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Abstract: 

In patients with CKD and ESRD, the major risk factor for progression of arterial 

calcification is the presence of existing (baseline) calcification.  We hypothesized that 

calcification of arteries is extended from calcified vascular smooth muscle cells (VSMC) to 

adjacent normal cells by matrix vesicle (MV) induced cell-cell communication.  MV isolated 

from VSMC from CKD rats were co-cultured with VSMC from normal littermates and 

endocytosis of the vesicles by recipient cells confirmed by confocal microscopy. The addition of 

cellular MV with characteristics of exosomes and low fetuin-A content enhanced the 

calcification of recipient VSMC.  Further, only cellular derived MV induced an increase in 

intracellular calcium ([Ca2+]i), NOX-1 (NADPH oxidase) and the anti-oxidant superoxide 

dismutase (SOD-2) in recipient normal VSMC.   The increase in [Ca2+]i was due to release from 

endoplasmic reticulum and partially attributed to the activation of both NOX and MAPK 

(Mitogen Activated Protein Kinase; MEK1 and Erk1/2) signaling, as inhibiting both pathways 

blocked the increase in [Ca2+]i  in recipient VSMC.   In contrast, MV isolated from the media had 

no effect on [Ca2+]i, MEK1 signaling, and did not induce calcification; however media MV did 

increase ERK1/2 although not to the level of cellular MV, NOX-1 expression and acutely 

increased reactive oxygen species.   Blockade of NOX activity further inhibited the cellular MV 

induced accelerated calcification of recipient VSMC, suggesting a potential therapeutic role of 

such inhibition.  In conclusion, the addition of cellular derived MV from calcifying VSMC  can 

accelerate calcification by inducing cell signaling changes and phenotypic alteration of recipient 

VSMC.  

 

  



Introduction: 

Vascular calcification is highly prevalent in chronic kidney disease (CKD) and is a major 

cause of morbidity and mortality(1-3).  The prevalence of calcification increases with worsening 

kidney disease(4); by the time patients reach dialysis, 70-80 percent of patients have significant 

coronary artery calcification(5).  On histology, medial calcification often begins as small areas 

within the medial layer.  More advanced lesions expand to become circumferential throughout 

the entire medial layer(6).  Risk factors for the presence of calcification in dialysis patients 

include older age, diabetes, and disordered mineral metabolism including hyperphosphatemia 

and hypercalcemia(2).  However, patients with existing calcification at the start of dialysis have 

greater progression compared to those without calcification despite similar clinical and 

biochemical risk factors(7).  This suggests the possibility that expansion of existing calcification 

occurs through different mechanisms than initiation of vascular calcification.    

Studies done over the last decade have led to increased understanding of the 

pathophysiology of vascular calcification.  The VSMC must become synthetic with increased 

intracellular calcium [Ca2+]i)(8, 9) and downregulation of myocardin and alpha-smooth muscle 

actin(10), followed by de-differentiation via upregulation of the ‘bone’ transcription factor 

RUNX2(11, 12).  These transformed, or de-differentiated, synthetic VSMC initiate calcification 

by synthesizing small 50-200 nm vesicles that initiate calcification on extracellular matrix.  In 

bone, these vesicles are called matrix vesicles as they were identified to be an integral part of the 

conversion of hypertrophic chondrocytes in epiphyses of bones to develop into mineralized 

bone(13, 14).  Over the last decade, there is also increased appreciation of the role of vesicles in 

cell-cell communication in non- mineralized tissues(15).  Vesicles are heterogeneous and 

originate from the endosome or plasma membrane of cells.  Although nomenclature and isolation 



techniques vary, vesicles can be released through outward budding of the plasma membrane 

(termed shedding microvesicles) or inward budding of the endosomal membrane resulting in the 

formation of multivesicular bodies(16).  We have previously characterized differences between 

vesicles isolated from the media and the cells of calcifying bovine VSMC:  those from the media 

contain fetuin-A and do not readily mineralize, whereas those from cells do not contain fetuin-A 

and do mineralize(3, 17).  Kapustin et al also compared vesicles from the media of calcifying 

human VSMC and found similar proteomic profile to that of both cellular and media vesicles 

from osteoblasts(18).  Exosome production was increased by factors of clinical significance in 

CKD:  increased extracellular calcium, tumor necrosis factor-α, and platelet derived growth 

factor BB.  They further identified these vesicles to be enriched with tetraspanins (CD9, CD63, 

and CD81) indicating origin from multivesicular bodies, and found such multivesicular bodies in 

calcified human arteries(18).  We and other groups have shown that the origin and content of 

these matrix vesicles appears to be a central determinant of their mineralization potential(3, 19).  

