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Abstract 
 
Remote sensing has traditionally been the province of Earth scientists and the national security 
community. Early civilian satellite instruments were designed largely to meet the needs of 
weather forecasting, earth systems science and natural resource management. Social science 
applications were, generally speaking, not even considered. However, since the late 1980s, this 
began to change as a number of social scientists began to apply remote sensing imagery to 
understand the underlying social processes behind diverse phenomena such as deforestation, 
desertification, and urbanization. Since that time there has been a dramatic increase in the 
quantity and breadth of research that can be broadly categorized under the umbrella of “social 
science,” with newer applications in the fields of archaeology, demography, and human health 
and epidemiology. Chapter 3 of this guide provides an introduction to remote sensing for non-
technical audiences. Chapter 4 addresses fundamental issues in the application of remote sensing 
to social science research questions. Finally, Chapter 5 provides examples of social science 
applications in six different fields, and Chapter 6 provides a table listing the characteristics of 
major sensors. 
 
How to Use this Guide 
 
Note: Readers using the PDF version of this Thematic Guide may be interested in the additional 
functionality, described below, which is provided solely in the HTML version available through: 
http://sedac.ciesin.columbia.edu/tg/guide_frame.jsp?g=48.  
 
The richness of this guide resides in the many and varied links to bibliographic resources, many 
of which are available on-line. Readers are encouraged to toggle between the written sections and 
the references and related resources to gain a better sense of the breadth of research in this 
important area of study. Note that references are dynamically linked to sections of the guide. The 
Reference section in the table of contents provides references for the entire guide, but by toggling 
to references from a particular chapter or section, only references for that chapter or section will 
appear. The full bibliography of the Social Science Applications of Remote Sensing Guide 
exceeds 600 entries, many of which were not specifically cited in the text. To access the larger 
bibliography, users are encouraged to use the bibliographic search page. A full description of 
CIESIN Thematic Guide functionality can be found by accessing the help page from the 
navigation bar. 
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2.0  – Introduction 
 
 
Remote sensing has traditionally been the province of earth scientists and the national security 
community. Early civilian satellite instruments were designed largely to meet the needs of 
weather forecasting, earth systems science and natural resource management. While the results 
were often socially useful in a whole range of fields (agriculture, disaster mitigation, and forest 
management, to name a few), social science research questions were largely ignored. Some early 
remote sensing scientists pondered potential social science applications such as population 
counts, but the instruments themselves were never designed with this in mind, and few if any 
social scientists seriously considered how the data might be used in their research. However, 
since the late 1980s, this began to change as a number of social scientists began to apply remote 
sensing imagery to understand the underlying social processes behind diverse phenomena such as 
deforestation, desertification, and urbanization. Since that time there has been a dramatic increase 
in the quantity and breadth of research that can be broadly categorized under the umbrella of 
“social science,” with applications in the fields of archaeology, demography, and human health 
and epidemiology. This increase is determined in part by a growing awareness of the potential of 
remote sensing to inform issues of relevance to the social sciences, and by the higher spatial and 
spectral resolution of new satellite sensors that make them increasingly applicable to social 
science research questions. 
 
This guide has a number of objectives. Firstly, it seeks to provide an introduction to the use of 
remote sensing to social scientists. In Chapter 3, the guide provides an introduction to remote 
sensing technology and pointers to a number of on-line tutorials (through the references and 
related resources). Secondly, it highlights the advantages of remotely sensed data for social 
science research, and seeks to highlight some of the key methodological concerns when 
integrating remote sensing with socioeconomic data (Chapter 4). And thirdly, it summarizes the 
methodology and results of research using remote sensing in several different fields (Chapter 5). 
Finally, Chapter 6 provides a table listing the technical specifications of various remote sensing 
instruments together with descriptions of the kinds of things these sensors can detect. 
 
The guide owes much to pioneering work in this field that was compiled by the National 
Research Council in 1998 under the title People and Pixels: Linking Remote Sensing and Social 
Science (Liverman et al. 1998). This was the first edited volume to systematically compile and 
evaluate state-of-the-art remote sensing applications in social science research. In addition to an 
overview piece, chapters in that volume addressed:  
 

• land-use and land-cover change (LUCC) research 
• linking satellite, survey and census data 
• analysis of population dynamics based on LUCC 
• archaeological research 
• urban attributes modeling 
• famine early warning systems 
• health applications 
• remote sensing data available to social scientists 

 
We have sought to build on this foundation by focusing on progress towards the application of 
remote sensing data, and the integration of remote sensing data with socioeconomic data, in a 
number of related research areas: 
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• population and the environment 
• human health and epidemiology 
• archaeology and anthropology 
• international relations, law and policy 
• land use and land cover 
• urban studies 

 
These are covered in Chapter 5. 
 
As noted above, while remote sensing has frequently been used for socially useful purposes, such 
as weather forecasting, disaster response or predictions of crop yields, there are relatively fewer 
examples of remote sensing applications within the context of social scientific research (Rindfuss 
and Stern 1998). Our focus here is the integration of remote sensing in social science research 
(the agenda of the academic social sciences) and social scientific research (social research using 
scientific methods). This could be research that seeks to understand the socioeconomic drivers 
(e.g., population size and location, policies, and market forces) of changes in the landscape or the 
environment detectable by remote sensing imagery. It could also be research that seeks to 
understand how biophysical factors, geographic location, and infrastructure (also detectable by 
remote sensing images) impact upon human activities, health and well being. Finally, it could be 
research that seeks to better understand the relationship of these factors in the past, as would be 
the case in archaeology and history. These research applications explicitly seek to test hypotheses 
about the relationship between humans and the environment in the past, the present, and, in some 
cases, into the future (through modeling). To a lesser extent, this guide also covers research 
conducted by government agencies and the private sector on social phenomena, which is driven 
by the need to solve social problems as well as by commercial interest. 
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3.0 - Remote Sensing1   
 
This chapter provides an overview of remote sensing technology for non-specialists. 
Fundamentals of remote sensing and image interpretation are described in a number of online 
tutorials, including NASA’s Remote Sensing Tutorial and the Canada Center for Remote Sensing 
Tutorial (see References and Related Resources for URLs). The International Society of 
Photogrammetric Engineering and Remote Sensing (ISPRS) also has lists of on-line remote 
sensing resources. For those desiring more detailed reference materials on remote sensing, it is 
recommended that they obtain Lillesand and Kiefer’s Remote Sensing Image Interpretation or 
Jensen’s Remote Sensing of the Environment (see References and Related Resources for full 
citations). 
 
3.1  History of Remote Sensing 
 
Modern remote sensing began with invention of the camera obscura in early 1800s. Shortly 
thereafter, the first aerial photograph was taken in Paris in 1858 with a camera mounted on a 
balloon. During World War I cameras, mounted on planes were used in military reconnaissance. 
The greatest expansion of the use of aerial photography occurred during World War II primarily 
for military reconnaissance. The military also pioneered the development of remote sensing 
outside the eye’s visible range, such as near infrared imagery for discriminating camouflage from 
real vegetation. After the war several civilian applications were developed including hazard 
mapping, vegetation mapping and planning. Until the early 1960s, the aerial photograph remained 
the only tool for depicting the earth’s surface from a vertical (or nadir) perspective.  
 
Space remote sensing began with the launch of the first military intelligence satellite in 1958. In 
1960 the first U.S. meteorological satellite, TIROS-1, was launched by an Atlas rocket into orbit. 
This satellite was devoted mainly to looking at clouds. Onboard this satellite, were the first non-
photographic sensors. TIROS, for Television Infrared Observation Satellite, used vidicon cameras 
to scan wide areas at a time to produce generalized weather maps. The 1972 launch of the Earth 
Resource Technology Satellite (ERTS), later renamed Landsat, initiated the era of land remote 
sensing. These satellites were equipped with multi-spectral sensors dedicated to continuous 
imaging of the earth’s surface.   
 
3.2  Fundamentals of Remote Sensing 
 
The process of remote sensing involves the detection and measurement of radiation of different 
wavelengths reflected or emitted from distant objects or materials, by which they may be 
identified and categorized by class/type, substance, and spatial distribution. The background 
required for use of remote sensing tools may seem overwhelming at first. The decisive factor in 
the successful application of remote sensing data, however, need not be the technical 
sophistication of the user, but rather the suitability and precise use of the tool to obtain accurate 
and relevant data. A general grasp of the technical process that transforms electromagnetic energy 
into useful information can improve and expand the appropriate use of these tools. Nevertheless, 
depending on the application, social scientists wishing to work with remote sensing imagery 
would do well to partner with physical scientists with a deeper understanding of how the imagery 
represents physical processes on the ground. 
 

                                                      
1 This chapter was revised January 2006. 
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In the broadest sense, remote sensing refers to information gathered by measuring and 
interpreting signals. To use perhaps the simplest analogy, the human body is constantly involved 
in a variety of remote sensing tasks. Hearing and vision are two obvious examples, involving the 
gathering and interpretation of sound and light waves, both in limited ranges of the entire sound 
and light spectra.  
 
Active and passive remote sensing are used to describe the way sensors gather data. To illustrate 
the two types of sensors, consider a snapshot camera, a sensor that captures electromagnetic 
radiation in the visible spectrum. Outdoors in full daylight, a camera is ordinarily used as a 
passive sensor in that it receives reflected visible light from its surroundings and uses optics, a 
shutter, and film to create a lasting image. At night, on the other hand, when there is inadequate 
light for most cameras to capture a useable image, the camera may employ a flash. The flash is 
emitted from the camera and bounces off the object to illuminate it, just as an active (or radar) 
sensor sends a burst of energy towards its target and then receives the reflected radiation.  
  
A key factor in the choice between passive and active sensor is the relative strength of the 
potential signal each system must measure.  For a passive system, the source of the signal is 
ultimately the sun, which emits electromagnetic radiation at its highest intensity between the 
ultraviolet and infrared ranges (see discussion of electromagnetic energy in Section 3.3).  In the 
radar wavelength ranges, however, sensors must provide a signal of sufficient intensity to travel 
to the earth, and return with enough strength to be distinguishable from the background “noise” 
from other sources. 
 
All remote sensing systems – active and passive – generally have the following seven elements 
(see Figure 1). 
 

Figure 1. Diagram of Elements of a Remote Sensing System 

 
Source: Canadian Centre for Remote Sensing, Fundamentals of Remote Sensing 
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Energy Source or Illumination (A) – A basic requirement for remote sensing is an energy 
source to illuminate or provides electromagnetic energy to the target of interest. For passive 
instruments, this is usually the sun; for so-called active instruments, the sensor itself emits an 
pulse of energy. 
Radiation and the Atmosphere (B) - As the energy travels from its source to the target, it will 
come in contact with and interact with the atmosphere it passes through. This interaction also 
takes place a second time as the energy travels from the target to the sensor.  Inevitably there is a 
certain degree of  atmospheric scattering of radiation (see Section 3.3). 
Interaction with the Target (C) - Once the energy makes its way to the target through the 
atmosphere, it interacts with the target depending on the properties of both the target and the 
radiation.  
Recording of Energy by the Sensor (D) - After the energy has been scattered by, or emitted 
from the target, a sensor (remote - not in contact with the target) collects and records the 
electromagnetic radiation.  
Transmission, Reception, and Processing (E) - The energy recorded by the sensor has to be 
transmitted, often in electronic form, to a receiving and processing station where the data are 
processed into an image (hardcopy or digital).  
Interpretation and Analysis (F) - The processed image is interpreted, visually or 
digitally/electronically, to extract information about the target illuminated.  
Application (G) - The final element of the remote sensing process is achieved by applying the 
information that has been extracted from the imagery about the target in order to better 
understand it, reveal some new information, or assist in solving a particular problem.  
 
3.3  Electromagnetic Energy 
 
Remotely sensed data are collected in many regions of the electromagnetic spectrum (Figure 2). 
Data recorded from each part of the spectrum can provide distinct information on characteristics 
of the Earth’s surface or properties of the atmosphere. For example, healthy green vegetation 
reflects highly in the near-infrared region of the spectrum, whereas water bodies tend to reflect 
only a small amount of incoming radiation in the visible region. All remote sensing instruments 
collect electromagnetic radiation that is reflected, emitted, or scattered from the Earth’s surface 
and atmosphere. So-called active sensors such as radar and lidar emit energy that bounces off the 
land or water surface and returns to the sensor to be recorded. The way the energy is directed or 
scattered by the surface, and the time it takes for the energy to return, reveals information about 
surface characteristics. Because of the long wave lengths employed by radar, the signals can 
penetrate clouds, thereby allowing scientists to record information about normally cloud-covered 
areas. This is an asset in tropical areas such as the Amazon River basin.  
 
Passive sensors, on the other hand, typically rely on solar illumination of the Earth’s surface, 
though some are equipped to detect night-time lights and gas flares. These sensors are “passive” 
because they do not emit their own energy, but rather rely on energy reflected or emitted from the 
earth’s surface. Unlike radar sensors, they are unable to penetrate clouds. It is interesting to note 
that the visible portion of the spectrum—those wavelengths that humans can see—is a very small 
segment of the spectrum. Part of the strength of remote sensing is that it enables scientists to 
“see” portions of the spectrum that are outside the range that the human eye can detect. Scientists 
can combine non-visible portions with visible ones through color composites, assigning each 
band (or portion of the spectrum detected by the instrument) the colors red, green and blue. 
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Figure 2.  The Electromagnetic Spectrum   

 
 

 Source: ICRSE, Remote Sensing Core Curriculum, Volume 2, Lecture 2.2. 
 
A sensor’s bandwidth and the number and placement of bands (within the spectrum) define its 
spectral properties. Panchromatic sensors measure reflected energy in a single portion of the 
electromagnetic spectrum, usually the visible to near-infrared regions. Multispectral sensors, on 
the other hand, collect reflectance information in discrete portions of the spectrum, with each 
being recorded as a separate image called a band or channel. When these bands are displayed on a 
computer, with one band shown through each of the blue, green and red channels of the monitor, 
they yield a combined color image. Landsat 7’s Enhanced Thematic Mapper, for example, is a 
multi-spectral instrument that collects data in eight bands – three visible (one each for blue, 
green, and red), a near-infrared, two middle-infrared bands, a thermal-infrared and a higher 
spatial resolution panchromatic band. By contrast, the Moderate Imaging Spectrometer (MODIS) 
collects data in 36 different spectral regions, and the Airborne Visible/Infrared Imaging 
Spectrometer (AVIRIS) is a hyperspectral instrument that collects data in 224 spectral bands. A 
table of sensors and their capabilities is included in Annex 4. 
 
Ultimately, what a sensor measures is the intensity of radiation that actually reaches the sensor, 
which is termed the at-satellite radiance. Radiance values are commonly translated into digital 
numbers (DNs). The possible range of DNs varies between sensors, although ranges of 0-255 (for 
8 bit images) and 0-1023 (for 10 bit images) are common, with higher values corresponding to 
greater brightness. Radiance is captured by a two dimensional array of picture elements, or pixels.  
A DN for a pixel in a specific band is determined by the intensity of the radiance captured for that 
particular portion of the electromagnetic spectrum.  If space-based passive sensors were able to 
accurately, precisely and repeatedly capture the actual reflectance from a feature on the ground, 
regardless of the time of day, season or weather conditions, much of the hard work of image 
processing would be eliminated. But the reality is that the atmosphere scatters radiation that is 
reflected back out to space. Smoke, haze, clouds and humidity exacerbate the problem, and can 
block reflected energy entirely. Data from shorter wavelengths are more likely to be blocked or 
scattered by clouds or atmospheric particles, whereas images using sensors capturing longer 
wavelengths are less likely to be disturbed by atmospheric conditions between the sensor and the 
target object.  
   
3.4  Platforms and Orbits 
 
High-altitude remote sensing originated in the mid-1800s with aerial photography by balloon and, 
in at least one instance, the use of cameras attached to the underside of birds.  Airplanes became 
the dominant remote sensing “platform” by the early 20th century. This practice continues to 
evolve for wartime, intelligence, commercial and government applications. An advantage of 
airborne remote sensing, is the capability of offering very high spatial resolution images (20 cm 
or less). The disadvantages are low coverage area and high cost per unit area of ground coverage. 
It is not cost-effective to map a large area using an airborne remote sensing system. Airborne 
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remote sensing missions are often carried out as one-time operations, whereas earth observation 
satellites offer the possibility of continuous monitoring of the earth. The development of satellite 
remote sensing had greatly improved the ability to cover large areas. (For details on historic 
development of satellite remote sensing and the various platforms and sensor systems, please 
refer to NASA’s Remote Sensing Tutorial and a section by John Estes in the Remote Sensing 
Core Curriculum.) 
 
There are two groups of satellites depending on the orbit in which they are placed. A 
geostationary orbit is established when a satellite is placed at a very high altitude, roughly 36,000 
km above the earth’s equator, and caused to orbit with the earth’s rotation (called a prograde 
orbit).  The altitude may vary slightly from one geostationary satellite to the next, depending 
upon the mass of the satellite, but, for the most part, this is a fundamental physical constraint.  
The rules of geometry – that is, the sight line from the satellite’s position above the equator to the 
farthest edge of the earth’s sphere – dictate that geostationary satellites can only “see” limited 
area at any one time. The laws of physics and capabilities of engineering limit their spatial 
resolution to a range of about 1 to 10 square kilometers. The total image or scene size, known as 
the field of view, is often thousands of kilometers. Thus, unless a geostationary satellite spins or 
turns its optics, its view is necessarily fixed. This allows for continuous monitoring, and often a 
very large, synoptic view of much of one entire hemisphere.  The coarse (km range) resolution 
versus the wide, continuous field of view constitute the main tradeoffs to consider for this orbit 
type.  These characteristics make geostationary satellites best for collecting weather and climate 
data (such as cloud cover and surface temperature) and relaying communications data, although 
AVHRR data are used for global- and regional-scale land cover analyses.  
  
The other group of satellites, by far the largest group of earth-orbiting satellites is with the sun-
synchronous or polar-orbiting. These are lunched below the altitude of geostationary satellites 
closer to the earth’s surface, at orbits ranging from 700km to 1000km. These satellites usually 
orbit at a steep inclination relative to the equator, in the direction opposite the earth’s rotation, 
known as a retrograde orbit.  When the satellite’s orbit and earth’s rotation are combined, they 
result in an s-shaped path relative to a map of the earth’s surface.  Given enough time, the orbits 
and rotations of the earth bring the satellite over the same location, leading to the term exact 
repeat satellites.  The number of orbits between each return to the same longitude and latitude is 
called the repeat cycle.  These satellites usually orbit the earth in roughly 100 to 120 minutes, 
circling several times per day, returning a satellite to the same position over the earth’s surface 
only after 2 weeks or more.  The speed of motion limits the time that a satellite spends over a 
location, and the amount of time a scanner can “look” at any single ground cell (called the dwell 
time).  Most exact repeat satellites that use passive sensors are also in sun synchronous orbits, 
meaning that they cross the same latitude at the same daylight time with each orbit, but with their 
location shifted to a different longitude.  Their lower altitude allows these satellites to obtain 
images with spatial resolution ranging from 1-200 meters per side of a pixel, and an image width 
ranging from tens to thousands of kilometers per scene.  
 
