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Abstract
ELISA methods are fundamental tools in the
pharmaceutical industry with applications in drug
discovery, animal studies, and clinical trials.  ELISAs are
readily automated and thus capable of high throughput
quantification of analyte concentrations.   Like other
categories of bioassay, ELISAs are often performed on a
96-well microplate in a standard 8-row by 12-column
format.  Response measures from microplates often
exhibit reproducible row and column patterns and several
levels of variability.  The SAS Analyst Application
provides a graphical user interface for basic statistical
techniques that can be used by scientists to explore and
assess the magnitude of patterns and variability sources
in assay execution.  The Analyst Application provides
results in a project format that is useful as a template for
scientists to communicate with statisticians about basic
statistical analyses.
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Introduction

Bioassay

Enzyme-Linked Immunosorbent Assay (ELISA) methods
are immunoassay techniques used for detection or
quantification of a substance based on an immunological
reaction (Kemeny 1991).  ELISA methods were initially
developed to detect serum antibodies, and they prove to
be useful in many fields.  For example, they have been
used in environmental studies for the direct analysis of
the thiocarbamate herbicide molinate (Harrison et al.
1989), and for quantitating cross reacting herbicides in
environmental samples (Wortgerg et al. 1996).  The food
science industry uses ELISA in the analysis of food toxins
(Chu et al. 1987; Dixon-Holland and Katz 1988).
Agriculture and medical industries employ ELISA
methods in the quantification of hormones (Rajkowski et
al. 1989) and drugs (Laurie et al. 1989).

ELISA has become a fundamental tool for drug discovery,
animal studies, and clinical trials in the pharmaceutical
industry because of the ability to assess large quantities
of samples.  In the pharmaceutical industry, over 100,000
compounds are routinely tested using several different

ELISA assays in early drug screens to identify promising
compounds.  The methods must be capable of high
throughput performance, with runs quickly and reliably
performed in high volume.

ELISA methods are routinely conducted in a standard 8-
row by 12-column 96-well microplate format (Figure 1)
that is readily automated and capable of high throughput
quantification of analyte concentrations.  This general
format is currently being extended to plates having 16 or
more rows and 24 or more columns, producing
microplates with 384 or more wells.

Figure 1 .  Microplate format

Each well of the microplate is treated in a specific manner
to produce a response.  For many ELISA methods, the
typical response is a color change of the solution in the
well, which is measured by a spectrophotometer (a
device that measures the amount of light that passes
through a well of the microplate).  As the color of the
solution in the well changes from a clear liquid (no
reaction) to a dark color (for example, a 100 % reaction
results in a dark blue), the optical density correspondingly
increases.  The optical density is then the response
recorded by the spectrophotometer and used for
subsequent analyses.

A common objective of a bioassay is to estimate the
concentration of a test preparation by comparing its
response to that of a standard preparation of known
concentration.  In general, the bioassay is performed by
progressively diluting a standard preparation and one or
more test preparations of unknown concentration.  The
dilution is typically carried out in an n-fold serial manner
(for example, 2-fold:  0, 2, 4, 8, 16, 32, 64, 128, 256, 512,
1024, and 2048).  A subset of dilutions is transferred to
the microplate and undergoes several processes
including binding, incubating, and washing.  In the final
step, the spectrophotometer measures the optical density
of each well.  Depending on the assay, the optical density
either increases or decreases as the test and standard
materials are diluted, and this produces a dose-response



curve.  Models are fit to estimate analyte concentration,
and underlying assumptions must be tested to ensure
proper estimation.

For most assay methods, the lower bound on the optical
density converges to zero.  In addition, for most ELISA
methods there is also an upper bound that the biological
response tends to achieve and/or the spectrophotometer
can reasonably measure.  The upper asymptote generally
contains more variability than the lower asymptote.
There exists a range of dilution levels between the
asymptotes that produces an approximately linear
response.

Model

For any single preparation, the relationship between the
observed response and dilution levels often results in a
sigmoidal curve.  This curve can be fit using the 4-
parameter logistic equation:
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where

y = optical density
x = dose or dilution
a = maximum response
d = minimum response
c = concentration that results in 50% response
b = slope-like parameter
ε = random error

The model parameters of this equation have an intuitive
biological interpretation.  The parameters a and d relate
to the maximum and minimum observed optical density,
and they are influenced by the amount of bound antibody
and absorptive properties of the antibody to the plate.
Jones et al. (1995) demonstrated significant differences
in a and d among microplates, different incubation times,
days, and laboratories.  The parameters c and b reflect
properties of the binding reaction itself.  Significant
changes in c and b suggest a fundamental assay change
such as a change in specificity.  Analyte concentration
estimates are significantly influenced by the steepness of
the linear portion of the curve (Karpinski 1990).

