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Abstract

Accurate and timely forecasts of sea ice condi-
tions are crucial for safe shipping operations in
the Canadian Arctic and other ice-infested waters.
Given the advancement of machine-learning meth-
ods and the recent observations on the declining
trend of Arctic sea ice extent over the past decades
due to global warming, new machine learning ap-
proaches are deployed to provide additional sea
ice forecasting products. This study is novel in
comparison with previous machine learning (ML)
approaches in the sea-ice forecasting domain as it
provides a daily spatial map of probability of ice
presence in the domain up to 90 days. The predic-
tions are further used to predict freeze-up/breakup
dates and show their capability to capture both the
variability and the increasing trend of open water
season in the domain over the past decades.

1. Introduction

Sea ice presence is an important variable for northern com-
munities in addition to offshore operations and shipping
companies. Forecasting the presence of sea ice can be car-
ried out at various spatial and temporal scales. Short-term
forecasts at high spatial resolution are important for day-
to-day operations and weather forecasting, whereas longer
term (e.g. 60-90 day) forecasts are desired by shipping
companies and offshore operators in the Arctic for strate-
gic planning. Recent studies indicate a significant declining
trend in Arctic sea ice extent over the past several decades in
response to warming temperatures driven by climate change
(Meier et al., 2014; Renner et al., 2014). This declining
trend has resulted in increased shipping activities (Pizzolato
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et al., 2016) which requires accurate prediction of freeze-
up/breakup dates and the open water season.

There is a wide body of literature on sea ice forecasting (Gue,
2016) with more recent approaches using machine learning
(ML). Convolutional neural networks (CNNs) have been
used to perform sea ice concentration prediction (Kim et al.,
2020) with eight predictors composed of a sea ice concen-
tration data and variables from reanalysis. The study trained
12 individual monthly models, and produced monthly spa-
tial map of SIC. Their predictions were in good agreement
with the minimum September ice extent from 2017. Simi-
lar to Kim et al. (2020), Horvath et al. (2020) focused on
the September sea ice minimum, using a Bayesian logistic
framework to predict both a monthly average sea ice concen-
tration and an uncertainty. IceNet (Andersson et al., 2021)
is a recent deep learning approach using a U-Net architec-
ture with input from climate simulations and observational
data to produce monthly sea ice concentration maps for the
next 6 months. ML approaches have been compared with
ensemble data assimilation at shorter time scales in Fritzner
et al. (2020). However, none of the previously proposed ML
approaches generate a forecast that propagates forward in
time in a manner similar to a forecast model.

The goal of this study is to employ a sequence-to-sequence
learning approach to provide a spatiotemporal forecast of
the probability of sea ice at daily time scale over the region
of Hudson Bay, with forecast lead times up to ~ 90 days.
The method is similar to operational forecasting studies
(Chevallier et al., 2013) except 1) we are using a data-driven
statistical approach, as compared to a physics-based model;
ii) our forecasted variable is the probability of ice at a grid
location, as compared to sea ice concentration.

2. Data and Study Region

The present study utilizes ERAS reanalysis for model pre-
dictors and validation. ERAS is a recent reanalysis produced
by the European Center (Hersbach & Dee, 2016). It consists
of an atmospheric model coupled to the land, ice or ocean
surface. The spatial resolution is ~31 km with reanalysis
fields available every hour from 1979 - present. Observa-
tions are assimilated into the atmospheric model using a
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4D-Variational data assimilation scheme. The current study
utilizes the following input variables from ERAS dataset
over the period of 1985-2017: sea ice concentration, sea
surface temperature, 2m temperature (T2M), surface sensi-
ble heat flux, wind 10 meter U-component (U10), wind 10
meter V-Component (V10), freezing degree days / melting
degree days and landmask. All the input variables except
sea ice concentration and landmask are normalized as the
preprocessing process of the input data.

The ERAS data are extracted over our study region, which
corresponds to Hudson Bay, Hudson Strait and Foxe Basin.
This region is mainly a seasonal ice zone, with ice melting
completely each summer, except occasionally in Foxe Basin
(northern portion of the domain). Hudson Bay and Hudson
Strait are both home to several coastal communities. Hudson
Strait is a region with year-round shipping to support natural
resource extraction (Andrews et al., 2018).

