
 

 
 

 

 
 
 
 
 
 
 
 
 

 
SDMX STANDARDS PART 5 

 

 

SDMX REGISTRY SPECIFICATION: 
LOGICAL FUNCTIONALITY AND 

LOGICAL INTERFACES  

 

 

VERSION 2.1 

Revision 2.0 

 
 
 
 
 
 
 
 
 

July 2020 

 



   

 

 
 

 

 
 
 
 

Revision History 

Revision Date Contents 

 April 2011 Initial release 

1.0 July 2011 Rectification of problems of the specifications dated April 
2011 

2.0 July 2020 Addition of VTL (Validation and Transformation 
Language) package, maintainable artefacts, nameable 
artefacts to 5.2.3, 6.2.2, 6.2.3, 6.2.4, 7.1.1 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
© SDMX 2020 
http://www.sdmx.org/ 
 



   

 

 
 

 

Table of Contents 

1 Introduction ................................................................................................... 2 

2 Scope and Normative Status ....................................................................... 3 

3 Scope of the SDMX Registry/Repository .................................................... 3 

3.1 Objective ........................................................................................................ 3 

3.2 Structural Metadata ........................................................................................ 4 

3.3 Registration .................................................................................................... 5 

3.4 Notification ...................................................................................................... 5 

3.5 Discovery ........................................................................................................ 5 

4 SDMX Registry/Repository Architecture ..................................................... 6 

4.1 Architectural Schematic .................................................................................. 6 

4.2 Structural Metadata Repository....................................................................... 7 

4.3 Provisioning Metadata Repository .................................................................. 7 

5 Registry Interfaces and Services ................................................................. 8 

5.1 Registry Interfaces .......................................................................................... 8 

5.2 Registry Services ............................................................................................ 8 

5.2.1 Introduction ................................................................................................. 8 

5.2.2 Structure Submission and Query Service .................................................... 8 

5.2.3 Structure Query Service .............................................................................. 9 

5.2.4 Data and Reference Metadata Registration Service .................................. 10 

5.2.5 Data and Reference Metadata Discovery .................................................. 11 

5.2.6 Subscription and Notification ..................................................................... 12 

5.2.7 Registry Behaviour .................................................................................... 12 

6 Identification of SDMX Objects .................................................................. 14 

6.1 Identification, Versioning, and Maintenance .................................................. 14 

6.1.1 Identification, Naming, Versioning, and Maintenance Model ..................... 14 

6.2 Unique identification of SDMX objects .......................................................... 16 



   

 

 
 

 

6.2.1 Agencies ................................................................................................... 16 

6.2.2 Universal Resource Name (URN) ............................................................. 18 

6.2.3 Table of SDMX-IM Packages and Classes ................................................ 22 

6.2.4 URN Identification components of SDMX objects ...................................... 24 

7 Implementation Notes ................................................................................ 33 

7.1 Structural Definition Metadata ....................................................................... 33 

7.1.1 Introduction ............................................................................................... 33 

7.1.2 Item Scheme, Structure ............................................................................. 35 

7.1.3 Structure Usage ........................................................................................ 35 

7.2 Data and Metadata Provisioning ................................................................... 37 

7.2.1 Provisioning Agreement: Basic concepts .................................................. 37 

7.2.2 Provisioning Agreement Model – pull use case ......................................... 37 

7.3 Data and Metadata Constraints .................................................................... 39 

7.3.1 Data and Metadata Constraints: Basic Concepts ...................................... 39 

7.3.2 Data and Metadata Constraints: Schematic .............................................. 40 

7.3.3 Data and Metadata Constraints: Model ..................................................... 41 

7.4 Data and Metadata Registration ................................................................... 42 

7.4.1 Basic Concepts ......................................................................................... 42 

7.4.2 The Registration Request .......................................................................... 42 

7.4.3 Registration Response .............................................................................. 45 

7.5 Subscription and Notification Service ............................................................ 45 

7.5.1 Subscription Logical Class Diagram .......................................................... 47 

7.5.2 Subscription Information ............................................................................ 48 

7.5.3 Wildcard Facility ........................................................................................ 48 

7.5.4 Structural Repository Events ..................................................................... 49 

7.5.5 Registration Events ................................................................................... 49 

7.6 Notification .................................................................................................... 50 



   

 

 
 

 

7.6.1 Logical Class Diagram .............................................................................. 50 

7.6.2 Structural Event Component ..................................................................... 50 

7.6.3 Registration Event Component .................................................................. 51 

 



   

 

 
 

1 

Corrigendum 1 

The following problems with the specification dated April 2011 have been rectified as 2 
described below. 3 

1. Problem 4 

Figure 17 - Logical Class Diagram of Registration of Data and Metadata – 5 
shows the Provision Agreement as it was identified in version 2.0, and not as 6 
it is identified in version 2.1. 7 

Rectification 8 

Provision Agreement is a Maintainable Artefact at version 2.1 and so the 9 
relationship is shown directly to the Provision Agreement class and not 10 
indirectly to the Provision Agreement via a ProvisionAgreementRef class. 11 

2. Problem 12 

Figure 17 - Logical Class Diagram of Registration of Data and Metadata – 13 
shows the Registration class without the indexAttributes attribute. 14 

Rectification 15 

The attribute indexAttribute attribute is added to the Registration class and a 16 
description is of its purpose is given in the table at line 916. 17 

3. Problem 18 

Lines 437 and 648 of the April 2011 document mention that the fixed id for an 19 
AgencyScheme is AGENCY_SCHEME whereas it should be AGENCIES. 20 

Rectification 21 

The reference to AGENCY_SCHEME is changed to AGENCIES. 22 

 23 

Adoption of the Validation and Transformation Language in 2020 24 

The SDMX specifications dated July 2011 envisaged the adoption of a language 25 
aimed at defining algorithms for the derivation of the data and presented a basic 26 
framework requiring however further elaboration for its actual use.  27 
Following the adoption of the Validation and Transformation Language (VTL) version 28 
2.0 and its application to SDMX 2.1, this section of the SDMX specifications has 29 
been integrated by introducing the VTL package, maintainable artefacts, nameable 30 
artefacts to the sections 5.2.3, 6.2.2, 6.2.3, 6.2.4 and 7.1.1. 31 

 32 

33 



   

 

 
 

2 

1 Introduction 34 

The business vision for SDMX envisages the promotion of a “data sharing” model to 35 
facilitate low-cost, high-quality statistical data and metadata exchange.  Data sharing 36 
reduces the reporting burden of organisations by allowing them to publish data once, 37 
and let their counterparties “pull” data and related metadata as required. The 38 
scenario is based on: 39 
 40 

 the availability of an abstract information model capable of supporting time-41 
series and cross-sectional data, structural metadata, and reference metadata 42 
(SDMX-IM)  43 

 standardised XML schemas derived from the model (SDMX-ML) 44 

 the use of web-services technology (XML, XSD, WSDL, WADL) 45 
 46 

Such an architecture needs to be well organised, and the SDMX Registry/Repository 47 
(SDMX-RR) is tasked with providing structure, organisation, and maintenance and 48 
query interfaces for most of the SDMX components required to support the data-49 
sharing vision. 50 
 51 
However, it is important to emphasis that the SDMX-RR provides support for the 52 
submission and retrieval of all SDMX structural metadata and provisioning metadata. 53 
Therefore, the Registry not only supports the data sharing scenario, but this 54 
metadata is also vital in order to provide support for data and metadata 55 
reporting/collection, and dissemination scenarios. 56 
 57 
Standard formats for the exchange of aggregated statistical data and metadata as 58 
prescribed in SDMX v2.1 are envisaged to bring benefits to the statistical community 59 
because data reporting and dissemination processes can be made more efficient. 60 
 61 
As organisations migrate to SDMX enabled systems, many XML (and conventional) 62 
artefacts will be produced (e.g. Data Structure, Metadata Structure, Code List and 63 
Concept definitions (often collectively called structural metadata), XML schemas 64 
generated from data and metadata structure definitions, XSLT style-sheets for 65 
transformation and display of data and metadata, terminology references, etc.). The 66 
SDMX model supports interoperability, and it is important to be able to discover and 67 
share these artefacts between parties in a controlled and organized way. 68 
 69 
This is the role of the registry. 70 
  71 
With the fundamental SDMX standards in place, a set of architectural standards are 72 
needed to address some of the processes involved in statistical data and metadata 73 
exchange, with an emphasis on maintenance, retrieval and sharing of the structural 74 
metadata. In addition, the architectural standards support the registration and 75 
discovery of data and referential metadata.  76 
 77 
These architectural standards address the ‘how’ rather than the ‘what’, and are 78 
aimed at enabling existing SDMX standards to achieve their mission. The 79 
architectural standards address registry services which initially comprise:  80 
 81 

 structural metadata repository 82 

 data and metadata registration 83 

 query 84 



   

 

 
 

3 

The registry services outlined in this specification are designed to help the SDMX 85 
community manage the proliferation of SDMX assets and to support data sharing for 86 
reporting and dissemination.  87 

2 Scope and Normative Status 88 

The scope of this document is to specify the logical interfaces for the SDMX registry 89 
in terms of the functions required and the data that may be present in the function 90 
call, and the behaviour expected of the registry. 91 
 92 
In this document, functions and behaviours of the Registry Interfaces are described 93 
in four ways: 94 
 95 

 in text 96 

 with tables 97 

 with UML diagrams excerpted from the SDMX Information Model (SDMX-IM) 98 

 with UML diagrams that are not a part of the SDMX-IM but are included here 99 
for clarity and to aid implementations (these diagram are clearly marked as 100 
“Logical Class Diagram ...”) 101 

 102 
Whilst the introductory section contains some information on the role of the registry, it 103 
is assumed that the reader is familiar with the uses of a registry in providing shared 104 
metadata across a community of counterparties. 105 
 106 
Note that sections 5 and 6 contain normative rules regarding the Registry Interface 107 
and the identification of registry objects. Further, the minimum standard for access to 108 
the registry is via a REST interface (HTTP or HTTPS), as described in the 109 
appropriate sections. The notification mechanism must support e-mail and 110 
HTTP/HTTPS protocols as described. Normative registry interfaces are specified in 111 
the SDMX-ML specification (Part 03 of the SDMX Standard). All other sections of this 112 
document are informative. 113 
 114 
Note that although the term “authorised user” is used in this document, the SDMX 115 
standards do not define an access control mechanism. Such a mechanism, if 116 
required, must be chosen and implemented by the registry software provider. 117 

3 Scope of the SDMX Registry/Repository 118 

3.1 Objective 119 

The objective of the SDMX registry/repository is, in broad terms, to allow 120 
organisations to publish statistical data and reference metadata in known formats 121 
such that interested third parties can discover these data and interpret them 122 
accurately and correctly. The mechanism for doing this is twofold: 123 
 124 

1. To maintain and publish structural metadata that describes the structure and 125 
valid content of data and reference metadata sources such as databases, 126 
metadata repositories, data sets, metadata sets. This structural metadata 127 
enables software applications to understand and to interpret the data and 128 
reference metadata in these sources. 129 

2. To enable applications, organisations, and individuals to share and to 130 
discover data and reference metadata. This facilitates data and reference 131 
metadata dissemination by implementing the data sharing vision of SDMX. 132 



   

 

 
 