This unique function depending on content is further supported by findings that  vesicles isolated 

from atherosclerotic plaque (macrophage derived) and medial arterial calcification also differ in 

content(20).   

  Multiple studies have demonstrated that vesicles can be taken up by recipient cells 

(reviewed in(21)).  Given the pathologic appearance of vesicles in areas of vascular calcification 

in vivo and the role in calcification in vitro, we hypothesized that the transmission of vesicles 

from CKD cells to normal cells would facilitate calcification of the recipient cells and serve as a 

model of the extension or propagation of calcification observed in patients with CKD. Given the 

parallel pathophysiology of both physiologic and pathologic calcification, we use the term matrix 

vesicles (MVs). 



Results: 

Cellular derived, but not media derived, MVs enhanced the calcification of recipient VSMC:   

 We compared 4 sources of MVs:  Cellular derived MVs (from CKD VSMC incubated 

with high phosphorus [calcifying] or with normal phosphorus [control]) or media derived MVs 

from calcifying or control CKD VSMC.  These MVs were added to recipient normal rat VSMC 

as a co-culture and incubated with calcification media (high phosphorus) for 7 days. The results 

(Figure 1) demonstrated that both cellular sources of MVs from CKD VSMC induced 

calcification of the recipient VSMC.  In contrast, MVs isolated from the media of cultured 

VSMC had no effect on calcification of recipient VSMC.   Figure 2A demonstrates that the MVs 

isolated from both sources of cellular VSMC contained annexin II, V and VI, with higher 

expression in VSMC that were incubated with additional phosphorus (calcifying).  In contrast, 

there was lower level of annexins in the MVs isolated from the media and no differences if they 

were from cells incubated in high phosphorus or not (2A,B).  Similar to our previous finding and 

other reports(3, 22), vesicles isolated from the cell media contained markedly increased fetuin-A 

but again, little differences when the originating CKD VSMC cells were incubated with or 

without phosphorus (Figure 2A,B).  Both cellular and media MVs contain the exosomal 

tetraspanins CD63, CD81 and CD9 but cellular MVs are enriched with CD63 whereas media 

MVs are enriched with CD81 and CD9 (Figure 2A, B).  This is consistent with the report by 

Lotvall et al (23)  that although different types of extracellular vesicles contain many common 

exosome-enriched markers such as tetraspanins, the relative proportions of these markers seems 

to vary in the different types of extracellular vesicles.  Despite these differences, examination by 

electron microscopy (Figure 2C) showed that both cellular and media MV are around 100 mm 



diameter, membrane–bound vesicles consistent with the size of exosomes as described in the 

literature (24).  No nanotubes were identified by any imaging technique(25). 

MVs are endocytosed by recipient VSMC:   

To determine if VSMC can uptake MVs, we labeled MVs with the membrane fluorescent 

dye PKH26 and examined uptake by confocal microscopy.  The results demonstrated that MVs 

were endocytosed by VSMC (Figure 3, red in panel A) and co-localized with Alexa 647 labeled 

dextran (blue panel B) but not transferrin (green panel C) by 24 h, indicating that once 

endocytosed,  MVs become located in lysosome (Figure 3, panel E).  Additional studies 

demonstrated MVs derived from the media are similarly endocytosed and there is no difference 

between MVs from VSMC incubated in normal or high phosphorus media (data not shown).  

Thus, the endocytosis of the MV by recipient cells is similar and not dependent on MV content.   

Cellular derived MVs, but not media derived MVs, increase [Ca]i in recipient VSMC: 

To determine if endocytosed MVs induced cell-signaling changes in the recipient VSMC, 

we examined MV mediated alterations of intracellular calcium concentration ([Ca2+]i) in  

recipient VMSC.   The addition of cellular MVs (regardless of source from calcifying or control 

CKD VSMC) to recipient VSMC increased [Ca2+]i by 60 minutes with continued increase over 

the 4 hrs tested (Figure 4A).  In contrast, the addition of media derived MVs had no effects on 

[Ca2+]i (Figure 4A).  We therefore continued studies using only cellular derived MVs from 

calcifying CKD VSMC.  To confirm the results, VSMC were labeled with calcium fluorescence 

dye Fluo-4 and MV-induced calcium transients in VSMC examined using spinning disc 

microscopy.  The results demonstrated cellular MV increased calcium fluorescence intensity 

(Supplemental Figure 1) confirming our time course experiments.  The MV induced increase in 

[Ca2+]i  in recipient VSMC was partially mediated by IP3-induced [Ca2+]i  release as treatment 



with 2-APB reduced MV-induced  increase in [Ca2+]i  (indicating release of calcium from 

sarcoplasmic reticulum) but blocking external entry of calcium with L-type calcium channel with 

verapamil had no effect (Figure 4B).   