Using a variation of this model, you can use optical
density readings to estimate test preparation
concentrations.  Within this context, the standard is often
used to generate a calibration curve (Bunch, Rocke, and
Harrison 1990), or in a parallel line assay approach
(Rodbard and Frazier 1975; Finney 1976).

Variability and Bias

Assay methods typically exhibit experimental variability at
intra- and inter-assay levels.  Both types of variation can
arise from several sources.  Because dilutions of material

are often made serially, there can be considerable
correlation among a dilution series, which results in serial
dilution error, a source of intra-assay variation (Racine-
Poon, Weihs, and Smith 1991).  Research continues on
the effects of serial dilution error and methods of dealing
with it (Giltinan and Davidian 1994).  The microplates
themselves can exhibit reproducible row and column
patterns.  These patterns result in considerable intra-
assay variability when not identified and dealt with
appropriately (Jones et al. 1995).

The microplate can also be a source of inter-assay
variability when different plate types, manufacturers, and
lots result in variation in the observed optical densities.
Additional sources of inter-assay variation include
experimental conditions under which the assay is
conducted, such as various environmental conditions (for
example, incubation temperature and incubation time),
analysts, and biological reactants.  These factors can
enter the process as fixed and/or random effects,
increasing the variability of the optical density in either a
systematic or random fashion, respectively.  These fixed
and random patterns in optical density affect model fitting
by increasing the intra- and/or inter-assay variability or
bias in the model parameter estimates.

Increases in the variability or bias of parameter estimates
produces greater variability in the estimated analyte
concentration.  This variability and bias negatively impact
drug discovery, pharmacokenetic studies, drug stability,
and clinical trials.  For example, increased variability
could increase the sample size necessary to obtain
acceptable precision or lead to the wrong conclusions
because of a significant undetected bias.

Therefore, variability and bias effects impact the system
at several different levels:  (1) the raw optical density
readings, (2) the estimation of model parameters, and (3)
the estimation of analyte concentration.  The identification
and elimination of these effects are difficult because they
arise from numerous sources and impact the bioassay
process at many levels.  Several methods have been
suggested to detect, control, or eliminate these effects
(Bunch, Rooke, and Harrison 1990; Buonaccorsi 1986;
Lansky 1997; Larholt and Sampson 1995; Plikaytis et al.
1994; Rodbard 1974; Rocke and Jones 1997;
Sittampalam, et al. 1996).

Testing for Common Slopes

Parallel line bioassay techniques are often used to
estimate the unknown analyte concentration of a test
preparation relative to the known concentration of a
standard, and they are significantly affected by variability
patterns.  The use of a parallel line bioassay model
requires a common slope between the standard and test
preparation.  Therefore, differences in the slope of the
standard and test preparation curves (Finney 1978) must
be identified.  If the test for parallel lines fails, then
another method for estimating the concentration must be
used.



There are two fundamental aspects of this test.  First, the
degree of difference between the standard and test
preparation slopes should be biologically important.  A
priori experimentation needs to be conducted to
determine the maximum amount of deviation between the
two slopes that can be tolerated and still provide a
biologically useful endpoint.  Second, the correct error
term must be used to appropriately conduct this
hypothesis test.  Because this class of bioassay methods
are run on microplates, rows and columns can be
arranged as whole and subplots (Milliken and Johnson
1984) to form split-plot and strip-plot experimental
designs from which the correct error terms can be
constructed for statistical tests of interest.

The Analyst Application

Detecting and understanding variability is paramount to
making bioassay a useful analytical method because
inflated variability results in unstable parameter estimates
and/or biased responses that are biologically important.
The SAS Analyst Application provides scientists access
to powerful statistical and graphical capabilities in a
graphical user interface so that they can investigate these
basic assay questions.  Designed for the desktop
environment of PCs and workstations, it is a useful tool
for students and researchers as well as for experienced
statisticians who desire a convenient interface to widely
used statistical techniques.  Additionally, the Analyst
Application provides a unique opportunity for statisticians
working with scientists to easily discuss the impact of
variability and bias through illustration and advanced
statistical models.

The Analyst Application provides a wide range of
analytical and graphical tasks.  You can compute
descriptive statistics, create crosstabulations, and
analyze distributions.  Basic modeling tasks enable you to
fit one-way analysis of variance and simple regression
models.  You can fit complex linear models with
interaction and nested terms, and you can fit models
incorporating both fixed and random effects using the
mixed models task.  Other statistical tasks include linear
and logistic regression, survival analysis, multivariate
statistics, and repeated measures analysis.  In addition,
you can produce several types of graphs, including
histograms, box plots, and scatter plots.