4 

3.2 Structural Metadata 133 

Setting up structural metadata and the exchange context (referred to as “data 134 
provisioning”) involves the following steps for maintenance agencies: 135 
 136 

 agreeing and creating a specification of the structure of the data (called a 137 
Data Structure Definition or DSD in this document but also known as “key 138 
family”) which defines the dimensions, measures and attributes of a dataset 139 
and their valid value set 140 

 if required, defining a subset or view of a DSD which allows some restriction 141 
of content called a “dataflow definition” 142 

 agreeing and creating a specification of the structure of reference metadata 143 
(Metadata Structure Definition) which defines the attributes and 144 
presentational arrangement of a Metadataset and their valid values and 145 
content 146 

 if required, defining a subset or view of a MSD which allows some restriction 147 
of content called a “metadataflow definition” 148 

 defining which subject matter domains (specified as a Category Scheme) are 149 
related to the Dataflow and Metadataflow  Definitions to enable browsing 150 

 defining one or more lists of Data Providers (which includes metadata 151 
providers) 152 

 defining which Data Providers have agreed to publish a given Dataflow and/or 153 
Metadataflow Definition - this is called a Provision Agreement 154 

 155 

 156 
Figure 1: Schematic of the Basic Structural Artifacts in the SDMX-IM 157 



   

 

 
 

5 

3.3 Registration 158 

Publishing the data and reference metadata involves the following steps for a Data 159 
Provider: 160 
 161 

 making the reference metadata and data available in SDMX-ML conformant 162 
data files or databases (which respond to an SDMX-ML query with SDMX-ML 163 
data). The data and reference metadata files or databases must be web-164 
accessible, and must conform to an agreed Dataflow or Metadataflow 165 
Definition (Data Structure Definition or Metadata Structure Definition subset) 166 

 registering the existence of published reference metadata and data files or 167 
databases with one or more SDMX registries  168 

 169 

 170 
Figure 2: Schematic of Registered Data and Metadata Sources in the SDMX-IM 171 

3.4 Notification 172 

Notifying interested parties of newly published or re-published data, reference 173 
metadata or changes in structural metadata involves: 174 
 175 

 registry support of a subscription-based notification service which sends an 176 
email or notifies an HTTP address announcing all published data that meets 177 
the criteria contained in the subscription request 178 

3.5 Discovery 179 

Discovering published data and reference metadata involves interaction with the 180 
registry to fulfil the following logical steps that would be carried out by a user 181 



   

 

 
 

6 

interacting with a service that itself interacts with the registry and an SDMX-enabled 182 
data or reference metadata resource: 183 
 184 

 optionally browsing a subject matter domain category scheme to find 185 
Dataflow Definitions (and hence Data Structure Definitions) and 186 
Metadataflows which structure the type of data and/or reference metadata 187 
being sought 188 

 build a query, in terms of the selected Data Structure Definition or Metadata 189 
Structure Definition, which specifies what data are required and submitting 190 
this to a service that can query an SDMX registry which will return a list of 191 
(URLs of) data and reference metadata files and databases which satisfy the 192 
query 193 

 processing the query result set and retrieving data and/or reference metadata 194 
from the supplied URLs 195 
 196 

 197 
Figure 3: Schematic of Data and Metadata Discovery and Query in the SDMX-IM 198 

4  SDMX Registry/Repository Architecture 199 

4.1 Architectural Schematic 200 

The architecture of the SDMX registry/repository is derived from the objectives stated 201 
above. It is a layered architecture that is founded by a structural metadata repository 202 



   

 

 
 

7 

which supports a provisioning metadata repository which supports the registry 203 
services. These are all supported by the SDMX-ML schemas. Applications can be 204 
built on top of these services which support the reporting, storage, retrieval, and 205 
dissemination aspects of the statistical lifecycle as well as the maintenance of the 206 
structural metadata required to drive these applications. 207 
 208 

 209 
Figure 4: Schematic of the Registry Content and Services 210 

4.2 Structural Metadata Repository 211 

The basic layer is that of a structural metadata service which supports the lifecycle of 212 
SDMX structural metadata artefacts such as Maintenance Agencies, Data Structure 213 
Definitions, Metadata Structure Definitions, Provision Agreements, Processes etc. 214 
This layer is supported by the Structure Submission and Query Service.  215 

Note that the SDMX-ML Submit Structure Request message supports all of the 216 
SDMX structural artefacts. The only structural artefacts that are not supported by the 217 
SDMX-ML Submit Structure Request are:: 218 
 219 

 Registration of data and metadata sources 220 

 Subscription and Notification 221 
 222 
Separate registry-based messages are defined to support these artefacts. 223 

4.3 Provisioning Metadata Repository 224 

The function of this repository is to support the definition of the structural metadata 225 
that describes the various types of data-store which model SDMX-conformant 226 
databases or files, and to link to these data sources. These links can be specified for 227 
a data provider, for a specific data or metadata flow. In the SDMX model this is called 228 
the Provision Agreement.  229 
 230 
This layer is supported by the Data and Metadata Registration Service. 231 



   

 

 
 

8 

5 Registry Interfaces and Services 232 

5.1 Registry Interfaces 233 

The Registry Interfaces are: 234 

 Notify Registry Event 235 

 Submit Subscription Request 236 

 Submit Subscription Response 237 

 Submit Registration Request 238 

 Submit Registration Response 239 

 Query Registration Request  240 

 Query Registration Response 241 

 Query Subscription Request  242 

 Query Subscription Response 243 

 Submit Structure Request 244 

 Submit Structure Response 245 
 246 
The registry interfaces are invoked in one of two ways: 247 
 248 

1. The interface is the name of the root node of the SDMX-ML document 249 
2. The interface is invoked as a child element of the RegistryInterface message 250 

where the RegistryInterface is the root node of the SDMX-ML document. 251 
 252 
In addition to these interfaces the registry must support a mechanism for querying for 253 
structural metadata. This is detailed in 5.2.2.  254 
 255 
All these interactions with the Registry – with the exception of Notify Registry Event – 256 
are designed in pairs. The first document – the one which invokes the SDMX-RR 257 
interface, is a “Request” document. The message returned by the interface is a 258 
“Response” document. 259 
 260 
It should be noted that all interactions are assumed to be synchronous, with the 261 
exception of Notify Registry Event. This document is sent by the SDMX-RR to all 262 
subscribers whenever an even occurs to which any users have subscribed. Thus, it 263 
does not conform to the request-response pattern, because it is inherently 264 
asynchronous. 265 

5.2 Registry Services 266 

5.2.1 Introduction 267 

The services described in this section do not imply that each is implemented as a 268 
discrete web service. 269 

5.2.2 Structure Submission and Query Service 270 

This service must implement the following SDMX-ML Interfaces: 271 
 272 

 SubmitStructureRequest 273 

 SubmitStructureResponse 274 
 275 
These interfaces allow structural definitions to be created, modified, and removed in 276 
a controlled fashion. It also allows the structural metadata artefacts to be queried and 277 



   

 

 
 

9 

retrieved either in part or as a whole. In order for the architecture to be scalable, the 278 
finest-grained piece of structural metadata that can be processed by the SDMX-RR is 279 
a MaintainableArtefact (see next section on the SDMX Information Model). 280 
 281 

5.2.3 Structure Query Service 282 

The registry must support a mechanism for querying for structural metadata. This 283 
mechanism can be one or both of the SDMX-ML Query  message and the SDMX 284 
REST interface for structural metadata (this is defined in Part 7 of the SDMX 285 
standards). The registry response to both of these query mechanisms is the SDMX 286 
Structure message which has as its root node  287 
 288 

 Structure 289 
 290 
The SDMX structural artefacts that may be queried are: 291 
 292 

 dataflows and metadataflows 293 

 data structure definitions and metadata structure definitions 294 

 codelists 295 

 concept schemes 296 

 reporting taxonomies 297 

 provision agreements 298 

 structure sets 299 

 processes 300 

 hierarchical code lists 301 

 constraints 302 

 category schemes 303 

 categorisations and categorised objects (examples are categorised dataflows 304 
and metadatflows, data structure definitions, metadata structure definitions, 305 
provision agreements registered data sources and metadata sources) 306 

 organisation schemes (agency scheme, data provider scheme, data 307 
consumer scheme, organisation unit scheme) 308 

 309 
Due to the VTL implementation the other structural artefact that may be queried are:  310 
 311 

 transformation schemes 312 

 custom type schemes 313 

 name personalisation schemes 314 

 vtl mapping schemes 315 

 ruleset schemes 316 

 user defined operator schemes 317 
 318 
The SDMX query messages that are a part of the SDMX-ML Query message are: 319 
 320 

 StructuresQuery 321 

 DataflowQuery 322 

 MetadataflowQuery 323 

 DataStructureQuery 324 

 MetadataStructureQuery 325 

 CategorySchemeQuery 326 

 ConceptScheneQuery 327 



   

 

 
 

10 

 CodelistQuery 328 

 HierarchicalCodelistQuery 329 

 OrganisationSchemeQuery 330 

 ReportingTaxonomyQuery 331 

 StructureSetQuery 332 

 ProcessQuery 333 

 CategorisationQuery 334 

 ProvisionAgreementQuery 335 

 ConstraintQuery 336 
 337 
Due to the VTL implementation the other query messages that became a part of the 338 
SDMX-ML Query message are:  339 
 340 

 TransformationSchemeQuery 341 

 CustomTypeSchemeQuery 342 

 VtlMappingSchemeQuery 343 

 NamePersonalisationSchemeQuery 344 

 RulesetSchemeQuery 345 

 UserDefinedOperatorSchemeQuery 346 

5.2.4 Data and Reference Metadata Registration Service 347 

This service must implement the following SDMX-ML Interfaces: 348 
 349 

 SubmitRegistrationRequest 350 

 SubmitRegistrationResponse 351 

 QueryRegistrationRequest 352 

 QueryRegistrationResponse 353 
 354 
The Data and Metadata Registration Service allows SDMX conformant XML files and 355 
web-accessible databases containing published data and reference metadata to be 356 
registered in the SDMX Registry. The registration process MAY validate the content 357 
of the data-sets or metadata-sets, and MAY extract a concise representation of the 358 
contents in terms of concept values (e.g. values of the data attribute, dimension, 359 
metadata attribute), or entire keys, and storing this as a record in the registry to 360 
enable discovery of the original data-set or metadata-set. These are called 361 
Constraints in the SDMX-IM. 362 
 363 
The Data and Metadata Registration Service MAY validate the following, subject to 364 
the access control mechanism implemented in the Registry:  365 
  366 

 that the data provider is allowed to register the data-set or metadata-set 367 

 that the content of the data set or metadata set meets the validation 368 
constraints. This is dependent upon such constraints being defined in the 369 
structural repository and which reference the relevant Dataflow, 370 
Metadataflow, Data Provider, Data Structure Definition, Metadata Structure 371 
Definition, Provision Agreement  372 

 that a queryable data source exists - this would necessitate the registration 373 
service querying the service to determine its existence 374 

 that a simple data source exists (i.e. a file accessible at a URL) 375 

 that the correct Data Structure Definition or Metadata Structure Definition is 376 
used by the registered data 377 



   

 

 
 

11 

 that the components (Dimensions, Attributes, Measures, Identifier 378 
Components etc.) are consistent with the Data Structure Definition or 379 
Metadata Structure Definition 380 

 that the valid representations of the concepts to which these components 381 
correspond conform to the definition in the Data Structure Definition or 382 
Metadata Structure Definition 383 
 384 

The Registration has an action attribute which takes one of the following values:  385 

Action 

Attribute Value 
Behaviour 

Append Add this registration to the registry 

Replace Replace the existing Registration with this Registration identified by 
the id in the Registration of the Submit Registration Request  

Delete Delete the existing Registration  identified by the id in the 
Registration of the Submit Registration Request  

 386 

The Registration has three Boolean attributes which may be present to determine 387 
how an SDMX compliant Dataset or Metadata Set indexing application must index 388 
the Datasets or Metadata Set upon registration. The indexing application behaviour is 389 
as follows: 390 
 391 
Boolean Attribute  Behaviour if Value is “true” 

indexTimeSeries A compliant indexing application must index all the time 
series keys (for a Dataset registration) or metadata target 
values  (for a Metadata Set registration) 

indexDataSet A compliant indexing application must index the range of 
actual (present) values for each dimension of the Dataset (for 
a Dataset registration) or the range of actual (present) values 
for each Metadata Attribute which takes an enumerated 
value. 
 