MVs activate MAPK signaling in recipient VSMC:  

To determine the role of MVs on MAP kinase signaling in VSMC, cellular or media MVs 

were isolated from calcifying CKD VSMC.  First cellular MVs were incubated with normal 

recipient VSMC at various time points and the activation of MAP kinase assessed using 

PathScan MAP kinase multi-Target Sandwich ELISA kit.  The activity of phospho-Erk1/2 and 

phospho-MEK1 was increased at 30 min and remained similarly increased at 2h and 4h in 

VSMC (30 minute time point shown in Figure 5A).  However, MVs had no significant effect on 

activation of phosphor-p38 MAPK and phosphor-APPK/JNK.   To compare the role of cellular 

MV and media MV on the activation of MAPK in recipient VSMC, Western blot was used and 

results confirmed cellular MV induced phosphorylation of Erk1/2 (Figure 5B) and MEK1 

(Figure 5C).  In contrast, media MV had no effect on phosphorylation of MEK1 and slightly 

increased phosphorylation of Erk1/2.  Furthermore, inhibition of MAP kinase activity by pre-

incubating the normal VSMC with MEK1 and Erk1/2 inhibitor U0126 decreased cellular MV-

induced elevation of [Ca2+]i (Figure 5D).  The effect of inhibition of MAPK on calcification 

could not be assessed due to toxicity to cells with prolonged incubation. 

MVs modulate the expression of genes involved in VSMC differentiation and calcification in 

recipient VSMC:   

 The co-culture of cellular CKD MVs with VSMC decreased the recipient VSMC gene 

expression of smooth muscle actin-22 (SM22a) and increased expression of  angiotensin receptor 

1 (AT1R) at day 7 (Figure 6A) but not at day 1 or 3.  The addition of MVs had no effect on the 



recipient VSMC expression of myocardin at any time point (Figure 6A).  MVs also increased the 

expression of bone morphogenic-2 (BMP-2) in recipient VSMC at day 7, but not day 1 and 3, 

and had no effect on the expression of RUNX2 or osteocalcin (Figure 6B).  These results 

demonstrate that the addition of MV alter some, but not all, of the genes known to be important 

in calcification after 7 days but not at earlier time points. 

MVs uptake induces NOX signaling in recipient VSMC:   

 Altered intracellular calcium signaling can induce changes in mitochondrial function and 

oxidative stress and vice versa.  We first examined the expression of NOX isoforms in cultured 

VSMC and found that the expression of NADPH oxidase (NOX)-1 and NOX-4 were increased 

during calcification of CKD VSMC (Supplemental Figure 2).  We thus examined the effect of 

cellular MV on the expression of NOX-1 and NOX-4 in recipient VSMC after 1, 3 and 7 days.  

The expression of NOX-1 in recipient normal VSMC was increased at all three time points 

(Figure 7A, top panel), but there was no effect on NOX-4 at any time point (not shown), the 

latter known to be constitutively active in VSMC(26).  However, MV did not increase NOX1 

protein levels at any time point (data not shown).   We then examined the expression of the anti-

oxidant superoxide dismutase, and found the addition of cellular MV to VSMC increased the 

expression of SOD-2 at day 3 and 7, but not at day 1 (Figure 7A, bottom panel).  However, there 

was no increase in expression of SOD-1 in VSMC at any of the three time points (data not 

shown).  Assessment of mitochondrial function in cellular MV-VSMC co-culture by western blot 

using total OXPHOS cocktail antibodies revealed no changes in any of the mitochondrial 

subunits (Supplemental Figure 3).  We then examined  the expression of NOX1 in VSMC co-

cultured with media derived MV and found increased NOX-1 but no change in  SOD2 after 3 



days [For NOX-1 expression, No MV=1.35±0.10; media MV=2.23±0.39 (p<0.01); For SOD2 

expression, No MV=0.85±0.07; media MV=1.07±0.22 (NS)].   

 To determine the role of NOX activity in cellular MV-mediated signaling and 

calcification in recipient VSMC, cellular MVs were added to normal VSMC in the presence or 

absence of the specific NOX1/4 activity inhibitor, GKT137831 and [Ca2+]i  and MAPK signaling 

determined.  Inhibition of NOX activity reduced cellular MV induced increase in [Ca2+]i. (Figure 

7B) but had no effect on  MAPK signaling (For phosphor-MEK1: MV=1.37±0.02 AU; 

MV+GKT137821=1.40±0.03 AU).  Confirming the importance of NOX activity in calcification, 

the addition of GKT137831 to co-cultures partially reduced cellular MV induced calcification of 

recipient normal VSMC (Figure 7C).    

