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Abstract: Amyloid-  proteins (A ) of 42 (A 42) and 40 aa (A 40) accumulate as senile plaques (SP) 

and cerebrovascular amyloid protein deposits that are defining diagnostic features of Alzheimer’s disease 

(AD). A number of rare mutations linked to familial AD (FAD) on the A  precursor protein (APP), Presenilin-1 (PS1), 

Presenilin-2 (PS2), Adamalysin10, and other genetic risk factors for sporadic AD such as the 4 allele of Apolipoprotein 

E (ApoE- 4) foster the accumulation of A  and also induce the entire spectrum of pathology associated with the disease. 

A  accumulation is therefore a key pathological event and a prime target for the prevention and treatment of AD. APP is 

sequentially processed by  -site APP cleaving enzyme (BACE1) and -secretase, a multisubunit PS1/PS2-containing in-

tegral membrane protease, to generate A . Although A  accumulates in all forms of AD, the only pathways known to be 

affected in FAD increase A  production by APP gene duplication or via base substitutions on APP and -secretase 

subunits PS1 and PS2 that either specifically increase the yield of the longer A 42 or both A 40 and A 42.However, the 

vast majority of AD patients accumulate A  without these known mutations. This led to proposals that impairment of 

A degradation or clearance may play a key rolein AD pathogenesis. Several candidate enzymes, including Insulin-

degrading enzyme (IDE), Neprilysin (NEP), Endothelin-converting enzyme (ECE), Angiotensin converting enzyme 

(ACE), Plasmin, and Matrix metalloproteinases (MMPs) have been identified and some have even been successfully 

evaluated in animal models. Several studies also have demonstrated the capacity of -secretase inhibitors to paradoxically 

increase the yield of A  and we have recently established that the mechanism is by skirting A  degradation. This review 

outlines major cellular pathways of A  degradation to provide a basis for future efforts to fully characterize the panel of 

pathways responsible for A turnover.  

Keywords: Alzheimer’s disease, amyloid  degradation, amyloid  peptide, endothelin-converting enzyme, insulin-degrading 

enzyme, neprilysin, neurodegeneration. 

1. INTRODUCTION

AD is the most common form of dementia in the elderly 
population in the United States, with age being the number 
one risk factor but the occurrence of a number of cogni-
tively normal centenarians argues against the aging process 
directly causing dementia. It has been reported that over 
50% of people who are 85 years or older suffer from the 
disease [1]. Unfortunately, all FDA approved treatments for 
AD only provide temporary cognitive improvement with 
negligible disease modifying effect on the neuropathology 
[2, 3]. Since sporadic AD generally manifests late in life, 
multiple environmental, physiological and cellular proc-
esses appear to modify the risk for developing the disease 
[4]. It may be possible to target one or more of these hits to 
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prevent the disease, but the repeated failure of clinical trials 
suggests that treatment treatments devised so far are missing 
key therapeutic targets. Therefore, it is important to under-
stand the silent biochemical cascades involved in neurode-
generation, hoping that these will walk us toward the disease 
etiology. The reality in the AD field is that yet we have no 
clue as to its cause, “an embarrassment of riches” where all 
bets are on, from hormonal deficiencies to viral reactivation 
[5]. 

As a central component of life, the levels and types of 
proteins are important in determining the structure of cells 
and in optimizing their role within the context of their func-
tion. In addition to controlling gene expression at the tran-
scriptional and translational levels, the steady state concen-
tration of a particular protein within a cell is also determined 
by its turnover rate. A plethora of studies have demonstrated 
that regulation of proteolysis play a key role in many proc-
esses critical to cell survival. Such mechanisms are also cen-
tral to many physiologic pathways in multicellular organisms 
such as blood clotting, complement activation, cell cycle, 

This is the author's manuscript of the article published in final edited form as:  

Baranello, R., Bharani, K., Padmaraju, V., Chopra, N., Lahiri, D., Greig, N., … Sambamurti, K. (2015). Amyloid-Beta Protein Clearance and Degradation 
(ABCD) Pathways and their Role in Alzheimer’s Disease. Current Alzheimer Research, 12(1), 32–46. http://
doi.org/10.2174/1567205012666141218140953



2    Current Alzheimer Research, 2015, Vol. 12, No. 1 Baranello et al. 

cell differentiation and embryo growth pattern and develop-
ment. Specific proteins are called into action at defined times 
during development and are subsequently degraded after 
completing their task. Failure of these processes is associated 
with substantive congenital morbidity and mortality. At the 
other end of life, these processes can significantly contribute 
to age related disease. While some structural proteins remain 
stable for prolonged periods, others with regulatory function 
are constantly degraded; i.e., cleaved to either activate or 
inactivate precursors [6]. If, however, the proteins are not 
degraded, then their subsequent accumulation can signifi-
cantly affect their regulatory activity to ultimately cause dys-
function. Cellular homeostasis must therefore be maintained 
by turnover mechanisms to ensure a fastidious balance. This 
is also the case with clearance of A  from cells in the normal 
brain and in AD patients. Here in, this review highlights the 
predominant cellular mechanisms that have been demon-
strated to affect the trafficking and clearance of the A  pep-
tide within the brain. 

AD is characterized by widespread neuronal degenera-
tion and synaptic loss affecting the hippocampus, cortex and 
other brain regions, resulting in diffuse brain atrophy. How-
ever, senile plaques (SP) and neurofibrillary tangles (NFT), 
the two microscopic hallmark lesions originally described by 
Alois Alzheimer, are still considered the most important 
pathological markers of AD [7]. SPs are primarily composed 
of A  and NFTS of hyperphosphorylated microtubule-
associated protein tau (MAPT) accumulates in the form of 
paired helical filaments. Whether A  accumulation or hyper-
phosphorylated tau contribute to the disease pathogenesis or 
are merely bystander markers of the disorder, remains a mat-
ter of intense debate [8-12]. Nevertheless, A  accumulation 
is found in all forms of the disease and its production is spe-
cifically altered by FAD mutations even in cultured cells The 
convergence of FAD mutations on APP and presenilins to 
specifically increase A , which then accumulates as SPs, 
lays the foundation for the widely recognized ‘amyloid hy-
pothesis’ of AD [13]. This hypothesis proposes that abnor-
mally high levels of A  trigger a cascade of events leading to 
neurodegeneration. The hypothesis is supported by four main 
observations: i)-amyloid accumulation generally precedes 
the development of MAPT abnormalities by many years [14, 
15], ii)-mutations in the APP gene cause a form of familial 
AD that is neuropathologically indistinguishable from the 
sporadic form [16]; iii)- A  oligomers are neurotoxic [17-19] 
and iv) APP variants that reduce A  production protect 
against AD pathogenesis and increase longevity [20]. Thus, 
understanding the regulation of A  production and turnover 
is critical to identify potential therapeutic targets [20-24]. 