As the satellite passes over the earth’s surface, its motion can be described in terms of a ground 
track that it follows at a certain altitude. Most satellites are nadir looking, meaning that their 
sensing equipment is aimed straight down toward the center of the earth. However, normal 
measurements generally include areas substantially on either side of this ground track, and that 
total area is called the swath width. Because most low-orbiting satellites follow a polar orbit, their 
ground tracks, and thus their swaths, are spread furthest apart at the equator, and are compressed 
at the poles. As a consequence, there is an overlap, called side lap, of neighboring 
swaths. Logically, this side lap is smallest at the equator and increased at the poles.  
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A basic understanding of ground tracks, swath widths, and side lap is helpful in designing a 
remote sensing experiment for a few reasons.  First, weather and other temporary conditions may 
prevent good data acquisition for the first and/or “best” pass of a satellite directly over a given 
location.  In this case, side lap may allow for multiple acquisitions of the same location on the 
surface with only a short delay, provided that the target location can be seen during two or more 
subsequent passes of the same satellite.  This situation is more likely to occur if the sensing target 
is at high or low latitude than at the equator.  Also, side lap may allow experimenters to obtain 
data for a single location in much more rapid time series than would be possible if the 
experimenters were to wait for the satellite to exactly repeat its path—a matter of hours, rather 
than weeks.  Finally, side lap may allow the same location to be viewed from slightly different 
angles at slightly different times of the same day with neighboring orbital paths. This may 
provide additional information from shading caused by the sun’s angle, and other factors that 
change with relatively small differences in position and time.  
 
3.5  Sensor Characteristics 
 
A sensor is characterized by its spectral properties (number and placement of bands), its orbital 
altitude and path, its swath width, and its spatial resolution. Spatial resolution is measured in 
terms of the size of one pixel projected on the ground. Spatial resolution is directly tied to the size 
of the features that can be resolved (or “seen”) on the ground. The higher the resolution, the less 
likely that there will be “mixed pixels” in which radiances effectively represent an average of 
land cover types in the ground area represented by that pixel (e.g., half lake and half forest). 
Commercial high resolution sensors have a spatial resolution in the 0.6-10 meter range, medium 
resolution sensors fall in the 10-50 meter range, and low resolution sensors have greater than 50 
meter resolution.  
 
Until the advent of the commercial satellites IKONOS and QuickBird, with resolutions of one 
square meter or finer, high resolution imagery was the exclusive province of intelligence-
gathering agencies. Most social science applications do not command the financial resources 
required to obtain such high resolution data, nor are images of this resolution generally required, 
except perhaps in the area of  international relations, law and policy (see Section 5.4). Most social 
science research tends to utilize polar-orbiting satellites with medium spatial resolution, such as 
the Landsat, SPOT, TERRA and, more recently, AQUA satellites (see NASA’s Destination 
Earth). They provide good spectral and ground resolution, with multiple visible, infrared, and 
panchromatic bands and pixel width ranging from 5 to 30 meters. 
 
Table 1 summarizes the platform, orbit and sensor characteristics of the world’s major satellite 
systems. More details on these and other satellites, the features they measure, and their uses in the 
social sciences are included in Annex A. An on-line source of information about sensor 
characteristics is Isciences’ Guide to Current Sensors (see References).  
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Table 1. Characteristics of major Satellite systems 
 

 IKONOS1† SPOT2 Landsat1† TERRA (MODIS) 1† AVHRR1†† RADARSAT3r 
Type:  
 

Sun-synchronous Sun-synchronous Sun synchronous Sun Synchronous Sun Synchronous Sun-Synchronous 

Descending Pass:  
 

10:30 a.m. 10:30 a.m. 9:45 a.m. * 
10:00 a.m. ** 

10:30 a.m.   

Altitude:  
 

681 km 832 km 920 km * 
705 ** 

705 km, 833km 798 km 

Inclination:  
 

98.1 degrees 98.7  98.2 degrees 98.8 degrees 98.6 degrees 

Period:  
 

 101.4 minutes 100 90 minutes 102 minutes 100 minutes 

Repeat Cycle:  
   

2.9 days at 1 m res.  
1.5 days at 1.5 m res. 

26 days 18 days * 
16 days ** 

2 days Twice daily 24 days 

Spatial Resolution 
(in Square Meters) 

1-4  10 - Panchromatic 
20 - Multispectral 

15 - panchromatic 
30 - TM 
80 - MSS 

250 (bands 1-2) 
500 (bands 3-7) 
1000 (bands 8-36) 

1,100  LAC 
4,000 GAC 
 

8-100 

Swath Width 11 km 60 km 185 km 2330 km  2700 km 50-500 km 
Archive 1999 1986 1972 1999 1978 1995 

1   United States, 2   France, 3  Canada, * Landsat 1, 2, and 3 Characteristics, **  Characteristics of Landsat 4, 5 and 7, r    Radar 
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3.6  Data Processing, Interpretation and Analysis 
 
Much of the technical work of remote sensing involves pre-processing and applying radiometric 
and geometric corrections to imagery to compensate for errors due to factors such as atmospheric 
interference of incoming radiation and sensor and data stream irregularities. Once such 
corrections are applied, imagery must be georeferenced. Georeferencing is the process of taking 
the image in its raw format (rows and columns of data) and linking it to the land that it covers. 
Images are georeferenced by linking spatially distributed control points in the satellite image to 
points on base maps or points referenced in the field through global positioning systems. The 
raster data in the image is thereby registered to a Cartesian coordinate system, and can be 
combined with other georeferenced data sets in a geographic information system. 
 
 The processed data can now either be visually interpreted or classified using manual or 
automated processes. The main elements of visual image interpretation involve gradients of tone 
or color, resolution, size and shape, texture and pattern, site and association, and height and 
shadows. Given their knowledge of the characteristic spectral signatures of different land cover 
types (Figure 3), scientists my inspect black and white images of each band separately in order to 
identify features and patterns. 
 
For many purposes, data that is collected from the earth’s surface, which represents a continuous 
variation, needs to be categorized (de Sherbinin et al. 2002). Image classification is the process of 
creating discrete classes or categories of land cover, utilizing information from some or all of the 
bands to group together pixels with similar spectral signatures. Supervised classification entails 
providing the software with sample pixels that represent specific features, such as boreal forest, 
and then having the computer classify every pixel with a similar spectral signature as boreal 
forest. Analysts may also use images from different seasons in order to discriminate vegetation 
cover types that have different phenologies, such as deciduous and evergreen forests. For an 
example of supervised classification, see Figure 4. In unsupervised classification, the analyst 
specifies the desired number of classes, and the computer automatically sorts the pixels according 
to their spectral signatures. The analyst then labels the resulting groups based on some local 
knowledge of the land cover patterns.  
 

Figure 3. Spectral Signatures for Common Surface Types. The spectral signature is the 
characteristic pattern of electromagnetic radiation that is obtained at the sensor from that land 
cover type across different portions of the spectrum. The numbers across the bottom represent 
wavelengths in nano-meters. 

 
Source: USGS, Earth Shots: Satellite Images of Environmental Change. 
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Once classified, it is necessary to verify or validate that the output product accurately represents 
the actual composition, content, structure or land surface characteristics being mapped. Validation 
requires either field visits, ground-truthing or comparing the classified image with existing maps  
or images of sufficient detail. Statistics can be derived for the classified imagery indicating the 
general and specific (class-wise) agreement between the pixels or classes used, letting the user 
know which were classified correctly and which ones were not.  
 
Validation results are also sometimes presented as a percentage value associated with the map 
that communicates how accurate the map is on a per pixel basis. Since the highest confidence 
rankings reported by satellite land cover data sets are between 85% and 90% (for the easiest types 
of land cover to classify), for an image with a per pixel accuracy of 85% the probability that one 
pixel out of four is incorrectly classified is close to 0.50.  
 
The output of remote sensing data analysis can be presented in a variety of ways including a 
printout of the enhanced image itself, an image map, a thematic map (e.g. land use map), a spatial 
database, summary statistics and/or graphs (Jensen 1996). The output data can be integrated with 
a geographic information system (GIS) database for further analysis. 
 

Figure 4.  Image Classification of the “Fishbone” Deforestation Pattern in the Brazilian 
Amazon 

 
Source: Anthropological Center for Training and Research on Global Environmental Change (ACT), 
Indiana University, in de Sherbinin et al. (2002).  
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4.0 – Remote Sensing and the Social Sciences 
 
 
This chapter begins by examining how the use of remote sensing data can enhance social science 
research. It then proceeds to address several challenges to the application of remote sensing data 
in the social sciences: scale, data integration, interdisciplinary research, and confidentiality.  
 
4.1  The Contribution of Remote Sensing to Social Science Research 
 
Although remotely sensed data will rarely, if ever, completely supplant other sources of data in 
social science research, there are numerous ways that they can assist in answering research 
questions that are fundamental to the social sciences. One important contribution is the synoptic 
view from space that only remote sensing can provide. Remote sensing imagery can provide 
snapshots of phenomena over large areas, thus broadening the scope of social science inquiry. 
Examples include basin-scale analyses of Amazon deforestation, or scenes from space that pick 
up archaeological artifacts that are not visible on the ground or to the naked eye (Sever 1998). 
The ability of remote sensing to pick up and then represent parts of the non-visible spectrum in 
visible colors (red, green and blue) uncovers aspects of the natural and built environment that 
were previously opaque to social scientists.  
 
Another advantage of the synoptic view is that scientists can “custom design” the spatial 
boundaries of their research. Political scientists, economists and others are often restricted to the 
use of national-level data sets. Remote sensing allows scientists to observe, and perhaps to 
understand certain processes that transcend national boundaries, such as cross-border social 
networks or patterns of trade and interaction (Blumberg and Jacobson 1997). As cross-border 
flows increase in the age of globalization, remote sensing may represent an important means of 
tracking these flows, whether they be flows of raw materials, water resources, or other natural 
resources. Furthermore, data collected using a common algorithm can provide valuable, 
consistent and objective cross-country comparisons that would not be available through data 
collected by national agencies (e.g. Sutton and Costanza 2002). 
 
Remotely sensed data may provide a cost-effective method to reduce, but not replace, expensive 
ground data collection. In many parts of the world, spatial data on roads or infrastructure, farm 
sizes, industrial activities, or any number of other variables visible from space are either not 
available or difficult to obtain. In other instances, an area may simply be inaccessible for reasons 
of political turmoil or armed conflict. In these cases, remote sensed data, utilized independently 
or entered into a geographic information system (GIS), may provide an alternative source of data. 
Another example would be land uses by individual farmers. Farm level surveys can be employed 
to determine the amount of land farmed and the proportions in different land-use classes (e.g., 
Marquette 1998), but this may be costly and potentially less accurate than overlaying farm 
property boundaries onto remote sensing images (e.g., McCracken et al. 1999).   
 
Social scientists are often interested in how context affects human behavior (Rindfuss and Stern 
1998). Important contextual variables for an analysis of what crop small holders are likely to 
grow might include the following: the world price for a commodity, the farm gate price, the 
distance to major markets, what other farmers are growing, and the soil type and quality. Remote 
sensing can provide important information on biophysical parameters such as slope, aspect, soil 
types, water bodies and vegetation cover, and, in some cases, infrastructure parameters such as 
roads, pipelines, or power lines, that can impact people’s decision-making or livelihood options.  
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Data derived from remote sensing can provide dependent variables for numerous studies of 
human impacts on the environment. Although such studies are often focused on land-use and 
land-cover change (deforestation, agricultural expansion, urban sprawl, etc.), remote sensing can 
also provide valuable data on other human impacts such as air and water pollution (point source 
and non-point source), ozone depletion, coral bleaching, and land degradation, among others. 
These variables are particularly important for human dimensions of environmental change 
research, and can be associated with a variety of independent variables such as government 
policies, technologies, and economic and demographic factors. 
 
Remote sensing may provide additional measures of certain phenomena, which would allow 
social scientists to cross-check or complement their own data sources derived from field surveys, 
censuses or administrative records (Rindfuss and Stern 1998). Censuses, for instance, generally 
rely on household measurement of population. Identification of houses or new settlements from 
space can facilitate more accurate censuses (see Section 5.1). Measures of urban extent may be 
more accurately generated by remote sensing than by more traditional measures, such as official 
“city limits” based on administrative boundaries (see Section 5.6).  Administrative records may 
provide parcel-level information that can be cross-checked against remote sensing images. The 
time series capabilities of remote sensing mean that these data can also be readily updated. These 
data may also be more consistent and freer from the kinds of bias that may are inherently part of 
data collected through survey instruments (Blumberg and Jacobson 1997). 
 
Because many remote sensing scientists are trained in the natural sciences, social scientists who 
become experienced in remote sensing image interpretation can bring valuable insights to bear on 
the spatial patterns they see on the ground. Examples may include spectral differences in land use 
types that are associated with different forms of land tenure, or socially important distinctions in 
types of land use that may be masked by one land cover classification such as “forested” (e.g., oil 
palm plantation versus natural palms) (Rindfuss and Stern 1998).  
 
4.2  Scale 
 
Questions regarding the appropriate scale of research have become increasingly important in 
social science research. There is also increasing interest in linking scales, from local to global and 
global to local. As Gibson et al. (2000) point out, the natural sciences have long understood the 
importance of scale, but apart from perhaps geographers, social scientists as a whole have been 
less explicit, less precise, and more variable in their treatment of scaling issues. Here we address 
primarily issues of spatial scale, as opposed to temporal scale or hierarchies (taxonomy represents 
one kind of hierarchy, in which a species is also part of a family, phylum and kingdom). 
 
One of the first issues to be addressed in any discussion of scale is differences in terminology 
employed by different disciplines with regards to the use of the terms “large scale” and “small 
scale.” Cartographers and some geographers use the term to refer to map ratios; thus, 1:1000 is a 
large scale representing a small area, and 1:1,000,000 is a small scale representing a large area. 
All others tend to use these terms with precisely the opposite meaning. To the non-cartographer, a 
large-scale phenomenon is one that occurs over a large area, and a small-scale phenomenon is 
limited to a local area. Here we will use the terms fine scale for a localized phenomena and broad 
scale for phenomena at national, regional or global levels. 
 
Remote sensing data come in a variety of spatial resolutions. The most commonly used data for 
social science applications are from medium-resolution sensors such as Landsat Thematic 
Mapper and SPOT, with approximately 20-30 meter ground resolution. Coarser resolution data, 
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such as AVHRR (with 1 km grid cells), are sometimes used for broad scale analyses of countries 
or regions. The advent of higher spatial resolution (finer scale) commercial data (IKONOS and 
QuickBird, each with approximately one meter resolution) means that social scientists will have a 
much greater diversity of data to pick from, depending on the needs of their application. As 
shown in Figure 5(a), the resolution of the sensor can have a big effect on the variables that social 
scientists may be interested in measuring, such as the area or proportion of land found in different 
land-cover classes for the same geographic area. A higher resolution sensor will tend to more 
accurately reflect the actual extent of land-cover in any given class, and may produce a higher 
number of classes if, for example, one of the classes happens to occur only in isolated patches 
surrounded by other, more dominant, classes (e.g., small wetlands in forested areas). At lower 
spatial resolution (broader scale), the spectral signature of that pixel will reflect the most 
dominant class. Classes themselves are scale dependent, which is why the recently developed 
Land Cover Classification System (see References) has a hierarchical organization of classes, 
with higher-level categories appropriate for global land cover classifications and lower-level sub-
categories appropriate for local or national mapping. 
 
Landscape ecologists have long been aware of scale effects on standard measurements. 
Comparisons of landscape metrics using Landsat and AVHRR data for a heavily deforested area 
in Bolivia showed that both mean patch size and total edge length increased exponentially with 
decreasing spatial resolution (increasing pixel size) of the sensors (Millington et al. 2002). 
Similar work in Portugal confirms that the spatial resolution of the imagery has a strong effect on 
landscape metrics (Carrao and Caetano 2002). Thus, social scientists need to familiarize 
themselves with these scaling issues, and determine which resolution will yield optimal results for 
the phenomenon they are interested in. Highly heterogeneous or “patchy” landscapes will 
generally benefit from higher resolution data, with the trade off that such data generally cost more 
and may require longer processing times. 
 
Figure 5(b) shows that if the area covered by a study is increased, the proportion of the landscape 
covered by different classes will be altered. If, in this example, black represents urban land uses, 
we see that the proportion that is urban goes from (left to right) 6 % to 32 % to 35 % solely as an 
artifact of the increasing area that is covered by the study. That is why it is important to have a 
clear rationale for choosing the extent of the study area (e.g., a watershed or an administrative 
area), and if the study is longitudinal, to be sure to retain the same extent over time. Simply 
choosing the “footprint” of the remote sensing image will not be an adequate approach, both 
because such a study area would be an artifact of the technology rather than a well-reasoned 
delineation based on social criteria, and because the footprint size can change over time as new 
sensors are introduced. 
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Figure 5. Illustration of (a) increasing pixel size and (b) increasing extent in a 
landscape data set 

 
Source: Turner, M., R. O'Neill, R. Gardner, and B. Milne. 1989. Effects of changing spatial scale 
on the analysis of landscape pattern. Landscape Ecology, Vol. 3, No. 3/4, pp. 153-162. With kind 
permission of Kluwer Academic Publishers. 
 
According to Gibson et al., “The crucial issue linking scale and level to explanation is whether 
the variables used to explain a pattern are themselves located at the same level as the pattern or at 
different levels.” An example of a higher level variable operating at a lower level would be 
national-level legislation or price supports that affect a local-level phenomenon such as 
conversion of forest land for pasturage.  
 
Researchers working with social science and remote sensing data must make important decisions 
about the level of aggregation of both remotely sensed and social science data. On the social side, 
the finest grain is the individual, and on the remote sensing side, the finest grain is the picture 
element (or pixel; progress has been made in mining sub-pixel level information) (Rindfuss and 
Stern 1998). Decisions on appropriate scale and how to aggregate are driven by theory and data 
availability. Social data may only be available at census tract or county level, which automatically 
limits the scale of research to those spatial units. Even these administrative units may vary greatly 
in spatial extent; for example, some counties in Texas are larger than entire state of Rhode Island. 
Furthermore, linking actors to what is happening on the ground can sometimes be difficult, 
especially if, as in the United States, people are highly mobile and commute long distances to 
work.  
 