 

 

Discussion:   

MVs have a critical role in the initiation of mineral deposition in skeletal tissues.  In the 

current study we demonstrated endocytosis of cellular derived MV isolated from CKD VSMC by 

recipient normal VSMC with a rise in [Ca2+]i, increase in MEK1 and ERK1/2 MAPK signaling, 

and accelerated calcification.  In contrast, MV isolated from the media had no effect on [Ca2+]i, 

MEK1 signaling, and did not induce calcification; however media MV did increase ERK1/2 

although not to the level of cellular MV.    We further demonstrated that inhibition of MEK1/ 

ERK1/2 signaling with the specific inhibitor U0126 reduced cellular MVs-induced alteration of 

[Ca2+]i in recipient VSMC.  In contrast, we did not see a change in p38 and JNK signaling.    

Taken together, these results suggest that MEK1 is the predominant MAPK signaling pathway 

for both the increased [Ca2+]i   and calcification in the cellular MV-VSMC co-cultures(27). 



Previous studies have demonstrated the MAPK-ERK signaling is an important pathway 

in VSMC proliferation/differentiation(28) and in de-differentiation of smooth muscle cells to 

osteochondrogenic (RUNX2 expressing) cells in arteries(29), whereas phosphorus induced 

calcification acts primarily through p38(30, 31).  In the present study, we found some changes in 

gene expression consistent with a switch from a vascular to an osteoblast like phenotype after the 

addition of MV to recipient normal VSMC (downregulation of sm22α, and upregulation of 

BMP-2 and AT1R).  However, these changes were only observed at 7 days, and thus unlikely to 

be due to the immediate MEK1/ERK signaling observed within 30 minutes of the addition of 

MV, or be the major mechanism by which calcification is enhanced by cellular MV.  However, it 

is likely that the late differentiation of the VSMC is still critically important in calcification and 

perhaps the addition of MV augments these changes through additional mechanisms.   

   Alteration of [Ca2+]i induced endoplasmic reticulum (ER) stress may also be important 

in the pathogenesis of vascular calcification.  The ER stress markers Grp78, Grp94, and CHOP 

were found in calcified artery from rats treated with vitamin D which is known to increase in 

[Ca2+]i  and calcification in VSMC(32).   Such mitochondrial stress leads to excess H2O2 and O2- 

that can modify sulfhydryl groups of cysteine residues of signaling pathways and calcium 

transport proteins(33) including the sarcoplasmic reticulum calcium ATPase (SERCA)(34, 35), 

phospholipase C (PLC)- inositol1,4,5 trisphosphate (IP3)(36) and the ryanodine receptor 

(RyR)(37).  Our studies confirmed that the rise in intracellular calcium was from an endoplasmic 

source as 2-APB, an inhibitor of IP3, blocked the increase in [Ca2+]i  in response to uptake of 

cellular MV.  We have previously demonstrated that freshly isolated VSMC from the CKD 

animals used in this study have a progressive rise in [Ca+2]i  with increasing severity of CKD(9).  

Such changes may be induced by many uremic toxins, including  PTH(38), FGF23(39, 40), and 



angiotensin II(41), all of which are elevated in patients with CKD and known to alter VSMC 

phenotype and/or calcification.  

In contrast to the late changes in cell differentiation marker RNA expression in recipient 

VSMC, changes in NOX1 expression were observed by day 1 in the cellular MV-VSMC co-

cultures and changes in  [Ca2+]i can upregulate NOX1 and vice versa(42).  Given the absence of 

changes in protein expression of NOX-1, we inhibited NOX activity with GKT137831 and 

reduced calcification.  This suggests an important role of NOX in cellular-MV induced 

calcification further supported by our data  demonstrating GKT137831 also blocked the increase 

in [Ca2+]i (but not MAPK) in the cellular MV- VSMC co-cultures.    The family of NADPH 

oxidases generates superoxide and other ROS species at both the plasma and endoplasmic 

reticulum membranes with variable expression of isoforms depending on the cultured condition 

and species(27).  The generation of ROS, in turn, alters [Ca2+]i, and mitochondrial function(42, 

43)  but we did not see a change in downstream mitrochondiral components with the uptake of 

cellular MV by VSMC.  This may be due to counter effects of anti-oxidants as we observed the 

mitrochondrial SOD-2 was upregulated by 3 days in cellular VSMC MV co-cultures.  We 

similarly saw an upregulation of NOX-1 RNA expression in media MV-VSMC co-cultures, 

although media MV did not induce a rise in [Ca2+]i , MEK, SOD-2 expression or calcification.  

Thus, despite similar effects on NOX-1 RNA expression by both the cellular and media MV, the 

downstream signaling and calcification differ.  These results suggest distinct intracellular 

trafficking of the media MV from cellular MV prior to ending up in lysosomes, and that these 

differences appear important in calcification.  Additionally, the differences in results may also be 

due to differences in NOX-1 activity, as changes in expression do not always equate with 

activity.  More work is needed to fully clarify the downstream pathways.   