3. Forecast model architecture

The medium-term forecasting problem of this study can
be formulated as a spatiotemporal sequence forecasting
problem that can be solved under the general sequence-to-
sequence (Seq2Seq) learning framework in machine learn-
ing domain (Sutskever et al., 2014). In Seq2Seq learning,
the target is to map a sequence of inputs to a sequence of
outputs. The architecture of these models normally consist
of 2 major components; encoder and decoder. The encoder
component transforms a given input to an encoded state of
fixed shape, while the decoder part takes that encoded state
and generates an output sequence with the desired length.
For this study, following this encoder-decoder architecture,
a spatiotemporal sequence model is developed to predict a
90 day forecasts of ice presence probability given the last 3
days of historical inputs.

3.1. Basic model

The encoder section of the Basic network takes as input
three rasters of daily environmental conditions. Each input
sample is of size (3 x W x H x C') where 3 is the number
of historical days, W and H are the width and height of the
raster samples in their original resolution and C' is the total
number of input variables (here 8).

The encoder provides as output a single raster with the same
height and width but higher number of channels such as to
represent the fully encoded system state. First, each daily
sample is passed through a feature pyramid network (Lin
et al., 2017) so as to detect environmental patterns at both
the local and large scales.

Next, the sequence of extracted feature grids are further pro-
cessed through a convolutional LSTM layer (ConvLSTM)
(Hochreiter & Schmidhuber, 1997; Xingjian et al., 2015),

returning the last output state. This layer learns a single grid
representation of the time series that also preserves spatial
locality. Finally, the most recent day of historic input data
is concatenated with the ConvLSTM output to produce a
single data grid.

The final encoded state is then fed to a custom RNN decoder
which extrapolates the state across the specified number of
time-steps. It takes as input the encoded state with multiple
channels and as output produces a state with the same width
and height and desired time-steps.

The custom RNN decoder, as is common of many RNN
layers, maintains both a cell state and a hidden state (Yu
et al., 2019). First, the initial cell state and hidden state
are initialized with the input encoded state. Then, at each
time-step and for each of the states, the network predicts the
difference, or residual, from the previous state to generate
the updated states using depthwise separable convolutions
(Howard et al., 2017). The output of the decoder section is
the concatenation of the cell states from each time-step.

Finally, a time-distributed network-in-network (Lin et al.,
2013) structure is employed to apply a 1 x 1 convolution
on each time-step prediction to keep the grid size the same
but reduce the number of channels to one, representing the
daily probabilities of ice presence over the forecast period
(e.g. up to 90 days).

3.2. Augmented model

A slight variant of the Basic model is developed so as to
accept a second input. This second input corresponds to 3
variable climate normals over the required time-steps (e.g.,
60 or 90), where these climate normal variables are the
average of T2M, U10 and V10 from 1985 to the last training
year for each forecast day. The original encoder structure for
historical input data remains unchanged, but in addition, it is
joined by a secondary feature pyramid network from climate
normal. A secondary variant of the decoder component is
implemented which accepts this encoded forecast sequence
in order to produce superior estimates of the residuals at
each of the future time-steps. Here, the decoder is designed
in a way that the number of forecast input time-steps can be
either equal or less than the forecast length. This network is
referred to as the Augmented model.

4. Description of Experiments

For each month of a year a separate model is trained on
data from the given month as well as the preceding and
following month. For example, the ’April model’ is trained
using data from March 1 to May 31. This monthly model
is initially trained on data from a fixed number of years,
chosen to be 10 years. After this initial experiment, to pre-
dict each following test year i, we use a rolling forecast
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prediction, meaning the model from year ¢ — 1 is retrained
with data from year ¢ — 2 and validated on data from year
i — 1. For example, if the initial model is trained on 10
years, data from year 11 is used as validation and first pre-
dictions are launched at year 12. The model for year 12
is then retrained with data from year 11 and validated on
year 12 to predict year 13 and so on. Thereby, the output’s
statistics are calculated on forecasts of 1996 to 2017. Since
the retraining process only uses data of one year for train-
ing and validation, it is computationally fast and efficient.
The models are implemented using the TensorFlow Keras
open-source library with stochastic gradient descent (SD)
optimizer with learning rate of 0.01, momentum of 0.9 and
binary cross-entropy loss function.

In order to evaluate the performance of the neural network
model, the results are compared with climate normal. This
is defined as the average of ERA-5 sea ice concentration
(thresholded at 15%) from 1985 to the last year in the train-
ing set for each experiment. While inputs of each model
in training and test procedure are coming from 3 months
of year, only the results from the central month (2nd of 3)
is selected for evaluating the results of that model in the
following section.