If one is not careful in one’s understanding of scalar dynamics, it is possible to commit what is 
termed an “ecological fallacy.” A textbook definition of ecological fallacy is “the danger of 
making an analysis at one level apply at other levels, for example, of inferring individual 
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characteristics from group characteristics” (Mayhew 1997). Wood and Skole (1998) extend this 
definition to the spatial realm, writing that “the ecological fallacy can be thought of as a special 
case of spuriousness in which the relationships found in… regression analyses are due to a shared 
spatial location, rather than a causal connection.” An example of an ecological fallacy would be 
the following. Say that population growth rates were found to be highly correlated with 
deforestation rates at the county level in a particular region, the researcher might conclude that 
population growth was a significant driver of deforestation. Yet, it may be that the population 
increased dramatically in urban areas contained within those counties, and that in fact the rural 
population, located where most of the deforestation occurred, remained relatively constant. This 
would be a form of spurious correlation; the real “culprit” might be something quite different, 
such as government policy or price mechanisms. 
 
Aggregation can also mask important dynamics that are occurring at finer spatial resolutions. 
That is why some researchers are focusing on property-level dynamics of land cover change, 
linking household survey data to remote sensing images aggregated at the farm level (see CIPEC 
and Evans and Moran 2002; for more on this topic see Section 5.5 on land-use and land-cover 
change research).  
 
4.3  Data integration 
 
The difficulties of data integration include some of the scale issues described above, but extend 
beyond those issues to include problems related to georeferencing of social data, properly co-
registering this data with the remote sensing data, and data quality. 
 
Government-funded census and survey data are usually aggregated to census or administrative 
units that are well-defined, though they may change through time. Other variables of interest to 
social scientists, such as policies and market forces, also usually have an impact within defined 
administrative areas such as the nation state or a province within a country. For broad scale 
analyses, analyzing patterns in remote sensing images over the large areas that fall within 
administrative boundaries is relatively straightforward. Land-use/cover change matrices can be 
developed, air or water pollution levels can be understood, and other variables that may be of 
interest can be analyzed and clearly linked to the socioeconomic variables of interest. However, if 
one wishes to understand the specific factors that are affecting land-use decisions at a local level, 
a fine-scale analysis is required. For the most part, this will require surveys of land managers 
where they work or reside, and then, some kind of linkage needs to be made between the survey 
results and the actual land (identified in a remote sensing image) that is managed by the 
respondent. 
 
Evans and Moran (2002) and Rindfuss et al. (2001) address this issue in some depth. According 
to Rindfuss et al., a lot depends on whether the researcher starts from remotely sensed data of the 
land and seeks to link it to survey data, or from survey data and seeks to link it to landscape 
change. Regardless of the direction of the linkage, the researcher is confronted with the difficulty 
(especially in developing countries without extensive cadastral surveys) of correctly identifying 
and georeferencing the plot of land that the manager (whether owner, renter, or squatter) actually 
manages. Going to the field with a GPS unit is one approach, yet this is extremely time 
consuming, and will likely result in smaller sample sizes with possibly lower statistical 
significance of findings. Once the plot is georeferenced, it needs to be co-registered with the 
remotely sensed image in the Cartesian coordinate system. Co-registration in most cases is 
relatively straightforward. But in some instances, there may be difficulty in registering the remote 
sensing image in a Cartesian coordinate system because of a lack of ground control points 
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(clearly identifiable features such as road intersections or sharp bends in a river). This spatial 
uncertainty would likely increase the error of any subsequent operations, such as overlay analysis 
in a GIS. 
 
In some areas, there may also be a spatial mismatch between pixel size and plot size. Plot sizes 
may be smaller than the spatial resolution of the remote sensing instrument. High resolution 
commercial imagery, air photos, or aerial videography may be a solution in some instances, but 
for most studies their acquisition will be beyond the means of researchers.  
 
Issues of data quality also arise. Even if there is no spatial mismatch, topographic shadowing in 
mountainous areas can render image interpretation more difficult, and necessitate the use of 
extensive (and expensive) ground-truthing. Cloud cover can also affect images, especially in the 
tropics, effectively rendering part of the study area opaque to researchers, especially in time-
series analyses. Even with imagery that is relatively free of shadowing and cloud cover, positional 
and classification errors can arise in image processing (Evans and Moran 2002). Geo-referenced 
field data, also known as training samples, describing land cover conditions at specific locations, 
are necessary to reduce inaccuracies in land cover classifications.  On the social science side, 
survey responses can be affected by who is present when the survey instrument is administered (if 
an oral survey), as issues of land ownership and management may be sensitive depending on the 
cultural context. Low match rates between the survey data and the remote sensing data may 
further affect the reliability of study findings. 
 
One approach to facilitating data integration is to “grid” the socioeconomic data so that it better 
corresponds to the formats of Earth science data. This has been termed “pixelizing the social” 
(Geoghegan et al. 1998). CIESIN’s Socioeconomic Data and Applications Center (SEDAC) has 
developed a globally gridded population data set called Gridded Population of the World (see 
references; Deichmann et al. 2000). The methodology is to take population census data at the 
lowest administrative units available, and to transform them through an allocation algorithm to a 
grid of 2.5’ by 2.5’ latitude-longitude cells. A similar approach is being utilized for a global 
urban-rural data set. Landscan, a product of Oak Ridge National Laboratory, represents a product 
similar to GPW, but with additional algorithms to distribute population according to data on land 
cover classification, lights at night, slope, elevation and transportation infrastructure (Dobson et 
al. 2000). These gridded data can then be more easily combined with other data in models or 
analyses utilizing a GIS.  
 
Another approach to facilitating data integration is to work in the opposite direction: to take Earth 
science data in gridded formats and to convert them to tabular data formats that are more useful 
or familiar to social scientists. SEDAC’s Population, Landscape and Climate Estimates (PLACE) 
data set is a first attempt to do this (see references). The methodology is to take remotely sensed 
data, or data originally derived from remote sensing instruments (e.g., elevation, slope, climate 
zones and biomes), and to develop national or sub-national aggregates of the territorial extent and 
human population that fall in various categories. These can then be combined with other tabular 
data aggregated at the national level, such as economic, environmental or trade statistics, to 
identify cross-national patterns through statistical analysis. 
 
4.4  Interdisciplinary research 
 
According to Rindfuss and Stern, “Integrating social science and remote sensing will require the 
fusion not only of data, but also of quite different scientific traditions.” Generally speaking, most 
integrative research has involved partnerships across disciplines. Traditionally, training in the 
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social sciences has not emphasized remote sensing, though a new generation of spatially-oriented 
social scientists is increasingly learning spatial analysis and remote sensing techniques. The fact 
that few social scientists have in-depth knowledge of remote sensing and that few remote sensing 
scientists fully understand social science theories and methodological approaches has meant that 
partnerships are the generally favored approach.  
 
Incentive structures are another hurdle, especially for junior researchers. Thus, even in 
partnerships scholars in one discipline may find it hard to convince their colleagues that the 
interdisciplinary work is relevant to the core of that particular discipline. As a result, they may not 
get “credit” for publications that arise from such research, especially if they are published in 
journals outside their discipline. This is a problem that is general to multidisciplinary research, 
and is not unique to social science applications of remote sensing. 
 
4.5  Confidentiality 
 
Social scientists have traditionally been concerned about the confidentiality of data provided by 
respondents. Such confidentiality protects the respondents from those who might misuse the data, 
and offers an assurance to research subjects that all reasonable efforts will be made to protect the 
link between their identities and the personal information they provide. Without such an 
assurance, many potential research participants would simply refuse to respond to surveys, 
interviews and other forms of questioning.  
 
Even at moderate spatial resolutions (e.g. 30 m resolution), the possibility exists to identify 
residential locations for specific respondents (Rindfuss 2002). As higher resolution remote 
sensing data become available, there is an even greater ability to identify the precise location of 
individual dwelling units, and potentially material possessions and their location on the property. 
If the remote sensing image of a dwelling unit is coded and then linked to personal information 
from the respondents, it becomes a relatively simple matter for third parties to learn the identities 
of the research subjects. Government agencies, commercial entities or individuals could misuse 
this information. In societies with systematic human rights abuses, leakage of such personal 
information could be costly. High resolution imagery may lead to breaches of privacy even in the 
absence of ancillary social science data (Dehqanzada and Floriini 2000), since extensive 
information about household possessions may be obtained. 
 
Rindfuss (2002) addresses this issue, and proposes several possible solutions. The first is to not 
collect spatially explicit survey data. This would have the unfortunate consequence of inhibiting 
the study of land-use decision-making. The second is to collect the data but not release it to the 
scientific community. This would inhibit scientific progress. One could also introduce random 
errors in the data, but this would affect the data’s accuracy. The classic solution, according to 
Rindfuss, is that traditionally used by census agencies, which is to aggregate the household or 
block-level data to higher units, such as census tracts. But this runs the risk of committing the 
ecological correlation fallacy mentioned above.  A third solution is for the collecting institution to 
house the data, and to permit other researchers to access the data only by visiting the institution 
and signing some formal agreement to protect the confidentiality of respondents. While not 
failsafe, the ability to screen researchers should prevent the most egregious abuses. An additional 
solution would be one where technology allowed for distributed computing such that only the 
output data were revealed to the analyst, but such a solution is some years away. 
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5.0 – Applications in the Social Sciences 
 
 
This chapter has six sections addressing the following research areas: 
 

• demography 
• human health and epidemiology 
• archaeology and anthropology 
• international relations, law and policy 
• land use/cover change and sustainability trajectories 
• urban studies 

 
As mentioned in the introduction, there is a distinction that can be made between socially useful 
applications of remote sensing, such as in weather forecasting or urban planning, and the actual 
integration of remote sensing data in social scientific research. Our focus in this chapter is 
primarily on the latter. The following sections provide numerous examples where social science 
research has been informed by the use of remote sensing to understand patterns of land use, 
disease outbreak, population distribution and urban settlement. Still, there are a number of 
sections (such as the section on international relations, law and policy) where these distinctions 
may be harder to draw, and examples of socially useful applications are provided. 
 
5.1  Demography 
 
Many researchers have included demographic variables, such as population size, density, and 
distribution, or household characteristics, as independent variables to explain changes in land use 
and land cover. Most of the researchers in this area are not demographers, but tend to come from 
the fields of geography, anthropology, landscape ecology, and the natural sciences. A number of 
these studies are covered in greater detail in Section 5.5 on Land-Use and Land-Cover Change. 
Here the focus is on two areas:  
 

• the use of remote sensing imagery to estimate population size, distribution, and quality of 
life; and  

• studies that utilize remotely sensed imagery to understand patterns in the landscape, 
which in turn can inform population dynamics such as migration, fertility, and household 
formation.  

 
5.1.1  Estimating Population Size and Quality of Life 
 
Jensen and Cowen (1999) indicate that population estimates can be derived from (1) counts of 
individual dwelling units, (2) measures of urban extent, and (3) land-use/land-cover classification. 
According to the authors, remote sensing may provide population size estimates that approach the 
accuracy of traditional censuses provided sufficient in situ data are available. In parts of the 
developing world, where censuses are infrequent, remote sensing may provide a useful means of 
obtaining intercensal head counts. 
 
The authors state that counting dwelling units is the most accurate method, provided the 
following criteria are met: 
 

• The imagery must be of sufficient spatial resolution to identify individual structures even 
through tree cover, and whether structures are residential, commercial, or industrial. 
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• Some estimate of the average number of residents per dwelling unit must be available. 
• Some estimate of the number of homeless, seasonal, and migratory workers is required. 
• It is assumed that all dwelling units are occupied. 

 
Much of this information can only be derived from extensive local knowledge and in situ 
observation. However, if  these criteria are met, the results can be remarkably accurate. They 
report that a study in South Carolina utilizing 2.5 m resolution airborne multispectral data was 
able to estimate population for a 32 census block area with an r2 of 0.81. In Nigeria, Olorunfemi 
(1984) found that 92 percent of the variation in population density could be explained by 
“housing” as a category of land use in Ilorin, Nigeria in 1950 and 1963. The areas in the housing 
category were detected using aerial photography. He then used a mathematical model to convert 
these land use data into population counts. Although such techniques are promising for individual 
cities or small areas at the sub-national level, the costs of applying this technique to an entire 
country are likely prohibitive (Sutton et al. 1997). It is worth noting that the estimates resulting 
from these techniques have not been evaluated in the demographic literature. Until they are, any 
such estimates will likely be viewed with some suspicion by professional demographers. The 
International Program of the U.S. Census Bureau is experimenting with the use of nighttime 
lights to estimate the population of countries lacking regular or reliable census data (Leddy and 
Mathur 2002) . In general, remote sensing is likely to be more successful in applications designed 
to allocate population density over a given land area where population size is known than it is in 
developing population counts themselves. 
 
At a somewhat coarser level of analysis, Weier (2000) describes NASA-funded research utilizing 
the Defense Meteorological Satellite Program’s (DMSP) Operational Linescan System (OLS) to 
detect nights at light. These data were then utilized to define the extent of urban areas (populated 
at over 1000 persons per square mile), peri-urban areas, and rural areas for the entire United 
States. 
 
It has been suggested that remote sensing can also help to plan censuses by identify areas of new 
development, and to provide regular updates of new housing stock for local planners. Adiniyi 
(1987) explores visual interpretation of remote sensing imagery as a tool for census planning in 
Nigeria, especially as a means to identify enumeration areas. 
 
In somewhat related work, researchers have sought to develop quality-of-life (QOL) indicators 
from remote sensing imagery. These indicators relate to vegetation cover and other metrics that 
provide proxies for the quality of life in urban and suburban settings. Lo and Faber (1997) 
utilized the normalized difference vegetation index (NDVI), produced with Landsat TM data, in 
conjunction with 1990 census data to measure quality of life of the Athens-Clarke County in 
Georgia. They found that greenness in the county was strongly correlated with income and 
median home value, and negatively correlated with population density. They conclude that the 
satellite imagery can provide a valuable environmental component to QOL assessments.  In 
contrast to this work in Georgia, researchers focusing on Detroit (Emmanuel 1997, Ryznar et al. 
undated) find that increasing greenness is strongly correlated with indicators of social decay, such 
as poverty rates and child-to-women ratios. This appears to be related to population decline and 
abandonment of housing units. The difference between Athens Georgia and Detroit serves to 
underscore the importance of contextual information; if increasing greenness were used as a 
proxy for increasing affluence across urban areas of the United States, it might yield misleading 
conclusions. Pozzi and Small (2001) explore the patterns of vegetation and population density 
across a number of suburban areas in the U.S., and find that there are a wide variety of 
relationships. 
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5.1.2  Studies of Population Dynamics  
 
There are relatively few demographers who have ventured onto the terrain of remote sensing to 
better understand population dynamics. As mentioned above, most research combining 
demographic data and remotely sensed imagery tends to view population as the independent, not 
dependent, variable. But in any complex, coupled system, it is possible for there to be two-way 
linkages. Land-cover changes can, in many cases, impact population dynamics. Desertification 
and land degradation, for example, have been posited to contribute to out migration to urban 
areas.   
 
Weeks et al. (2000) use remote sensing to identify the location of villages in a study on fertility 
levels in Menoufia, Egypt. Although tabular data by village were available from the census, in 
order to add the spatial dimension to their research, they used IRS satellite imagery to classify the 
built area in the governorate, and then they assigned the village-level census data to the centroids 
of the polygons and incorporated the data into a GIS. Utilizing census data on fertility in a GIS 
with village location, they developed a model that showed that, in 1976, spatial clustering in 
combination with female illiteracy and proportion married explained about 39 percent of the 
variation in fertility in Menoufia. This increased to 51 percent in 1986. In 1986 about one-half of 
the explained variability was due to the spatial component. This suggested that diffusion of 
information among spatially clustered villages was an important element in the transition to lower 
fertility.  
 
Entwistle et al. (1998) linked household survey data for communities in Nang Rong, Thailand, to 
remote sensing imagery from the 1970s and early 1980s for the areas surrounding those 
communities. In this area land is cleared to establish cultivation rights. For young farmers, access 
to land is vital if they are to be gainfully employed. A more fragmented landscape, with a large 
number of small forest patches, would suggest that there is a scarcity of land for the introduction 
of new crops. Preliminary analysis suggested that land fragmentation encouraged out-migration 
of young adults during the period from 1984-1994. Stated differently, districts with higher 
proportions of land in forest were less likely to experience out-migration. 
 
Remote sensing has been applied in a variety of humanitarian crises (e.g., Bjorgo 2000, Kelly 
1998, Lodhi et al. 1998), but there are relatively few studies that have examined the determinants 
and consequences of refugee flows from a social science perspective. Black and Sessay (1997) 
utilized a combination of air photos for 1980 and satellite imagery for 1991 to examine the 
environmental consequences of refugee flows from Mauritania to Senegal following a mass 
expulsion of approximately 60,000 Mauritanians in 1989. Although they found a net decrease in 
vegetative cover and an increase in cultivated area, they conclude that it is hard to separate out the 
impacts of the refugee camps from other social, political and climatic changes in the Senegal 
River Basin. 
 
5.2  Human Health and Epidemiology 
 
The use of remote sensing for the study of disease has grown rapidly in the past decade. The 
growth is attributable to several factors. Since the late 1980s, there has been growing use of 
geographic information systems (GIS) and spatial statistics in studies investigating patterns of 
disease incidence. Remote sensing was discovered to be a useful source of georeferenced data 
that, when combined with other data in a GIS, could help researchers to identify and understand 
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the environmental correlates of these patterns. GIS and remote sensing also help researchers to 
answer questions concerning the spatial and temporal aspects of disease outbreaks.  
This section provides a brief introduction to the use of remote sensing in the study of human 
health and epidemiology. Sub-sections focus on mapping of current risk environments and the 
prediction of disease outbreaks through early warning systems. Readers desiring more 
information on the subject are recommended to read S.I. Hay, S.E. Randolph and D.J. Rogers, 
Remote Sensing and Geographical Information Systems in Epidemiology (2000), or to visit 
NASA’s Center for Health Applications of Aerospace Related Technologies (CHAART) website. 
 
5.2.1  Mapping Risk Environments 
 
Remote sensing is primarily used in the context of disease mapping, in which statistical 
associations are demonstrated between ecological variables and processes that can be observed 
remotely (e.g., rainfall, temperature, vegetation cover, wetness, etc.). These, in turn, are 
correlated with vector distributions as well as disease incidence and prevalence (Hay 1997). The 
approach, sometimes referred to as landscape epidemiology, follows the following sequence: (1) 
remotely sensed data is used to provide information on land cover, and thereby habitat; (2) the 
spatial distribution of a vector-borne disease is related to the habitat of the vector; and (3) data on 
land cover, habitat and human population provide information on the spatial distribution of the 
disease (Curran et al. 2000, Landscape Epidemiology and RS/GIS). A knowledge of the likely 
distribution of vectors and the intersection with human populations can help make more efficient 
use of public health resources, in terms of spraying and eradication efforts, distribution of 
prophylactics and drugs for treatment, or location of health staff and facilities. 
 