We have previously characterized matrix vesicles isolated from cell lysate and cell 

culture media of bovine VSMC(3), demonstrating that MVs isolated from the cell culture media 

contain high concentrations  of fetuin-A, whereas vesicles isolated from cells do not.  These 

findings were confirmed in the present study in rat VSMC and the presence of fetuin-A may be 

another explanation for why media vesicles do not induce calcification.  We also found that the 

fetuin-A containing rat vesicles lacked the tetraspanin exosome marker CD63, an important 

exosome marker used to isolate exosomes from human fluids(44).  Thus, the media vesicles in 

cell culture may not equate with circulating vesicles isolated using this technique from human 

fluids.  In contrast, our cellular derived matrix vesicles were characteristic of exosomes derived 

from multivesicular bodies.  Recently Kapustin et al identified such bodies in areas of 

calcification of arterial rings incubated with high calcium or from that of dialysis patients(18).  

Fetuin-A is a known inhibitor of VSMC and osteoblast mineralization in vitro(45-47) and, when 

present in vesicles renders them incapable of calcium uptake(46).   Fetuin-A prevents the initial 

calcium apatite formation by preferentially trafficking the calcium and phosphorus into fetuin-A-

containing calciprotein particles  in the circulation(48).  The differences in [Ca+2]i in response to 

MVs that contain and do not contain fetuin-A in the present study may be one mechanism by 

which differences in calcification potential of these MV occur.  We have previously 

demonstrated that the calcification activity of MVs can be inhibited by decreasing [Ca2+]i with 

the annexin calcium channel inhibitor K201, either in the VSMC from which the MVs are 

isolated, or the MVs themselves(3, 17).    

In summary, we have demonstrated that cellular derived MVs isolated from CKD rat 

VSMC can facilitate the calcification of recipient VSMC from normal rats.  Both cellular and 

media MVs can be endocytosed by recipient normal VSMC.  However, only cellular MV 



induced an increase in [Ca2+]i  from endoplasmic reticulum in the recipient VSMC.  The increase 

in [Ca2+]i is partially attributed to the activation of both NOX and MAPK signaling, as inhibiting 

either pathway blocked the increase in [Ca2+]i  in recipient VSMC .  Blockade of NOX activity 

further inhibited the cellular MV induced accelerated calcification of recipient VSMC, but did 

not completely abrogate calcification suggesting other pathways are important.   In contrast, 

media MV did not induce an increase in [Ca2+]i   in recipient VSMC perhaps because the increase 

in NOX was not offset by an increase in SOD-2. Understanding the differences in the cell 

signaling induced by different forms of MV that lead to the presence or absence of calcification 

in neighboring cells will be important to stop the progression of calcification in vivo.  

   

Methods: 

Animal models and cell culture: 

 Primary rat vascular smooth muscle cells (VSMC) were isolated from a model of Chronic 

Kidney Disease-Mineral Bone Disorder (CKD-MBD), the Cy/+ rat or its normal littermates.  

This model spontaneously develops all three manifestations of CKD-MBD:  biochemical 

abnormalities, extraskeletal calcification, and abnormal bone(49, 50).  VSMC were isolated from 

the descending thoracic aorta of CKD or normal rats by the explant method as previously 

described(51).  To induce calcification, VSMC were treated with calcification media (5 mM β-

glycerophosphate [which is converted to phosphorus], 1 U/ml fetal alkaline phosphatase and 

15% FBS)(51) compared to control cultures without the β-glycerophosphate but with normal 

media phosphorus levels.  Co-culture experiments (see below) were always in the presence of β-

glycerophosphate. 

Matrix vesicle (MV) isolation: 



 Cellular derived MVs were isolated from CKD rat VSMC by collagenase digestion with 

sequential centrifugation as previously described(3).  In brief, cells were incubated with crude 

collagenase (500 U/ml, type IA, Sigma) in a solution of 0.25 M sucrose, 0.12 M NaCl, 0.01 M 

KCl and 0.02 M Tris buffer, pH 7.45, at 37oC for 3 hrs. The digests were centrifuged at 800 g 

and 30,000 g to remove cell debris, apoptotic bodies and microsomes, respectively. The 

supernatant was centrifuged at 250,000 g to pellet the MVs followed by resuspension in TBS 

(pH 7.6) with 0.25 M sucrose.    In some experiments, MVs were also isolated from the cultured 

cell media (Media MVs) as we have previously published(3).   The media was decanted and spun 

at 30,000 g for 10 min followed by centrifugation at 250,000 g for 30 min at 4°C and MV 

isolated from the supernatant.   The MVs were quantified by protein concentration (Bio-Rad).   

