerate tool speed to zero

Parameters
a: tool accleration [m/sˆ2]

set pos(q)

Set joint positions of simulated robot

Parameters
q: joint positions

10 URScript

Functions Module builtin

sleep(t)

Sleep for an amount of time

Parameters
t: time [s]

get digital in(n)

Get digital input signal level

Parameters
n: The number (id) of the input. (int)

Return Value
boolean, The signal level.

get digital out(n)

Get digital output signal level

Parameters
n: The number (id) of the output. (int)

Return Value
boolean, The signal level.

set digital out(n, b)

Set digital output signal level

Parameters
n: The number (id) of the output. (int)
b: The signal level. (boolean)

get analog in(n)

Get analog input level

Parameters
n: The number (id) of the input. (int) @return float, The signal level [0,1]

get analog out(n)

Get analog output level

Parameters
n: The number (id) of the input. (int) @return float, The signal level [0;1]

11 URScript

Functions Module builtin

set analog out(n, f)

Set analog output level

Parameters
n: The number (id) of the input. (int)
f: The signal level [0;1] (float)

get flag(n)

Flags behave like internal digital outputs. The keep information between program runs.

Parameters
n: The number (id) of the flag [0;32]. (int) @return Boolean, The stored bit.

set flag(n, b)

Flags behave like internal digital outputs. The keep information between program runs.

Parameters
n: The number (id) of the flag [0;32]. (int)
b: The stored bit. (boolean)

textmsg(s)

Send text message
Send message to be shown on the GUI log-tab

Parameters
s: message string

popup(s, title=’Popup’, warning=False, error=False)

Display popup on GUI
Display message in popup window on GUI.

Parameters
s: message string
title: title string
warning: warning message?
error: error message?

set analog inputrange(port, range)

Set range of analog inputs
Port 0 and 1 is in the controller box, 2 and 3 is in the tool connector For the ports in the
tool connector, range code 2 is current input.

Parameters
port: analog input port number, 0,1=controller, 2,3=tool
range: analog input range

12 URScript

Functions Module builtin

set analog outputdomain(port, domain)

Set domain of analog outputs

Parameters
port: analog output port number
domain: analog output domain

set tool voltage(voltage)

Sets the voltage level for the power supply that delivers power to the connector plug in the
tool flange of the robot. The votage can be 0, 12 or 24 volts.

Parameters
voltage: The voltage (as an integer) at the tool connector

set payload(m)

Set payload mass

Parameters
m: mass [kg]

set tcp(pose)

”Set the Tool Center Point
Sets the transformation from the output flange coordinate system to the TCP as a pose.

Parameters
pose: A pose describing the transformation.

set gravity(d)

Set the direction of the gravity

Parameters
d: 3D vector, describing the direction of the gravity, relative to the base of the

robot.

get forward kin()

Forward kinematics
Forward kinematic transformation (joint space -> tool space) of current joint positions

Return Value
tool pose (spatial vector)

13 URScript

Functions Module builtin

get inverse kin(x)

Inverse kinematics
Inverse kinematic transformation (tool space -> joint space). Solution closest to current
joint positions is returned

Parameters
x: tool pose (spatial vector)

Return Value
joint positions

interpolate pose(x from, x to, alpha)

Linear interpolation of tool position and orientation.
When alhpa is 0, returns x from. When alpha is 1, returns x to. As alpha goes from 0 to 1,
returns a pose going in a straigt line (and geodaetic orientation change) from x from to x to.
If alpha is less than 0, returns a point before x from on the line. If alpha is greater than 1,
returns a pose after x to on the line.

Parameters
x from: tool pose (pose)
x to: tool pose (pose)
alpha: Floating point number

Return Value
interpolated pose (pose)

pose dist(x from, x to)

Pose distance

Parameters
x from: tool pose (pose)
x to: tool pose (pose)

Return Value
distance

pose add(x from, x from to)

Pose addition

Parameters
x from: tool pose (pose)
x from to: tool pose transformation (pose)

Return Value
transformed tool pose (pose)

14 URScript

Functions Module builtin

pose sub(x to, x from)

Pose subtraction

Parameters
x to: tool pose (spatial vector)
x from: tool pose (spatial vector)

Return Value
tool pose transformation (spatial vector)

pose trans(x to, x from)

Pose transformation

Parameters
x to: tool pose (spatial vector)
x from: tool pose (spatial vector)

Return Value
tool pose transformation (spatial vector)

pose inv(x from)

Get the invers of a pose

Parameters
x from: tool pose (spatial vector)

Return Value
inverse tool pose transformation (spatial vector)

random()

Random Number

Return Value
peseudo-random number between 0 and 1 (float)

socket open(server, port)

Open ethernet communication
Attempts to open a socket connection, times out after 2 seconds.