Curran et al. provide an excellent overview of the use of optical remote sensing data for health 
applications. They indicate that a complex set of inter-relationships exist between land surface 
characteristics, as perceived by remote sensing, and disease risk spatially distributed on the 
earth’s surface. In the malaria-mosquito disease-vector combination, there is a link between land 
cover and vector density on the one hand, and vector density and disease risk on the other. In the 
case of the land cover and mosquito populations, it is generally understood that proximity to 
water is important, particularly in the breeding phase. However, there are many other factors that 
intervene, such as internal vector population dynamics, interrelations between the vector and 
vertebrate populations, and environmental influences such as microclimate. The relationship 
between vector density and disease risk is even more complex, depending as it does on dynamics 
within and between three populations: the hosts (vertebrates), the vectors (mosquitoes), and the 
disease itself.  Mosquitoes live on the blood of vertebrates which may or may not carry the 
malaria parasite, and parasite-carrying mosquitoes may or may not transmit the parasite to the 
next vertebrate. The authors argue that future research in this area will need to move beyond 
simple correlations among land cover or vegetation indices and disease risk for mapping of risk 
environments, to a deeper understanding of the relationships among many complex factors. 
 
Depending on the disease, the ability for remote sensing to accurately predict the actual 
distribution of disease vectors can be quite high. For example, Rogers et al. (1997) utilized 
vegetation and temperature indices from AVHRR data together with monthly rainfall indices 
derived from Meteosat to predict tsetse fly distributions in Cote d’Ivoire and Burkina Faso for the 
period 1988-92. Tsetse flies transmit trypanosomiasis, a disease that affects humans (as sleeping 
sickness), domestic animals and wildlife throughout much of sub-Saharan Africa. The spatial 
distributions of eight tsetse species were predicted with accuracies of 67 to 100 percent, with false 
positives (areas that did not have tsetse that were predicted to have them) of 12 percent and false 
negatives (areas that did have tsetse that were not predicted to have them) of only 3 percent. 
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Prediction of areas in which malaria is endemic can also be remarkably high. Malaria claims the 
lives of one million Africans annually, mostly infants and children. Because mosquito population 
dynamics and malaria incubation periods vary with temperature and moisture conditions, 
remotely sensed images of seasonal climate are good predictors of mosquito distribution patterns 
and average levels of transmission of malaria parasites by these vectors (Rogers et al. 2002, Hay 
et al. 2000). For East Africa, Omumbo et al. (2002) found that land surface temperature was a 
good predictor of transmission intensity, followed by rainfall and moisture availability (as 
inferred by cold cloud duration) and the normalized difference vegetation index (NDVI). Malaria-
free areas were predicted with 96 percent accuracy. Areas where transmission only occurs near 
water were predicted with 90 percent accuracy, and intense malaria transmission areas were 
predicted with 87 percent accuracy. Using the above predictors, the researchers were able to 
update colonial-era maps of malaria distribution. 
 
Kaya et al. (2002) explore the use of radar remote sensing for detection of mosquito breeding 
habitats, the principal vector for malaria, along the coast of Kenya. In many moist tropical areas, 
optical imagery is impractical to use because of the consistent cloud cover. Radar data have the 
advantage of being able to see through cloud cover to detect a variety of ground-cover types, 
including grasslands, forests, and wetlands. The researchers largely sought to identify the 
reliability of radar data for identifying land cover types associated with mosquito breeding areas, 
producing maps that showed potential vector density and not actual disease risk. 
 
Another area of remote sensing application is tick-borne diseases. Ticks are both parasites, 
feeding off their hosts and weakening defenses, and vectors of disease (viral and rikettsial). Tick-
borne Lyme disease is the most common vector-borne disease in the United States, and numerous 
tick-borne diseases exist in tropical countries (e.g. typhus and encephalitus). Tick distributions 
may be predicted by relatively straightforward statistical methods that seek correlations between 
environmental factors and tick presence (Randolph 2000). However, before distribution mapping 
can be undertaken, it is necessary to have good descriptive maps based on ground observations 
that identify known distributions of ticks. As with the case of malaria, remotely sensed indicators 
of moisture availability have accurately predicted the distribution of ticks (Liang et al. 2002). 
Tick survival rates decline significantly during periods of moisture-stress. Using remotely sensed 
land cover data, Dister et al. (1997) showed that suburban residential areas in New York state 
with high moisture and density of green vegetation had greater tick abundance. 
 
Human helminth infections are prevalent in Africa and many parts of Asia. Estimates suggest 
that, globally, 1.2 billion people are infected with Ascaris lumbricoides, 1.2 billion with 
hookworm, and 200 million with schistosomiasis. The impact of these infections on human 
nutrition, education, and development, and the existence of effective anthelmintic drugs, has 
revived interest in their control (Brooker and Michael 2000). Helminth infections can be both 
directly transmitted (e.g., hookworm), and indirectly transmitted via an intermediate host such as 
snails (e.g., schistosomiasis) or mosquitoes (e.g., filariasis). A number of factors that can be 
detected by remote sensing are predictive of the spatial distribution of the infections, including 
temperature, distance to water bodies, soil moisture and humidity, rainfall, and altitude. Early 
work by Cross and Bailey (1984, cited by Brooker and Michael) found that presence or absence 
of schistosomiasis could be predicted with 87 percent accuracy in the Caribbean and 93 percent 
accuracy in the Philippines based on Multispectral Spectral Scanner (MSS) and weather data. In 
Cameroon, Brooker et al. (2002) used AVHRR data to predict the probability of helminth 
infection prevalence greater than 50 percent, which would warrant mass treatment for intestinal 
nematodes and schistosomes. By overlaying the risk maps on human population surfaces, they 
were able to estimate the school-aged population size requiring mass treatment. Seto et al. (2002) 
examine the use of Landsat TM data in predictive models to explore future schistosomiasis 
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distribution in China as a result of global warming and completion of the Three Gorges Dam 
project (construction of canals will permit wider movement of snails). The work, which is still in 
progress, aims to produce predictive estimates of the distribution of schistosomiasis. 
 
Tucker et al. (2002) utilize satellite data to study the poorly understood determinants of Ebola 
hemorrhagic fever outbreaks. Ebola emerged in Sudan in 1976, and although outbreaks have been 
limited in geographic extent and number of victims, it is characterized by gruesome symptoms 
(internal hemorrhaging) and high case fatality rates. They utilized Landsat data to understand the 
ecological setting and degree of human intrusion at the various Ebola outbreak locations. They 
also used time series NDVI derived from AVHRR data to understand precipitation regimes and 
wet season/dry season transitions associated with Ebola. They found that marked and sudden 
climate changes from drier to wetter conditions were associated with the Ebola outbreaks in the 
1990s. A deeper understanding will only come from study of recent (Uganda 2000/01) and future 
outbreaks. 
 
5.2.2  Challenges and Opportunities for Early Warning Systems 
 
Although there is great promise in the use of remotely sensed data, verification of disease risk 
distributions by relating them to “real world” vector density or disease incidence data can be quite 
challenging. Often these data are either incomplete (especially in developing country contexts) or 
misplaced spatially from the location of disease contraction (Curran et al. 2000). Rogers et al. 
(2002) indicate that early warning systems require models that incorporate both extrinsic factors 
(e.g., climate) and intrinsic factors (e.g., immunity). Until analysts can properly assess the relative 
roles of both factors, however, it will not be possible to forecast outbreaks. The authors echo the 
lament of Curran et al., indicating that researchers are hindered from making statistical 
predictions by the lack of good quality, empirically derived data sets for corroboration of satellite 
studies. The reason for this is that disease risks have been determined too infrequently, and over 
insufficiently wide areas.  
 
According to Meyers et al. (2000), there are three components to an early warning system 
(EWS): (1) ongoing surveillance of the targeted disease; (2) modeling of the disease risk based on 
historical surveillance and contemporary environmental data; and (3) forecasting future risk 
through the use of predictive models and continued surveillance. In the late 1990s, researchers 
identified a need to move from risk mapping of current distributions to the modeling of vector 
population dynamics in real-time, utilizing remotely sensed correlates of life-cycle parameters 
(Hay 1997). The challenge was to combine near real-time remotely sensed data with information 
from climate predictions and other sources to create fully fledged early warning systems. These 
systems are beginning to make their appearance. Such systems necessarily draw on the expertise 
of social scientists, who are able to inform epidemiologists about local population distributions, 
land use and cultural practices that may influence disease risk.  
 
The effort to track the West Nile Virus in the United States, and to predict likely future locations 
of disease outbreak, represents an early application of this kind of real-time monitoring and 
prediction (Rogers, et al. 2002). West Nile is transmitted by mosquitoes, with birds representing a 
significant host. Utilizing temporal Fourier processed land surface temperature (LST) imagery, 
the researchers were able to identify the annual means, amplitudes and phases of LST that best 
describe the thermal seasonality of habitats across the U.S. They combined this with satellite 
maps showing vegetation patterns and GIS-based data of bird migration routes and reported cases 
of the disease. The data sets help scientists predict disease outbreaks by showing where 
conditions are right for the insects to thrive and where the disease appears to be spreading, based 
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on the right combinations of temperatures and moisture levels most suitable for mosquitoes and 
transmission. 
 
NASA’s Inter-agency Research Partnership for Infectious Diseases (INTREPID) has developed a 
dengue early warning system (DEWS) (Meyers et al. 2000). Dengue is a tropical disease 
transmitted by the Aedis aegyti mosquito which is particularly prevalent in urban areas and 
squatter settlements (owing to poor sanitation and an abundance of suitable mosquito habitat). 
The prototype receives data from Bangkok and four main regions of Thailand and contains 
several modules. The surveillance module allows new case data to be compared against the long-
term average case data in order to determine the severity of current outbreaks against historical 
conditions. The risk map module translates case data into disease incidence data, which are in 
turn related to AVHRR satellite data using maximum likelihood methods to produce country-
wide risk maps. The analysis helps to identify environmental variables determining local 
variation in risk. The forecasting module makes use of the time series data which show marked 
within-year and between-year cycles. Annual temperature changes trigger a series of processes 
that result in changing case numbers; thus, future cases can be predicted with some accuracy from 
current monthly temperature data. 
 
The World Health Organisation Technical Support Network for the Prevention and Control of 
Malaria Epidemics suggests that population vulnerability assessment, combined with seasonal 
climate forecasts, weather monitoring and case surveillance can all be used for the development 
of effective early warning systems in epidemic prone areas where climate is an important 
component of interannual variability (WHO 2001). Such systems are currently being developed 
in Southern and Eastern Africa.  The International Research Institute for Climate Predications at 
Columbia University is currently supporting efforts for the incorporation of seasonal climate 
predictions into operational actvities by malaria control services in Africa. 
 
Others are exploring likely future distributions of vectors and diseases as a result of climate or 
land-cover change. According to Liang et al. (2002), “The ability to predict outbreaks months in 
advance based upon climate change indicators may make it possible to implement early 
vaccination initiatives or aggressive vector control programs and guide the relocation of human 
populations away from trouble spots… RS and GIS will likely enhance our understanding of the 
relationship between climate and vector-borne disease and prepare health professionals for 
changes in the distribution of important infectious pathogens.” Warmer temperatures increase 
mosquito and tick vector reproduction, biting and pathogen transmission despite shortening 
survivorship, and have already demonstrably affected habitats for certain vectors. For example, 
malaria transmission is increasing due to changing climatic factors in areas where it had been 
hitherto constrained by low temperatures, such as the highlands of eastern and southern Africa 
(Lindsay and Martens 1998). Research suggests that malaria incidence rates also increase greatly 
during periods of high rainfall immediately following a drought. Proponents for Malaria Early 
Warning Systems in Africa have emphasized the potential value of climate predictions in areas 
where rainfall is the limiting factor to transmission (Conner et al. 1999, Thomson and Conner 
2001).  
 
5.3  Archaeology and Anthropology  
 
The utility of remote sensing technology is becoming increasingly apparent to researchers whose 
work is aimed at obtaining a holistic understanding of the rise and development of human 
settlements occurring both in the past and present. Human ecology or landscape archaeology 
especially benefit from satellite data because such data can place local field studies within a 
regional context. The integration of satellite imagery, geographic information systems (GIS), data 
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layers and fieldwork enhance the research possibilities and analyses by permitting the synthesis 
of environmental and ecological data with ethnographic, historic and archaeological research.  
 
5.3.1  Archaeological Research 

 
Remote sensing techniques had an earlier development in archaeology than anthropology. The 
use of aerial instruments for archaeological inquiry and survey was instigated by the work of 
Crawford and Lindbergh in the 1920s (Crawford 1928, Crawford 1929, Johnson 1930, Lindbergh 
1929). By 1930, several archaeologists in Britain formulated methods and techniques of applying 
aerial photography in archaeological research (Wilson, 1982). The advantage of aerial 
instruments over ground field work was in that it allowed a much more rapid and territorial 
survey of the landscape for archaeological sites and features. This survey could be extended to a 
broader regional scale than permitted by foot and facilitated the detection of features such as crop 
marks, altered sediments, and linear or buried site features not otherwise visible from the ground. 
In most cases, remote sensing imagery is valued for providing a synoptic overview of the 
landscape and also provides a base map for archaeological research. 
 
The remote sensing imagery utilized by archaeologists for decades became greatly enhanced with 
the availability of satellite imagery and image analysis software for archaeological inquiry. 
However, during the 1970s and 80s, the application of satellite imagery in anthropological or 
archaeological research was constricted due to factors related to the lack of technical expertise, 
the cost of imagery and the limited spatial resolution of early satellite sensors.  In many cases, the 
low resolution of early satellites did not provide sufficient precision for the identification and 
inspection of archaeological sites. Nonetheless, a few leaders in the field including archaeologists 
Lyons and Avery (1977, 1981), through the National Park Service, were among the first to apply 
remote sensing technology in archaeological research with a project in Chaco Canyon, New 
Mexico. The project was the first archaeological project that fully embraced the application of 
remote sensing in its research methods and analysis. The archaeologists focused on the detection 
and analysis of a prehistoric Chacoan Roadway system dated between 900 and 1,000 A.D.  In 
1982, Thomas Sever, an archaeologist from NASA, expanded the research of the Chaco Canyon 
project with the use of TIMS (Thermal Infrared Multispectral Scanner). He detected a wide range 
of Chacoan infrastructure, including 300 kilometers of prehistoric roadways, prehistoric walls and 
buildings, and agricultural fields (Sever, 1987). 
 
The Chaco Canyon project was quickly followed by additional archaeological projects 
established with NASA support. In 1984, an archaeological study using remote sensing was 
conducted in the Arenal region of Costa Rica (Sheets and Sever 1991). TIMS, SAR (Synthetic 
Aperture Radar), LIDAR (Light Detection and Ranging; a sensor used for gathering very accurate 
elevation data) and color infrared photographs were employed to detect pathways of prehistoric 
settlers documenting movement between settlements and trade routes. The detection of these 
distinct features with use of the imagery led to excavation that identified the period of use at circa 
500 B.C. This research was a fundamental breakthrough in the application of remote sensing in 
archaeological research. Remote sensing facilitated exploration of the landscape and permitted 
the detection of archaeological sites and features not previously identified. Without the satellite 
sensor capabilities, the footpaths may have been left undetected due to the extensive overgrowth 
in the forests of these archaeological sites. 
 
Since the work in the 1980s, there has been a steady increase of archaeological researchers using 
remote sensing data in their projects. Many researchers seek to comprehend the adaptations of 
communities in variable environments and how the social systems and patterns have shifted over 
time (Silbernegal et al. 1997, McCartney 1992). Madry and Crumley (1990) investigated land use 
patterns in France’s Burgundy region up to 2,000 years before present. Archaeologists have been 
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able to detect the construction of agricultural features and determine the continued use, 
maintenance or desiccation of such features. Archaeologists may then hypothesize the social or 
environmental factors associated with such patterns (Lightfoot 1996, Pope and Dahlin 1989). In 
an archaeological study in Yemen, researchers found that abandonment of the Qatabanian 
irrigation canals in 200 A.D. was more likely due to neotectonic activity then social or political 
factors (Marcolongo and Banacossi 1997).  
 
The applicability of satellite imagery in archaeological site analysis will vary in relation to 
specific site parameters, including consideration of the environmental setting and the 
archaeological site and feature characteristics (i.e. size, material, layout, pattern). In southern 
Madagascar, Clark et al. (1998) were able to detect archaeological sites from defined spectral 
signatures in the landscape that led to an analysis of the history of settlement patterns throughout 
the region. Satellite imagery has also been useful in the detection of certain environmental 
features conducive to archaeological sites such as peat deposits (Cox 1992).  
 
Aside from the ability to expand the region of archaeological analysis with the use of satellite 
imagery, the variable spectral signatures emitted from archaeological features help to identify and 
characterize those features that may be buried or obstructed from sight. Many variables affect the 
visibility of cultural features on the ground including terrain, ground cover, weather, altitude and 
sun angles. Satellites are able to detect infrared radiation that helps discriminate different 
structural and linear features, revealing historic and prehistoric remnants either in the soil or 
vegetation. Synthetic Aperture Radar (SAR) was used in an archaeological project in the 
Taklamakan Desert, China (Holcomb 1992). Archaeologists were able to locate ancient 
watercourses, roads, forts and settlements established along the Silk Road that are now largely 
sand covered. Many features of archaeological interest can be easily detected with satellite 
sensors that help to quickly and precisely identify prospective areas of archaeological interest 
(Drager 1983).  
 
Remote sensing will never fully replace the ground-based site survey as the ceramics and lithics 
often constitute archeological sites and are only visible from thorough ground survey. However, 
the integration of satellite imagery with ground fieldwork can expand the scope of reconnaissance 
in a region. Following the detection of surface and subsurface features in remote sensing imagery, 
a field validation survey would examine the archaeological site’s feature characteristics and might 
lead to excavation. The satellite reconnaissance provides the archaeologist with a more efficient 
means of regional survey along with the production of base maps of natural resource data 
including the soil, vegetation, and hydrological elements of the region. 
 
The advantages of satellite imagery as a data source for archaeological research include the 
systematic and frequent acquisition, synoptic coverage, digital data format, and archaeological 
features detection. Satellite imagery increases the rate at which an overall impression of the 
quantity, nature and distribution of archaeological features are obtained at a regional scale. 
Satellite imagery also expands the area of archaeological inquiry to regions with political, 
economic or physical barriers that may hinder access to sites. For decades, archaeologists 
researching the Homs region of Syria were unable to acquire aerial photos or maps at finer scales 
than 1:500,000. Recently declassified satellite images from the Corona satellite have made it 
possible to regionally review the area for changes in the landscape and increase the 
reconnaissance of archaeological sites (Philip et al. 2002). Certain constraints to systematic 
survey of an archaeological area of study such as cost, terrain or political unrest can be easily 
overcome with the use of satellite imagery. Despite the practicality and benefits of imagery in 
archaeological inquiry, there continues to be a significant absence of remote sensing applications 
within the field, largely due to cost, but also due to lack of technical expertise on the part of 
archaeologists. 
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One of the main deterrents in the acquisition and application of satellite imagery in archaeological 
and anthropological research continues to relate to cost. Beginning in 1972, the Landsat 
(Multispectral Scanner) MSS with 80 m resolution had limited value for the detection of 
archaeological sites. The Landsat 5 Thematic Mapper (TM), launched in 1982, with a resolution 
of 30 m opened more possibilities for research in this field. In the commercial sector, the 
IKONOS satellite was launched in 1999, and its imagery is available from Space Imagery Inc., 
with a resolution of 1m panchromatic and 4 m multispectral. QuickBird was launched in 2001, 
with a resolution of 0.61 m panchromatic and 2.4 m multispectral. These products are of value for 
the detection of archaeological sites and features, yet the costs can be high (as much as US $4,000 
per scene depending on the amount of pre-processing requested). Nonetheless, as data sources 
proliferate, prices should begin to fall.   
 