2. AMYLOID PRODUCTION PATHWAYS

A  is produced following sequential cleavage ofa larger 
precursor protein, APP, which has become the major subject 
of study in AD pathogenesis. APP is a large type-I integral 
membrane protein of 695-770 aa that is sequentially proc-
essed by either BACE1or -secretase to carboxy-terminal 
fragments of 99 aa (CTF ) or 83 aa (CTF ). An intramem-
brane protease, -secretase, cleaves CTF  to 4 kDa A  and 
CTF  to a smaller 3 kDa fragment namedP3 or A  (Fig. 1). 
Other A -like fragments have also been described, but they 
are relatively minor [25]. Several reviews, have detailed the 

processing pathway of APP [13]. The compartmentalization 
of the processing events is a critical part of its regulation 
[26]. In particular, this report demonstrated that BACE1 and 

-secretase processing takes place in two different cellular 
compartments. Although BACE1 represents a minor path-
way for APP processing, the enzyme is not limiting and 
overexpression of APP results in a proportionately higher 
CTF  and A  yield. Finally inhibiting -secretase does not 
increase A  production, showing that although it cleaves 
inside the A  sequence and represents the major APP proc-
essing pathway, it does not limit A  biogenesis [26]. The 
exact compartments involved in this process vary by cell 
type as A is generated in both constitutive and regulated 
secretory pathways [27, 28]. It is generally accepted that 
APP is first transported to the cell surface and processed 
either in the secretory pathway or at the surface by a consti-
tutive or inducible form of -secretase to CTF  [29-32]. The 
membrane-bound CTF  fragment is processed by -
secretase which appears to reside within multiple locations 
including the Golgi apparatus and the cell surface [33]. APP 
not processed by -secretase becomes internalized into en-
docytic vesicles, where BACE1, an aspartyl protease with an 
acid pH optimum, cleaves it to generate CTF . This, in turn, 
is further processed by -secretase to A 40 and A 42 that 
gets transported to the cell surface and secreted via recycling 
vesicles (Fig. 1, 2). It has been proposed that accumulated 
A generates oligomers that interact with phosphorylated 
MAPT to induce synaptic dysfunction [34]. In addition to 
genetics, epigenetics, and environment, other factors includ-
ing dietary imbalance, exercise, and early-life exposure to 
metals and pesticides (as described in the ‘LEARn’ model) 
also play an important and complex role in the development 
of dementia[35, 36].  

3. GENE VARIANTS LINK A  TO AD

Although FAD only accounts for a small fraction of AD 
cases (~5%), these mutations on APP, PS1 and PS2induce 

the entire range of pathology starting with increase in A  

accumulation to SPs, passing through NFT formation and 
leading to synaptic dysfunction, neuron loss, brain atrophy 

and dementia [9, 37, 38]. Despite the strong genetic and 

toxic connection between A  and AD, the topic remains 
controversial with some investigators dismissing its role as 

an epiphenomenon [39]. Most of the argument revolves 

around a direct role for A  toxicity in the AD-associated 
neurodegeneration as a potential treatment target. Indeed, 

with failure of clinical trials against A , these arguments 

have suddenly become quite popular. However, in vivo la-
beling for A provided evidence that these lesions accumu-

late as early as twenty years before the onset of dementia 

and highlight the multistep process of dementia with A  
serving as a potential preclinical target, like cholesterol for 

cardiovascular disease [40-43]. These imaging studies have 

led to a new hypothesis that SPs and even NFTs are early 
preclinical stages of the disease and that even some visible 

neurodegeneration predates the onset of mild dementia, 

suggesting that treatments to reduce A  and MAPT must 
start early during the disease course for subjects at high risk 

for prevention of dementia [42, 43]. The prevention focus 

has become widely recognized and discussed [44].These 
studies highlight the importance of understanding the basic 
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Fig. (1). Key APP processing pathways. The neuronal form of APP is a type-1 integral-membrane glycoprotein of 695 aa with a large ecto-

domain a single transmembrane domain and a short intracellular domain (Blue box). A group of metalloproteases named -secretase cleave 

APP inside the A  sequence (violet triangle) between residues 16 and 17 to produce a secreted fragment of 612 aa, sAPP , and a cellular 

fragment of 83 aa - CTF . This is the major pathway and accounts for 80-90% of APP turnover. In the amyloidogenic pathway, BACE1 ( ) 

cleaves APP to the secreted fragment, sAPP  (red diamond), of 596 aa and membrane-bound fragment CTF  of 99 aa. Which in turn is proc-

essed to A  by -secretase. A  is degraded and cleared by multiple known and unknown pathways as shown. 

mechanisms underpinning the development of dementia, and 
the various steps down the slippery steps that may need rein-
forcement for preventive strategies. The most revealing 
strategies have been imaging to define the disease, genetics 
to identify minor variants of the genome that undergo link-
age disequilibrium, and genomic and proteomic strategies to 
identify changes in the disease. The three major FAD muta-
tions have been followed by extensive efforts at identifying 
loci linked to AD and other neurodegenerative diseases, and 
have identified a large crop of genes associated with various 
diseases. They also show that several gene variants may be 
associated independently with multiple degenerative dis-
eases. Interestingly, while APP, PS1 and PS2 are all linked 
to A  production, few variants are consistently linked to A  
degradation. However, we have recently discovered that im-
pairment of -secretase can paradoxically increase A  yield 
by skirting A  degrading pathways [45]. We hence need to 
determine whether mutations in PS1 and APP that presuma-
bly impair -secretase activity [13] can also operate via this 
mechanism. Interestingly, proteomic strategies have revealed 
that there are several proteins that accumulate in AD along 
with A  and MAPT, indicating that the disease represents 
failure of protein homeostasis [46]. 