Western blotting:    

Western blotting was performed as previously described(3).   The blots were incubated 

with antibody against annexin II, V and VI, CD63, CD81 and CD9 (1:1000, Santa Cruz 

Biotechnology, Santa Cruz, CA) or fetuin-A (1:2000, a gift from Dr. Willi Jahnen-Dechent, 

University Hospital, Aachen, Germany) overnight at 4oC followed by incubating with peroxidase 

conjugated secondary antibody (1:5000 dilution), and immunodetection with the Enhanced 

Chemiluminescence Kit (Amersham, Piscataway, NJ).   The band intensity was analyzed by 

ChemiDoc MP Imaging System (Imaging Lab 4.0, Bio-Rad, Richmond, CA) and normalized to 

total protein expression using Ponceau S.   

Transmission electron microscope (TEM) for matrix vesicles: 

 TEM was performed by the EM center at Indiana University School of Medicine.  

Briefly, 20 ug of cellular or media MV were fixed with 10% glutaraldehyde and then 300 mesh 

nickel formvar/carbon coated grids (Electron Microscopy Sciences, Hatfield, PA) were placed 



under the matrix vesicle solutions and allowed to absorb over a weekend at 4°C.  The grids were 

then taken out of the solution and allowed to dry for approximately 1 minute, then negative 

stained for 10 seconds using Nanovan (Nanoprobes, Inc, Haphank,NY). The grids were viewed 

on a Tecnai Spirit (Thermofisher Scientific, Hillsboro, OR) and images taken with a CCD 

camera (Advanced Microscopy Techniques, Danvers, MA). 

MV-VSMC co-culture:  

 To determine if MVs from CKD animal derived VSMC enhanced calcification of 

recipient normal animals derived VSMC, co-culture experiments were done.  The normal VSMC 

were incubated with or without 10 μg of MVs, always in the presence of β-glycerophosphate (to 

provide phosphorus which is needed for calcification) for up to 7 days.  The media was removed 

and cells incubated in 0.6N HCl for 24 hours and calcification determined colorimetrically by the 

o-cresolphthalein complex one method (Calcium kit; Pointe Scientific) as previously 

described(3).   In some experiments, MV-VSMC co-culture were treated with or without 

inhibitor of 1,4,5-trisphosphate (IP3)-receptor (2-APB, Calbiochem, Darmstadt, Germany), 

MAPK inhibitor U0126 (Cell Signaling Technology, Danvers, MA) or NOX1/4 inhibitor 

GKT137831 (BioVisions, Inc, Milpitas, CA). 

MV endocytosis in recipient VSMC: 

 MVs were labeled with membrane fluorescent dye PKH26 (PKH26 Red Fluorescent Cell 

Linker Kit, Sigma, St Louis, MO) and added to cultured  recipient VSMC, and the uptake 

examined by confocal microscopy at various time points by MRC-1024 laser-scanning confocal 

microscope (Bio-Rad) as previously described(52, 53).  To determine the co-localization of MVs 

with endosomes or lysosomes, Alexa 488 labeled transferrin (labels recycling endosomes) and 



Alexa 647 labeled dextran (labels lysosomes) were also added to the co-cultures (Molecular 

Probe).   

MV mediated alteration of intracellular calcium ([Ca]i): 

To determine if MVs alter the [Ca]i  in recipient VSMC, normal VSMC were seeded in 

96-well culture plates and labeled with the calcium Rhod-3 Calcium Imaging kit (Molecular 

Probe, Carisbad, CA) for 30 minutes.  MVs were then added to the VSMC and the acute change 

in [Ca2+]i in VSMC were assessed by fluorescence at various time points up to 4 hrs using 

CLARIOstar high performance microplate reader (BMG LABTECH Inc, Cary, NC).   Results 

were confirmed with spinning disc microscopy(54). 

Effect of MVs on MAP kinase signaling in VSMC: 

 To determine if MVs affect MAP kinase signaling, recipient VSMC were incubated with 

or without 10 µg MVs for 30 min, 2h and 4 h at 37oC and total protein from the co-culture 

isolated using lysis buffer as previously described(51).  The activation of MAP kinase was 

assessed using PathScan MAP kinase multi-Target Sandwich ELISA kit (Cell Signaling 

Technology, Danvers, MA).  To confirm the MAP kinase signaling by cellular MV and media 

MV, Western blot analyses were performed.  Briefly, 20 µg of protein was loaded on 10% SDS-

PAGE and the blots were incubated with antibody against Phospho-MEK1 or Phospho-Erk1/2 

(1:500, Cell Signaling Technology, Danvers, MA) overnight at 4oC followed by incubating with 

peroxidase conjugated secondary antibody (1:5000 dilution), and immunodetection with the 

Enhanced Chemiluminescence Prime Western Blot Detection Reagent (Amersham, Piscataway, 

NJ).  For loading control, western blot was also performed using antibodies against total MEK1 

or total Erk1/2 (1:100, Cell Signaling Technology, Danvers, MA).  The band intensity was 

analyzed by ChemiDoc MP Imaging System (Imaging Lab 4.0, Bio-Rad, Richmond, CA) and 



MPA kinase activation was quantified by normalizing phosphorylated MAP kinase to total MAP 

kinase.   