5.3.2  Anthropological Research and Land Use Studies 
 
Understanding the social drivers of land use has become particularly important in today’s global 
agenda of attaining environmental sustainability as articulated at the Earth Summit in 1992 
(USGCRP 2001; see also Section 5.5 of this Thematic Guide). The interpretation of land use and 
land cover change dominates the research objectives of many public and private research 
institutions with over three decades of image acquisition allowing significant comparison of the 
spatial and temporal dynamics of the landscape. There has been considerable effort to link the 
physical and social sciences in the collaborative understanding of the dimensions of land use 
change and its impact on the future of the global environment (Haberl et al. 2001, Haberl and 
Schandl 1999,Veldkamp and Lambin 2001). However, two aspects of such an analysis largely 
neglected to date are the consideration of historical and cultural data that provide insight into the 
understanding of land use processes. Land use patterns are closely linked to the cultural practices 
shaping local and regional resource management practices, subsistence practices, landscape 
perceptions, and land use history. The integration of cultural and natural elements of land use 
facilitates a holistic modeling of past and present human settlement patterns.   
 
Beginning in the 1970s within the field of anthropology, Reining (1979) and Conant (1978) 
conducted human ecology studies in Africa. Their studies were among the first initiated that 
linked ethnographic data obtained from local populations and the study of their subsistence 
systems with Landsat data. Although the importance of such integration was realized, issues 
related to technical expertise and access largely prohibited the anthropological community from 
broader involvement in remote sensing projects (Conant 1978).  However, in the last decade, 
there has been a resurgence of anthropologists contributing to the understanding of land use 
processes by providing extensive ethnographic data on subsistence use and individual and 
household decision-making that influence environmental change (Moran 1993, Sussman et al. 
1994, Nyerges and Green 2000, Stoffle et al. 1994, Behrens et al. 1994, Guyer and Lambin 
1993). Anthropologists in the field obtain important cultural data relating to the motivations, 
perceptions, rationale and history of land use practices within communities. The ethnographic 
data can then be linked with the environmental change occurring, permitting a fuller 
understanding of the processes of land use change. This in turn helps to ascertain the future of the 
environmental resources within local communities. 
 
The Anthropological Center for Training and Research on Global Environmental Change (ACT) 
specializes in interdisciplinary research on land-use change. Specialists at the center come from 
the disciplines of anthropology, ecology, geography, demography, political science and botany. 
The projects at ACT have been especially successful in applying remote sensing in research on 
the spatial and temporal dynamics of landscape change and identifying the social drivers of land 
use occurring in the Amazon, and increasingly in a number of other locations. Researchers at 
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ACT have been able to characterize the variable land-use patterns among Amazonian populations 
such as Caboclo communities, and to make conclusions about the environmental and community 
impacts of different patterns of land use, from subsistence farming to mechanized agriculture 
(Brondizio et al. 1994). Their research explores the factors affecting household strategies of land 
use that contribute to broader scale deforestation patterns (Moran 1993, Brondizio et al. 1994, 
McCraken 1999, Walker 2000). The research by scholars at ACT and elsewhere has firmly 
established the contribution of anthropological research in land-use and land-cover change 
research (Behrens 1994, Conant 1994, Sussman et al. 1994, Stoffle et al. 1994, Nygeres et al. 
2000, Guyer and Lambin 1993, Lawrence et al. 1998).   
 
5.3.3  Future of Remote Sensing in Anthropology and Archaeology 

 
Continued progress in the development of sensor capabilities in terms of resolution and sensor 
features will enhance the research methods and potential capabilities for anthropologists and 
archaeologists. Several factors will contribute to the future implementation of remote sensing 
technology in anthropological and archaeological research including the improvement of satellite 
sensor resolution (especially the use of hyperspectral techniques), the building of image archives, 
facilitated access to data, and the acquisition of the technological skills in processing and 
applying the data.  
 
The application of satellite imagery in archaeological research has been largely in relation to the 
detection and analysis of specific sites yet the potential of remote sensing imagery for use in site 
preservation has not yet been fully realized. The preservation of archeological sites is of 
considerable concern worldwide as they are placed under continual threat from both natural and 
social elements (Darvill et al., 1993). Erosion, earthquakes and landslides have on occasion 
destroyed archaeological sites, while urban development, settlement patterns and infrastructure 
encroach upon others. The use of satellite imagery can provide identification of such ongoing or 
potential threats to archaeological sites.  
 
The use of remote sensing in anthropology and archaeology is still in its early stages. The satellite 
sensors are just now becoming refined enough to allow more thorough investigations of the 
cultural processes occurring in landscapes, both past and present. Nonetheless, over the past few 
decades, the application of satellite imagery in anthropological and archaeological research has 
provided the means for investigation of former and present occupation patterns and resource use. 
Just as the work of archaeologists and anthropologists continues to contribute to the cultural and 
social interpretations of the environmental change captured in satellite imagery, there remains 
significant potential of remote sensing application in land use studies, historical ecology, human 
ecology, landscape archaeology and archaeological site preservation and management to further 
contribute to the understanding of the relationship between human activity and landscape 
development. 
 
5.4  International Relations, Law and Policy 
 
With the exception of meteorological satellites, applications of remote sensing technologies to 
international relations predate most Earth science applications. The earliest satellite remote 
sensing instruments, such as the United State’s Corona and the former-USSR’s KH, were high 
resolution sensors used for military and intelligence purposes. The focus of this section is on 
broader applications of remote sensing to international relations, and applications for domestic 
law and policy, rather than on military/intelligence applications. This is divided into the following 
subsections: diplomacy and arms control applications, crop monitoring and famine early warning, 
environmental treaties applications, and US domestic law and policy applications. 
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5.4.1  International Diplomacy and Arms Control Verification 
 
The first reconnaissance satellite, Corona, was launched by the United States in 1960. The 
advantages of satellite reconnaissance over high altitude aircraft were apparent early on. Satellites 
could cover much greater territories in less time; they were unmanned, and therefore no personnel 
was put at risk; and it was not necessary to obtain the permission of countries for overpasses 
(Jasani 2000). It was only a matter of time before they were pressed into service as essential 
verification components to arms control treaties – all in an effort to keep “mutually assured 
destruction” from occurring. 
 
Major nuclear weapons control treaties between the United States and the former Soviet Union 
(and current Russia) include the following: the 1972 Strategic Arms Limitation Talks (SALT) 1, 
the 1979 SALT II agreements, the 1987 Intermediate-range Nuclear Forces (INF) Treaty, the 
1991 Strategic Arms Reduction Talks (START) I Treaty, and the 1993 START II Treaty. Two 
major approaches were taken to verification. One was co-operative measures, such as visits by 
weapons inspectors and the like. The second was national technical means, which included  use 
of satellite imagery, aircraft-based reconnaissance, and sea- and ground-based monitoring 
systems (Schaper 2000). 
 
Remote sensing is essential for building the confidence necessary in order to enter into nuclear 
weapons control treaties. Without the means to verify that the other party indeed reduced arsenals 
or destroyed production facilities as promised within a treaty, neither party would enter into such 
agreements in the first place.  
 
Remote sensing may also have a role to play in monitoring of nuclear weapons tests. Jasani 
(1995) states that one of the major reasons for the failure to achieve the comprehensive test ban 
treaty (CTBT) was that states claimed it would be impossible to verify. However, he has 
conducted research in the use of Landsat imagery for identification of signatures that suggest a 
test is underway or has recently been completed. These include, for example, construction of 
roads, or tunnel construction, and land disturbances that result from nuclear tests around ground 
zero. Examples of the latter include craters, fracturing, and bulging of the earth’s surface. He 
argues that it is relatively easy to determine where tests have occurred based on such tell-tale 
signs. 
 
Dehqanzada and Florini (2000) explore the implications of the availability of commercial, high 
spatial resolution satellite imagery for international diplomacy. In a world where only the 
superpowers possessed high resolution imagery, diplomacy was more predictable. Today, even 
the smallest states have access through the market place to one meter resolution imagery (e.g., 
IKONOS and QuickBird). This new democratization has advantages and disadvantages, 
depending on the perspective. For instance, high resolution imagery can be very useful to relief 
agencies in response to natural disasters, and it can uncover human rights atrocities through the 
detection of mass graves (in Bosnia) or destruction of remote villages by paramilitary groups. As 
with any technology, it has potentially harmful uses as well. State and non-state actors could use 
imagery to conduct espionage, collect intelligence, plan terrorist attacks, or mount military 
operations. The authors dub this an era of “mutually assured observation,” in which it will be 
harder for state and non-state actors to conceal their activities. 
 
5.4.2  Agricultural Monitoring and Famine Early Warning 
 
Remote sensing is used actively by the United States (and other countries) to monitor crop 
production domestically and in foreign nations. The purpose is to determine how crop production 
in these countries might affect the market for domestically-produced cereals. The US Department 
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of Agriculture (USDA) Foreign Agriculture Service maintains a staff of remote sensing experts 
(see Remote Sensing: International Crop Condition and Production Analyses) who work year-
round to estimate yields. 
 
Remote sensing is used in measuring leaf area indices (a quantitative indicator of leaf stress), 
identifying soil properties by their spectral signals, evaluating crop productivity, and providing a 
valuable data source for crop simulation models (USDA Water Conservation Research 
Laboratory). It is also used for improved water management, especially in irrigation systems 
(Remote Sensing tools for Improved Water Management). Large scale agribusinesses in the US 
also use remote sensing for precision farming; based on remote sensing images of  fields, farm 
equipment with GPS units apply precise amounts of fertilizer, pesticides and herbicides in order 
to optimize yields. In this regard, the airborne AVIRIS instrument, which measures over 300 
spectral bands, is extremely useful for measuring soil moisture, plant infestations, and a wide 
variety of other parameters of interest to large-scale farming. 
 
Famine early warning applications were examined by Hutchison (1998). An impressive amount 
of social science research has been directed to the study of famine and its determinants. This 
research has identified indicators that assist in monitoring food security. The Famine Early 
Warning System (FEWS), for example, identified three sets of indicators: (1) those that relate to 
food supply, (2) those that relate to food access (e.g., prices relative to local incomes), and (3) 
those that relate to levels of development and market access. Remote sensing has been used 
extensively for the first set of indicators. Relatively broad-brush analyses of likely crop yields can 
be developed from AVHRR imagery, and archives of scenes for the same period each year help 
analysts to determine if the yields are likely to be the same, better, or worse than average. 
 
5.4.3  Environmental Treaties 
 
Environmental applications have been a mainstay in the remote sensing field largely because 
many remote sensing scientists receive their substantive training in earth sciences and geography. 
The interest in remote sensing as a tool for the negotiation, implementation, monitoring and 
enforcement of environmental treaties stems from parallel developments in the areas of earth 
observation and international environmental diplomacy. On the one hand, instruments are being 
launched with ever more impressive capabilities, and vendors are looking for new markets. On 
the other, the numbers of treaties in force are constantly increasing (as of 1998 there were more 
than 350 treaties in force), and contracting parties are looking for easier ways to monitor their 
own and third party compliance (de Sherbinin et al. 2002, MEDEA 2002).  
 
Many environmental treaties lack strong enforcement mechanisms. The ones that do provide for 
enforcement, however, have received greater attention from remote sensing scientists. An 
example of an application tied to treaty enforcement is the use of remote sensing for marine oil 
spill detection, which is currently taking place under the auspices of the Bonn Agreement among 
the nations bordering the North Sea. Under the Bonn Agreement, monitoring procedures have 
been set up to track oil spills to the ships of origin. Because oil slicks change the surface 
roughness of water bodies under the windy conditions that generally prevail on high seas, and this 
registers as changes in backscatter on radar instruments, SAR images have proven useful for spill 
monitoring (Jones 2001). The advantage of such monitoring is that it can cover much larger areas 
at lower cost than traditional aerial reconnaissance.  
 
The Kyoto Protocol, when implemented, will require substantial data on greenhouse gas (GHG) 
emissions and carbon sources and sinks. Satellite sensors currently can measure carbon 
monoxide, methane, nitrous oxide and aerosols, but the technology is not at the point where it can 
easily inventory GHG emissions for a given country (these data are usually obtained from fossil 
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fuel consumption and other proxy measures). However, remote sensing can provide valuable 
information on agricultural and forest land, which are important sources and sinks of carbon and 
other GHGs. Because the Kyoto Protocol makes provision for Annex I Parties (industrialized 
countries) to take into account afforestation, reforestation, and deforestation and other agreed land 
use, land-use change, and forestry (LULUCF) activities in meeting their commitments under 
Article 3, remote sensing applications are being developed that permit monitoring and 
verification of such activities (Rosenqvist et al. 1999). For example, the Global Monitoring for 
Environment and Security initiative of the European Commission is producing a number of 
experimental products that demonstrate remote sensing capabilities in support of Kyoto.   
 
Although there is no forestry treaty per se, applications of remote sensing are well suited to forest 
cover monitoring, and such applications may in their own right have contributed to pressure on 
governments to limit deforestation. Brazil and other nations of the Amazon Basin are under 
considerable international pressure to limit deforestation in the basin as research shows the speed 
with which land conversion is taking place (Wood and Skole 1998, Nepstad et al. 1999, Sierra 
2000). Global Forest Watch, a collaborative project to monitor deforestation in the world’s 
remaining frontier forests – especially that which is taking place in forests that are supposedly 
protected – has made extensive use of remote sensing in its analyses of deforestation as it relates 
to land ownership status and forest concessions. It is likely that environmental watchdog groups 
will devise other applications for remote sensing in the detection and prosecution of  “eco-
crimes” such as illegal dumping of toxics.  
 
A number of publications, workshop reports and links to related initiatives are available on this 
subject through SEDAC’s Remote Sensing and Environmental Treaties website (see Related 
Resources). In addition, de Sherbinin and Giri (2000) have provided a summary of several pilot 
applications focusing on treaties related to biodiversity conservation, desertification, wetlands 
conservation, and marine and coastal environmental protection. Readers wishing to learn more 
about deforestation applications of remote sensing are encouraged to read the sections of the 
CIESIN Thematic Guide on Land-Use and Land-Cover Change that address deforestation. 
 
5.4.4  US Domestic Law and Policy Applications 
 
Remote sensing has a number of potential roles to play in domestic policy and legal realms. The 
following is a partial list of the types of legal problems for which remote sensing could play a 
part: discovery and assessment of taxable property; establishment of boundary lines in ownership 
disputes; appraisal of lands to be condemned under states’ right of eminent domain; discovery 
and evaluation of the illegal deposition of fill dirt or waste materials on private property; auto, 
railway, and airline accidents; inventory of damages due to third party negligence; inventory of 
damages from fires, hurricanes, floods, and other disasters; evaluation of vegetation killed by 
noxious fumes from industrial point sources; verification of statements of fact related to the 
weather at the time of an incident (e.g., “it was raining hard at the time”); and natural resource 
damages from oil spills. 
 
The reality is, however, that remote sensing imagery is seldom used in courts of law. Markowitz 
(2002) examines the reasons for the limited use, and concludes that the complexity of the 
information flow causes the data to become vulnerable to evidentiary challenges.  Rules for 
admission of scientific evidence in the courtroom were established in Frye v. United States and 
Daubert v. United States, and among other things, these rules require that several criteria be met: 
(1) the scientific method must be adhered to, (2) the information should be subject to peer review, 
(3) the scientific community must “generally accept” the information, (4) error rates must be 
assessed, and (5) standards for operation of the technique must exist.  
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Markowitz explains that courts may warn against relying heavily upon remote sensing data 
because of the many transformations that data undergoes between collection and application and 
the potential for manipulation. He recommends that scientists and attorneys work together to 
identify specific applications and develop protocol for general acceptance of the information for 
the applied purpose. Efforts to educate the judiciary on probative values and science of remote 
sensing imagery is also critical. Such measures may ease courts’ reluctance to work through the 
complex science and mathematics necessary to assign evidentiary value to the information.  
Further research is being conducted in this area by the National Remote Sensing and Space Law 
Center. 
 
At the request of the US Senate Governmental Affairs Subcommittee on International Security, 
Proliferation and Federal Services, the Congressional Research Service conducted a survey of the 
applications of remote sensing by all federal agencies (CRS 2001). Of the 20 civilian agencies 
CRS surveyed, all but four use remote sensing data and technology in implementing their 
mandated missions. The application cited most often was for environmental conservation 
purposes. Seven agencies reported extensive to moderate use of remote sensing for early warning, 
mitigation, monitoring, and studying the impact from natural disasters. Other uses included basic 
and applied research, mapping activities, monitoring and verifying compliance with domestic 
laws and international treaties, agricultural activities, and transportation and shipping.  
 
Remote sensing is also useful for the implementation of the National Environmental Policy Act 
(NEPA) of 1969, which requires an environmental impact assessment for all major federal 
actions. The same kinds of applications are relevant to multilateral and bilateral development 
bank financing, which also generally require environmental impact assessments.  
 
In the aftermath of the terrorist attacks on the World Trade Towers in New York City, it is likely 
that law enforcement agencies will utilize high resolution remote sensing imagery for some 
domestic intelligence gathering efforts. Vogel (2002) proposes major investments in the National 
Spatial Data Infrastructure (NSDI) – including provision of remotely sensed data – to help 
communities to better prepare for terrorist attacks. 
 
5.5  Land-Use Change and Sustainability Trajectories 
 
Among the earliest social science applications of remote sensing were those addressing land-use 
and land-cover change. In these applications, time series land-use and land-cover data derived 
from remotely sensed imagery are used in conjunction with socioeconomic data to identify 
relationships between socioeconomic “drivers” (e.g., policies, demographic trends, economic 
factors) and changes in the landscape. Social scientists from a number of different disciplines, 
including anthropology, demography, economics, and geography, have been involved in this kind 
of research.  
 
An excellent overview of research related to land-use and land-cover change is provided through 
CIESIN’s Thematic Guide to Land-Use and Land-Cover Change (LUCC). The LUCC guide 
provides chapters addressing deforestation, desertification, biodiversity loss, climate change and 
the carbon cycle, the water cycle and urbanization (the latter is also covered in Section 5.6 of this 
guide). The focus of this section is more narrowly on the remote sensing applications utilized by 
social scientists in this area. Here we will focus primarily on land conversion from natural 
(largely forested) states to other land uses, and on use of remote sensing in conjunction with other 
data to identify sustainability trajectories. 
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5.5.1  Land Use Change 
 
The greatest amount of research attention in the land-use and land-cover change arena has been 
dedicated to deforestation. Time series remote sensing imagery has been particularly valuable for 
this kind of research because conversion of forested land to other uses is, in comparison to other 
conversions (e.g. residential to commercial uses, or cropland to pasture land), fairly easy to 
detect. The most widespread application is simply to monitor the amount and rates of forest cover 
change between two time periods (e.g., the Forest Resources Assessment of the FAO).  
 