4. APOE AND SELECTED RISK FACTORS AFFECT-
ING AMYLOIDOSIS 

Since the start of the Human Genome Project, there have 
been a number of GWAS studies that have identified several 
genetic risk factors associated with AD [37]. A major AD 

risk factor identified by genome wide association studies is 
ApoE- 4, which is strongly associated with typical late onset 
forms of AD, but with low penetrance [47-49]. ApoE within 
the brain is produced by glial cells [50], and normally main-

tains brain cholesterol and triglyceride homeostasis, and in 
the periphery and has been linked to familial hypercholes-
terolemia syndromes. ApoE is additionally the major choles-

terol transporter within the brain and appears to drive AD by 
multiple mechanisms that, as discussed below, includes re-

duced A  degradation [47, 51]. ApoE exists as a combina-
tion of three different isoforms, 2, 3, and 4, wherein 4 
increases AD risk in a dose-dependent manner and 2 pro-
vides some protection against the disease risk introduced by 

presence of an 4 allele [52]. Brain imaging studies utilizing 
the Pittsburgh compound B show that in comparison to 
ApoE4- 4-negative subjects, cognitively normal middle-
aged subjects carrying the ApoE- 4 allele have a far greater 

likelihood of having a higher cerebral amyloid load [43, 53] 
and, consequently, lower levels of cerebrospinal fluid (CSF) 
A 42 [53]. Studies show that ApoE- 4, which also promotes 
premature atherosclerosis, is significantly less frequent in 

centenarians than in controls, whereas the ApoE- 2 allele 
that has been associated with type III and IV hyperlipidemia 
is significantly increased in this extremely long-lived group 
[54]. However, ApoE- 4 as a risk factor in human disease is 

complex, as it appears to protect carriers against develop-
ment of age-related macular degeneration, a condition that is 
associated with amyloid deposition in subretinal pigmented 
epithelium deposits known as drusen [55]. Several theories 

are built around ApoE- 4, such as the failure of CNS choles-
terol homeostasis, promoting plaque formation by chaperon-
ing A  deposition, reduced A  degrading capacity, incorpo-
ration into plaques as fragments, promoting APP degradation 

affecting neuronal survival to ultimately cause AD-related 
neurodegeneration [56-58]. There is also evidence that ApoE 
facilitates aggregation and polymerization of A  into amy-
loid fibrils, a process that is less efficiently carried out by the 

ApoE- 4 allele [59-63].  

Cholesterol is an independent AD risk factor and can fos-
ter amyloidosis by stimulation BACE1 processing of 
APP[64]. Thus cholesterol transport may be another mecha-
nism for ApoE-driven amyloidosis [47]. It is interesting that 
HMGCR, a cholesterol synthesis gene, has variants that act 
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Fig. (2). Model showing the cell biology of A  production and degradation. APP is synthesized in the ER and gets transported to the 

Golgi apparatus where it is packaged to vesicles (orange circles) for delivery to the cell surface (Step 1.). APP that does not get processed by 

the -secretase in the secretary pathway is internalized into endosomes (Large blue circles), which are acidic compartments (Steps 2 and 3). 

BACE1 cleaves APP in the endosome to generate CTF , which is then processed to A  by -secretase within the endosome (Step 4). In neu-

rons, a large fraction of the A  generated in this compartment is degraded by ECE and unknown proteases (Step 5). A  that escapes this 

pathway may be transported to the lysosome and degraded (Step 6). Alternatively, A  containing recycling vesicles (small blue circles) can 

be recycled to the cell surface either via the Golgi apparatus (Steps 7 and 8)or directly from the endosome to the cell surface (Step 9). A  may 

be released from recycling vesicles to the UPS for degradation (Step 10) or get degraded at the cell surface by other known pathways such as 

NEP, IDE, MMP-9 or by other unidentified pathways. The A  that escapes degradation may be drained into the cerebrospinal fluid or cleared 

into the lymphaticor vascular circulation. Failure of all these redundant turnover mechanisms will lead to accumulation and aggregation of A  

into SP and as CVAP. 

as genetic modifiers that reduce AD risk of ApoE- 4 [48]. In 
addition to cholesterol, HMGCR also mediates synthesis of 
isoprenoids that regulate several small GTPases such as rho 
and ras, and these, in turn, regulate A  biogenesis [65].It is 
reported that ApoE receptors, LRP, and 2-macroglobulin, 
are involved in the internalization of APP and A  genera-
tion, and degradation [66, 67], because ApoE binds A  and 
APP [68, 69]. Once internalized and associated with the re-
cycling pathways, ApoE- 3 more efficiently promotes A  
lysosomal trafficking and degradation than does ApoE- 4 
[60]. These data point to rapid endocytic trafficking of A -
containing vesicles in the presence of ApoE resulting from 
an increase in efficiency of the recycling of Rab7 from 
lysosomes to early endosomes. Thus, ApoE-induced intracel-
lular A  degradation appears to be mediated by the choles-
terol efflux function of ApoE, which lowers cellular choles-
terol levels and simultaneously facilitates the intracellular 
trafficking of A  to lysosomes for degradation [63]. It is, 
however, important to note that the degradation pathway for 
A  in lysosomes has not yet been worked out. In fact, our 
laboratory found that inhibition of the aspartyl-, serine- and 

thiol- protease pathways was not sufficient to efficiently 
block A  degradation in lysosomes, suggesting that other 
novel pathways may be involved in its turnover. 

5. CELLULAR MAINTENANCE AND A  REGULA-
TION 

The role of A  degradation takes on a new importance 

based on our group’s recent findings that A  production and 
degradation may be coupled. Specifically, partial inhibition 

of -secretase, the final step in A  production, paradoxically 

increases A  production by circumventing one or more A  
degradation pathways [45]. However, only a few of the mul-

tiple redundant pathways that degrade A  have been care-

fully studied [70-72]. The purpose of this review is to high-
light the known and proposed A  degrading pathways to 

provide a foundation for further research in this important 

area.Two of the major pathways that mediate cellular prote-
olysis involve the proteasome and the lysosome. The two 

systems maintain cellular homeostasis by digesting multiple 

classes of proteins, including faulty or misfolded proteins 
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with different lifespans, and play an important role in orches-

trating protein concentrations inside the cell [73-75]. Other 

widely recognized pathways are cytosolic neutral proteolytic 
pathways linked to cellular injury and programmed death. In 

the first pathway, a family of Ca
++

-activated cysteine prote-

ases named calpains is induced during cellular injury. Sec-
ondly, another group of cystolic cysteine-dependent aspar-

tate-directed proteases (caspases) are activated by rapid post-

translational mechanisms and trigger a cascade of events that 
are characteristic of programmed cell death or apoptosis 

[76]. The role of these pathways in A  turnover is beginning 

to be uncovered, as described below.  