Note that for data this requires much less storage than full 
key indexing, but this method cannot guarantee that a 
specific combination of Dimension values (the Key) is 
actually present in the Dataset 

indexReportingPeriod A compliant indexing application must index the time period 
range(s) for which data are present in the Dataset or 
Metadata Set 
 

 392 

5.2.5 Data and Reference Metadata Discovery 393 

The Data and Metadata Discovery Service implements the following Registry 394 
Interfaces: 395 
 396 

 QueryRegistrationRequest 397 

 QueryRegistrationResponse 398 
 399 



   

 

 
 

12 

5.2.6 Subscription and Notification 400 

The Subscription and Notification Service implements the following Registry 401 
Interfaces: 402 
 403 

 SubmitSubscriptionRequest 404 

 SubmitSubscriptionResponse 405 

 NotifyRegistryEvent 406 
 407 
The data sharing paradigm relies upon the consumers of data and metadata being 408 
able to pull information from data providers’ dissemination systems. For this to work 409 
efficiently, a data consumer needs to know when to pull data, i.e. when something 410 
has changed in the registry (e.g. a dataset has been updated and re-registered). 411 
Additionally, SDMX systems may also want to know if a new Data Structure 412 
Definition, Code List or Metadata Structure Definition has been added. The 413 
Subscription and Notification Service comprises two parts: subscription management, 414 
and notification. 415 
 416 
Subscription management involves a user submitting a subscription request which 417 
contains: 418 
 419 

 a query or constraint expression in terms of a filter which defines the events 420 
for which the user is interested (e.g. new data for a specific dataflow, or for a 421 
domain category, or changes to a Data Structure Definition). 422 

 a list of URIs or end-points to which an XML notification message can be 423 
sent. Supported end-point types will be email (mailto:) and HTTP POST (a 424 
normal http:// address) 425 

 request for a list of submitted subscriptions 426 

 deletion of a subscription 427 
 428 
Notification requires that the structural metadata repository and the provisioning 429 
metadata repository monitor any event which is of interest to a user (the object of a 430 
subscription request query), and to issue an SDMX-ML notification document to the 431 
end-points specified in the relevant subscriptions. 432 

5.2.7 Registry Behaviour 433 

The following table defines the behaviour of the SDMX Registry for the various 434 
Registry Interface messages.  435 

Interface Behaviour 

All 1) If the action is set to “replace” then the entire 
contents of the existing maintainable object in the 
Registry MUST be replaced by the object submitted, 
unless the final attribute is set to “true” in which case 
the only changes that are allowed are to the following 
constructs: 

 Name – this applies to the Maintainable object 
and its contained elements, such a Code in a 
Code list. 

 Description - this applies to the Maintainable 



   

 

 
 

13 

Interface Behaviour 

object and its contained elements, such a Code 
in a Code list. 

 Annotation - this applies to the Maintainable 
object and its contained elements, such a Code 
in a Code list. 

 validTo 

 validFrom 

 structureURL 

 serviceURL 

 uri 

 isExternalReference 

 

2) Cross referenced structures MUST exist in either the 
submitted document (in Structures or Structure 
Location) or in the registry to which the request is 
submitted. 

3) If the action is set to “delete” then the Registry 
MUST verify that the object can deleted. In order to 
qualify for deletion the object must: 

a) Not have the final attribute set to “true” 

b) Not be referenced from any other object in the 
Registry. 

4) The version rules in the SDMX Schema 
documentation MUST be obeyed. 

5) The specific rules for the elements and attributes 
documented in the SDMX Schema MUST be obeyed. 

SubmitStructureRequest Structures are submitted at the level of the 
Maintainable Artefact and the behaviour in “All” above 
is therefore at the level of the Maintainable Artefact. 

SubmitProvisioningRequest No additional behaviour. 

Submit Registration 
Request 

If the datasource is a file (simple datasource) then the 
file MAY be retrieved and indexed according to the 
Boolean attributes set in the Registration. 



   

 

 
 

14 

Interface Behaviour 

For a queryable datasource the Registry MAY validate 
that the source exists and can accept an SDMX-ML 
data query. 

 436 

6 Identification of SDMX Objects 437 

6.1 Identification, Versioning, and Maintenance 438 

All major classes of the SDMX Information model inherit from one of: 439 
 440 

 IdentifiableArtefact - this gives an object the ability to be uniquely identified 441 
(see following section on identification), to have a user-defined URI, and to 442 
have multi-lingual annotations. 443 

 NamableArtefact - this has all of the features of IdentifiableArtefact plus the 444 
ability to have a multi-lingual name and description, 445 

 VersionableArtefact – this has all of the above features plus a version 446 
number and a validity period. 447 

 MaintainableArtefact – this has all of the above features, and indication as 448 
to whether the object is “final” and cannot be changed or deleted, registry and 449 
structure URIs, plus an association to the maintenance agency of the object. 450 

6.1.1 Identification, Naming, Versioning, and Maintenance Model 451 

 452 

VersionableArtefact

version : String

validFrom : Date

validTo : Date

MaintainableArtefact

final : Boolean

isExternalReference : Boolean

serviceURL : URL

structureURL : URI

Agency

0..* 10..*

+maintainer

1

AnnotableArtefact

LocalisedString

label : String

locale : String

Annotation

id : String

title : String

type : String

url : String

0..1 0..*0..1 0..*

InternationalString
1 0..*1 0..*

0..1

0..1

0..1

+text

0..1

NameableArtefact

0..1

+description

0..1

1

+name

1

IdentifiableArtefact

urn : urn

uri : Url

id : String

 453 



   

 

 
 

15 

 Figure 5: Class diagram of  fundamental artefacts in the SDMX-IM 454 

The table below shows the identification and related data attributes to be stored in a 455 
registry for objects that are one of: 456 
 457 

 Annotable 458 

 Identifiable 459 

 Nameable 460 

 Versionable 461 

 Maintainable 462 

Object Type Data Attributes Status Data type Notes 

Annotable AnnotationTitle C string  

 AnnotationType C string  

 AnnotationURN C string  

 AnnotationText in 
the form of 
International String 

C  This can have language-
specific variants. 

     

Identifiable all content as for 
Annotable plus 

   

 id  M string  

 uri C string  

 urn C string Although the urn is 
computable and therefore 
may not be submitted or 
stored physically, the 
Registry must return the 
urn for each object, and 
must be able to service a 
query on an object 
referenced solely by its 
urn. 

Nameable all content as for 
Identifiable plus 

   

 Name in the form of 
International String 

M string This can have language-
specific variants. 

 Description in the 
form of International 
String 

C string This can have language-
specific variants. 

Versionable All content as for 
Identifiable plus 

   

 version C string This is the version 
number. If not present the 
default is 1.0 

 validFrom C Date/time  

 validTo C Date/time  

Maintainable All content as for 
Versionable plus 

   



   

 

 
 

16 

Object Type Data Attributes Status Data type Notes 

 final  boolean Value of “true” indicates 
that this is a final 
specification and it cannot 
be changed except as a 
new version. Note that 
providing a “final’ object is 
not referenced from 
another object then it may 
be deleted. 

 isExternalReference C boolean Value of “true” indicates 
that the actual resource is 
held outside of this 
registry. The actual 
reference is given in the 
registry URI or the 
structureURI, each of 
which must return a valid 
SDMX-ML file. 

 serviceURL C string The url of the service that 
can be queried for this 
resource 

 structureURL C string The url of the resource. 

 (Maintenance) 
agencyId 

M string The object must be linked 
to a maintenance agency. 

Table 1: Common Attributes of Object Types 463 

6.2 Unique identification of SDMX objects 464 

6.2.1 Agencies 465 

The Maintenance Agency in SDMX is maintained in an Agency Scheme which itself 466 
is a sub class of Organisation Scheme – this is shown in the class diagram below. 467 

OrganisationScheme Organisation

0..*0..*

/items

+child

+parent

AgencyAgencyScheme

0..*0..*

/items

{agencies}

{no hierarchy}

 468 

Figure 6: Agency Scheme Model 469 

The Agency in SDMX is extremely important.  The Agency Id system used in SDMX 470 
is an n-level structure. The top level of this structure is maintained by SDMX. Any 471 



   

 

 
 

17 

Agency in this top level can declare sub agencies and any sub agency can also 472 
declare sub agencies. The Agency Scheme has a fixed id and version and is never 473 
declared explicitly in the SDMX object identification mechanism.  474 

In order to achieve this SDMX adopts the following rules: 475 
 476 

1. Agencies are maintained in an Agency Scheme (which is a sub class of 477 
Organisation Scheme) 478 

2. The agency of the Agency Scheme must also be declared in a (different) 479 
Agency Scheme. 480 

3. The “top-level” agency is SDMX and maintains the “top-level” Agency 481 
Scheme. 482 

4. Agencies registered in the top-level scheme can themselves maintain a single 483 
Agency Scheme. Agencies in these second-tier schemes can themselves 484 
maintain a single Agency Scheme and so on. 485 

5. The AgencyScheme cannot be versioned and so take a default version 486 

number of 1.0 and cannot be made “final”. 487 

6. There can be only one AgencyScheme maintained by any one Agency. It 488 

has a fixed Id of AGENCIES. 489 

7. The /hierarchy of Organisation is not inherited by Maintenance Agency – 490 

thus each Agency Scheme is a flat list of Maintenance Agencies. 491 

8. The format of the agency identifier is agencyID.agencyID etc. The top-492 

level agency in this identification mechanism is the agency registered in the 493 
SDMX agency scheme. In other words, SDMX is not a part of the hierarchical 494 
ID structure for agencies. However SDMX is, itself, a maintenance agency 495 
and is contained in the top-level Agency Scheme. 496 

 497 

This supports a hierarchical structure of agencyID. 498 

 499 
An example is shown below. 500 

 501 
 Figure 7: Example of Hierarchic Structure of Agencies 502 

The following organizations maintain an Agency Scheme. 503 
 504 

 SDMX – contains Agencies AA, BB 505 



   

 

 
 