To qualify as a social science application, there needs to be some attention paid to the social 
determinants of deforestation, and not simply the rates of deforestation. This generally entails the 
combined analysis of remote sensing and socioeconomic data. One approach has been to combine 
census data collected by administrative units with data from remote sensing satellites. For 
example, Wood and Skole (1998) used census data based on administrative units (municipios) in 
the Brazilian Amazon, together with forest cover change terms aggregated to those units, to 
identify and rank in importance the socioeconomic and demographic variables associated with 
forest clearing. They found little correlation between population density and deforestation, but 
when they added a variable for the number of migrants in rural areas, the r2 increased 
significantly. Their model also included a proxy variable for conflicts between small land holders 
and ranchers, which was statistically significant, suggesting that such conflicts might increase the 
likelihood of land clearing to establish de facto ownership of land. 
 
Pfaff (1999) combined aggregated forest cover change terms from remote sensing data and 
included both population and economic variables in his analysis of deforestation in the Amazon. 
The major empirical finding was the importance of land characteristics (soil quality and 
vegetation density) and factors affecting transportation costs (distance to markets and own and 
neighboring county road networks) in determining deforestation rates. Government development 
projects also appear to have an effect on deforestation, but access to credit and banking 
infrastructure does not. As with Wood and Skole, Pfaff’s analysis did not find that population 
density per se had a significant effect on deforestation rates. 
 
One problem with utilizing available data sets from census and other sources is that researchers 
might miss important causal variables that are not included in public data sources. Wood and 
Skole explore this issue, and suggest that one approach is to use models based on agricultural and 
population census data, and then to visit administrative units that are outliers in the model (those 
with large error terms) to identify what explanatory variables might be missing from their models. 
In this way the predictive model can be made more robust. 
 
Another problem with using public source data is that, for confidentiality reasons, such data are 
usually aggregated to standard administrative units (such as county or census tract).  In order for 
the social science and remote sensing data to correspond to one another,  the remote sensing data 
need to be aggregated and analyzed at the same level (e.g. counties in the Amazon basin) 
(Rindfuss et al. 2001). This means that researchers lose the ability to pinpoint causal variables at 
a finer scale, such as decisions made by individual land holders or communities, to that particular 
pixel or group of pixels. In an ideal world, one would seek a much closer spatial congruence 
between the independent variable (e.g., the socioeconomic determinants) and the land cover 
changes occurring at the smallest spatial units available (e.g., the 30 m resolution of a Landsat 
TM pixel).  
 
To address these problems, several research teams have invested significant resources in farm 
property and household level surveys, which then are linked to remote sensing imagery at either 
the same or higher levels. If the location of household plots are spatially registered using a global 
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positioning satellite (GPS) unit, then linking this to the survey data and to spatial coordinates in 
the remote sensing image is relatively straight forward. This general approach has been used by 
Moran and Brondizio (1998) and McCracken et al. (1999) in the Brazilian Amazon; by Walsh et 
al. (2002) in the Ecuadorian Amazon; by Southworth and Tucker (2001) in Honduras; and by 
Entwistle et al. (1998) and Rindfuss et al. (2002) in Thailand. Each of these studies is briefly 
examined below. 
 
In Moran and Brondizio’s research, the remote sensing imagery itself is used to identify the 
potentially fruitful areas for field research. They chose Landsat scenes in which there was an 
identifiable soil and vegetation gradient, and with representative patterns of land use and 
population distribution. They then sampled within those scenes, choosing locations then going to 
the field to conduct detailed surveys of soil, vegetation and household characteristics. They 
discovered a high correspondence between soil fertility and rates of secondary succession; they 
were also able to identify economically important land uses that would have been invisible to a 
pure remote sensing  image interpretation. 
 
A team of researchers at the Anthropological Center for Training and Research on Global 
Environmental Change (ACT) overlaid a grid of property boundaries onto Landsat scenes for 
1985, 1988 and 1991 in a GIS (McCracken et al. 1999). Analysis at the property level found 
patterns of land-cover classes that reflect differences in livelihood strategies of households. The 
overlay itself represented an integration of social data (property lines) with biophysical 
parameters (forest cover). This was supplemented with surveys of plots where unusual patterns 
were found. Through this work they were able to identify differences in land use patterns based 
on the life-cycle of the household (from young, nuclear families to older, intergenerational 
families). Younger families tend to clear land at higher rates initially, and to maintain more in 
annual crops, moving eventually into combinations of cropping and animal husbandry (grazing), 
whereas older, more established families have a more diversified portfolio of land uses. 
Furthermore, there is an important interaction between the life cycle and the initial conditions of 
soil fertility, with the families on richer soils having a more diversified portfolio than those on 
very poor soils. Thus, it is the interaction of demographic and biophysical variables that plays a 
significant role in the level of diversification of portfolios. 
 
Walsh et al. utilize longitudinal survey data (1990 and 1999) coupled with remote sensing 
imagery (Landsat, SAR, and IKONOS) and GIS data layers of biophysical factors and 
transportation infrastructure to identify the determinants of agricultural extensification into the 
Ecuadorian Amazon, and to model future land-cover change. The strength of their research rests 
upon the longitudinal approach. The 1990 sample included 419 settler plots. These plots were 
revisited in 1999, and with the addition of sub-divisions and new households, the sample size 
grew to 767 farms (plus another 109 peri-urban parcels). Unlike McCracken et al., the data on 
land cover characteristics for the parcels were not derived from remote sensing imagery, but from 
the farm-level surveys. The remote sensing data were used primarily to measure landscape-level 
changes in land cover, and to generate pattern metrics using Fragstats. As an indication of the rate 
of deforestation, in 1986 one-half of the landscape was still under high density forest cover; by 
1996 the proportion was only one-third. Based on the survey data, they found that plots more 
distant from roads and in hillier terrain generally had a higher proportion forested. Household 
labor and presence of hired labor both had a negative effect on forest cover, while off-farm 
employment had a positive effect on forest cover.  This rich data set also provides windows into 
livelihood strategies and a myriad of other research questions. 
 
Southworth and Tucker’s analysis in the county of La Campa in western Honduras combined 113 
household surveys, 79 forest plot inventories, remote sensing for two dates (1987 and 1996) and 
131 training samples (observations of land cover selected on the basis of image analysis). The 
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remote sensing analysis revealed a net trend of reforestation. This was due in part to a county-
wide ban on logging, conversion of communal lands to private holdings, and intensification of 
agriculture with simultaneous abandonment of less productive subsistence plots. Spatial factors 
such as topography and accessibility to road networks played a significant role in determining 
forest cover change. Although the remote sensing data were not linked to individual plots in this 
analysis, the household surveys provided important contextual information that assisted 
significantly in the analysis of the land-cover change data. The authors suggest that the 
reforestation trend in La Campa may in fact be transitional – privatization of land by a wealthier 
minority combined with population growth and trends towards market-oriented agricultural 
production (especially coffee) may increase pressures on remaining communal forest resources in 
the future. 
 
Entwisle et al. linked household survey data for communities to remote sensing imagery for the 
areas surrounding Nan Rong, a community in Thailand. At a first stage in their research, this 
community- rather than household-based approach was necessary because, unlike the Amazon, 
farmers tend to reside in clustered villages to walk to fields, which are dispersed in a patchwork 
around the villages. At a later stage, they invested considerable effort at one of their study sites in 
linking households to specific, georeferenced plots of land through utilization of maps based on 
remote sensing imagery and household and community interviews (Rindfuss et al. 2002). The 
pattern is complex because there are one-to-one, one-to-many and many-to-one relationships 
between households and plots of land. The research, which is still under way, will provide 
powerful insights into household decisions regarding land use, land renting, migration, and labor 
supply, as well as information on social networks and the diffusion of innovations. 
 
There have been fewer attempts to link remote sensing and socioeconomic data for the study of 
other land-cover conversions, e.g. from productive subsistence agricultural land to “degraded” 
land, or from natural vegetation and agriculture to urban land uses. Xu et al. (2000) studied the 
impact of urbanization on arable lands in Fujian Province using a combination of remote sensing, 
census and economic data. They conclude that the region’s rapidly growing economy, with a 
Gross Provincial Product of 2.0 billion yuan in 1990 that increased to 13.5 billion yuan in 1996, 
was primarily responsible for the growth in urban extent from 4,495 to 7,864 km2 during the same 
time period. 
 
Millington et al. (1999) utilized Landsat TM and MSS imagery from 1972 through 1992 to 
analyze land use in an arid to semi-arid region in northern Jordan. Their time series data showed a 
distinct increase in the amount of rainfed and irrigated cultivation over the time period, which in 
turn was linked to population increases and government policies. They note that identification of 
rainfed fields was made more difficult by the spectral similarity between these and stone-strewn 
lava-flow surfaces and rangelands. 
 
Finally, there has been some attention to the link between the social processes of deforestation 
and the spatial patterns of deforestation that appear on the ground. Geist and Lambin (2001) 
summarize the research in this area based on a statistical analysis of deforestation case studies (a 
more in-depth review of their work is found in Section 3.2 of the LUCC Thematic Guide). The 
results of their analysis are shown in schematic form in Figure 6. Moving clockwise from upper 
left, the geometric pattern of deforestation is commonly associated with large-scale clearing for 
commercial agriculture, large scale pasture, or industrial forestry plantation settlements. The 
corridor pattern of deforestation occurs in areas of roadside colonization by spontaneous 
migrants, and is commonly driven by road extension. The fishbone pattern is only found in the 
Brazilian Amazon, and is associated with planned resettlement, colonization, and transmigration. 
It represents a process of roadside frontier colonization. The island pattern is associated with 
periurban areas, and is related to semi-urban or urban settlements in forested areas. The patchy 
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pattern is commonly related to high population density areas with residual forest patches, and is 
associated with permanent cultivation of food and to a lesser degree cash-crop production. The 
diffuse pattern is associated with traditional, small-holder subsistence agriculture, and in 
particular shifting cultivation and permanent cultivation by small holders. 
 
Figure 6. Typology of the Forest-Nonforest Spatial Patterns and Their 

Interpretation in Terms of Deforestation Processes 

 
Source: Mertens and Lambin (1997), reproduced in Geist, H. and E. Lambin. 2001. What Drives 
Tropical Deforestation?, LUCC Report Series No. 4, Louvain-la-Neuve, Belgium. 
 
 
5.5.2  Sustainability Trajectories 
 
Sustainability was defined by the World Commission on Environment and Development 
(Bruntland Commission 1987) as “the ability to meet today’s global economic, environmental 
and social needs without compromising the opportunity for future generations to meet theirs.” In 
the context of land-use and land-cover change, there is interest in understanding transitions in 
land use from sustainable states to less sustainable states or, conversely, from unsustainable 
practices to more sustainable practices. Remote sensing can provide a valuable tool by enabling 
researchers to examine large areas for “signatures of sustainability” or signs that the landscape 
may be entering a phase of “criticality.” 
 
Millette et al. (1995) examined three villages in the Kathmandu valley of Nepal for pathways to 
criticality, which they define as a regional situation in which the rate or extent of environmental 
degradation precludes the continuation of current human use systems or levels of human well-
being, given feasible adaptations and societal capabilities to respond. They conclude that despite 
the difficulties of analyzing remote sensing imagery in a mountainous area where high slope 
angles and shadows complicate image analysis, remote sensing imagery in combination with 
ground-based data can “provide information highly germane to the analysis of changing nature 
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society relations, including trajectories toward endangerment and criticality.” However, they 
suggest that such studies still require detailed ground-based case studies; the imagery can then be 
used to further inform the case study, and to extend the analysis to wider areas, taking care that 
similar socioeconomic and environmental contexts prevail.  
 
Although not explicitly developed as a “sustainability” study, Tappan et al. (2000) utilized a time 
series of declassified intelligence satellite data from the 1960s (Argon and Corona) in conjunction 
with Landsat imagery for the 1990s to analyze trends in land cover and soil fertility in the peanut 
basin of West-Central Senegal. The study covers 30 years, from 1963 to 1992, a period that saw 
significant demographic, economic, technological and cultural changes. The most striking land-
cover change, they note, is the wholesale expansion of agriculture at the expense of the bushlands 
that made up the “commons” for grazing and firewood collection. Savannah woodlands and 
mangroves declined in aerial extent during this period, and soil conditions appeared to have 
deteriorated. They conclude that as the expansion of new cultivated areas is no longer possible, 
and the commons are no longer available for the production of needed goods and services, 
farmers will need to adopt new strategies of soil, water and vegetation conservation. 
 
Based on a high correlation between night-time lights emitted and GDP, Sutton and Costanza 
(2002) developed a novel application of the Defense Meteorological Satellite Program’s 
Operational Linescan System (DMSP OLS) data, which measures luminosity at night. Using 
luminosity as a proxy for economic activity, they mapped the location of major economic 
activities for each country and overlaid that map with another data set that measures the location 
of ecosystems services product (ESP). They found that among industrialized countries, smaller 
ones such as Belgium, Luxembourg and the Netherlands had a very small proportion (under 3%) 
of economic product derived from ecosystem services, whereas larger ones could attribute 
substantially more of their GDPs to ecosystem services (e.g. Australia at 67%, and the U.S. at 
49%). For non-industrialized tropical countries, in excess of 90% of their total product could be 
directly or indirectly attributable to ESP. The authors compare these new measures with two 
existing measures of environmental sustainability, the Environmental Sustainability Index and the 
Ecological Footprint Eco-Deficit, and suggest that the spatially explicit nature of their data sets 
(developed on a 1 square km. grid) can permit modeling to characterize changes over time in the 
value of ecosystem services. 
 
Turner (2001) describes advances in what he terms “integrated land science,” in which “the 
environmental, human, and remote sensing/GIS sciences unite to solve various questions about 
land-use and land-cover changes and the impacts of these changes on humankind and the 
environment.” The focus is on new and improved methods of detection and on predictive models, 
which fall in the categories of econometric, explanatory, agent-based or scenario-driven. The 
modeling efforts are bringing together researchers from disparate communities in the social and 
remote sensing sciences. He sees advances in integrated land science as being critical to the 
transition towards sustainability.   
 
Although not yet operational, scientists at the Potsdam Institute for Climate Impacts Research are 
promoting the concept of a “Sustainability Geoscope” (see Sustainability Geoscope). According 
to its proponents (Lotze-Campen et al. 2002), the Geoscope will provide a framework for an 
observation and monitoring system on a global scale, comprising economic, social, environmental 
and institutional issues. Data sources would include a combination of satellite remote sensing, 
socioeconomic data and on-the-ground observations. The concept ties in with earlier proposals 
for a “syndromes approach” to global change research, in which a sample of areas is intensively 
monitored around the world for the identification of syndromes of unsustainability that can be 
addressed through concerted policy action (WBGU 1996). Syndromes are functional patterns of 
people-environment relations, characteristic negative constellations of natural and anthropogenic 
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trends of global change and their respective interactions. Examples of syndromes identified 
include the “Sahel Syndrome”, “Rural Exodus Syndrome”, and “Waste Dumping Syndrome.” 
 
5.6  Urban Studies 
 
Population growth and urban expansion have advanced at an unprecedented pace over the past 
few decades. Although cities occupy only a very small portion of the Earth’s total land surface, 
almost half of the world population lives in urban areas (United Nations 2001). Urban growth has 
had increasingly significant socioeconomic and environmental impacts at local, regional and 
global scales (Berry, 1990). The rapid expansion of urban centers and their peripheries has led, in 
many cases, to a series of complex problems related to loss of agricultural land and natural 
vegetation, uncontrolled urban sprawl, increased traffic congestion and degradation of air and 
water quality. Such impacts affect not only the local environment, but also have consequences for 
more distant regions. Changes in vegetation cover, air and surface temperature and air and water 
quality induced by urban expansion influence the microclimate of the human habitat, as well as 
climate dynamics and environmental changes at local and regional scales. Urban growth has also 
significant impacts on the social structure of the cities and their surroundings, in terms of 
population distribution or land use characteristics. In addition to local impacts, the emergence of 
mega-cities (with more than 10 million people) is considerably influencing the social, economic 
and political systems on global levels, due the demographic and economic importance of such 
cities and their interconnectivity at large scales. 
 
Consistent and efficient characterization of the urban environment provides the basis for urban 
planning and decision making, and facilitates the study of local and regional environmental 
processes in the broader context of global environmental change and the sustainability of cities 
and their hinterlands.  Satellite systems can provide timely and accurate information on existing 
land use and land cover and have been increasingly used to characterize urban areas and to 
monitor urban changes in conjunction with socioeconomic and demographic changes. It is 
becoming more and more evident to both the physical and the social science research 
communities that remote sensing represents an essential tool in any environmental and 
socioeconomic analysis of urban areas.  
 
The very first example of remote sensing in urban studies is represented by a camera carried on a 
balloon by Tournachon to study parts of Paris in 1858. Since 1948, when the full potential of 
aerial photography in urban analysis was examined (Branch, 1948), conventional black and white 
photography first, and color photography later, have been increasingly used in socioeconomic and 
demographic studies. Such studies were focused mainly on the use of photointerpreted data as 
auxiliary data sources for the census, or to predict socioeconomic variables such as poverty from 
housing density, structure type or vegetation cover. With the advent of the first generation 
satellite sensors (Landsat MSS) in the 1970s and the subsequent Landsat TM and SPOT, which 
were able to collect information in multiple spectral bands, including thermal infrared, virtually 
all research in urban areas focused on land use or land cover classification. Forster (1983) 
provides an extensive overview of early urban remote sensing applications. 
 
This section of the guide discusses the following topics, providing examples of uses of remote 
sensing in urban analysis: 
 

• Identification and delineation of the urban environment 
• Classification of urban areas 
• Measuring and monitoring physical properties of urban areas (vegetation, air quality, etc) 
• Analysis of physical characteristics and demographic/socioeconomic patterns of the 

urban environment  
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• Monitoring changes and urban growth over time 
 
The first three topics intrinsically address relatively technical issues of physical characterization 
of the urban environment and do not directly relate to social science applications. This 
background is important, however, for social scientists to be aware of, because it informs both the 
advantages and the limitations of remote sensing in the urban environment. The last two topics, 
on the other hand, report on studies that are clear social science applications. 
 
5.6.1  Identification and Delineation of Urban Areas 
 
Identification, delineation and classification of urban areas have typically been the realm of the 
technical remote sensing community. Much of the social and demographic information social 
scientists require can be more easily obtained from traditional government and private sector 
sources. Nonetheless remotely sensed data may provide a physically meaningful way to define 
urban areas that can then be utilized in social science studies. 
 