5.1. Ubiquitin-Proteasome System (UPS) has Function in 
SP and NFT Formation 

The proteasome is a constitutive multi-catalytic, multi-
subunit protease complex that utilizes homopolymers of 
ubiquitin as a signal to target proteins for degradation in an 

ATP-dependent pathway[71, 77-79]. In mammals, the most 
common form is the 26S proteasome (~2 million Da) con-
taining a proteolytic 20S core subunit flanked by two 19S 
regulatory subunits. The protease complex core is hollow, 

which provides an opening for proteins to enter andbecome 
degraded. First, ubiquitin is adenylylated by the E1ubiquitin-
activating enzymeand subsequently transferred to the active-
site cysteine of the ubiquitin-conjugating enzyme - E2. In the 

final step, a family of ubiquitin ligases - E3 -identifies spe-
cific targets and catalyzes the transfer of ubiquitin from E2 
to the target protein [80]. A target protein must be labeled by 
at least 4 ubiquitin molecules before it becomes recognized 

for proteolysis. Although A  is not directed ubiquitinated 
other proteins involved in its degradation participate in this 
pathway. NFT’s are also heavily ubiquitinated [81]. The rate 
of turnover of an individualprotein is determined by the 

amino acid at its N-terminus -termed the ‘N-end’ rule [79, 
82, 83]. Although cytoplasmic and nuclear proteins are pri-
mary targets of proteasome-mediated degradation, there are 
other proteins in the endoplasmic reticulum (ER) and the 

secretory pathway that can also be degraded [84]. Unfolded 
proteins that translocate to the ER can be degraded by ER-
associated degradation (ERAD), which acts as a quality con-
trol system and is an essential component of the secretory 

pathway that tags ER proteins for degradation. ERAD sub-
strates are ultimately transported to the cytosol where they 
can be more easily accessed by the proteasome [85]. Interest-
ingly, proteins that escape degradation and accumulate in the 

cytosol can form an aggresome, a juxtanuclear inclusion 
body that remains accessible for removal by autophagy or 
proteasome-dependent degradation [86, 87]. However, since 
our understanding of aggresome formation in neurodegen-

erative diseases is limited, additional studies are required to 
advance our knowledge of its underlying molecular mecha-
nisms. 

A number of studies have implicated impairment of UPS 
and proteasome-dependent degradation in neurodegenerative 
disorders such as AD and Parkinson’s disease (PD). The role 
of the proteasome in AD has been previously reviewed and 
is therefore outside the scope of this article [88]. UPS dys-
function leads to the accumulation of polyubiquitinated pro-
teins, as seen in several neurodegenerative disorders such as 

AD, PD and Huntington’s disease (HD) [89]. Ubiquitin im-
munohistochemistry detects conjugates in NFTs, dystrophic 
neurites in SPs, lysosomes, endosomes, and a variety of in-
clusion bodies and degenerative fibers making it a nearly 
universal label in protein accumulation diseases [90, 91]. In 
AD, it appears that the ubiquitin-related pathways are in-
volved in the development of abnormal neuritic processes 
and NFTs rather than A  accumulation [81, 92]. Pharmacol-
ogical inhibition of the proteasome is sufficient to induce 
neurodegeneration and cell death [93-95], demonstrating its 
importance in cellular homeostasis. It has been reported that 
proteasome inhibition increases APP processing at the -
secretase site and elevateslevels of A  in a human neuroblas-
toma - SH-SY5Y - cell line [83, 96]. Furthermore, it has 
been demonstrated that A and MAPT inhibit proteasome 
activity [97, 98]. However, despite the ability of A 40 to 
inhibit the proteasome, it does not appear to be a substrate of 
the UPS [98]. The proteasome can additionally modulate 
intracellular concentrations of both PS1 and PS2, which may 
indirectly affect -secretase activity [99], and provides in-
sights into the complexity of the regulatory system that en-
compasses the proteasome and key elements of A  genera-
tion and clearance.  

Despite the evidence that implicates impaired UPS func-
tion with AD, we are still uncertain about its exact role in 
aging and neurodegeneration. Even though the proteasome 
plays a major part in regulating the concentration of proteins 
while degrading excess or damaged proteins via proteolysis, 
if the neuron’s metabolic activity becomes compromised and 
the UPS activity declines, the cell must compensate with 
redundant pathways to survive. In particular, the role of UPS 
function in A  degradation to prevent its accumulation in the 
disease state remains to be investigated. 

5.2. Lysosomal Processing and its Role in Regulating AD-
Associated Proteins 

Most extracellular and some cell surface proteins can be 

internalized via receptor-mediated endocytosis and degraded 
within lysosomes. These organelles contain acid proteases 
(such as cathepsins B, H, L, and D) and acid hydrolases (such 
as phosphatases, nucleases, proteases, and glycosidases). Ma-

terial tagged for degradation is first surrounded by a phago-
phore-formation and then wrapped into double membrane 
vesicles called autophagosomes, which then can fuse with late 
endosomes to form an amphisome. Some cytosolic proteins 

are degraded after being engulfed in autophagic vacuoles that 
fuse with lysosomes for removal [100-103].  

Previous reports have shown that endosomes and 
autophagic vacuoles accumulate in the brains of both AD 
patients and APP-transgenic mice, and that they co-localize 
intimately with the -secretase complex, APP, and CTF  
[104]. Other studies also observe the accumulation of en-
dosomes and present evidence to indicate that it may be a 
consequence of impaired lysosomal proteolysis [102]. These 
data suggest that endosomes maybe one of the generation 
sites for A  as inhibiting the C-subunit of vacuolar-type H

+
-

ATPase with bafilomycin, a macrolide antibiotic that inhibits 
vesicular acidification, leads to intracellular accumulation of 
both APP and CTFs within the cell [105-108]. This may be 
due to the processing of APP to CTF  by BACE1, an aspar-
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tyl protease with an acid pH optimum, in an endosome 
where -secretase is also present and converts CTF  to A  
[25, 45]. As inhibition of lysosomal acidification will inhibit 
A  production and, thereby, prevent us from evaluating its 
degradation, one cannot use this approach to determine 
whether freshly released A  is also degraded in the en-
dosome by multiple proteases to limit its yield in the me-
dium.  

Impaired autophagic processes have been described to 
significantly reduce extracellular A  due to the inhibition of 
A  secretion through impaired exocytosis [109]. However, 
this impairment does not inhibit A  that, instead, accumu-
lates within intracellular vesicles. Moreover, autophagy defi-
ciency-induced neurodegeneration is further aggravated by 
amyloidosis. These, together, have been reported to severely 
impair memory in an AD mouse model. It has been reported 
that autophagy directly affects the levels of both intracellular 
and extracellular A , and that intracellular A severely af-
fects memory function. This bolsters the hypothesis that in-
tracellular A  is more pathogenic than soluble A  in AD 
[110-113]. Briefly, loss of Atg7 reduces A  yield, as evalu-
ated by ELISA analysis, while immunohistochemistry de-
tected an accumulation of intracellular A .  