18 

 AA – contains Agencies CC, DD 506 

 BB – contains Agencies CC, DD 507 

 DD – Contains Agency EE 508 
Each agency is identified by its full hierarchy excluding SDMX. 509 
 510 

e.g. the id of EE as an agencyID is AA.DD.EE 511 

 512 
An example of this is shown in the XML snippet below.  513 

 514 

 515 
 Figure 8: Example Showing Use of Agency Identifiers 516 

 517 
Each of these maintenance agencies has an identical Code list with the Id CL_BOP. 518 
However, each is uniquely identified by means of the hierarchic agency structure. 519 

6.2.2 Universal Resource Name (URN) 520 

6.2.2.1 Introduction 521 

To provide interoperability between SDMX Registry/Repositories in a distributed 522 
network environment, it is important to have a scheme for uniquely identifying (and 523 
thus accessing) all first-class (Identifiable) SDMX-IM objects. Most of these unique 524 
identifiers are composite (containing maintenance agency, or parent object 525 
identifiers), and there is a need to be able to construct a unique reference as a single 526 
string. This is achieved by having a globally unique identifier called a universal 527 
resource name (URN) which is generated from the actual identification components 528 
in the SDMX-RR APIs. In other words, the URN for any Identifiable Artefact is 529 
constructed from its component identifiers (agency, Id, version etc.). 530 

6.2.2.2 URN Structure 531 

Case Rules for URN 532 
 533 
For the URN, all parts of the string are case sensitive. The Id of any object must be 534 
UPPER CASE. Therefore, CRED_ext_Debt is invalid and it should be 535 
CRED_EXT_DEBT. 536 
 537 
The generic structure of the URN is as follows: 538 



   

 

 
 

19 

 539 
SDMXprefix.SDMX-IM-package-name.class-name=agency-540 
id:maintainedobject-id(maintainedobject-version).*container-541 
object-id.object-id 542 

* this can repeat and may not be present (see explanation below) 543 
 544 
Note that in the SDMX Information Model there are no concrete Versionable 545 
Artefacts that are not a Maintainable Artefact.  For this reason the only version 546 
information that is allowed is for the maintainable object.  547 
 548 
The Maintenance agency identifier is separated from the maintainable artefact 549 
identifier by a colon ‘:’. All other identifiers in the SDMX URN syntax are separated by 550 
a period(.).  551 

6.2.2.3 Explanation of the generic structure 552 

In the explanation below the actual object that is the target of the URN is called the 553 
actual object. 554 
 555 

SDMXPrefix: urn:sdmx:org.  556 

 557 

SDMX-IM package name: sdmx.infomodel.package= 558 

 559 
The packages are:  560 
   base 561 
                       codelist 562 
                       conceptscheme 563 
                       datastructure 564 
                       categoryscheme 565 
                       registry 566 
                       metadatastructure 567 
                       process 568 
                       mapping 569 

                       transformation (added for VTL) 570 

 571 
maintainable-object-id is the identifier of the maintainable object. This will always 572 
be present as all identifiable objects are either a maintainable object or contained in a 573 
maintainable object. 574 
(maintainable-object-version) is the version of the maintainable object and is 575 
enclosed in round brackets (). It will always be present. 576 
container-object-id is the identifier of an intermediary object that contains the actual 577 
object which the URN is identifying. It is not mandatory as many actual objects do not 578 
have an intermediary container object. For instance, a Code is in a maintained object 579 
(Code List) and has no intermediary container object, whereas a Metadata Attribute 580 
has an intermediary container object (Report Structure) and may have an 581 
intermediary container object which is its parent Metadata Attribute. For this reason 582 
the container object id may repeat, with each repetition identifying the object at the 583 
next-lower level in its hierarchy. Note that if there is only a single containing object in 584 
the model then it is NOT included in the URN structure. This applies to Attribute 585 
Descriptor, Dimension Descriptor, and Measure Descriptor where there can be only 586 
one such object and this object has a fixed id. Therefore, whilst each of these has a 587 
URN, the id of the Attribute Descriptor, Dimension Descriptor, and Measure 588 



   

 

 
 

20 

Descriptor is not included when the actual object is a Data Attribute or a 589 
Dimension/Measure Dimension/ Time Dimension, or a Measure. 590 
 591 
Note that although a Code can have a parent Code and a Concept can have a parent 592 
Concept these are maintained in a flat structure and therefore do not have a 593 
container-object-id. 594 
 595 

For example the sequence is agency:DSDid(version).DimensionId and not 596 
agency:DSDid(version).DimensionDescriptorId.DimensionId. 597 

 598 
object-id is the identifier of the actual object unless the actual object is a 599 
maintainable object. If present it is always the last id and is not followed by any other 600 
character. 601 
 602 
Generic Examples of the URN Structure 603 
 604 
Actual object is a maintainable 605 
SDMXPrefix.SDMX-IM package name.classname=agency 606 
id:maintained-object-id(version) 607 

Actual object is contained in a maintained object with no intermediate containing 608 
object 609 
 610 
SDMXPrefix.SDMX-IM package name.classname=agency 611 
id:maintained-object-id(version).object-id 612 

Actual object is contained in a maintained object with an intermediate containing 613 
object 614 
 615 
SDMXPrefix.SDMX-IM package name.classname=agency 616 
id:maintained-object-id(version).contained-object-id.object-id 617 

 618 
Actual object is contained in a maintained object with no intermediate containing 619 
object but the object type itself is hierarchical 620 
 621 
In this case the object id may not be unique in itself but only within the context of the 622 
hierarchy. In the general syntax of the URN all intermediary objects in the structure 623 
(with the exception, of course, of the maintained object) are shown as a contained 624 
object. An example here would be a Category in a Category Scheme. The Category 625 
is hierarchical and all intermediate Categories are shown as a contained object. The 626 
example below shows the generic structure for Category Scheme/Category/Category 627 
 628 
SDMXPrefix.SDMX-IM package name.classname=agency 629 
id:maintained-object-id(version).contained-object-id.object-id 630 

Actual object is contained in a maintained object with an intermediate containing 631 
object and the object type itself is hierarchical 632 
 633 
In this case the generic syntax is the same as for the example above as the parent 634 
object is regarded as a containing object, even if it is of the same type. An example 635 
here is a Metadata Attribute where the contained objects are Report Structure (first 636 
contained object id) and Metadata Attribute (subsequent contained object Ids). The 637 



   

 

 
 

21 

example below shows the generic structure for MSD/Report Structure/Metadata 638 
Attribute/Metadata Attribute 639 
 640 
SDMXPrefix.SDMX-IM package name.classname=agency 641 
id:maintained-object-id(version).contained-object-id. 642 
contained-object-id contained-object-id.object-id 643 

Concrete Examples of the URN Structure 644 
 645 
The Data Structure Definition CRED_EXT_DEBT version 1.0 maintained by the top 646 
level Agency TFFS would have the URN: 647 
 648 
urn:sdmx:org.sdmx.infomodel.datastructure.DataStucture=TFFS:CRED_EXT_649 
DEBT(1.0) 650 

The URN for a code for Argentina maintained by ISO in the code list CL_3166A2 651 
version 1.0 would be: 652 
 653 
urn:sdmx:org.sdmx.infomodel.codelist.Code=ISO:CL_3166A2(1.0).AR 654 

The URN for a category (id of 1) which has parent category (id of 2) maintained by 655 
SDMX in the category scheme SUBJECT_MATTER_DOMAINS version 1.0 would 656 
be: 657 
 658 
urn:sdmx:org.sdmx.infomodel.categoryscheme.Category=SDMX:SUBJE659 
CT_MATTER_DOMAINS(1.0).1.2 660 

The URN for a Metadata Attribute maintained by SDMX in the MSD 661 
CONTACT_METADATA version 1.0 in the Report Structure CONTACT_REPORT 662 
where the hierarchy of the Metadata Attribute is 663 
CONTACT_DETAILS/CONTACT_NAME would be: 664 
 665 
urn:sdmx:org.sdmx.infomodel.metadatastructure.MetadataAttribut666 
e=SDMX:CONTACT_METADATA(1.0).CONTACT_REPORT.CONTACT_DETAILS.CO667 
NTACT_NAME 668 

The TFFS defines ABC as a sub Agency of TFFS then the URN of a Dataflow 669 
maintained by ABC and identified as EXTERNAL_DEBT version 1.0 would be: 670 
 671 
urn:sdmx:org.sdmx.infomodel.datastructure.Dataflow=TFFS.ABC:EX672 
TERNAL_DEBT(1.0) 673 
 674 

The SDMX-RR MUST support this globally unique identification scheme. The SDMX-675 
RR MUST be able to create the URN from the individual identification attributes 676 
submitted and to transform the URN to these identification attributes. The 677 
identification attributes are: 678 
 679 

 Identifiable and Nameable Artefacts: id (in some cases this id may be 680 
hierarchic) 681 

 Maintainable Artefacts: id, version, agencyId,  682 
 683 
The SDMX-RR MUST be able to resolve the unique identifier of an SDMX artefact 684 
and to produce an SDMX-ML rendering of that artefact if it is located in the Registry. 685 

686 



   

 

 
 

22 

6.2.3 Table of SDMX-IM Packages and Classes 687 

The table below lists all of the packages in the SDMX-IM together with the concrete 688 
classes that are in these packages and whose objects have a URN.  689 
 690 

Package URN Classname (model classname 
where this is different) 

base Agency 

 OrganisationUnitScheme 

 AgencyScheme 

 DataProviderScheme 

 DataConsumerScheme 

 OrganisationUnit 

 DataProvider 

 DataConsumer 

  

datastructure DataStructure (DataStructureDefinition) 

 AttributeDescriptor 

 DataAttribute 

 GroupDimensionDescriptor 

 DimensionDescriptor 

 Dimension 

 MeasureDimension 

 TimeDimension 

 MeasureDescriptor 

 PrimaryMeasure 

 Dataflow (DataflowDefinition) 

  

metadatastructure MetadataTarget 

 DimensionDescriptorValueTarget 

 IdentifiableObjectTarget 

 ReportPeriodTarget 

 DataSetTarget 

 ReportStructure 

 MetadataAttribute 

 MetadataStructure 
(MetadataStructureDefinition) 

 Metadataflow (MetadataflowDefinition) 

  

process Process 

 ProcessStep 

 Transition 

  

registry ProvisionAgreement 

 AttachmentConstraint 

 ContentConstraint 

 Subscription 

  

mapping StructureMap 

 StructureSet 

 ComponentMap 



   

 

 
 

23 

Package URN Classname (model classname 
where this is different) 

 ConceptSchemeMap 

 OrganisationSchemeMap 

 CodelistMap 

 CategorySchemeMap 

 ReportingTaxonomyMap 

 ConceptMap 

 OrganisationMap 

 CodeMap 

 HybridCodelistMap 

 CategoryMap 

 HybridCodeMap 

 ReportingCategoryMap 

  

codelist Codelist 

 HierarchicalCodelist 

 Hierarchy  

 Hierarchy 

 Code 

 HierarchicalCode 

 Level 

  

categoryscheme CategoryScheme 

 Category 

 Categorisation 

 ReportingTaxonomy 

 ReportingCategory 

  

conceptscheme ConceptScheme 

 Concept 

  

transformation TransformationScheme 

 Transformation 

 CustomTypeScheme 

 CustomType 

 NamePersonalisationScheme 

 NamePersonalisation 

 VtlCodelistMapping 

 VtlConceptMapping 

 VtlDataflowMapping 

 VtlConceptSchemeMapping 

 RulesetScheme 

 Ruleset 

 UserDefinedOperatorScheme 

 UserDefinedOperator 

  

Table 2: SDMX-IM Packages and Contained Classes 691 



   

 

 
 

24 

6.2.4 URN Identification components of SDMX objects 692 

The table below describes the identification components for all SDMX object types that have identification.  Note the actual attributes are all Id, 693 
but have been prefixed by their class name or multiple class names to show navigation, e.g. conceptSchemeAgencyId is really the Id attribute 694 
of the Agency class that is associated to the ConceptScheme.  695 
 696 
* indicates that the object is maintainable. 697 
 698 
Note that for brevity the URN examples omit the prefix. All URNs have the prefix 699 
 700 
urn:sdmx.org.sdmx.infomodel.{package}.{classname}= 701 
 702 

SDMX Class  Key attribute(s) Example of URN 

Agency The URN for an Agency is shown later in this 
table. The identification of an Agency in the 
URN structure for the maintainable object is by 
means of the agencyId. The AgencyScheme is 
not identified as SDMX has a mechanism for 
identifying an Agency uniquely by its Id. Note 
that this Id may be hierarchical. 