The main problem in delineation of urban areas in the social science context is the lack of a 
consistent definition of what is urban. Definitions vary from country to country (United Nations, 
2001) and are often based on different parameters. Urban areas may be defined by administrative 
boundaries, or by population density, and this varies from country to country. It is easy to 
understand the limitations in these approaches: the majority of urban areas have boundaries that 
don’t coincide with administrative divisions, and defining cities based on a population density 
threshold that differs by country makes comparative studies more difficult. Furthermore, such 
approaches do not include spatial extents of built-up areas. Satellite imagery may be used to 
define urban areas in a more consistent way and to produce spatially georeferenced urban extents.  
 
There is an extensive literature on urban delineation, although very often based on case studies of 
a single city, rather than on comparative studies. The book Remote Sensing and Urban Analysis 
(2001) contains several chapters dedicated to recent studies to develop new methodologies and 
algorithms to improve delineation and characterization of urban features, including integration 
with socioeconomic variables and applications related to urban growth modeling. Although quite 
rich in technical details, these chapters, and other publications, provide good examples of how 
remote sensing experts are implementing relatively new techniques to identify the different 
elements in the built-up environment based on their density and texture (e.g., Longley and Mesev 
2001, Moller-Jensen 1990, Karathanassi et al. 2000). 
 
A relatively new approach is one that looks at data fusion for urban analysis, which is based on 
the integration of data from different satellites, and with different spatial and spectral resolutions, 
to identify urban features, building types and building density (e.g., Proceedings of the 
IEEE/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, 2001). 
 
5.6.2  Classification of Urban Areas 
 
If delineating urban areas is a difficult task, classifying different types of urban land use is even 
more so. The urban environment is characterized by a mixture of diverse material and land use 
classes, such as buildings, commercial infrastructures, transportation networks, and parks. 
Because they are combinations of spectrally distinct land cover types, mixed pixels in urban areas 
are frequently misclassified as other land-cover classes. Similarly, the definition of an “urban” 
spectral class will usually incorporate pixels of other non-urban classes. Such spectral 
heterogeneity severely limits the applicability of standard classification techniques, where it is 
assumed that the study area is comprised by a number of unique and internally homogeneous 
classes. Many authors (e.g., Welch, 1982, Forster, 1983, Forster, 1985, Jensen and Cowen, 1999) 
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have discussed in detail the issues associated with spatial and temporal requirements for urban 
studies. For example, to be able to identify urban classes down to Level III of the Anderson 
classification system (that is, to differentiate between single-family and multi-family residential, 
for instance) a minimum ground resolution of 1-5 m is required. Commercial satellites, like 
IKONOS and QuickBird, as well as aerial photography, are being used for Level IV 
classifications (identification of duplex, triplex or condominium units), while satellites like 
Landsat will allow a Level I classification (Residential vs. Commercial, for instance). Higher 
spatial resolution normally comes at the price of lower temporal resolution and smaller areal 
coverages. For studies of urban growth or over large areas, such high ground resolutions might 
not be necessary.  
 
Urban classifications are often improved by integrating satellite-derived classifications with 
ancillary data in a GIS environment. Ancillary data might include a range of socioeconomic 
variables, such as population or housing density, derived from the census or similar data sources 
or variables like land use and digital elevation models (Stefanov et al. 2001). 
 
More recent techniques in urban classification rely on hyperspectral data. A hyperspectral image 
is one in which the radiance from each pixel is measured at many narrow, contiguous wavelength 
intervals. This enables identification of surface features, making hyperspectral sensors good 
candidates for mapping complex urban systems, particularly for classifications based on material 
composition. However, there are some limitations in their applicability for the social sciences. 
First, the majority of hyperspectral sensors have been airborne (e.g., AVIRIS, CASI, PROBE-1, 
AISA), with only two recent exceptions (NASA’s Hyperion on EO-1 satellite and the US Air 
Force Research Lab’s FTHSI sensor on the MightySat II satellite). This might limit temporal and 
spatial availability of data. Second, the image classification process might not be trivial, in that it 
requires good spectral libraries, which in many cases need to be created beforehand and, in some 
cases, complex sub-pixel analysis methods. For more information refer to the reports of AVIRIS 
workshops, available from 1990 to 2001 (AVIRIS Workshop Proceedings 2001) or to authors 
who used hyperspectral data to define specific urban land uses (e.g., Hepner et al.,1998, Ben-Dor 
2001). 
 
5.6.3  Measuring and Monitoring Physical Properties of Urban Areas  
 
Urban areas exert an influence on local weather and climate, but they also affect wider regional 
and global atmospheric systems. Changes induced by urbanization include changes in solar 
radiation absorption, surface temperature, evapotranspiration, water vapor and pollutants 
concentration, which in turn link to human health problems. Remote sensing data is proving 
extremely useful for urban studies in terms of providing scientifically verifiable, routine 
measurements of physical properties that would be difficult or more expensive to obtain in situ, 
especially in developing countries. 
 
The urban heat island effect, generally represented by the difference between urban and rural 
temperatures, has been studied since the 1930s. Many studies have addressed urban heat as a 
physical phenomenon (Oke 1973, Oke 1982) and attempted to quantify various aspects of 
maximum temperature differences and energy balances in urban and rural areas (e.g., Chandler 
1964, Bornstein 1968). It is in the 1970s that use of remote sensing to assess the urban heat island 
effect was initially explored. Thermal measurements from satellites (such as TIROS or the 
NOAA 3 VHRR, at first, and AVHRR and higher resolution Landsat later) were used to delineate 
urban areas (Rao 1972) and characterize the urban heat island effect (e.g., Matson et al. 1978, 
Roth et al. 1989). In particular Roth et al. (1989) analyze the reasons behind the differences 
between remotely-sensed heat island and air temperatures measured using standard or mobile 
stations, and describe the utility of satellite data in urban climate models. Such differences are 
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related to the urban geometry (over representation of roofs and tree tops), to the lack of simple 
coupling between the surface and the air in the urban system, and to the failure to recognize and 
consider the different scales of climatic phenomena in the urban atmosphere. There is a general 
agreement that variations in temperature associated with different land uses might prevent a clear 
delineation of possible urban thermal anomalies in some areas. For this reason, an increasing 
number of studies have been focusing on indirect measurements of the heat island effect. For 
instance, Gallo et al. (1993) observed a correlation between a vegetation index (NDVI) and 
observed temperature leading to the possibility of using NDVI as indirect measurements of the 
temperature variations. In another study, Gallo et al. (1995) suggest that a combination of NDVI 
and night-time lights might prove more effective in the evaluation of urban heat island effect. 
Another example of indirect measurements of heat island is the use of urban population growth as 
a predictor of the urban heat island (Karl 1988). 
 
There are also numerous programs devoted to the study of the urban heat island effects and 
possible mitigation strategies. Global Environmental Management (GEM), for example, is an 
environmental technology firm specializing in energy efficiency and air quality solutions through 
Urban Heat Island Mitigation (UHIM) programs. The firm is also collaborating with the Global 
Hydrology and Climate Center (GHCC) at NASA Marshall Space Flight Center (MSFC) to 
commercialize NASA technology into products and services for urban environmental programs. 
Other examples are the Heat Island Program (HIP) at the Lawrence Berkeley National Laboratory 
(LBNL) and the EPA-NASA Urban Heat Island Pilot Project (UHIPP).  
 
Other physical parameters measured include vegetation, ozone, dust and overall air quality in 
urban areas. Vegetation can substantially affect the wind, temperature, moisture, and precipitation 
regime of urban areas and is believed to have very important practical applications in urban 
planning, such as heating and cooling requirements of buildings, dispersion and concentration of 
pollutants, and urban weather (Avissar 1996).  One interesting initiative related to the study of 
urban vegetation is the USDA Forest Service’s Urban Forest Research Unit (USDA 2000). 
Among other initiatives, such as studying the effects of urban vegetation on local and regional air 
quality, the Unit scientists have developed a model (the Urban Forest Effects-UFORE) to 
quantify urban forest structure and effects for cities across the country. 
 
An example of the use of remote sensing for air quality monitoring is provided by the Center for 
Energy Studies (CES). The group uses Radar data to identify urban morphological features in 
relation with air circulation, and SPOT and Landsat data to study changes in visibility induced by 
air pollution.  
 
Other parameters currently measured are ozone, dust, smoke and aerosol collected by NASA’s 
Total Ozone Mapping Spectrometer (TOMS), which provides long-term datasets of daily 
measurements over about two decades. The spatial resolution (in the order of magnitude of about 
100 km at the equator) does not allow for a detailed characterization of air quality at the city 
level, but the data are extremely useful for global studies. The launch of the new Aura in 2004 
will allow measurements of ozone, particulate, temperature etc, in the troposphere (from the 
ground to about 10 km), at a ground resolution of 12-24 km. 
 
5.6.4  Analysis of Physical Characteristics and Demographic/Socioeconomic Patterns  
 
Both social and physical scientists deal with the issue of integration of physical variables derived 
from remote sensing and traditionally collected socioeconomic and demographic data. Such 
integration might eventually lead to a better understanding of urban impacts and urban drivers of 
environmental and social changes, bringing benefits to both communities. Some of the past and 
on-going initiatives, especially in the remote sensing community, are focused on the integration 
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of remote sensing with socioeconomic data to improve classification in urban areas (e.g., Harris 
and Ventura 1995, Mesev 1997, Vogelmann et al. 1998, and Chen 2001). Studies of this type 
show that classification of satellite imagery alone sometimes does not produce adequate results 
for specific urban applications. Remote sensing provides repeat coverages of a given area, 
allowing great data availability, but often at moderate spatial resolutions, while some ancillary 
data may provide levels of detail that are not available through the satellite data. Combining the 
two proves to be an effective way to reduce misclassification errors and improve the specificity of 
the final classification. 
 
Other studies reflect the growing need of the social science community to use remotely sensed 
data in conjunction with demographic and socioeconomic data to study urban change dynamics or 
to better understand the spatial distribution of population and socioeconomic phenomena. Several 
authors studied the correlation between population data from the census, or collected from social 
survey at the village level, and land cover characteristics derived from satellite imagery (e.g., 
Yuan et al, 1997, Radeloff et al. 2000). In addition to examining the correlation between 
biophysical and social variables, Walsh et al. (1999) show the importance of scale dependence on 
the selected variables and that the relationships are not generalizeable across the sampled spatial 
scales. Lo and Faber (1997) present another interesting case, where their study of the correlation 
between environmental variables extracted from Landsat data and socioeconomic data from the 
census shows that a combination of satellite data and census data can be used to determine 
Quality of Life assessment with an environmental perspective (see also Section 5.1.1 of this 
Thematic Guide). 
 
Research by Pozzi and Small (2002) looks at the correlation between population density (from the 
U.S. Census) and vegetation cover (extracted from Landsat) for a sample of cities in the United 
States. The authors show that for large cities there is a linear correlation between the two 
variables, but given the difference in resolution of satellite and census data, and given the 
different urban structures and growth dynamics, it is difficult to consistently characterize urban 
areas at the 30 meter resolution of Landsat imagery. Nonetheless, this can be considered an initial 
step towards alternative classification methods for urban areas, that look at the spectral 
heterogeneity of the urban environment, or at a combination of spectral and demographic data. 
 
A noteworthy effort is the Long Term Ecological Research (LTER) Network (LTER 2001). Two 
of the 24 sites included in the program are urban areas: Baltimore and Central Arizona-Phoenix. 
The objective is to analyze the interactions of ecological and socio-economic systems and the 
effect of infrastructure and development on fluxes of nutrients, energy, and water in urban 
environments. 
 
5.6.5  Monitoring Urban Growth  
 
Monitoring urban growth is one of the questions social scientists, urban planners and decision-
makers deal with most frequently. The direct impacts of urban expansion on physical, ecological 
and social resources have made research on urban sprawl of increased interest. Traditional census 
sources are extremely useful in that they capture changes in the socioeconomic and demographic 
structure of cities, but they lack spatial details and are not frequently updated. Remote sensing, on 
the other hand, makes available a vast amount of data with continuous temporal and spatial 
coverage and can therefore provide a successful means for monitoring urban growth and changes. 
Using remote sensing for change detection studies naturally requires that the different temporal 
images are atmospheric and zenith-angle corrected and carefully co-registered, in order to avoid 
errors in the estimation of land cover changes. 
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Despite the extensive literature of change studies available, most of these studies are based on 
more traditional land cover classifications (e.g., Wang and Zhang 1999, Esnard and Yang 2001, 
Stefanov et al. 2001), and only a few report examples of development of integrated datasets that 
can be used in planning and urban monitoring efforts. Examples of how remote sensing data can 
be used in conjunction with socioeconomic data are those of Emmanuel (1997) and Wagner and 
Ryznar (1999). They find that changes in urban vegetation can be linked to urban social changes 
in the city of Detroit, and suggest the development of an vegetation-based urban environmental 
quality index to monitor physical and social changes in cities. 
 
Many cities in developing countries are experiencing rapid increase in population and 
consequential urban expansion. Remote sensing may provide fundamental observations of urban 
growth that are not available from other sources (e.g., Balzerek 2001). 
 
An interesting project in the context of urban growth is Project Gigalopolis, developed at the 
University of California Santa Barbara and sponsored by the USGS Urban Dynamics Program. 
The project consists of a downloadable program for environmental simulation modeling of urban 
growth. The model is called SLEUTH, based on the simple image input requirements of the 
model itself: Slope, Land cover, Exclusion, Urbanization, Transportation, and Hillshade. The 
short-term objective of the model is to guide local community planners in achieving desired smart 
and responsible urban growth, while the long-term goal is to develop these tools to best predict 
urban growth on a regional, continental and eventually global scale. 
 
The Urban Environmental Monitoring Project at Arizona University (UEM) has the objective of 
providing a dedicated observation strategy for urban environmental monitoring around the world 
using data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer 
(ASTER). The project will study 100 of the World’s largest urban centers, with an emphasis on 
those in arid and semi-arid environments. Studies will be done to monitor urban growth, land use 
change, impact on the surrounding environment, and the development of urban heat islands. The 
primary application of remote sensing data in this study is to provide a means for extrapolating 
detailed measurements at local sites to a regional context. 
 
5.6.6  Recent Applications and New Developments  
 
This section includes examples of new methodologies and applications that are currently being 
developed to gain better understanding of urban areas. For the most part such studies are still in 
the technical development phases and therefore limited to the remote sensing community. 
Nonetheless they are driven by social science questions and will certainly have very high 
potential to be applied in this field in the near future. Some of these efforts look at urbanization in 
a global context and attempt to provide a physical basis to standardize degrees of urbanization or 
urban extent. 
 
The first area of new research is in the use of Spectral Mixture Analysis and linear mixture 
models to map urban extent and quantify physical properties (Small 2001, 2002a, 2002b). The 
dominant spatial scale of individual features (roads, buildings, etc.) in urban mosaics is generally 
10 to 20 meters. Operational sensors like Landsat and SPOT do not have sufficient spatial 
resolution to discriminate individual features so most urban pixels image several different 
features with different reflectances. These mixed pixels are distinct from the more spectrally 
homogeneous pixels associated with most other types of land cover. Spectral mixture analysis and 
linear mixture models quantify these mixed pixels on the basis of the fractional abundance of 
different spectral endmembers (e.g., vegetation, water, high albedo). This provides a way to 
discriminate spectrally heterogeneous urban pixels from other types of landcover. It also provides 
a representation that is consistent with physical process models and environmental applications. 
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The second area involves the use of Shuttle Radar Topography Mission (SRTM) data to identify 
urban infrastructure (Nghiem et al. 2001). The data include derived topography and backscatter 
intensity at a nominal resolution of 30 m. Urban areas are generally characterized by very high 
backscatter intensity as a result of the abundance of corner reflectors (buildings). Some of the 
potentially derivable parameters include urban extent and boundaries, urban/suburban vegetation 
height and distribution, building height and volume, which could be used for various social 
science applications. In particular, if used in conjunction with data from other sensors (Landsat, 
AVIRIS), and from other sources (traditional census data), it may represent an excellent dataset to 
quantify economic development and transportation infrastructure, as well as to identify housing 
and other building stock. 
 
The third area involves the application of time series data from the Defense Meteorological 
Satellite Program (DMSP) Operational Linescan System (OLS) to derive georeferenced 
inventories of human settlements (Elvidge et al. 1997a). The visible band of the OLS is 
intensified at night, permitting detection of nocturnal visible-near infrared emissions. The authors 
have developed a methodology to identify different light emissions sources and produced four 
separate datasets, at a nominal resolution of 1 km: Stable City Lights, Fires, Gas Flares and 
Lights from Fishing Boats. The city lights dataset has been used to explore the relationship 
between the area lit by anthropogenic visible-near infrared emissions and socioeconomic 
variables such population, economic activity and electric power consumption (Elvidge et al. 
1997b). Others have begun to use the city lights dataset to map urban areas in the U.S. (Imhoff et 
al. 1997) to estimate the global human population (Sutton et al. 2001), and to develop a spatially 
explicit map of GDP (Sutton and Costanza 2002). Currently, CIESIN is utilizing OLS night-time 
lights data in combination with population data, high resolution spatial data and satellite imagery 
to derive a global dataset of populations and area extents for urban and rural areas. For more 
information on the Urban-Rural Database Project, see SEDAC’s Urban Remote Sensing website. 
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Annex A. Satellites and Sensors 
 

The following table lists the most known and used satellites and their sensors, with specifications 
about spectral, spatial, and temporal resolutions, what they can detect, and applications they can 
be used for. 

 

What Can Be Detected? Satellite Sensor Spectral 
Resolution 
(Wavelength 
in µm) 

Spatial 
Resolution 

Temporal 
Resolution Spatial Temporal 

MMS 
(Multispectra
l scanner 
system) 

1: 0.5-0.6 
(G) 
2: 0.6-0.7 
(R) 
3: 0.7-0.8 
(VNIR) 
4: 0.8-1.1 
(NIR) 

80 m; 
185 Km 
swath width 

16 days Mapping coastal 
features in sediment-
laden water 
Mapping roads and 
urban areas 
Vegetation studies 
and mapping 
land/water 
boundaries 

Deforestation 
Urban and 
suburban 
development 
 

LANDSAT 4, 
5 
 
URL: 
http://geo.arc.n
asa.gov/sge/lan
dsat/landsat.ht
ml 

TM 
Thematic 
Mapper 

1: 0.45-
0.515 (B)  
2: 0.52-0.60 
(G) 
3: 0.63-0.69 
(R) 
4: 0.75-0.90 
(NIR) 
5: 1.55-1.75 
(Mid-IR) 
6 (thermal): 
10.40-12.5  
7: 2.09-2.35 
(Mid-IR) 

30 m 
(visible, near 
and mid-IR); 
120 m 
(thermal IR);  
185 Km 
swath width 

16 days Soil/vegetation 
differentiation & 
coastal water 
mapping 
Vegetation mapping 
Plant species 
differentiation 
Biomass survey 
Snow/cloud 
differentiation 
Thermal mapping 
Geological mapping 

Changes in 
heat islands  
Vegetation/la
nd use 
patterns 
 

LANDSAT 7 
(1, 2, 3, 6 are 
inactive) 
 
URL: 
http://landsat7.u
sgs.gov/ 
 

ETM + 
(Enhanced 
Thematic 
Mapper) 
 

1: 0.45-
0.515 (B)  
2: 0.52-0.60 
(G) 
3: 0.63-0.69 
(R) 
4: 0.75-0.90 
(NIR) 
5: 1.55-1.75 
(Mid-IR) 
6 (thermal): 
10.40-12.5  
7: 2.09-2.35 
(Mid-IR) 
8 (pan): 
0.52-0.90 

30 m 
(visible, near 
and mid-IR), 
15 m 
(panchromat
ic), 60 m 
(Thermal 
Infrared); 
185 Km 
swath width 

16 days  Major Thoroughfares 
Large Buildings 
Forest Stands 
Agricultural Plots 
Coastline 
Advance/Retreat 
Rugged Topography 
Sea Ice Coverage 

Changes in 
human 
infrastructure 
Development 
patterns 
Migration 
patterns 
Agricultural 
variations 
Urban/Rural 
interchange 
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What Can Be Detected? Satellite Sensor Spectral 

Resolution 
(Wavelength 
in µm) 

Spatial 
Resolution 

Temporal 
Resolution Spatial Temporal 

Two HRV-IR 
(High 
Resolution 
Visible, 
Infrared) 
push-broom 
sensors. 
 