During the early stages of AD, it has been reported that 

neurons in vulnerable brain regions, such as the entorhinal 
cortex and hippocampus, respond by increasing their produc-

tion of lysosomal system components [60]. Aging results in 

the increased expression and lysosomal localization of aspar-
tyl proteases in cortical and brainstem neurons and changes 

in the endosomal-lysosomal pathway, which may be related 

to altered intracellular APP metabolism [114, 115]. It has 
been reported that much of the -secretase activity occurs 

within the endosome to produce nascent A  [116]. An over-

expression of Rab5 or Rab7, small GTPases that function in 
vesicle fusion for early and late endosomes, respectively, 

significantly accelerates A  endocytic trafficking to the 

lysosomes [117]. A potential role for Rho-GTPase has also 
been elucidated in TgCRND8, a transgenic mouse model 

that rapidly deposits human A  [118]. However, as this 

compartment is known to be rich in other acid proteases, 
nascent A may also undergo degradation at this location. As 

described later, at least one protease, endothelin-converting 

enzyme has been implicated in A  degradation within this 
compartment [70, 119]. In addition, cathepsin B has been 

associated with A  degradation and its loss in knockout mice 

leads to an increase in A  and development of neurodegen-
eration [120-122]. However, others have suggested that 

cathepsin B is a -site cleaving enzyme specific for wild 

type APP in the regulated secretory pathway [123, 124]. 

6. OTHER PATHWAYS FOR A  TURNOVER

In addition to the major protein elimination pathways - 
proteasomal and lysosomal degradation, cells employ a 
number of constitutive and regulated proteolytic activities 
that maintain proteostasis - the integrated pathways that 
regulate the biogenesis, trafficking, and degradation of pro-
teins to maintain their steady-state levels [125]. There is in-
creasing evidence that deficient clearance rather than in-
creased production of A  contributes to its accumulation in 
late-onset AD [126]. Aside from the typical deposition into 

blood and CSF, ithas also been reported that A deposits 
along perivascular interstitial fluid drainage channels [127] 
possibly leading to cervical lymph nodes or other lymphatic 
pathways (Fig. 2). Consistently, recent reports indicate that 
A  is present in lymph nodes and accumulates with brain 
amyloid deposition [128]. Lymphatic clearance of A  ap-
pears to be an overlooked, nevertheless important pathway 
for A  removal, particular in view of the recent GWA stud-
ies highlighting the role of several genes involved in traffick-
ing between the brain and lymph nodes. Some of these genes 
code for protein receptors localizing to brain immune com-
petent cells such as dendritic and microglial cells. Germane 
to this discussion, these cells participate in A  degradation 
and clearance. Although only a few proteolytic pathways 
have been implicated in the degradation of A , there are sev-
eral enzymes possessing a broad specificity that may be de-
grade A ; but the exact identity and role of these enzymes in 
maintaining A  levels needs further investigation [129].  

6.1. Insulin-Degrading Enzyme (IDE) 

Insulin-degrading enzyme is a zinc-endopeptidase lo-
cated in the cytosol, peroxisomes, and at the cell surface that 
can cleave a variety of small peptides. These include insulin, 
glucagon, and insulin-like growth factors I and II, and IDE 
also converts -endorphin to -endorphin [130, 131]. Inter-
estingly, the enzyme does not contain an obvious signal se-
quence and is mostly intracellular, yet reports suggest that 
IDE, in neurons, may be membrane-associated and even se-
creted into the medium [132, 133]. However, it remains un-
clear whether IDE is secreted or simply released from dam-
aged cells. IDE appears to participate in both insulin and A  
catabolism and its levels are reported to be increased in the 
hippocampus of AD patients [134]. However, the extent to 
which IDE mediates these processes in vivo has been ques-
tioned as the protein is predominantly cytoplasmic and lacks 
a signal sequence [59]. When the IDE gene was selectively 
deleted in a hybrid transgenic mouse, it presented key hall-
mark phenotypic characteristics of AD, including a chronic 
elevation of cerebral A . The IDE knock-out animals 
showed a significant 64% increase in brain levels of A  X-
40 over their wild type littermates [135, 136]. Using Western 
blotting and in-situ hybridization, it was reported that there 
was an inverse relationship between IDE expression and age, 
suggesting that loss of this activity may play a role in the 
development of AD pathology [137]. 

Although it is predominantly a cytosolic protease, IDE 
activity is detected in the medium where it can also degrade 
secreted A  [138]. It has been reported to be the primary 
soluble A  degrading enzyme at neutral pH within the hu-
man brain [139]. In a study where chinese hamster ovary 
cells transfected with APP were treated with conditioned 
medium of BV-2 microglial cells expressing IDE, there were 
decreased levels of monomeric, but not oligomeric, A 40and 
A 42secreted into the medium [140]. Interestingly, A 40and 
A 42regulate IDE levels via a feedback mechanism, sug-
gesting that cells may attempt to regulate IDE expression to 
eliminate these toxic peptides [141]. Studies within our labo-
ratory have provided evidence that CTF  is, likewise, de-
graded by IDE in a dose-dependent manner and at multiple 
cleavage sites, which is consistent with its role in the re-
moval of multiple APP-derived -secretase cleavage prod-
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ucts [136, 142]. A careful analysis of its in vivo function is 
essential to determine the true contribution of IDE in A  
accumulation and AD-associated neurodegeneration. It is 
also important to understand the mechanisms by which IDE 
is released into the extracellular space where it can degrade 
A . 