IMF 
 
Sub agency in the IMF AGENCIES 
 
IMF.SubAgency1 

*ConceptScheme conceptSchemeAgencyId:conceptSchemeId(ve
rsion) 

SDMX:CROSS_DOMAIN_CONCEPTS(1.0) 

Concept conceptSchemeAgencyId: 
conceptSchemeId(version).conceptId 

SDMX:CROSS_DOMAIN_CONCEPTS(1.0).FREQ 

*Codelist codeListAgencyId:codeListId(version) SDMX:CL_FREQ(1.0) 

Code codeListAgencyId:codelistId(version).codeId SDMX:CL_FREQ(1.0).Q 
 



   

 

 
 

25 

*Hierarchical 
Codelist 

hierachicalCodelistAgencyId: 
hierarchicalCodelistId(version) 

UNESCO:CL_EXP_SOURCE(1.0) 
 

Hierarchy hierachicalcodeListAgencyId: 
hierarchicalcodelistId(version).Hierarchy 

UNESCO:CL_EXP_SOURCE(1.0). 
H-C-GOV 

Level hierachicalcodeListAgencyId: 
hierarchicalcodelistId(version).Hierarchy.Level 

ESTAT:HCL_REGION(1.0).H_1.COUNTRY 
 

HierarchicalCode hierachicalCodeListAgencyId: 
hierarchicalcodelistId(version).hierarchy.hierarc
hicalCode 

UNESCO:CL_EXP_SOURCE(1.0). 
H-C-GOV.GOV_CODE1 

*DataStructure dataStructureDefintitionAgencyId: 
dataStructureDefintitionId(version) 

TFFS:EXT_DEBT(1.0) 

Dimension 
Descriptor 
Measure 
Descriptor 
Attribute 
Descriptor 

dataStructureDefinitionAgencyId: 
dataStructureDefinitionId(version). 
componentListId 
where the componentListId is the name of the 
class (there is only one occurrence of each in 
the Data Structure Definition) 

TFFS:EXT_DEBT(1.0).DimensionDescriptor  
TFFS:EXT_DEBT(1.0).MeasureDescriptor 
TFFS:EXT_DEBT(1.0).AttributeDescriptor 

GroupDimension 
Descriptor 

dataStructureDefinitionAgencyId: 
dataStructureDefinitionId(version). 
groupDimensionDescriptorId 

TFFS:EXT_DEBT(1.0).SIBLING 

Dimension dataStructureDefinitionAgencyId: 
dataStructureDefinition (version). 
dimensionId 

TFFS:EXT_DEBT(1.0).FREQ 

TimeDimension dataStructureDefinitionAgencyId: 
dataStructureDefinition (version). 
timeDimensionId 

TFFS:EXT_DEBT(1.0).TIME_PERIOD 

Measure 
Dimension 

dataStructureDefinitionAgencyId: 
dataStructureDefinition (version). 

TFFS:EXT_DEBT(1.0).STOCK_FLOW 



   

 

 
 

26 

measureDimensionId 

DataAttrribute dataStructureDefinitionAgencyId: 
dataStructureDefinition (version). 
dataAttributeId 

TFFS:EXT_DEBT(1.0).OBS_STATUS 

PrimaryMeasure dataStructureDefinitionAgencyId: 
dataStructureDefinition (version). 
primaryMeasureId 

TFFS:EXT_DEBT(1.0).OBS_VALUE 

*Category 
Scheme 

categorySchemeAgencyId: 
categorySchemeId(version) 

IMF:SDDS(1.0) 

Category categorySchemeAgencyId: 
categorySchemeId(version). 
categoryId.categoryId 
categoryId.categoryId 
etc. 

IMF:SDDS(1.0): 
level_1_category.level_2_category … 

*Reporting 
Taxonomy 

reportingTaxonomyAgencyId: 
reportingTaxonomyId(version) 

 IMF:REP_1(1.0) 

ReportingCategory reportingTaxonomyAgencyId: 
reportingTaxonomyId(version) 
reportingcategoryId.reportingcategoryId 

IMF:REP_1(1.0): 
level_1_repcategory.level_2_repcategory … 

*Categorisation categorisationAgencyId: 
categorisationId(version) 

IMF:cat001(1.0) 

*Organisation 
Unit Scheme 

organisationUnitSchemeAgencyId: 
organisationUnitSchemeId(version) 

ECB:ORGANISATIONS(1.0) 

Organisation 
Unit 

organisationUnitSchemeAgencyId: 
organisationUnitSchemeId(version). 
organisationUnitId 

ECB:ORGANISATIONS(1.0).1F 

*AgencyScheme agencySchemeAgencyId: 
agencySchemeId(version) 

ECB:AGENCIES(1.0) 



   

 

 
 

27 

Agency agencySchemeAgencyId: 
agencySchemeId(version). 
agencyId 

ECB:AGENCY(1.0).AA 

*DataProvider 
Scheme 

dataProviderSchemeAgencyId: 
dataProviderSchemeId(version) 

SDMX:DATA_PROVIDERS(1.0) 

DataProvider dataProviderSchemeAgencyId: 
dataProviderSchemeId(version) 
dataProviderId 

SDMX:DATA_PROVIDERS(1.0).PROVIDER_1 

*DataConsumer 
Scheme 

dataConsumerSchemeAgencyId: 
dataConsumerSchemeId(version) 

SDMX:DATA_CONSUMERS(1.0) 

Data Consumer  dataConsumerSchemeAgencyId: 
dataConsumerSchemeId(version) 
dataConsumerId 

SDMX:DATA_CONSUMERS(1.0).CONSUMER_1 

*Metadata 
Structure 

MSDAgencyId:MSDId(version) IMF:SDDS_MSD(1.0) 

MetadataTarget MSDAgencyId: 
MSDId(version).metadataTargetId 

IMF:SDDS_MSD(1.0).AGENCY 

Dimension 
DescriptorValues
Target 

MSDAgencyId: 
MSDId(version). 
metadataTargetId.keyDescriptorValueTargetId 

IMF:SDDS_MSD(1.0).AGENCY.KEY 

Identifiable 
ObjectTarget 

MSDAgencyId: 
MSDId(version).metadataTargetId.identifiable 
ObjectTargetId 

IMF:SDDS_MSD(1.0).AGENCY.STR-OBJECT 

DataSetTarget MSDAgencyId: 
MSDId(version).metadataTargetId.dataSet 
TargetId 

IMF:SDDS_MSD(1.0).AGENCY.D1101 

PeportPeriod 
Target 

MSDAgencyId: 
MSDId(version).metadataTargetId.reportPeriod
TargetId 

IMF:SDDS_MSD(1.0).AGENCY.REP_PER 



   

 

 
 

28 

ReportStructure 
 

MSDAgencyId: 
MSDId(version).reportStructureId 

IMF:SDDS_MSD(1.0).AGENCY_REPORT 

Metadata 
Attribute 

MSDAgencyId: 
MSDId(version).reportStructureId.metadataattri
buteID 

IMF:SDDS_MSD(1.0).AGENCY_REPORT.COMPILATION 

*Dataflow dataflowAgencyId: dataflowId(version) TFFS:CRED_EXT_DEBT(1.0) 

*Provision 
Agreement 

provisionAgreementAgencyId:provisionAgreem
entId(version) 
 

TFFS:CRED_EXT_DEBT_AB(1.0) 
 
 

*Content 
Constraint 

constraintAgencyId:ContentConstraintId(versio
n) 

TFFS:CREDITOR_DATA_CONTENT(1.0) 

*Attachment 
Constraint 

constraintAgencyId: 
attachmentConstraintId(version) 

TFFS:CREDITOR_DATA_ATTACHMENT_CONSTRAINT_ONE(1.0) 

*Metadataflow metadataflowAgencyId: 
metadataflowId(version) 

IMF:SDDS_FLOW(1.0) 

*StructureSet structureSetAgencyId: 
structureSetId(version) 

SDMX:BOP_STRUCTURES(1.0) 

StructureMap structureSetAgencyId: 
structureSetId(version). 
structureMapId 

SDMX:BOP_STRUCTURES(1.0).TABLE1_TABLE2 

Component 
Map 

structureSetAgencyId: 
structureSetId(version). 
structureMapId. 
componentMapId 

SDMX:BOP_STRUCTURES(1.0).TABLE1_TABLE2. 
REFAREA_REPCOUNTRY 

CodelistMap structureSetAgencyId: 
structureSetId(version). 
codelistMapId 

SDMX:BOP_STRUCTURES(1.0).CLREFAREA_CLREPCOUNTRY 

CodeMap structureSetAgencyId: 
structureSetId(version). 

SDMX:BOP_STRUCTURES(1.0).CLREFAREA_CLREPCOUNTRY.
DE_GER 



   

 

 
 

29 

codeListMapId. 
codeMapId 

Category 
SchemeMap 

structureSetAgencyId: 
structureSetId(version). 
categorySchemeMapId 

SDMX:BOP_STRUCTURES(1.0).SDMX_EUROSTAT 

CategoryMap structureSetAgencyId: 
structureSetId(version). 
categorySchemeMapId. 
categoryMapId 

SDMX:BOP_STRUCTURES(1.0).SDMX_EUROSTAT.TOURISM_M
AP 

Organisation 
SchemeMap 

structureSetAgencyId: 
structureSetId(version). 
organisationSchemeMapId 

SDMX:BOP_STRUCTURES(1.0).DATA_PROVIDER_MAP 

Organisation 
Map 

structureSetAgencyId: 
structureSetId(version). 
organisationSchemeMapId. 
organisationMapId 

SDMX:BOP_STRUCTURES(1.0).DATA_PROVIDER_MAP.IMF_1C0 

Concept 
SchemeMap 

structureSetAgencyId: 
structureSetId(version). 
conceptSchemeMapId 

SDMX:BOP_STRUCTURES(1.0).SDMX_OECD 

ConceptMap structureSetAgencyId: 
structureSetId(version). 
conceptSchemeMapId. 
conceptMapId 
 

SDMX:BOP_STRUCTURES(1.0).SDMX_OECD.COVERAGE_AVAI
LABILITY 

Reporting 
TaxonomyMap 

structureSetAgencyId: 
structureSetId(version). 
reportingTaxonomyMapId 

SDMX:BOP_STRUCTURES(1.0).TAXMAP 

Reporting 
CategoryMap 

structureSetAgencyId: 
structureSetId(version). 
reportngCategoryId 

SDMX:BOP_STRUCTURES(1.0).TAXMAP.TOPCAT 



   

 

 
 

30 

HybridCodelist 
Map 

structureSetAgencyId: 
structureSetId(version). 
hybridCodelistMapId. 