RNA isolation, quantification and real-time PCR: 

 Total RNA from MV-VSMC co-culture was isolated using miRNeasy Mini Kit (Qiagen).   

Target-specific PCR primers were obtained from Applied Biosystems.  The gene expression of 

bone morphogenic protein 2 (BMP-2),  RUNX-2, osteocalcin, Sm22α, myocardin, NADPH 

oxidase isoform 1 and 4 (NOX1 and 4), angiotensin II type I receptor (AT1R) and superoxide 

dismutase (SOD) 1 and 2 was analyzed by real time PCR using Taqman gene expression assay 

system (TaqMan MGP probes, FAM dye-labeled , Applied Biosystems, Foster City, CA) using 

ViiA 7 systems(10).  The cycle number at which the amplification plot crosses the threshold was 

calculated (CT), and the ∆∆CT method was used to analyze the relative changes in mRNA 

expression and normalized by beta-actin as previously described(10).   

Statistics:   

Statistical analysis was conducted by ANOVA and within group comparisons by Fisher’s 

post hoc analysis.  The results are expressed as means ± SD, with p<0.05 considered significant 

(StatView, SAS Institute, Cary, NC).   
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Figure Legends: 

Figure 1:  MV induced calcification of recipient VSMC:    

MVs were isolated from four sources of MVs:  Cellular derived MVs (from CKD VSMC 

incubated with high phosphorus (5 mM β-glycerophosphate) = calcifying or Cal = black bars] or 

with normal phosphorus (no β-glycerophosphate) [control = Ct = white bars]) or media derived 

MVs from calcifying or control CKD VSMC.  Normal VSMC were incubated alone (hatched 

bar), or with cellular or media derived MV in the presence of β-glycerophosphate.  Only the 

cellular origin of MV induced calcification of the recipient normal VSMC.  Data are shown as 

mean ± SD (n = 3 MV sets from 3 CKD rats, with three cell cultures from each MV set for final 

n of 9).  * p < 0.05, Cellular MV vs. VSMC alone or VSMC + media derived MV. 

 

  



Figure 2:  Comparison of content of MV isolated from cells or media:  

MVs isolated from the same four sources as in Figure 1 were analyzed for content of annexin 

II(36 kDa), annexin V (36 kDa), annexin VI (47-51 kDa) , fetuin-A (59 kDa),  CD63 (core 

protein, MV 26 kDa) , CD81 (22-26 kDA) and CD9 (24 kDa)  by Western blot (A) with 

quantification of band intensity normalized by Ponceau S (B).  MVs isolated from cells had 

increased expression of annexins and CD63, but neglible fetuin-A compared to that from MVs 

isolated from media.  Isolation from cells in high phosphorus (calcifying) media in general 

increased expression.  In contrast, in the MVs isolated from the media, there was high fetuin-A 

content, high levels of CD81 and CD9 and no differences when isolated from VSMC with and 

without calcifying (high phosphorus) media.  TEM showed that both cellular (Figure 2C, left 

panel) and media MV (Figure 2C, right panel) show uniform size of  100 mm diameter, 

membrane–bound vesicles.  Ct = MV isolated from CKD VSMC in normal phosphorus media; 

Cal = MV isolated from CKD VSMC in high phosphorus media.  Data are shown as mean ± SD 

(n = 3 separate experiments).  * p < 0.05, Ct MV vs. Cal MV same source (Cellular MV or 

media MV); # p<0.05, Cellular MV vs. media MV, same condition (control or calcifying/high 

phosphorus).         200 nm (C).  

 

 

  



Figure 3:  Both cellular and media MV are endocytosed by recipient VSMC: 

MV isolated from CKD VSMC incubated with high phosphorus media and then labeled with the 

membrane dye PKH26.  The MVs were co-cultured with VSMC (A), Alexa 647 labeled dextran 

(B) and Alexa 488 labeled transferrin (C), and imaged by confocal microscopy (60X objective, 

scale bar=50 μm).  After 24 hours, endocytosis was observed with co-localization of the MV dye 

with dextran (purple, E), indicating MV colocalize with lysosomes.   We also examined cellular 

MV isolated from VSMC with normal phosphorus (Ct) and media derived MV and found similar 

patterns of endocytosis. 