6.2. Neprilysin (NEP) 

Neprilysin (a.k.a. neutral endopeptidase 24.11 or 
enkephalinase) is a membrane-bound zinc endopeptidase that 
is synthesized in the Golgi and transported to the cell surface 
where its ectodomain is shed into the extracellular space. 
Although there are four splice variants of the 24 exon NEP 
gene, their protein-coding region remains constant and codes 
for a single 750 aa polypeptide (NCBI Accn # NP_009220). 
Analysis of the NEP sequence by PSORT [143] reveals a 
type 2 integral-membrane protein structure that starts with a 
short 31 aa cytoplasmic domain and has a single transmem-
brane domain (residues 31-47) that serves as a signal and 
anchor followed by a long extracellular domain that consti-
tutes its catalytically active domain.Some known substrates 
of the enzyme are shown in Table 1. NEP is a part of a group 
of vasoendopeptidases that include endothelin-converting 
enzyme and angiotensin converting enzyme, which are key 
drug targets for the control of hypertension. NEP is ex-
pressed in several tissues, most notably the brain, but is also 
abundant within the kidney and the lung. NEP is a neutral 
metalloendopeptidase that is inhibited by phosphoramidon, a 
natural compound derived from Streptomyces tanashien-
sis,and thiorphan, an active metabolite of Rececadotril, an 
anti-diarrheal agent. In a pioneering study, Iwata et al. 
(2000) evaluated the catabolism of injected radiolabeled syn-
thetic A  in the rat hippocampus and discovered that the 
yield of residual peptide increased significantly in the pres-
ence of thiorphan, an inhibitor of NEP [144]. In accord with 
this, NEP gene disruption showed a gene dose-dependent 
elevation of endogenous levels of A  in the mouse brain 
[145]. These data suggest that dysregulation of NEP activity 
may have profound effects on AD pathogenesis and progres-
sion by promoting A  deposition. The role of NEP in AD is 
further supported by a decline in NEP in the AD brain, par-
ticularly in vulnerable regions such as the hippocampus and 
the midtemporal gyrus [146], associated with an increase in 
deposition of A  [147]. However, in the striatum, a brain 
region where A  does not typically accumulate, NEP levels 
appear to increase with age [148]. Interestingly, NEP levels 
appear to be reduced in the brain of cerebral amyloid an-
giopathy subjects but are increased in the AD brain [149, 
150]. Presynaptic NEP has also been demonstrated to de-
grade A  efficiently and to retard development of amyloid 
pathology [151]. Further, amyloid plaques have been de-
scribed that were co-localized with reactive astrocytes ex-
pressing high levels of NEP [151]. NEP is therefore a prom-
ising candidate protease that accounts for the degradation of 
secreted A , and mechanisms that maintain its activity in the 
aging brain are important to investigate. However, as the size 
of the catalytic subunit of the enzyme is estimated to be 
smaller than an A  monomer, an important area of inquiry 
that requires more detailed examination relates to the 
mechanisms by which the enzyme accommodates this large 
substrate [152]. The role of Neprilysin-2, a soluble and se-

creted endopeptidase related to NEP, is another unexplored 
area in the field. 

6.3. Endothelin-Converting Enzyme (ECE) 

Like NEP, endothelin-converting enzyme is a member of 
the M13 family of zinc-metalloproteases that processes the 

inactive big endothelin to its active mature form and, 

thereby, regulates blood flow [153]. The primary substrates 
(Table 1) for ECE are big endothelin-1 and -2, which are 

potent vasoconstrictive peptides produced in vascular endo-

thelial cells. There are two forms of ECE, each having mul-
tiple isoforms generated by multiple promoters. ECE-1 is of 

particular interest, as its isoforms are differentially located at 

the cell surface and within different intracellular compart-
ments, including endosomes [154]. A homologous enzyme 

ECE-2 and its isoforms also show similar activities but their 

localization appears to be exclusively intracellular, including 
endosomes and the role of its differentially spliced isoforms 

is not yet established. ECE-1 has four human isoforms (735-

770 aa), which are all encoded by a single gene on chromo-
some 1 (1p36). Each isoform has a unique N-terminal cyto-

plasmic domain that determines their subcellular localization 

along with a shared transmembrane domain (Fig. 3). ECE-1 
preferentially cleaves at the N-terminal side of its hydropho-

bic substrates, corresponding to residues Leu
17

, Val
18

, and 

Phe
20

 of the A  peptide [119]. Although NEP and ECE share 
a similar primary structure, significant differences exist be-

tween the two. ECE-1 is a disulfide-linked dimer, whereas 

NEP is a monomer. As opposed to NEP, ECE-1 is relatively 
insensitive to thiorphan, but is inhibited by phosphoramidon. 

A recent study examining the cellular distribution of the ET 

system in the brain showed the immunohistochemical evi-
dence for the presence of virtually all components of the ET 

system in 24 regions of the human CNS, including neurons 

within the cingulate gyrus, hypothalamus, caudate, cerebel-
lum, amygdala, and hippocampus [155]. Therefore, ECE 

appears to be present within a number of key regions of the 

brain; thereby, suggesting that this enzyme may be important 
in AD pathogenesis.  

ECE-1 is the best characterized A  degrading enzyme, as 
its activity has been demonstrated in cell cultures and animal 
models [70]. Interestingly, although they were considered as 
neutral endopeptidases, the pH optimum of ECE was shown 
to be substrate dependent with preferential cleavage of A  at 
acid pH, cleaving both A 40 and A 42 with a strong prefer-
ence for the former [119]. This finding is consistent with the 
intracellular degradation of A  by ECE-1, which strongly 
affects the yield of A  production, but does not affect the 
degradation of externally added A  into the medium. 
Moreover, genetic knock down of either ECE-1 or ECE-2 in 
mice has been reported to significantly increase both A 40 
and A 42 levels, whereas levels of APP and CTFs remained 
unchanged [156]. These studies further demonstrate the im-
portance of NEP in A  degradation in vivo, as knocking 
down both enzymes increases A  levels more than either 
enzyme alone. Additionally, genetically knocking out both 
NEP and ECE yields an additive increase in A within the 
brain of mice, suggesting that the two enzymes are responsi-
ble for regulating two different pools of A . However, it has 
been reported that there was no change in the levels of
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Table 1. List of known A  degrading enzymes with their major substrates. 

Enzyme Name Substrate 
Levels/Activity in AD 

Brain vs. Control 
Metal - Binding References 

Neprilysin 

A , Bradykinin, Substance P, Angiotensin-I, 

Angiotensin-II, Endothelin-1, Kinins, Adrenome-

dullin, Opioid peptides, enkephalin, gastrin 

Increased 

Reduced 
Zinc [150, 149] 

Endothelin-converting enzymes 

(ECE) 

A , Endothelin, substance P, bradykinin, angio-

tensin I, neurotensin, somatostatin 

ECE-1 (no change), 

ECE-2 (reduced) 
Zinc [158, 157] 

Insulin degrading enzyme (IDE) 

A , Insulin, atrial natriuretic peptide, insulin-like 

growth factor II, transforming growth factor- , -

endorphin, amylin, glucagon 

Increased 

Reduced 
Zinc [134, 139, 149] 

Angiontensin-converting en-

zyme (ACE) 
A , Angiotensin I, Bradykinin Increase Zinc [163-165] 

Matrix metalloproteinases 

(MMP) - primarily MMP-2, 

MMP-3 and MMP-9 

A , collagen proteins, gelatin Increase activity Zinc and calcium [180] 

Cathepsin B A , APP Unknown Thiol [121, 122, 124] 

Plasmin 
A , Fibrin, collagenases, fibronectin, throm-

bospondin, laminin, von willebrand factor 
Reduced activity [170] 

ECE-1 in post-mortem AD brain compared to cognitively 
normal control brain specimens [157], and a reduction in 
ECE-2 (Table 1), suggesting that the activity is not subject to 
feedback regulation by A  accumulation [158]. This finding 
is also consistent with the coupled production and degrada-
tion of A  in the recycling endosome with residual A  either 
being transported to the surface for secretion from the cell or 
to lysosomes for further degradation. 