 
Provides 
coverage 
between 87 
degrees 
north and 87 
degrees 
south 
 
 

1: 0.50-0.59 
(G) 
2: 0.61-0.68  
(R) 
3: 0.79-0.89 
(NIR) 
4: 1.58-1.73 
(SWIR) – 
added on 
SPOT 4 
Pan: 0.51-
0.73 

20 m 
(Visible, 
Near 
Infrared), 10 
m 
(panchromat
ic); 
60 Km swath 
width 
 
 
 

26 days 

High 
Resolution 
Geometry 
(HRG), the 
high spatial 
resolution 
version of 
SPOT 4 
HRV-IR 

1: 0.50-0.59 
(G) 
2: 0.61-0.68  
(R) 
3: 0.79-0.89 
(NIR) 
4: 1.58-1.73 
(SWIR) – 
added on 
SPOT 4 
Pan: 0.51-
0.73 

10 m 
(Visible), 
20 m (Near 
Infrared),  
5 m 
(panchromat
ic); 
60 Km swath 
width 
 
 
 

26 days 

SPOT 1, 2, 
and 4 (3 is 
inactive) 
Launched by 
France from 
1986-1998  
 
SPOT 5 
Launched in 
may 2002 
 
 
URL: 
www.spot.com/ 

VEGETATION 
instrument 
(on SPOT 
4). 
 

1: 0.43-0.47 
(B) 
2: 0.61-0.68 
(R) 
3: 0.78-0.89 
(NIR) 
4: 1.58-1.75 
(SWIR) 

1 Km; 2200 
Km swath 
width 

Daily 

Agriculture  
(Resource mapping, 
production 
management, crop 
classification) 
Land Use (Urban and 
suburban land use, 
land mapping, 
energy, human 
infrastructure)  
Oceanography (water 
quality management)  
Water resources 
(Surface water, soil 
moisture and 
evapotranspiration, 
lakes and rivers 
studies, wetlands and 
habitat mapping, 
resource 
assessment)   
Geological 
applications 
(mapping, economic 
geology, engineering 
geology, hazards and 
land morphology. oil 
and gas exploration)  
Engineering 
applications (terrain 
analysis, site 
investigation, water 
resources 
engineering, transport 
studies.  
Forest monitoring 
(inventory, forest 
management) and 
vegetation cover 
study (especially the 
VEGETATION 
sensor) 

Deforestation 
Suburban/Urb
an land use 
changes 
Residential 
Development 
Coastal 
Pollution 
Water 
resource 
pollution 
monitoring 
Snow and Ice 
mapping 
Harvest 
forecasting 
Conservation 
monitoring 
Hazard 
prediction  
Landslide 
hazards 
Forest 
damage 
assessment  
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What Can Be Detected? Satellite Sensor Spectral 
Resolution 
(Wavelength 
in µm) 

Spatial 
Resolution 

Temporal 
Resolution Spatial Temporal 

IKONOS 1, 2 
Launched in 
1999 by the 
United States 
(IKONOS 2 
failed)  
 
URL: 
http://www.tbs-
satellite.com/tse
/online/sat_ikon
os_2.html 

MMS 
(Multispectra
l) and PAN 
(Panchromat
ic) 

1: 0.45-0.53 
(B) 
2: 0.52-0.61 
(G) 
3: 0.64-0.72 
(R) 
4: 0.76-0.88 
(VNIR) 
Pan: 0.45 –
0.90 

4 m (visible), 
1 m  
(panchromat
ic); 
11 Km swath 
width 

26 days (680 
km sun-
synchronous 
orbit) 

Roads, vehicles, 
buildings, 
infrastructure 
(panchromatic) 
  
Land use, agricultural 
uses, vegetation 
(color imager) 

Changes in 
human 
infrastructure 
Development 
patterns 
Migration 
patterns 
Agricultural 
variations 
Urban/Rural 
interchange 

Quickbird 
Launched in 
October 2001  
 
URL: 
http://www.di
gitalglobe.co
m 

MS 
(Multispectra
l) and PAN 
(Panchromat
ic) 

1: 0.45-0.52 
(B) 
2: 0.52-0.60 
(G) 
3: 0.63-0.69 
(R) 
4: 0.76-0.99 
(NIR) 
Pan: 0.45-
0.90 

2.44 m 
(Multispectra
l); 
61 cm 
(panchromat
ic); 
16.5 Km 
swath width 
 

1 to 3.5 days 
depending 
on latitude at 
70-
centimeter 
resolution 

Roads, vehicles, 
buildings, 
infrastructure 
(panchromatic) 
  
Land use, agricultural 
uses, vegetation 
(color imager) 

Changes in 
human 
infrastructure 
Development 
patterns 
Migration 
patterns 
Agricultural 
variations 
Urban/Rural 
interchange 

NOAA - 7 
Launched in 
1981 and 
deactivated 
1986 due to 
an power 
failure 
 
URL: 
http://podaac.jpl
.nasa.gov/sst/ 

AVHRR 
(Advanced 
Very High 
Resolution 
Radiometer)  
 

1: 0.58-0.68 
(G and R) 
2: 0.72-1.10 
(NIR) 
3: 3.53-3.93 
(Mid-IR) 
4: 10.3-11.3 
(Thermal IR) 
5: 11.5-12.5 
(Thermal IR) 

4.4 Km 
(Global Area 
Coverage), 
1.1 Km 
(Local Area 
Coverage); 
2800 Km 
swath width 

2 times per 
day; 8-day 
and monthly 
averaged 
data 
available 

Day and night cloud 
top and sea surface 
temperatures 
Ice and snow 
conditions 

Changes in 
climate and 
global land 
and sea 
temperatures 
Changes in 
snow and ice 
coverages 

AVIRIS 
Airborne 
Visible 
Infrared 
Spectrometer 
(instrument on 
board of 
planes) 
URL: 
http://makalu.jpl
.nasa.gov/aviris
.html 
 
 
 

Hyperspect
ral airborne 
sensor 
 
Uses a 
scanning 
mirror in a 
“wisk broom” 
manner 
 
 

Contains 
224 different 
detectors 
each with a 
wavelength 
sensitive 
range of 10 
nm, allowing 
it to cover 
the entire 
range 
between 0.4 
and 25 µm. 

20 m (high 
altitude), 4 m 
(low 
altitude); 
11 Km swath 
width  
 

Only 
scheduled 
flights 

Ecology (chlorophyll, 
leaf water, lignin, 
cellulose, pigments, 
structure, non-
photosynthetic 
constituents) 
Geology (mineralogy, 
soil type) 
Cloud and 
Atmospheric studies 
(water vapor, clouds 
properties, aerosols, 
absorbing gases) 
Oceanography/Coast
al and Inland Waters 
(chlorophyll, 
dissolved organics, 
sediments, bottom 
composition, 
bathymetry) 
Snow and Ice 
Hydrology (grainsize, 
impurities) 
Biomass burning 

Snow and Ice 
Hydrology 
(melting, 
snow cover 
fraction) 
Commercial 
(agricultural 
correction) 
Ecology 
(changes in 
vegetation 
and 
community 
maps) 
Oceanograph
y (changes in 
plankton 
coverage and 
chlorophyll) 
Forest Fires 
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What Can Be Detected? Satellite Sensor Spectral 
Resolution 
(Wavelength 
in µm) 

Spatial 
Resolution 

Temporal 
Resolution Spatial Temporal 

(smoke, combustion 
products) 
Environmental 
Hazards  
Commercial  

ERS2 (Active) AMI (Active 
Microwave 
Instrumenta-
tion) with 
SAR-Image 
Mode, SAR-
Wave Mode, 
Scatter-
ometer 
Mode and 
Radar 
Altimeter 

5.3 GHz (C-
Band) 
13.5 GHz for 
the Radar 
Altimeter 

30 m (SAR) 
50 Km 
(Scatter-
ometer); 80-
100 Km 
swath width 
(SAR-Image 
mode); 5 Km 
swath width 
(SAR-Wave 
mode), 500 
Km swath 
width 
(Scatteromet
er mode) 
 

3 day, 35 
day or 168 
day cycles 

All-weather 
instrument 
Ocean wave 
height/lengths, wind 
speed/direction, ice 
parameters, sea 
surface & cloud top 
temperatures, cloud 
cover and 
atmospheric water 
vapor. 
 

Alterations 
and 
observations 
in ocean, 
land, ice, 
atmosphere, 
and climate 
Flood activity 
Changes in 
ocean 
activity, 
coastal 
regions and 
ice caps 

ATSR-M 
(Along Track 
Scanning 
Radiometer 
with 
Microwave 
Sounder) 

1.6, 3.7, 11, 
12 (IR), 23.5 
and 36.5 
GHZ 
(Microwave) 

1 Km (IR), 
22 Km 
(Microwave); 
500 Km 
swath width  

GOME 
(Global 
Ozone 
Monitoring 
Experiment). 
Sensor is a 
double 
spectromete
r 

1: 0.24-
0.295 
2: 0.29-
0.405 
3: 0.40-
0.605 
4: 0.59-0.79 
 

40 x 2Km 
40 x 320 
Km; 960 Km 
swath width 

ERS2  
(Cont’d) 

AATSR 
(Advanced 
Along Track 
Scanning 
Radiometer) 

0.65, 0.85, 
1.27, 1.6 

0.5 Km; 500 
KM swath 
width 

3 day, 35 
day or 168 
day cycles 

All-weather 
instrument 
Ocean wave 
height/lengths, wind 
speed/direction, ice 
parameters, sea 
surface & cloud top 
temperatures, cloud 
cover and 
atmospheric water 
vapor. 
 

Alterations 
and 
observations 
in ocean, 
land, ice, 
atmosphere, 
and climate 
Flood activity 
Changes in 
ocean 
activity, 
coastal 
regions and 
ice caps 

SEASTAR 
 
URL: 
http://seawifs.gs
fc.nasa.gov/SE
AWIFS.html 

SeaWiFS 
(Sea-viewing 
Wide Field 
Sensor) 

1: 0.402-
0.422 
2: 0.433-
0.453 
3: 0.480-0.5 
4: 0.5-0.520 
5: 0.545-
0.565 
6: 0.66-0.68 
7: 0.745-
0.785 
8: 0.845-
0.885 

1.1 Km 
(local area 
coverage) 
4.5 Km 
(global area 
coverage); 
285 Km 
swath width 

1 day Ocean color and 
chlorophyll 
Subsurface scattering
Atmospheric 
correction 
Atmospheric 
correction 
Sea-surface 
temperature 

Changes in 
phytoplankton 
Designed to 
provide global 
coverage of 
the oceans on 
a regular 
basis 
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What Can Be Detected? Satellite Sensor Spectral 
Resolution 
(Wavelength 
in µm) 

Spatial 
Resolution 

Temporal 
Resolution Spatial Temporal 

ASTER 
(Advanced 
Spaceborne 
Thermal 
Emission 
and 
Reflection 
Radiometer) 

14 bands, 
with 
wavelengths 
ranging from 
0.52 to 
11.65 

15 m 
(VNIR), 30 
m (SWIR), 
90 m (TIR); 
60 Km swath 
width 

4-16 days 
By request 

Major Thoroughfares 
Large Buildings 
Forest Stands 
Agricultural Plots 
Coastline 
Advance/Retreat 
Rugged Topography 
Sea Ice Coverage 

Infrastructure 
Changes 
Residential 
Development
s 
Deforestation/
Reforestation 
Harvest 
Flood Area 
Landslides & 
Mass 
Movements 

MODIS 
(Moderate 
Resolution 
Imaging 
Spectro-
Radiometer) 

36 bands, 
with 
wavelengths 
ranging from 
0.405 to 
14.38 

250 m 
(bands 1-2), 
500 m 
(bands 3-7), 
1000 m 
(bands 8-
36); 2330 x 
10 Km swath 
width 

1 to 2 days Ideal for large scale 
changes in the 
biosphere, measures 
photosynthetic activity 
of land and marine 
plants 
Surface temperature 
measurements, 
Deforestation 
Forests, Open 
Canopy Vegetation, 
Large Scale 
Agriculture 
Water Clarity, 
Atmospheric 
Aerosols, Smoke 
Plumes, Snow Cover, 
Ocean Temperature 

Forest Fires 
Regional 
Harvest/ 
Cycles 
Plankton 
Blooms 
Sediment 
Plumes 
Maps extent 
of snow and 
ice brought by 
winter storms 
and frigid 
conditions 

MISR (Multi-
angle 
Imaging 
Spectro-
Radiometer) 

4 bands, 
with 
wavelengths 
ranging from 
0.44 to 0.86 

275 m; 360 
Km swath 
width 

9 days The amount of 
sunlight scattered in 
the atmosphere under 
natural conditions, 
Atmospheric aerosol 
particles (formed by 
both natural and 
human activities) 
Cloud Cover/Type, 
Vegetation Type 

Smoke 
Plumes 
Regional Air 
Quality 
Climate 
Regional 
Forest 
Canopy 
Structure 

TERRA 
Launched 
December 
1999 
 
URL: 
http://terra.nasa
.gov/About/ 
 

CERES 
(Clouds and 
Earth’s 
Radiant 
Energy 
System) 

Shortwave: 
0.3-5 
Longwave: 
8-12 
Total: 0.3-
>200 

20 km Daily Cloud/radiation flux 
measurements for 
models of oceanic 
and atmospheric 
energetics 
The cross track mode 
continues 
measurements of 
Earth Radiation 
Budget Experiment 
and Tropical Rainfall 
Measuring Mission 

Contributes to 
wider range 
weather 
forecasting  
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What Can Be Detected? Satellite Sensor Spectral 
Resolution 
(Wavelength 
in µm) 

Spatial 
Resolution 

Temporal 
Resolution Spatial Temporal 

MOPITT 
(Measure-
ment of 
Pollution in 
the Tropo-
sphere) 

2.3 (CH4) 
2.4 and 4.7 
(CO) 

22 Km 
horizontally 
and 3 Km 
vertically; 
640 Km 
swath width 

3 – 4 days Measurements of 
pollution in the 
troposphere 
Used to determine 
the amount of Carbon 
dioxide and methane 
in the atmosphere 

 

MODIS 
(Moderate 
Resolution 
Imaging 
Spectro-
Radiometer) 

36 bands, 
with 
wavelengths 
ranging from 
0.405 to 
14.38 

250 m 
(bands 1-2), 
500 m 
(bands 3-7), 
1000 m 
(bands 8-
36); 2330 x 
10 Km swath 
width 

1 to 2 days Ideal for large scale 
changes in the 
biosphere, measures 
photosynthetic activity 
of land and marine 
plants 
Surface temperature 
measurements, 
Deforestation 
Forests, Open 
Canopy Vegetation, 
Large Scale 
Agriculture 
Water Clarity, 
Atmospheric 
Aerosols, Smoke 
Plumes, Snow Cover, 
Ocean Temperature 

Forest Fires 
Regional 
Harvest/ 
Cycles 
Plankton 
Blooms 
Sediment 
Plumes 
Maps extent 
of snow and 
ice brought by 
winter storms 
and frigid 
conditions 

AQUA 
Launched 
May 2002 
 
URL: 
http://aqua.gsfc.
nasa.gov/ 

CERES 
(Clouds and 
Earth’s 
Radiant 
Energy 
System) 

Shortwave: 
0.3-5 
Longwave: 
8-12 
Total: 0.3-
>200 

20 km Daily Cloud/radiation flux 
measurements for 
models of oceanic 
and atmospheric 
energetics 
The cross track mode 
continues 
measurements of 
Earth Radiation 
Budget Experiment 
and Tropical Rainfall 
Measuring Mission 

Contributes to 
wider range 
weather 
forecasting  

AMSR/E 
(Advanced 
Microwave 
Scanning 
Radiometer) 

12 channels 
and 6 
frequencies 
ranging from 
6.9 to 89.0 
GHz (center 
frequency at 
6.925, 
10.65, 18.7, 
23.8, 36.5 
and 89.0 
GHz)  

Ranging 
from 56 km 
(at 6.925 
GHz) to 5.4 
km (at 89.0 
GHz); 
1445 km 
swath width 

Daily Cloud properties; 
radiative energy flux; 
precipitation; land 
surface wetness; sea 
ice; snow cover; sea 
surface temperature; 
sea surface wind 
fields 

AQUA 
(cont’d) 

AIRS 
(Atmospheri
c Infrared 
Sounder) 

2,300 
spectral 
channels in 
the range of 
0.4 to 1.0 
and 3.4 to 
15.4  

13.5 km (IR) 
and 2.3 km 
(VIS/NIR); 
1650 km 
swath width 

Daily Measures 
atmospheric 
temperature and 
humidity; land and 
sea surface 
temperatures; cloud 
properties; radiative 
energy flux 

Contributes to 
weather 
forecasting 
and Climate 
Models 
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What Can Be Detected? Satellite Sensor Spectral 
Resolution 
(Wavelength 
in µm) 

Spatial 
Resolution 

Temporal 
Resolution Spatial Temporal 

AMSU 
(Advanced 
Microwave 
Sounding 
Unit) 
Consists of 
two sensors: 
AMSU-A1 
ans AMSU-
A2 

15 discrete 
channels in 
the range of 
50 to 89 
GHz 

40 km; 
1650 km 
swath width 

Daily Measures 
atmospheric 
temperature and 
humidity 

HSB 
(Humidity 
Sounder for 
Brazil) 

4 channels: 
1 at 150 
GHz, 3 at 
183 GHz 

13.5 km; 
1650 km 
swath width 

Daily Aimed at obtaining 
humidity profiles 
throughout the 
atmosphere 
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