 

  



Figure 4:  MVs differ in their ability to increase intracellular calcium [Ca2+]i in recipient 

VSMC:  

A: MV from cellular or media derived CKD VSMC in normal (Ct) or high phosphorus media 

(Cal)  were added to VSMC labeled with the calcium Rhod-3 and [Ca2+]i assessed by 

fluorescence at various time points up to 4 hrs using CLARIOstar high performance microplate 

reader.   The results demonstrate that cellular derived MV, regardless of phosphorus content, 

induce a progressive rise in [Ca2+]i whereas media derived MV do not.  B:  Cellular derived MV 

from calcifying CKD VSMC were co-cultured with VSMC with and without the IP3 inhibitor 

2APB (10 μM) or the L-type calcium channel inhibitor verapamil (10 μM) for 4 hrs and [Ca2+]i 

assessed.  The results show attenuation of MV-mediated induction of [Ca2+]i with 2APB but not 

verapamil, indicating the rise in calcium was due to release from intracellular stores. Data are 

shown as mean ± SD (n = 3 MV sets from 3 CKD rats, with three cell cultures from each MV set 

for final n of 9). (A): * p < 0.05, Cellular MV vs. media MV or no MV, Ct MV or Cal MV;  (B): 

* p < 0.05, MV vs. no MV, treatment or no treatment;  # p<0.05, MV vs. MV +2-APB. 

 

  



Figure 5:  MVs activate MAPK signaling in recipient VSMC:  

MV isolated from cellular derived CKD VSMC in high phosphorus media were added to normal 

VSMC for 30 minutes and total protein from the co-culture isolated. The activation of MAP 

kinase was first assessed using PathScan MAP kinase multi-Target Sandwich ELISA kit.  The 

results demonstrated there was an increase in phospho-MEK1 and phosphor-Erk1/2 compared to 

VSMC without MV (Figure 5A).  Western blot confirmed cellular but not media MV-induced 

phosphorylation of ERk1/2 (Figure 5B) and MEK-1 (Figure 5C) (normalized by total Erk1/2 and 

MEK) in recipient VSMC.  Pre-incubation of the recipient VSMC with the MAPK (MEK/ERK) 

inhibitor U0126 (10 μM) for 12 hours partially attenuated MV-induced a rise in [Ca2+]i in 

recipient VSMC (Figure 5D).  Data are shown as mean ± SD (n = 3 separate experiments).  *p < 

0.05, VSMC vs. MV+VSMC, cellular or media MV; #p<0.05, cellular MV vs. media MV;.  For 

Figure 5D; *p < 0.05, no MV vs. MV; #p<0.05, MV vs. MV+U0126.  

 

  



Figure 6:  MV induces late changes in genes involved in differentiation and calcification in 

recipient VSMC: 

The addition of MV derived from CKD VSMC to recipient normal VSMC induced 

downregulation of the vascular smooth muscle marker sm22α (A), and upregulation of AT1R 

(A) and BMP-2 (B) at 7 days.  No changes were observed at days 1 and 3 for these genes, and 

other genes were unaffected.  Thus, MV induced late changes consistent with an osteoblast 

phenotype.  Data are shown as mean ± SD (n = 3 MV sets from 3 CKD rats, with three cell 

cultures from each MV set for final n of 9).  * p < 0.05, MV vs. no MV. 

 

 

  



Figure 7:  MVs altered oxidative stress in in recipient VSMC: 

The addition of cellular MV from calcifying CKD VSMC to normal VSMC induced changes in 

NOX-1 expression by 24 hrs that continued over time (top panel) and an increase in the anti-

oxidant SOD-2 beginning at day 3 and continuing over time (bottom panel).    Data are shown as 

mean ± SD (n = 3 MV sets from 3 CKD rats, with three cell cultures from each MV set for final 

n of 9).  * p < 0.05, MV vs. no MV.    

 

 

Figure 8:  The role of NOX activity in cellular MV mediated cell signaling and calcification 
in recipient VSMC: 

To determine the role of NOX activity in cellular MV-induced cell signaling and calcification, 

cellular MV were added to recipient VSMC in the presence or absence of NOX1/4 activity 

blocker GKT137831 (4 μM) and  [Ca]i  and calcification determined.  The results demonstrated 

that blockade of NOX1/4 activity attenuated the cellular MV induced rise in [Ca]i  (A) and 

calcification of recipient VSMC (B).  Data are shown as mean ± SD (n = 3 MV sets from 3 CKD 

rats, with three cell cultures from each MV set for final n of 9).  * p < 0.05, cellular MV vs. no 

MV. # p<0.05, MV vs. MV+137831.  
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