6.4. Angiotensin Converting Enzyme (ACE) 

Angiotensin-converting enzyme (aka dipeptidyl car-
boxypeptidase-1 or DCP-1) is a membrane-bound ectoen-
zyme that plays an important role in blood pressure and body 
fluid homeostasis by catalyzing the conversion of angio-

tensin I to angiotensin II, and degrading bradykinin (Table 
1), which is a potent vasodilator. Therefore, ACE inhibition 
has become an effective treatment strategy for hypertension. 
ACE is secreted in the lung and kidney by cells in the inner 

layer of blood vessels. Studies on the renin-activating system 
of mammalian brains may elucidate potential associations 
between ACE and AD. It has been reported that angiotensin 
in astrocytes is required for the functional maintenance of 

the blood-brain barrier [159], which is also impaired in AD. 
Additionally, ACE inhibits A  toxicity in cultured PC12 
cells, blocks the aggregation of synthetic A , and cleaves A  
between the Asp

7
-Ser

8
 residues [160, 161].  

Although such studies are helpful in elucidating ACE’s 
activity in relationship to AD, there are data that suggest that 
ACE is not a direct physiological regulator of steady-state 
A  concentrations in the brain [162]. Following ACE inhibi-
tion or genetic disruption, A  levels remain unchanged in 
both soluble and insoluble fractions in vivo[156]. Therefore, 
despite ACE’s ability to cleave A  in vitro, in vivo studies 

indicate that it does not appear to regulate cerebral amyloi-
dosis. Intriguingly, the level/activity of the enzyme, itself, 
appears to be increased in AD brains [163-165].  

6.5. Plasmin 

The serine protease plasmin is derived from the inactive 
zymogen plasminogen following cleavage by plasminogen 
activators, such as tissue plasminogen activator and 
urokinase plasminogen activator. Plasmin is involved in the 
degradation of blood plasma proteins, including fibrin and 
many components of the extracellular matrix. Studies have 
successfully demonstrated that plasmin degrades both non-
aggregated monomeric and aggregated fibrillar A  with 
physiologically relevant efficiency [166].There is evidence 
indicating that plasmin activity is reduced in AD human 
brain homogenates compared to cognitively normal control 
subjects. However, plasminogen and plasmin protein levels 
were not significantly altered in the AD brain [167]. Never-
theless, A 40 aggregate-induced neurotoxicity in primary rat 
cortical neuronal cultures can be fully mitigated by plasmin 
treatment [168]. One group reported that plasmin also in-
creases the processing of human APP preferentially at the  
cleavage site and efficiently degrades secreted APP frag-
ments [169, 170]. Plasmin is closely associated with choles-
terol-enriched membrane microdomains called lipid rafts, a 
preferred site of A  generation [171]. It is therefore likely to 
reduce A  levels at a site close to production. 

6.6. Matrix Metalloproteinases (MMPs) 

MMPs belong to the family of zinc-dependent enzymes 
that are synthesized as prepro-peptides and are released into 
the extracellular space as pro-MMPs. Activation of pro-
MMPs involves an initial cleavage of part of the propeptide 
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Fig. (3). Sequence variants of endothelin converting enzyme. ECE-1 is a type-II membrane protein with a variable N-terminal intracellular 

(IC) domain, and conserved transmembrane (TMD) and extracellular (Lumen) domains [153]. Through multiple alternate promoters, at least 

four isoforms of ECE-1 have been identified, each with unique intracellular domains that determine subcellular localization and tissue distri-

bution, Isoforms 1a and 1c are primarily localized in the plasma membrane, whereas isoform 1b and 1d are predominantly located in late 

endosomes/multivesicular bodies and recycling endosomes, respectively [70, 119, 154]. 

by a tissue, plasma or bacterial proteinase followed by the 
final removal of the propeptide by an MMP intermediate or 
another MMP [172, 173]. After activation, MMPs are able to 
breakdown extracellular matrix and are essential for embry-
onic development, tissue resorption and remodeling. Inap-
propriate expression of MMPs has been associated with a 
wide range of disorders including cardiovascular diseases 
[173], asthma [174], and multiple sclerosis [175]. 

An increase of both MMP expression and CSF levels of 
the major endogenous inhibitor of MMPs, tissue inhibitor of 
metalloproteinases (TIMP), have been documented in AD 
patients [176, 177]. In contrast, other studies have compared 
AD to other neurodegenerative disorders and have found 
either no change or reduced levels of MMPs and TIMPs 
within the CSF [178, 179]. One study reported an increase in 
MMP activity in the hippocampus of post-mortem AD pa-
tients [180]. Of the MMPs, specifically MMP-2, MMP-3, 
and MMP-9 have been implicated in A  degradation. Al-
though MMP-2, MMP-3, and MMP-9 levels are not related 
to A  levels in the frontal cortex of AD [181], various stud-
ies have suggested that these three MMPs are stimulated by 
A  [177, 182-184]. 

MMP-2 cleavage of A 40 and A 42 has been mapped to 
the Lys

16
-Leu

17
, Leu

34
-Met

35
, and Met

35
-Val

36
 peptide bonds 

to generate A  fragments that have been detected in vivo 
[185]. In addition to MMP-2’s ability to degrade exogenous 
A 40 and A 42, MMP-2 activator, membrane type 1 MMP, 
it has been reported to degrade fibrillar amyloid plaques ex-
tracted from APP transgenic mice [186]. MMP-3’s ability to 
degrade A  directly is unclear; however, MMP-3 appears 
able to degrade A  indirectly by activating other MMPs, like 
MMP-9 [182, 187]. It has been demonstrated that MMP-9 
cleaves soluble A  primarily between Leu

34
-Met

35
 and sec-

ondarily at the Lys
15

-leu
17

, Ala
30

-Ile
31

, and Gly
37

-Gly
38

, sites 
that are considered to be important for -sheet formation 
[187]. When compared to other degrading proteases, such as 
ECE, IDE, and NEP, MMP-9 was found to be unique in its 
ability to degrade A  fibrils in vitro and within compact 
plaques in situ, liberating A  fragments 1-20 and 1-30 by 
cleaving sites within the hairpin loop formation of the -

sheet structure [186, 188]. Nevertheless, more studies are 
required to confirm and understand the role of this nearly 
ubiquitous protease family. 