Parameters
server: Server name (string)
port: Port number (int)

Return Value
False if failed, True if connection succesfully established

15 URScript

Functions Module builtin

socket get var(name)

Reads an integer from the server
Sends the message ”get <name> ” through the socket. Expects the response ”<name>
<int> ” within 2 seconds.
>>> x pos=socket get var("POS X")

Parameters
name: Variable name (string)

Return Value
an integer from the server (int)

socket set var(name, value)

Sends an integer to the server
Sends the message ”set <name> <value> ” through the socket. Expects no response.
>>> socket set var("POS Y",2200)

Parameters
name: Variable name (string)
value: The number to send (int)

socket send byte(value)

Sends a byte to the server
Sends the byte <value> through the socket. Expects no response. Can be used to send
special ASCII characters; 10 is newline, 2 is start of text, 3 is end of text.

Parameters
value: The number to send (byte)

socket send int(value)

Sends an int (int32 t) to the server
Sends the int <value> through the socket. Send in network byte order. Expects no response.

Parameters
value: The number to send (int)

socket send string(str)

Sends a string to the server
Sends the string <str> through the socket in ASCII coding. Expects no response.

Parameters
str: The string to send (ascii)

16 URScript

Functions Module builtin

socket read ascii float(number)

Reads a number of ascii float from the TCP/IP connected. A maximum of 15 values can be
read in one command.
>>> list of four floats=socket read ascii float(4)
The format of the numbers should be with paranthesis, and seperated by ”,”. An example
list of four numbers could look like ”(1.414 , 3.14159, 1.616, 0.0)”.
The returned list would first have the total numbers read, and then each number in
succession. For example a read ascii float on the example above would return [4, 1.414,
3.14159, 1.616, 0.0].
A failed read will return the list [0].

Parameters
number: The number of variables to read (int)

Return Value
A list of numbers read (list of floats, length=number+1)

socket read binary integer(number)

Reads a number of ascii float from the TCP/IP connected. Bytes are in network byte order.
A maximum of 16 values can be read in one command.
>>> list of three ints=socket read binary integer(3)
Returns (for example) [3,100,2000,30000]

Parameters
number: The number of variables to read (int)

Return Value
A list of numbers read (list of ints, length=number+1)

socket read byte list(number)

Reads a number of ascii float from the TCP/IP connected. Bytes are in network byte order.
A maximum of 16 values can be read in one command.
>>> list of three ints=socket read binary integer(3)
Returns (for example) [3,100,200,44]

Parameters
number: The number of variables to read (int)

Return Value
A list of numbers read (list of ints, length=number+1)

socket close()

Closes ethernet communication
Closes down the socket connection to the server.
>>> socket comm close()

17 URScript

Functions Module builtin

modbus add signal(IP, slave number, signal address, signal type, signal name)

Adds a new modbus signal for the controller to supervise. Expects no response.
>>> modbus add signal("172.140.17.11", 255, 5, 1, "output1")

Parameters
IP: A string specifying the IP address of the modbus unit to

which the modbus signal is connected.
slave number: An integer normally not used and set to 255, but is a free

choice between 0 and 255.
signal address: An integer specifying the address of the either the coil or the

register that this new signal should reflect. Consult the
configuration of the modbus unit for this information.

signal type: An integer specifying the type of signal to add. 0 = digital
input, 1 = digital output, 2 = register input and 3 = register
output.

signal name: A string uniquely identifying the signal. If a string is supplied
which is equal to an already added signal, the new signal will
replace the old one.

modbus delete signal(signal name)

Deletes the signal identified by the supplied signal name.
>>> modbus delete signal("output1")

Parameters
signal name: A string equal to the name of the signal that should be deleted.

modbus get signal status(signal name, is secondary program)

Reads the current value of a specific signal.
>>> modbus get signal status("output1",False)

Parameters
signal name: A string equal to the name of the signal for which the

value should be gotten.
is secondary program: A boolean for interal use only. Must be set to False.