SDMX:BOP_STRUCTURES(1.0).COUNTRY_HIERARCHYMAP 

HybridCodeMap structureSetAgencyId: 
structureSetId(version). 
hybridCodelistMapId. 
hybridCodeMapId 

SDMX:BOP_STRUCTURES(1.0).COUNTRY_HIERARCHYMAP.CO
DEMAP1 

*Process processAgencyId: 
processId{version] 

BIS:PROCESS1(1.0) 

ProcessStep processAgencyId: 
processId(version). 
processStepId 

BIS:PROCESS1(1.0).STEP1 

Transition processAgencyId: 
processId(version). 
processStepId 
transitionId 

BIS:PROCESS1(1.0).STEP1.TRANSITION1 

Subscription The Subscription is not itself an Identifiable 
Artefact and therefore it does not follow the 
rules for URN structure, The name of the URN 
is registryURN There is no pre-determined 
format. 

This cannot be generated by a common mechanism as 
subscriptions, although maintainable in the sense that they can be 
submitted and deleted, are not mandated to be created by a 
maintenance agency, and have no versioning mechanism. It is 
therefore the responsibility of the target registry to generate a unique 
Id for the Subscription, and for the application creating the 
subscription to store the registryURN that is returned from the 
registry in the subscription response message. 

*Transformation
Scheme 

transformationSchemeAgencyId 
transformationSchemeId(version) 

ECB: TRANSFORMATION_SCHEME(1.0) 

Transformation transformationSchemeAgencyId 
transformationSchemeId(version) 
transformationId 

ECB:TRANSFORMATION_SCHEME(1.0).TRANS_1 

CustomType 
Scheme 

customTypeSchemeAgencyId 
customTypeSchemeId(version) 

ECB:CUSTOM_TYPE_SCHEME(1.0) 



   

 

 
 

31 

CustomType customTypeSchemeAgencyId 
customTypeSchemeId(version) 
customTypeId 

ECB: CUSTOM_TYPE_SCHEME(1.0).CUSTOM_TYPE_1 

Name 
Personalisation 
Scheme 

namePersonalisationSchemeAgencyId 
namePersonalisationSchemeId(version) 

ECB:PSN_SCHEME(1.0) 

Name 
Personalisation 

namePersonalisationSchemeAgencyId 
namePersonalisationSchemeId(version) 
namePersonalisationId 

ECB:PSN_SCHEME(1.0).PSN1234 

VtlMapping 
Scheme 

vtlMappingSchemeAgencyId 
VtlMappingSchemeId(version) 

ECB:CLIST_MP(2.0) 

VtlCodelist 
Mapping 

vtlMappingSchemeAgencyId 
vtlMappingSchemeId(version) 
vtlCodelistMappingId 

ECB:CLIST_MP(2.0).ABZ 

VtlConcept 
Mapping 

vtlMappingSchemeAgencyId 
vtlMappingSchemeId(version) 
vtlConceptMappingId 

ECB:CLIST_MP(1.0).XYA 

VtlDataflow 
Mapping 

vtlMappingSchemeAgencyId 
vtlMappingSchemeId(version) 
vtlDataflowMappingId 

ECB:CLIST_MP(1.0).MOQ 

VtlConcept 
SchemeMapping 

vtlMappingSchemeAgencyId 
vtlMappingSchemeId(version) 
vtlConceptSchemeId 

ECB:CLIST_MP(1.0).Z11 

RulesetScheme rulesetSchemeAgencyId 
rulesetSchemeId(version) 

ECB:RULESET_23(1.0) 

Ruleset rulesetSchemeAgencyId 
rulesetSchemeId(version) 
rulesetId 

ECB:RULESET_23(1.0).SET111 

UserDefined 
OperatorScheme 

userDefinedOperatorSchemeAgencyId 
userDefinedOperatorSchemeId(version) 

ECB:OS_CALC(1.2) 



   

 

 
 

32 

 Table 3: Table of identification components for SDMX Identifiable Artefacts 703 

UserDefined 
Operator 

userDefinedOperatorSchemeAgencyId 
userDefinedOperatorSchemeId(version) 
usserDefinedOperatorId 

ECB:OS_CALC(1.2).OS267 



   

 

 
 

33 

7 Implementation Notes 704 

7.1 Structural Definition Metadata 705 

7.1.1 Introduction 706 

The SDMX Registry must have the ability to support agencies in their role of defining 707 
and disseminating structural metadata artefacts. These artefacts include data 708 
structure definitions, code lists, concepts etc. and are fully defined in the SDMX-IM. 709 
An authenticated agency may submit valid structural metadata definitions which must 710 
be stored in the registry. Note that the term “structural metadata” refers as a general 711 
term to all structural components (Data structure Definitions, Metadata Structure 712 
Definitions, Code lists, Concept Schemes, etc.) 713 
 714 
At a minimum, structural metadata definitions may be submitted to and queried from 715 
the registry via an HTTP/HTTPS POST in the form of one of the SDMX-ML registry 716 
messages for structural metadata and the SDMX Query message for structure 717 
queries. The use of SOAP is also recommended, as described in the SDMX Web 718 
Services Guidelines.  The message may contain all structural metadata items for the 719 
whole registry, structural metadata items for one maintenance agency, or individual 720 
structural metadata items. 721 
 722 
Structural metadata items  723 

 may only be modified by the maintenance agency which created them 724 

 may only be deleted by the agency which created them 725 

 may not be deleted if they are referenced from other constructs in the 726 
Registry 727 

 728 
The level of granularity for the maintenance of SDMX Structural Metadata objects in 729 
the registry is the Maintainable Artefact. In other words, any function such as add, 730 
modify, delete is at the level of the Maintainable Artefact. For instance, if a Code is 731 
added to a Code List, or the Name of a Code is changed, the Registry must replace 732 
the existing Code List with the submitted Code List of the same Maintenance 733 
Agency, Code List, Id and Version. 734 
 735 
The following table lists the Maintainable Artefacts. 736 
 737 

Maintainable Artefacts Content 

Abstract Class Concrete Class  

Item Scheme Codelist Code 

 Concept Scheme Concept 

 Category Scheme Category 

 Organisation Unit 
Scheme 

Organisation Unit 

 Agency Scheme Agency 

 Data Provider Scheme Data Provider 

 Data Consumer 
Scheme 

Data Consumer 

 Reporting Taxonomy Reporting Category 

 Transformation 
Scheme 

Transformation 

 Custom Type Scheme Custom Type 



   

 

 
 

34 

Maintainable Artefacts Content 

Abstract Class Concrete Class  

 Name Personalisation 
Scheme 

Name Personalisation 

 Vtl Mapping Scheme Vtl Codelist Mapping 

  Vtl Concept Mapping 

  Vtl Dataflow Mapping 

  Vtl Concept Scheme 
Mapping 

 Ruleset Scheme Ruleset 

 User Defined Operator 
Scheme 

User Defined Operator 

   

Structure Data Structure 
Definition 

Dimension Descriptor 
Group Dimension 
Descriptor 
Dimension 
Measure Dimension 
Time Dimension 
Attribute Descriptor 
Data Attribute 
Measure Descriptor 
Primary Measure  

 Metadata Structure 
Definition 

Metadata Target, 
Dimension Descriptor 
Values Target Identifiable 
Object Target 
Report Period Target 
Data SetTarget 
Report Structure 
Metadata Attribute 

Structure Usage Dataflow Definition  

 Metadataflow Definition  

None Process Process Step 

None Structure Set Component Map 
Concept Scheme Map 
Codelist Map 
Category Scheme Map 
Reporting Taxonomy Map 
Organisation Scheme Map 
Concept Map 
Code Map 
Category Map 
Organisation Map 
Reporting Category Map 
Hybrid Codelist Map 
Hybrid Code Map 

None Provision Agreement  

None Hierarchical Codelist Hierarchy 
Hierarchical Code 

Table 4: Table of Maintainable Artefacts for Structural Definition Metadata 738 



   

 

 
 

35 

7.1.2 Item Scheme, Structure 739 

The artefacts included in the structural definitions are: 740 
 741 

 All types of Item Scheme (Codelist, Concept Scheme, Category Scheme, 742 
Organisation Scheme - Agency Scheme, Data Provider Scheme, Data 743 
Consumer Scheme, Organisation Unit Scheme) 744 

 All types of Structure (Data Structure Definition, Metadata Structure 745 
Definition) 746 

 All types of Structure Usage (Dataflow Definition, Metadataflow Definition) 747 

7.1.3 Structure Usage 748 

7.1.3.1 Structure Usage: Basic Concepts 749 

The Structure Usage defines, in its concrete classes of Dataflow Definition and 750 
Metadataflow Definition, which flows of data and metadata use which specific 751 
Structure, and importantly for the support of data and metadata discovery, the 752 
Structure Usage can be linked to one or more Category in one or more Category 753 
Scheme using the Categorisation mechanism. This gives the ability for an application 754 
to discover data and metadata by “drilling down” the Category Schemes. 755 

7.1.3.2 Structure Usage Schematic 756 

 757 
Figure 9: Schematic of Linking the Data and Metadata Flows to Categories and 758 

Structure Definitions 759 



   

 

 
 

36 

7.1.3.3 Structure Usage Model 760 

Category
(from Category-Scheme)

Structure

StructureUsage

1

0..*

1

0..*

structure

DataflowDefinition

DataStructureDefinition

0..*

1

0..*

1

/structure

MetadataflowDefinition

MetadataStructureDefinition

0..*

1

0..*

1

/structure

VersionableArtefact

MaintainableArtefact

NameableArtefact IdentifiableArtefact

Categorisation
(from Category-Scheme)

0..* 10..*

+categorisedBy

10..*

1

0..*

+categorisedArtefact

1

 761 
Figure 10: SDMX-IM of links from Structure Usage to Category 762 

In addition to the maintenance of the Dataflow Definition and the Metadataflow 763 
Definition the following links must be maintained in the registry: 764 
 765 

 Dataflow Definition to Data Structure Definition  766 

 Metadataflow Definition to Metadata Structure Definition 767 

The following links may be created by means of a Categorisation 768 



   

 

 
 