The Analyst Application organizes results in a project
format for analyses performed on one or more related
data sets, such as within a clinical trial.  A project is
displayed graphically in the Project Tree within the main
window of the application.  Each time you run an analysis
or create a graph, the project tree expands to include
nodes for analysis results, graphs, and output data sets.
You can customize the Project Tree to include HTML
formatted results as well as access to the SAS code
submitted to perform the task.

You can invoke the Analyst Application by either typing
analyst at the command line or selecting Solutions >
Analysis > Analyst from the Display Manager System.

Two examples are used to demonstrate some of the
features and capabilities of the Analyst Application.  The
first example is from a plate uniformity trial.  The second
example is from a parallel line bioassay used to examine
the concentration of a drug over several trials.

Example 1.  Plate Data

Introduction
A plate uniformity trial was conducted to assess the
consistency of observed responses within and between
plates.  In the trial, the same known quantity of material
was aliquotted to each of the 96 wells over an entire
plate.  Two microplates were run in this manner to
investigate differences within and between plates.

Histogram
Histograms enable you to explore your data by displaying
the distribution of a particular variable.  Using histograms,
you can gain an indication of the shape of the distribution
and compare distributions of a variable based on other
classification variables.

To open the ASSAY data set, select File > Open by
SAS Name and double-click the ASSAY data set.

Select Graphs > Histogram.  Specify CPM as the
analysis variable and PLATEID as the class
variable.  In the Fit window, click on normal
distribution to produce a fitted curve. Click Ok to run
the analysis.

Figure 2.  Comparative histogram of CPM by PLATEID
with fitted Normal distribution

CPM appears to be approximately normally distributed for
both the first and second plates (Figure 2).  The first plate



has a smaller mean CPM than the second plate, since
the distribution is shifted slightly to the left.  In addition,
the first plate’s distribution is more concentrated about its
mean, indicating that the first plate exhibited less
variability than the second plate.

Although not clearly evident here, CPM is generally
considered to be distributed as Poisson.  Investigation
into a reasonable and necessary transformation of the
response can also be explored via probability plots
(Figure 3).  Exploratory analyses such as these often lead
to further discussion regarding the impact of
transformations on the error structure, the
appropriateness of such transformations, and useful
alternatives when transformations are not desired or
appropriate.

Select Graphs > Probability Plot.  Specify CPM as
the analysis variable, click on Variables, and select
PLATEID as the BY-group variable. Click Ok to run
the analysis.

Figure 3.  Normal probability plot of CPM

Boxplots
Box plots are a useful technique for displaying one-
dimensional data, and they provide a concise picture of
multiple distributions by placing them side by side for
easy comparison.

Select Graphs > Boxplot.  Select CPM as the
analysis variable and ROW as the classification
variable.  In the Variables window, specify PLATEID
as the BY-group variable.  Click on Ok to run the
analysis.

Figure 4.  Boxplot of CPM by ROW number

The boxplot (Figure 4) reveals that there is a systematic
relationship between plate row and CPM.   There appears
to be a decrease in CPM as row number increases, and a
depressed response on the first row that could be
attributable to edge effects.  “Edge effects” are a
phenomenon commonly encountered that result in biased
observed responses in the wells along the outside rows
and columns of a plate (that is, the 36 wells along the
outer edge of a 96-well microplate).

As an example of how these edge effects might
negatively impact a clinical study, consider a bioassay
used to estimate blood plasma levels of a toxic metabolite
resulting from a treatment.  Assume that a parallel line
bioassay was used to estimate the concentration of the
toxic metabolite in each patient.  If edge wells were
always systematically assigned to blood plasma samples
from low dose patients, then significantly biased
concentration estimates could occur.  The biased
concentration estimates could be the result of the test
and standard curves having different slopes.

Upwardly biased toxic metabolite concentration estimates
could result in incorrectly concluding that the therapeutic
window for the drug is unacceptably narrow based on the
levels of the toxic metabolite relative to drug
concentration.  Under these conditions, the drug could be
considered too dangerous when in fact it is perfectly
acceptable.  The results could prompt further
unnecessary and expensive research into identifying an
alternative delivery system or formulation, or even keep
the drug from being developed and brought to market.