18 URScript

Functions Module builtin

modbus send custom command(IP, slave number, function code, data)

Sends a command specified by the user to the modbus unit located on the specified IP
address. Cannot be used to request data, since the response will not be received. The user is
responsible for supplying data which is meaningful to the supplied function code. The
builtin function takes care of constructing the modbus frame, so the user should not be
concerned with the length of the command.
>>> modbus send custom command("172.140.17.11",103,6,[17,32,2,88])
The above example sets the watchdog timeout on a Beckhoff BK9050 to 600 ms. That is
done using the modbus function code 6 (preset single register) and then supplying the
register address in the first two bytes of the data array ([17,32] = [0x1120]) and the desired
register content in the last two bytes ([2,88] = [0x0258] = dec 600).

Parameters
IP: A string specifying the IP address locating the modbus unit to

which the custom command should be send.
slave number: An integer specifying the slave number to use for the custom

command.
function code: An integer specifying the function code for the custom

command.
data: An array of integers in which each entry must be a valid byte

(0-255) value.

modbus set output register(signal name, register value, is secondary program)

Sets the output register signal identified by the given name to the given value.
>>> modbus set output register("output1",300)

Parameters
signal name: A string identifying an output register signal that in

advance has been added.
register value: An integer which must be a valid word (0-65535) value.
is secondary program: A boolean for interal use only. Must be set to False.

modbus set output signal(signal name, digital value, is secondary program)

Sets the output digital signal identified by the given name to the given value.
>>> modbus set output signal("output2",True)

Parameters
signal name: A string identifying an output digital signal that in

advance has been added.
digital value: A boolean to which value the signal will be set.
is secondary program: A boolean for interal use only. Must be set to False.

19 URScript

Functions Module builtin

get tcp force()

Return the force twist at the TCP
The force twist is computet baed on the error between the joint torques required to stay on
the trajectory, and the expected joint torques. In Newtons and Newtons/rad.

Return Value
A force twist (pose)

force()

Return the force exceted at the TCP
Return the current externally excerted force at the TCP. The force is the lengt of the force
vector calculated using get tcp force().

Return Value
The force in newtons (float)

floor(f)

Return largest integer not greater than f
Rounds floating point number to the largest integer no greater than f.

Parameters
f: floation point value

Return Value
rounded integer

get joint temp(j)

Return the temperature of joint j
The temperature of the joint house of joint j, counting from zero. j=0 is the base joint, and
j=5 is the last joint before the tool flange.

Parameters
j: The joint number (int)

Return Value
A temperature in degrees Celcius (float)

get controller temp()

Return the temperature of the control box
The temperature of the robot control box in degrees Celcius.

Return Value
A temperature in degrees Celcius (float)

20 URScript

Variables Module builtin

get joint positions()

Return the angular position of all joints
The position of all the joints in radians, returned as a vector of length 6.

Return Value
The joint vector; ([float])

get joint speeds()

Return the angular speed of all joints
The speed of all the joints in radians/second, returned as a vector of length 6.

Return Value
The joint speed vector; ([float])

get joint torques()

Return the torques of all joints
The torque of the joints, compensated by the torque neccesary to move the robot itself,
returned as a vector of length 6.

Return Value
The joint torque vector; ([float])

norm(a)

Returns the norm of the argument
The argument can be one of three diffrent types:
>>> Pose: In this case the euclidian norm of the pose is returned.
>>> Float: In this case fabs(a) is returned.
>>> Int: In this case abs(a) is returned.

Parameters
a: Pose, float or int

Return Value
norm of a

sync()

Uses up the remaining ”physical” time a thread has in the current frame.

powerdown()

Shutdown the robot, and power off the robot and controller.

2.2 Variables

21 URScript

Variables Module builtin

Name Description
v joint default joint speed - default parameter in movej()

Value: 0.75
a joint default joint acceleration - default parameter in move()

Value: 3
v tool default ”tool speed - default parameter in movel()

Value: 0.3
a tool default tool acceleration - default parameter in movel()

Value: 1.2

22 URScript