37 

 Categorisation to Dataflow Definition and Category 769 

 Categorisation to Metadataflow Definition and Category 770 

7.2 Data and Metadata Provisioning 771 

7.2.1 Provisioning Agreement: Basic concepts 772 

Data provisioning defines a framework in which the provision of different types of 773 
statistical data and metadata by various data providers can be specified and 774 
controlled. This framework is the basis on which the existence of data can be made 775 
known to the SDMX-enabled community and hence the basis on which data can 776 
subsequently be discovered. Such a framework can be used to regulate the data 777 
content to facilitate the building of intelligent applications. It can also be used to 778 
facilitate the processing implied by service level agreements, or other provisioning 779 
agreements in those scenarios that are based on legal directives. Additionally, quality 780 
and timeliness metadata can be supported by this framework which makes it 781 
practical to implement information supply chain monitoring. 782 
 783 
Note that in the SDMX-IM the class “Data Provider” encompasses both data and 784 
metadata and the term “data provisioning” here includes both the provisioning of data 785 
and metadata. 786 
 787 
Although the Provision Agreement directly supports the data-sharing “pull” model, it 788 
is also useful in “push” exchanges (bilateral and gateway scenarios), or in a 789 
dissemination environment. It should be noted, too, that in any exchange scenario, 790 
the registry functions as a repository of structural metadata. 791 

7.2.2 Provisioning Agreement Model – pull use case 792 

An organisation which publishes statistical data or reference metadata and wishes to 793 
make it available to an SDMX enabled community is called a Data Provider.  In terms 794 
of the SDMX Information Model, the Data Provider is maintained in a Data Provider 795 
Scheme.  796 



   

 

 
 

38 

OrganisationScheme

Organisation

0..*0..*

/items

0..*
1

+child

0..*

/hierachy

+parent

1

DataProvider

{no hierarchy}

DataProviderScheme

0..*0..*

/items

{data providers}

ItemScheme Item

0..*0..*

items
0..*

1

+child
0..*

+parent

1

hierarchy

 797 
Figure 11: SDMX-IM of the Data Provider 798 

 799 
Note that the Data Provider does not inherit the hierarchy association. The diagram 800 
below shows a logical schematic of the data model classes required to maintain 801 
provision agreements 802 
 803 

 804 
Figure 12: Schematic of the Provision Agreement 805 

The diagram below is a logical representation of the data required in order to 806 
maintain Provision Agreements. 807 
 808 



   

 

 
 

39 

DataProvider
(from SDMX-Base)

ProvisionAgreement

StructureUsage
(from SDMX-Base)

DataflowDefinition
(from DataStructureDefinition)

MetadataflowDefinition
(from Metadata-Structure-Defini tion)

0..*1

hasAgreement

0..*1
0..*

1

controlledBy

0..*

1

 809 
Figure 13: Logical class diagram of the information contained in the Provision 810 

Agreement  811 

A Provision Agreement is structural metadata. Each Provision Agreement must 812 
reference a Data Provider and a Dataflow or Metadataflow Definition. The Data 813 
Provider and the Dataflow/Metadataflow Definition must exist already in order to set 814 
up a Provision Agreement.  815 

7.3 Data and Metadata Constraints 816 

7.3.1 Data and Metadata Constraints: Basic Concepts 817 

Constraints are, effectively, lists of the valid or actual content of data and metadata. 818 
Constraints can be used to specify a sub set of the theoretical content of data set or 819 
metadata set which can be derived from the specification of the DSD or MSD. A 820 
Constraint can comprise a list of keys or a list of content (usually code values) of a 821 
specific component such as a dimension or attribute.  822 
 823 
Constraints comprise the specification of subsets of key or target values or attribute 824 
values that are contained in a Datasource, or is to be provided for a Dataflow or 825 
Metadataflow Definition, or directly attached to a Data Structure Definition or 826 
Metadata Structure Definition. This is important metadata because, for example, the 827 
full range of possibilities which is implied by the Data Structure Definition (e.g. the 828 
complete set of valid keys is the Cartesian product of all the values in the code lists 829 
for each of the Dimensions) is often more than is actually present in any specific 830 
Datasource, or more than is intended to be supplied according to a specific Dataflow 831 
Definition. 832 
 833 
Often a Data Provider will not be able to provide data for all key combinations, either 834 
because the combination itself is not meaningful, or simply because the provider 835 
does not have the data for that combination. In this case the Data Provider could 836 
constrain the Datasource (at the level of the Provision Agreement or the Data 837 
Provider) by supplying metadata that defines the key combinations or cube regions 838 
that are available. This is done by means of a Constraint. The Content Constraint is 839 
also used to define a code list sub set which is used to populate a Partial Code List. 840 
 841 



   

 

 
 

40 

Furthermore, it is often useful to define subsets or views of the Data Structure 842 
Definition which restrict values in some code lists, especially where many such 843 
subsets restrict the same Data Structure Definition. Such a view is called a Dataflow 844 
Definition, and there can be one or more defined for any Data Structure Definition.   845 
 846 
Whenever data is published or made available by a Data Provider, it must conform to 847 
a Dataflow Definition (and hence to a Data Structure Definition). The Dataflow 848 
Definition is thus a means of enabling content based processing. 849 
 850 
In addition, Constraints can be extremely useful in a data visualisation system, such 851 
as dissemination of statistics on a website. In such a system a Cube Region can be 852 
used to specify the Dimension codes that actually exist in a datasource (these can be 853 
used to build relevant selection tables), and the Key Set can be used to specify the 854 
keys that exist in a datasource (these can be used to guide the user to select only 855 
those Dimension code values that will return data based on the Dimension values 856 
already selected). 857 

7.3.2 Data and Metadata Constraints: Schematic 858 

 859 
Figure 14: Schematic of the Constraint and the Artefacts that can be Constrained 860 

 861 



   

 

 
 

41 

 862 

7.3.3 Data and Metadata Constraints: Model 863 

DataProvider

StructureUsage

ConstrainableArtefact

DataflowDefinition

DataStructureDefinition

DataSet

SimpleDatasource MetadataflowDefinition

MetadataStructureDefinition

MetadataSet

VersionableArtefact

MaintainableArtefact

ProvisionAgreement

Structure

ConstrainableRef

Constraint

DataSetRef

dataProviderRef : DataProviderRef

dataSetId : String

NameableArtefact

0..*

0..1

references

0..*

0..1

references

0..*
+constrains

0..*

MaintainableArtefactRef

agencyID : String

id : String

version : String

StructureRef

structureType : IdentifiableObjectType

urn : String

0..10..1

IdentifiableArtefactRef

id : String

structureType : IdentifiableObjectType0..1

+containedObject

0..1

MetadataSetRef

dataProviderRef : DataProviderRef

metadataSetId : String

1

references

1

references

IdentifiableArtefact

references

references

 864 
Figure 15: Logical class diagram showing inheritance between and reference to 865 

constrainable artifacts 866 

The class diagram above shows that DataProvider, DataflowDefinition, 867 
MetadataflowDefinition, ProvisionAgreement, DataStructureDefinition, 868 
MetadataStructureDefinition, SimpleDatasource and QueryDatasource are all 869 
concrete sub-classes of ConstrainableArtefact and can therefore have Constraints 870 
specified. Note that the actual Constraint as submitted is associated to the reference 871 
classes which inherit from ConstrainableRef: these are used to refer to the classes to 872 
which the Constraint applies. 873 
 874 
The content of the Constraint can be found in the SDMX Information Model 875 
document.  876 



   

 

 
 

42 

7.4 Data and Metadata Registration 877 

7.4.1 Basic Concepts 878 

A Data Provider has published a new dataset conforming to an existing Dataflow 879 
Definition (and hence Data Structure Definition). This is implemented as either a 880 
web-accessible SDMX-ML file, or in a database which has a web-services interface 881 
capable of responding to an SDMX-ML Query or RESTful query with an SDMX-ML 882 
data stream. 883 
 884 
The Data Provider wishes to make this new data available to one or more data 885 
collectors in a “pull” scenario, or to make the data available to data consumers. To do 886 
this, the Data Provider registers the new dataset with one or more SDMX conformant 887 
registries that have been configured with structural and provisioning metadata. In 888 
other words, the registry “knows” the Data Provider and “knows” what data flows the 889 
data provider has agreed to make available. 890 
 891 
The same mechanism can be used to report or make available a metadata set. 892 
 893 
SDMX-RR supports dataset and metadata set registration via the Registration 894 
Request, which can be created by the Data Provider (giving the Data Provider 895 
maximum control). The registry responds to the registration request with a 896 
registration response which indicates if the registration was successful. In the event 897 
of an error, the error messages are returned as a registry exception within the 898 
response. 899 

7.4.2 The Registration Request 900 

7.4.2.1 Registration Request Schematic 901 

 902 
 Figure 16: Schematic of the Objects Concerned with Registration 903 

 904 



   

 

 
 

43 

7.4.2.2 Registration Request Model 905 

The following UML diagram shows the composition of the registration request. Each 906 
request is made up of one or more Registrations, one per dataset or metadata set to 907 
be registered. The Registration can optionally have information which has been 908 
extracted from the Registration: 909 
 910 

 validFrom 911 

 validTo  912 

 lastUpdated 913 
 914 
The last updated date is useful during the discovery process to make sure the client 915 
knows which data is freshest.  916 
 917 
The Registration has an action attribute which takes one of the following values: 918 
  919 
Action Attribute 

Value 
Behaviour 

Append Add this Registration to the registry 

Replace Replace the existing Registration with identified by the id in the 
Registration of the Submit Registration Request  

Delete Delete the existing Registration  identified by the id in the 
Registration of the Submit Registration Request  

 920 

SimpleDatasource

SOAPDatasource RESTDatasource

WebServicesDatasource

URL

<<datatype>>

1

1

+WSDLURL

1

1

SubmitRegistrationsRequest

Datasource

11

+sourceURL

11

RegistrationRequest

action : ActionType

1..*1..*

ProvisionAgreement

Registration

id : String

lastUpdated : Date

validFrom : Date

validTo : Date

indexTimeSeries : Boolean

indexDataSet : Boolean

indexReportingPeriod : Boolean

indexAttributes : Boolean

1..*

0..1

1..*

0..1

1..*1..*

1

+registrationFor

1

 921 
Figure 17: Logical Class Diagram of Registration of Data and Metadata 922 



   

 

 
 

44 

The Query Datasource is an abstract class that represents a data source which can 923 
understand an SDMX-ML query (SOAPDatasource) or RESTful query 924 
(RESTDatasource) and respond appropriately. Each of these different Datasources 925 
inherit the dataURL from Datasource, and the QueryDatasource has an additional 926 
URL to locate a WSDL or WADL document to describe how to access it. All other 927 
supported protocols are assumed to use the Simple Datasource URL. 928 
 929 
A Simple Datasource is used to reference a physical SDMX-ML file that is available 930 
at a URL.  931 
 932 
The Registration Request has an action attribute which defines whether this is a new 933 
(append) or updated (replace) Registration, or that the Registration is to be deleted 934 
(delete). The id is only provided for the replace and delete actions, as the Registry 935 
will allocate the unique id of the (new) Registration.  936 
 937 
The Registration includes attributes that state how a Simple Datasource is to be 938 
indexed when registered. The Registry registration process must act as follows. 939 
 940 
Information in the data or metadata set is extracted and placed in one or more 941 
Content Constraints (see the Constraints model in the SDMX Information Model – 942 
Section 2 of the SDMX Standards). The information to be extracted is indicated by 943 
the Boolean values set on the Provision Agreement as shown in the table below. 944 
 945 

Indexing Required Registration Process Activity 

indexTimeSeries Extract all the series keys and create a 
KeySet(s) Constraint. 

indexDataSet  Extract all the codes and other content 
of the Key value of the Series Key in a 
Data Set and create one or more Cube 
Regions containing Member Selections 
of Dimension Components of the 
Constraints model in the SDMX-IM, and 
the associated Selection Value. 

indexReportingPeriod This applies only to a registered dataset. 
Extract the Reporting Begin and 
Reporting End from the Header of the 
Message containing the data set, and 
create a Reference Period constraint. 

indexAttributes Data Set 
Extract the content of the Attribute 
Values in a Data Set and create one or 
more Cube Regions containing Member 
Selections of Data Attribute Components 
of the Constraints model in the SDMX-
IM, and the associated Selection Value 
Metadata Set 
Indicate the presence of a Reported 
Attribute by creating one or more Cube 
Regions containing Member Selections 
of Metadata Attribute Components of the 
Constraints model in the SDMX-IM. Note 
that the content is not stored in the 
Selection Value. 