In this brief example, differences in slopes are biologically
important and an appropriate statistical test should be
used to detect when differences occur.  Proper
randomization and design of the assay should be
implemented to avoid and detect when blood plasma
concentration estimates are at significant risk of being
biased due to a failure of the data to meet the necessary
underlying model assumptions.  As stated previously,
some of these underlying model assumptions are parallel
slopes, common upper and lower asymptotes (when a
logistic model is fit), and homogeneous variance.



Unless edge effects are resolved, the 36 wells along the
edge of the plate are unusable.  Edge effects are difficult
to identify with a quick glance at the data as it is read
directly from the spectrophotometer.  However, the
scientist can quickly visualize edge effects by producing a
surface plot with the Analyst Application.

Surface Plot
The Surface Plot task can be used to produce three-
dimensional surface plots.  For surface plots, the x- and
y-values form an evenly spaced grid of horizontal values,
and the z-values are predicted using an estimation
method such as linear interpolation or smoothing splines.

Select Graphs > Surface Plot.  Specify ROW as
the x-axis variable, COLUMN for the y-axis, and
CPM as the z-axis variable to be predicted.  Open
the Display window to specify a rotation angle of
125.  In the Variables window, specify PLATEID as
the BY-group variable.  Click Ok to produce the plot.

Figure 5.  Surface plot of CPM by ROW and COLUMN

The three-dimensional surface plot (Figure 5) clearly
illustrates the presence of row and column effects in this
96-well plate bioassay.  Additionally, very depressed
CPM readings are observed in some corners of the plate;
“corner effects” are another commonly observed problem
in assay methods using microplates.

Linear Model
The Linear Models task fits general linear models using
the method of least squares.  This analysis technique is
used for experimental data in which there is a continuous
response variable and one or more independent
classification variables and/or one or more independent
quantitative variables. The total variation in the response
variable is explained as the sum of the variation due to
the effects of the model and the variation due to random
error.

Select Statistics > ANOVA > Linear Models.
Specify CPM as the dependent variable and ROW,
COLUMN, and PLATEID as class variables.  Click
Ok to run the analysis.

Figure 6.  CPM linear model analysis results

A simple linear model confirmed that microplates
(PLATEID), rows, and columns (Figure 6) were significant
model effects.   All three effects were significant with p-
values less than 0.0001. The patterns observed in this
example can lead to inter- and intra-assay run variability
and biases that need to be identified and dealt with
before the assay is used to make critical decisions.
Bioassay variability components need to be appropriately
identified and estimated so that comparisons of interest
can be made correctly (for example, estimating
differences in the concentration of a toxic metabolite
relative to the drug concentration delivered to patients
across treatments).

Example 2. Assay Runs for Trials

Introduction
Consider several trials conducted to investigate the
concentration of a drug, where the expected
concentration was 80 units.  Samples of the drug were
taken at the same 14 time points for each trial, but some
sampling times could not be evaluated for every trial and
therefore each sampling time did not have the same
sample size.  The objectives were to determine if there
were significant differences in drug concentration among
trials and sampling times.

A bioassay was designed to estimate the concentration of
a drug at a target concentration of 70 + 35 units.  The
throughput of the bioassay was such that a high volume
of samples could be evaluated quickly.  Significant inter-
and intra-assay run variability was known to exist for this
bioassay.

Because of resource restrictions on the assay, it took
several assay runs to evaluate all sampled material from
any specific sampling time.  Since the assay runs
represent only a random sample of potential runs, assay
run is considered a random effect and the mixed models
task is appropriate for fitting this model using the Analyst
Application.



From a philosophical perspective, sampling time could be
considered random and it could enter the mixed model as
a random effect.  For example, consider a model where
sampling time is a random effect.  In this case, you could
determine the impact on performing inference on the
trials given a random sample from one or more sampling
times, and run in R assay runs having N potency
estimates per run.  If the sampling time effect was
considered random, it would add another level of random
error in estimating the drug potency.  However, interest
lies in the differences among specific trials and sampling
times.  Thus, both trials and sampling time were
designated as fixed effects.

Mixed Models

For this experiment, the mixed linear model is
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where

yijkl is the observed potency in trial i at time j in run k

µ is the overall mean

αi, βj are the TRIAL and SAMPLING TIME effects,
respectively

rk(ij) is the random effect for (inter-assay) run,
distributed iid N(0,σr

2)

εijkl is the (intra-assay) random error associated with
the lth observed potency, distributed iid N(0,σε

2)

rk(ij) and εijkl are assumed to be independent of each
another.