CONCLUSION 

Typical late onset AD has a prolonged course of devel-
opment and amyloid deposits accumulate for numerous years 
before causing dementia. For patients with FAD carrying the 
highly penetrant dominantly inherited mutations, A  produc-
tion begins30-60 years prior to the onset of dementia [189-
194]. Furthermore, amyloid appears to even deposit twenty 
or more years before the onset of dementia [189-194]. In this 
regard, it is of interest that using noninvasive amyloid plaque 
and NFT imaging technologies combined with family history 
and APOE genotypes, one can identify individuals at risk for 
developing AD. This is important for recruitment of subjects 
for clinical trials and for individual planning to confront this 
devastating disease. A number of clinical trials strongly sug-
gest that late treatment of AD to eliminate A  is ineffective 
in restoring patients after dementia is detected, indicating 
that blocking the initial stepto the complex process leading 
to AD late during the disease course is insufficient when the 
nervous system has already undergone degeneration. Fur-
thermore, A -induced initiation of MAPT phosphorylation 
and neuroinflammation over a decade prior to the develop-
ment of dementia likely instigates self-sustaining cycles that 
drives ‘clinically silent’ disease towards the development of 
clinically observable MCI and AD, and, once initiated, such 
cycles will be little impacted by later treatments focused on 
A  removal [195]. Despite this, a number of opportunities 
for prevention or early preclinical intervention remain feasi-
ble [3]. As discussed earlier, the ApoE genotype and mo-
lecular imaging of SP and NFT has converged to identify 
individuals at high risk of developing AD, making it particu-
larly important to identify paradigms for AD prevention. It 
has been reported that that AD patients suffer from poor A  
clearance [126], suggesting that reducing A  production 
early in the development of pathology may be protective. 
The best-developed paradigm for potentially reducing A  
has been the development and use of -secretase inhibitors. 
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However, others and we have previously proposed that, con-
trary to one of the predictions of the amyloid hypothesis, AD 
may be caused by -secretase inhibition [23, 24, 196]. Never-
theless, our recent findings that partial -secretase inhibition 
paradoxically increases A  by a mechanism that bypassed 
A  degradation reconciles the two theories [45]. This study 
also indicates that ECE is a major A -degrading pathway, 
but there are additional unidentified A  degrading pathways 
in the cell that need to be characterized. In addition, there are 
proteins other than A  and MAPT that accumulate in the AD 
brain indicating that there is a more generalized failure of 
protein homeostasis that needs to be addressed [46]. The 
major constitutive protein degradation systems include the 
lysosomal pathway, the proteasome and membrane-
associated neutral endopeptidases such as matrix metallopro-
teases. Intramembrane proteolysis by -secretase is a recent 
addition to this rather small list of pathways. Efficient degra-
dation of A  is critical to maintain low levels and to avoid 
accumulation of homo-polymers that form spontaneously. 
Yet the pathways for A  degradation have not been system-
atically evaluated. This review summarizes the current state 
of knowledge on A  degradation and highlights the key la-
cunae that need to be filled in order to understand the role of 
this pathway in preventing SP biogenesis.  

The major pathways demonstrated to be involved in de-
grading A  are ECE, NEP, IDE, Cathepsin B, plasmin and 
MMP. ECE and NEP are membrane proteases that are tissue 
and brain region specific in their relative distribution. IDE is 
a cytosolic enzyme but is secreted by an unknown mecha-
nism and is a potent A  degrading enzyme. Cathepsin B is 
an endosomal-lysosomal protease, which has been identified 
as a -secretase that can generate A , but knockout mouse 
studies suggest that it is an A -degrading enzyme. Although 
convincing genetic variant association has not been demon-
strated in humans for these activities with the exception of 
IDE, mice lacking these enzymes show increases in amyloid 
accumulation. ECE is the only enzyme whose inhibition 
acutely increases A  production in cell cultures suggesting 
that the A degradation is actually coupled to production in 
the endosome. However, we have recently published data 
showing that -secretase inhibition allows A  to bypass deg-
radation by multiple activities in the endosomal pathway 
[45]. Since inhibition of lysosomal proteolysis using known 
inhibitors does not increase yield of A , we propose that 
there are novel lysosomal proteases that degrade A  that 
need to be identified. Understanding the clearance pathways 
will allow us to determine whether and how this mechanis-
mis impaired in AD. Moreover, the degradation pathways 
may offer targets that can be stimulated to prevent amyloido-
sis. This type of approach may have advantages over inhibit-
ing critical multifunctional enzymes in the A  biogenesis 
pathways. Therefore, additional research is needed on A  
degrading enzymes as well as on the earliest events in amy-
loid accumulation in addition to identifying the steps that 
lead from A  to neurodegeneration.  

LIST OF ABBREVIATIONS 

A = Amyloid-  proteins 

A 40 = A  of 40 aa 

A 42 = A  of 42 aa 

ACE = Angiotensin Converting Enzyme

AD = Alzheimer’s disease

ADAM 10 = Adamalysin10 

ApoE = Apolipoprotein E 

ApoE- 4 = ApoE 4 allele 

APP = A  precursor protein 

BACE1 =  -site APP cleaving enzyme 

CERAD = Consortium to Establish a Registry for Alz-
heimer's disease 

CTF  = APP Carboxy terminal fragment of 99 aa 

CTFa = APP Carboxy terminal fragment of 83 aa 

DCP-1 = Dipeptidyl carboxypeptidase-1 

ECE = Endothelin-converting Enzyme

ER = Endoplasmic reticulum

ERAD = ER-associated degradation 

FAD = Familial AD

HD = Huntington’s disease

IDE = Insulin-degrading Enzyme

MAPT = Microtubule-associated protein tau 

MMPs = Matrix metalloproteinases 

NEP = Neprilysin

NFT = Neurofibrillary tangles

PD = Parkinson’s disease

PS1 = Presenilin-1

PS2 = Presenilin-2

SP = Senile plaques

TIMP = Tissue inhibitor of metalloproteinases 

UPS = Ubiquitin-Proteasome System
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