5. Results

5.1. Presence of Ice Forecasts

Given that our models predict spatial maps of sea ice pres-
ence over a grid at a spatial resolution of 31 km, we first
apply a 50% threshold to this probability to convert each
pixel to ice or water. From this, for each day in the test
set, we have 90 binary accuracy maps of Hudson Bay. To
summarize these results, in Fig 1(a,b,c) we show the model
binary accuracy as a function of forecast lead day for each
month. For example, the top row of Fig 1a shows the ac-
curacy of forecasts launched in January for climate normal
for forecast lead days of 1 to 90. E.g., the first top-left box
in this figure (Fig 1(a)) corresponds to the accuracy after 1
day forecast for all forecasts launched between January 1
and January 31. The accuracy is very close to 100% for this
month and for these lead times, as would be expected, be-
cause at this time the region is covered with ice. In contrast,
for forecasts of June and July, the beginning of open water
season, the climate normal struggles to accurately capture
the ice cover for lead times of 1 to 50 days likely due to
inter-annual variability and the impact of climate changes.
However, the Basic and Augmented models proposed here
have significantly higher accuracies than climate normal
over these months (Fig 1d), especially in early lead times,
with no degradation at longer lead times for Augmented
model. We also note improvements in proposed models at
early lead times for August, September, October and Novem-
ber, as compared to climate normal. When comparing the

Augmented model with Climate normal (Fig le) and with
the Basic model (Fig 1f), improvements in accuracy can be
seen in particular for longer lead times in March/April and
July/August, and improvements at shorter lead times (15-50
days) for November. Using climate normal forecasts as ad-
ditional input for Augmented model is showing its impact
here where in the periods that Basic model is worse than
climate normal (Fig 1d), the Augmented model has better
and closer accuracy to climate normal (Fig le, Fig 1f).

5.2. Assessment of operational capability

The accuracy of the model predictions in predicting freeze-
up/breakup date and their comparison with climate normal is
an indicative of operational capability of the trained models.
The freeze-up date of each pixel in a year is defined as the
first date in the freeze-up season (Oct 1st to Jan 31st for Hud-
son Bay) that ice (value of 1) is observed for 15 continuous
days. A similar procedure is carried out to define breakup,
with the exception that the pixel must be considered water
(value of 0) for 15 continuous days in the breakup season
(May Ist to July 31st for Hudson Bay) for breakup to have
occurred. Accordingly, open water season of each year is
the number of days between its breakup and freeze-up date.

Figure 2 represents the capability of the models at 30 and
60 lead day in capturing the changes in open water season
duration versus climate normal. Each map is showing the
changes (number of days) between the median of open water
season duration of second decade (2007-2017) and first
decade (1996-2006) in the test results. In the northern part
of the domain in Foxe Basin and Gulf of Boothia, the open-
water season is too short or inexistent to be captured by
the methodology. However, the figure shows that there is
an increase of up to 30 days in the open water season of
the southern and western sections of Hudson Bay. While
climate normal is not able to show this increase, the models
show more promising forecasts, especially at 30 lead day.

6. Conclusion

The purpose of this study was to propose a ML method to
provide daily forecast maps of sea ice presence probabil-
ity up to 90 days in advance. The binary accuracy of the
proposed models represented improvements of up to 10%
relative to climate normal for breakup and freeze-up season,
especially for early lead days. The analysis on increasing
trend of open water season over two decades indicated the
ability of the proposed models at 30 lead day to capture the
trend in southern and western part of the region while the
climate normal was not able to show such trend. As future
work, we plan to compare this approach to another devel-
oped for this region using canonical correlation analysis
(Tivy et al., 2011), expand the experiments over the en-
tire Arctic region, and deploy ensemble methods and more
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Figure 1. Model performance and improvements as a function of lead time. Top row panels describe performance of each model (a)-(c)
while bottom row represents the accuracy differences between the models (d-f). Most differences are observed in breakup and freeze-up
seasons.
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Figure 2. Difference between the median of the open water season length of two decades (1996-2006 vs 2007-2017) in terms of number
of days for Hudson Bay. The grey zone in the north is the area where the open water season is too short or inexistent to be captured by
the methodology. Despite climate normal, the proposed models, especially at 30 lead day, are able to capture the trend in southern and
western part of the region.
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recent deep learning architectures.
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