The variance of each observed potency estimate is
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The Mixed Models task in the Analyst Application enables
you to specify fixed and random effects and construct
main effects, interactions, nested effects, and polynomial
terms.  You can select from one of six estimation
methods, including maximum likelihood, residual
maximum likelihood (REML), and MIVQUE.  A number of
graphics are integrated into the Mixed Models task,
including means plots for fixed effects, predicted plots,
and residual plots with and without random effects.  In
addition, you can compute mean comparisons, output
predictions to a SAS data set, and perform weighted and
BY-group analyses.  You can access the mixed models
task by selecting Statistics > ANOVA > Mixed Models.

Open the POTENCY data set by clicking File >
Open and selecting the POTENCY data set.  Select
Statistics > ANOVA > Mixed Models.  Specify
CONC as the dependent variable and SAMPTIME,
RUN, and TRIAL as class variables.

Figure 7.  Mixed Models: Model window

In the Model window, select SAMPTIME and TRIAL
simultaneously and click Add to specify both terms
as fixed effects.  Click on Random, select RUN, and
click Add to specify assay run as a random effect.
Click Ok.

In the Plots window, select both observed and
predicted means for main effects, and click Ok.

Results and Discussion

Figure 8.  Project tree with mixed models results



The Analyst Application adds a folder to the Project Tree
for each task you perform.  In this case, the Mixed
Models task produced a folder that contains analysis
results, multiple main effects plots, and the SAS code that
produced the results (see Figure 8).  Within the project
tree you can open and close a folder by clicking the plus
(+) or minus (-) sign next to it, and you can open a node
within a folder by double clicking on the node.  In
addition, you can view the same node in two or more
windows, which is useful for visually comparing graphical
results for different groups.

Figure 9.  Mixed models analysis results

Trial and sampling time effects were both statistically
significant (p < 0.0001, Figure 9).  The means plot of
concentration versus sampling time illustrates a large
drop in the potency at sampling time 3 (Figure 10).  After
this drop, the potency proceeds to increase and stabilizes
at sampling time 6.

Figure 10.  Means plot of CONC by SAMPTIME

Scientists interested in differences among sampling times
and trials wanted to predict the response for both current
and future sampling times and trials based on the
formulated model of these data.  Figures 10 and 11
provide a graphical framework within which a statistician

can discuss the computational and philosophical
differences between confidence and prediction intervals
with scientists and management.  Issues often revolve
around

À Why are these intervals different?
À What is their interpretation?
À How do these philosophical differences in intervals

impact the ability to make decisions about
differences among trials and sampling times?

Figure 11.  Means plot of predicted CONC by
SAMPTIME

Figure 12.  Means plot of TRIAL vs. predicted CONC

These graphical displays of confidence and prediction
intervals are particularly useful when discussing how
variability structures impact what has been observed
versus what is to be predicted.  The plot of predicted
concentration with 95% prediction intervals versus trial
illustrates that the concentration decreased with each
successive trial.  By comparing Figures 10, 11, and 12
with other plots generated utilizing different variance
structures, scientists can see more clearly the impact of
these structures on confidence and prediction intervals
than if the plots were unavailable.  Additionally, displaying
the plots in a point-and-click interface stimulates a more
interactive and dynamic discussion with scientists and
management.



Because there is a significant amount of inter- and intra-

assay run variability, estimating them (
2ˆ rσ =3.5973 and

2ˆ eσ  =2.3041, Figure 9) may enable the scientist to more

effectively implement the assay in the future.  Based on
these results, the scientist can determine the number of
assay runs and potency determinations per run that will
be required to achieve a desired total standard deviation
(Table 1).

By inspection, the scientist can see that increasing the
number of determinations across assay runs decreases
the total assay standard deviation more quickly than does
increasing the number of determinations within an assay
run (Table 1).  These results can be used to approximate
the sample size necessary to achieve desired
significance levels and powers.

Table 1.  Table of standard deviations by assay run (R)
and determinations per assay run (N)

R N SD
1 1 2.4293
1 2 2.1793
1 3 2.0893
1 4 2.0429
2 1 1.7178
2 2 1.5410
2 3 1.4774
2 4 1.4445
3 1 1.4025
3 2 1.2582
3 3 1.2063
3 4 1.1795
4 1 1.2146
4 2 1.0897
4 3 1.0447
4 4 1.0214

Summary
ELISA techniques are useful quantitative methods in
many fields.  The use of such equipment as microplates
and automated systems for collecting data is coupled with
a need for appropriately handling the data generated by
these systems through proper experimental design and
randomization.  The Analyst Application is an extremely
useful tool for the assessment by scientists and
statisticians of these data throughout the lifetime of
development and use of a bioassay.  For more
information on the Analyst Application, visit the SAS web
site at http://www.sas.com/rnd/app/da/analyst.html.
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