   

 

 
 

45 

 946 
Constraints that specify the contents of a Query Datasource are submitted to the 947 
Registry in a Submit Structure Request. 948 
 949 
The Registration must reference the Provision Agreement to which it relates. 950 

7.4.3 Registration Response 951 

After a registration request has been submitted to the registry, a response is returned 952 
to the submitter indicating success or failure. Given that a registration request can 953 
hold many Registrations, then there must be a registration status for each 954 
Registration. The Submit Registration class has a status field which is either set to 955 
“Success”, “Warning” or “Failure”.  956 
 957 
If the registration has succeeded, a Registration will be returned - this holds the 958 
Registry-allocated Id of the newly registered Datasource plus a Datasource holding 959 
the URL to access the dataset, metadataset, or query service. 960 
 961 
The Registration Response returns set of registration status (one for each 962 
registration submitted) in terms of a Status Message (this is common to all Registry 963 
Responses) that indicates success or failure.  In the event of registration failure, a set 964 
of Message Text are returned, giving the error messages that occurred during 965 
registration. It is entirely possible when registering a batch of datasets, that the 966 
response will contain some successful and some failed statuses. The logical model 967 
for the Registration Response is shown below: 968 
 969 

Registration

InternationalString

MessageText

errorCode : Integer

1..*
+errorText

1..*

RegistrationResponse

StatusMessage

status : String

0..*0..*

Datasource

RegistrationStatus

1

1..*

1

1..*

11

1..*

0..1

1..*

0..1

11
ProvisionAgreementRef

dataProviderRef : DataProviderRef
11

 970 
Figure 18: Logical class diagram showing the registration response 971 

7.5 Subscription and Notification Service 972 

The contents of the SDMX Registry/Repository will change regularly: new code lists 973 
and key families will be published, new datasets and metadata-sets will be 974 
registered. To obviate the need for users to repeatedly query the registry to see when 975 



   

 

 
 

46 

new information is available, a mechanism is provided to allow users to be notified 976 
when these events happen. 977 
 978 
A user can submit a subscription in the registry that defines which events are of 979 
interest, and either an email and/or an HTTP address to which a notification of 980 
qualifying events will be delivered. The subscription will be identified in the registry by 981 
a URN which is returned to the user when the subscription is created. If the user 982 
wants to delete the subscription at a later point, the subscription URN is used as 983 
identification. Subscriptions have a validity period expressed as a date range 984 
(startDate, endDate) and the registry may delete any expired subscriptions, and will 985 
notify the subscriber on expiry. 986 
 987 
When a registry/repository artefact is modified, any subscriptions which are 988 
observing the object are activated, and either an email or HTTP POST is instigated to 989 
report details of the changes to the user specified in the subscription. This is called a 990 
“notification”. 991 
 992 



   

 

 
 

47 

7.5.1 Subscription Logical Class Diagram 993 

 994 

SubmitSubscriptionsRequest

MailToTarget
HTTPTarget

CategoryRef

categorySchemeAgencyId : String

categorySchemeId : String

categorySchemeVersion : String

categoryId : String

MetadataflowRef

metadataflowAgencyId : String

metadataflowId : String

metadataflowVersion : String

MetadataStructureDefinitionRef

metadataStructureAgencyId : String

metadataStructureId : String

metadataStructureVersion : String

DataProvisionAgreementRef

dataflowRef : DataflowRef MetadataProvisionAgreementRef

metadataFlowRef : MetadataflowRef

ProvisionAgreementRef

dataProviderRef : DataProviderRef...

DataRegistrationArtefactRef

DataRegistrationSelector

1..*1..*
MetadataRegistrationArtefactRef

MetadataRegistrationSelector

1..*1..*

Maintainab leArtefact

CategoryRef

categorySchemeAgencyId : String

categorySchemeId : String

categorySchemeVersion : String

categoryId : String

RegistrationArtefactRef

registrationId : String

MaintainableArtefactRef

agencyID : String

id : String

version : String

references

RegistrationSelector

0..*0..*

StructuralRepositorySelector

0..*0..*

URNValue

urn : URNValue

NotificationTarget

isSOAP : Boolean
ValidityPeriod

startDate : Date

endDate : Date

EventSelector

allEvents : Boolean

0..10..1

0..10..1

OrganisationSubscription

suibscriberAssignedId : String
110..1

+registryURN

0..1

1..*1..*
11

11

SubscriptionRequest

action : ActionType

11

1..*1..*

DataProviderRef

dataProviderSchemeAgencyId : String

dataProviderSchemeId : String

dataProviderSchemeVersion : String

dataProviderId : String

DataflowRef

dataflowAgencyId : String

dataflowId : String

dataflowVersion : String

DataStructureRef

dataStructureAgencyId : String

dataStructureId : String

dataStructureVersion : String

 995 

Figure 19: Logical Class Diagram of the Subscription 996 



   

 

 
 

48 

7.5.2 Subscription Information 997 

Regardless of the type of registry/repository events being observed, a subscription 998 
always contains: 999 
 1000 

1. A set of URIs describing the end-points to which notifications must be sent if 1001 
the subscription is activated. The URIs can be either mailto: or http: protocol. 1002 
In the former case an email notification is sent; in the latter an HTTP POST 1003 
notification is sent. 1004 

2. A user-defined identifier which is returned in the response to the subscription 1005 
request. This helps with asynchronous processing and is NOT stored in the 1006 
Registry. 1007 

3. A validity period which defines both when the subscription becomes active 1008 
and expires. The subscriber may be sent a notification on expiration of the 1009 
subscription. 1010 

4. A selector which specifies which type of events are of interest. The set of 1011 
event types is: 1012 

 1013 

Event Type Comment 

STRUCTURAL_REPOSITORY_EVENTS Life-cycle changes to Maintainable 
Artefacts in the structural metadata 
repository.  

DATA_REGISTRATION_EVENTS Whenever a published dataset is 
registered. This can be either a SDMX-
ML data file or an SDMX conformant 
database. 

METADATA_REGISTRATION_EVENTS Whenever a published metadataset is 
registered. This can be either a SDMX-
ML reference metadata file or an SDMX 
conformant database. 

ALL_EVENTS All events of the  specified EventType  

7.5.3 Wildcard Facility 1014 

Subscription notification supports wildcarded identifier components URNs, which are 1015 
identiiers which have some or all of their component parts replaced by the wildcard 1016 
character `%`. Identifier components comprise: 1017 
 1018 

 agencyID 1019 

 id 1020 

 version  1021 
 1022 
Examples of wildcarded identifier components for an identified object type of Codelist 1023 
are shown below. 1024 
 1025 
AgencyID = % 1026 
Id = % 1027 
Version = % 1028 
 1029 
This subscribes to all Codelists of all versions for all agencies. 1030 
 1031 
AgencyID = AGENCY1 1032 
Id = CODELIST1 1033 
Version = % 1034 



   

 

 
 

49 

 1035 
This subscribes to all versions of Codelist CODELIST1 maintained by the agency 1036 
AGENCY1 1037 
 1038 
AgencyID = AGENCY1 1039 
Id = % 1040 
Version = % 1041 
 1042 
This subscribes to all versions of all Codelist objects maintained by the agency 1043 
AGENCY1 1044 
 1045 
AgencyID = % 1046 
Id = CODELIST1 1047 
Version = % 1048 
 1049 
This subscribes to all versions of Codelist CODELIST1 maintained by the agency 1050 
AGENCY1 1051 
 1052 
Note that if the subscription is to the latest version then this can be achieved by the * 1053 
character 1054 
 1055 
i.e.  Version = * 1056 
 1057 
Note that a subscription using the URN mechanism cannot use wildcard characters.  1058 

7.5.4 Structural Repository Events 1059 

Whenever a maintainable artefact (data structure definition, concept scheme, 1060 
codelist, metadata structure definition, category scheme, etc.) is added to, deleted 1061 
from, or modified in the structural metadata repository, a structural metadata event is 1062 
triggered. Subscriptions may be set up to monitor all such events, or focus on 1063 
specific artefacts such as a Data Structure Definition.   1064 

7.5.5 Registration Events 1065 

Whenever a dataset or metadata-set is registered a registration event is created. A 1066 
subscription may be observing all data or metadata registrations, or it may focus on 1067 
specific registrations as shown in the table below: 1068 
 1069 

Selector Comment 

DataProvider Any datasets or metadata sets 
registered by the specified data provider 
will activate the notification. 

ProvisionAgreement Any datasets or metadata sets 
registered for the provision agreement 
will activate the notification. 

Dataflow (&Metadataflow) Any datasets or metadata sets 
registered for the specified dataflow (or 
metadataflow) will activate the 
notification. 

DataStructureDefinition  & 
MetadataStructureDefinition 

Any datasets or metadata sets 
registered for those dataflows (or 
metadataflows) that are based on the 
specified Data Structure Definition will 



   

 

 
 

50 

Selector Comment 

activate the notification. 

Category Any datasets or metadata sets 
registered for those dataflows,  
metadataflows, provision agreements 
that are categorised by the category. 

 1070 
The event will also capture the semantic of the registration: deletion or replacement 1071 
of an existing registration or a new registration. 1072 

7.6  Notification 1073 

7.6.1 Logical Class Diagram 1074 

 1075 

RegistrationURNValue

urn : URNValue

RegistrationId

registrationId : String

RegistrationEventComponent

11

StructuralEventComponent

Notification

EventArtefactId

EventComponent

EventDetails

eventTime : Date

subscriptionURN : URNValue

eventAction : ActionType

11

11

0..10..1

MaintainableArtefact

1..*1..*

 1076 
Figure 20: Logical Class Diagram of the Notification 1077 

 1078 
A notification is an XML document that is sent to a user via email or http POST 1079 
whenever a subscription is activated. It is an asynchronous one-way message.  1080 
 1081 
Regardless of the registry component that caused the event to be triggered, the 1082 
following common information is in the message: 1083 
 1084 

 Date and time that the event occurred 1085 

 The URN of the artefact that caused the event 1086 

 The URN of the Subscription that produced the notification 1087 

 Event Action: Add, Replace, or Delete. 1088 
 1089 
Additionally, supplementary information may be contained in the notification as 1090 
detailed below. 1091 

7.6.2 Structural Event Component 1092 

The notification will contain the MaintainableArtefact that triggered the event in a form 1093 
similar to the SDMX-ML structural message (using elements from that namespace). 1094 



   

 

 
 

51 

7.6.3 Registration Event Component 1095 

The notification will contain the Registration. 1096 
 1097 


