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SUMMARY

This paper concerns the implementation of the generalized Polynomial Chaos (gPC) approach for parametric
studies, including the quantification of uncertainty (UQ), of turbulence modelling. The method is applied
to Richtmyer-Meshkov turbulent mixing. The K − L turbulence model has been chosen as a prototypical
example and parametric studies have been performed to examine the effects of closure coefficients and initial
conditions on the flow results. It is shown that the proposed method can be used to obtain a relation between
the uncertain inputs and the monitored flow quantities, thus efficiently performing parametric studies. It
allows the simultaneous calibration and quantification of uncertainty in an efficient numerical framework.
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1. INTRODUCTION

Meta-model methods aim at capturing and representing the behaviour of a random process allowing
parametric studies such as sensitivity analysis, optimization and uncertainty quantification to be
performed. This is often accomplished by capturing the response of a system to a set of random input
parameters. Meta-models are not problem specific and can be used in a wide range of stochastic
problems.

Several methodologies have been developed for quantifying the uncertainty in a random process
[1]. The UQ methodologies can be divided into probabilistic and non probabilistic. Furthermore,
the methodologies can be divided into intrusive [2, 3, 4, 5, 6] and non-intrusive [7, 8, 9, 10, 11].
Intrusive methods require the modification of the computer codes, while non-intrusive methods
consider the computer codes as a ’black box’. In the intrusive framework, the polynomial chaos
theory is used to modify the deterministic solver. The modifications of the code can be extensive
and complex, therefore only few applications of the intrusive approach can be found in the literature.
Despite the complexity in its implementation, the intrusive approach can potentially offer increased
computational efficiency as well as accuracy because it allows the uncertainty estimation along with
the solution. The deterministic code has to run only once but it may involve long computing times
that depend on the order and dimension of the uncertainty imposed. A drawback of this approach is
that geometrical uncertainties are difficult to be taken into account due to numerical implementation
issues.

For the non-intrusive approach several calculations using the deterministic code need to be
performed depending on the number of uncertain inputs and degree of accuracy required. A direct
comparison of intrusive and non-intrusive methods is not straightforward. Under certain conditions,
the non-intrusive approach can also be accelerated and be computationally efficient as the intrusive
approach.

In the non-probabilistic approach the result of the uncertainty is presented in a form which does
not include information about the likelihood or the probability distribution of the measured quantity
[12]. In general, these methods are easier and faster to implement but they can only estimate the
minimum and maximum value of the monitoring quantity. The major drawback is that no confidence
interval or any other high-order statistics can be obtained. On the other hand, the probabilistic
approaches are more complicated but they provide far more detailed information about the variation
of the monitoring quantity with respect to the random inputs.

In the present work a non-intrusive no probabilistic approach is selected where the reconstruction
of the response is based on the theory of PC (PC). This theory was the first step in an attempt to
quantify and estimate a random process whose properties are not known a priori. It is described
by Weiner [13] as a formulation that is able to estimate the uncertainty involved in a non-linear
stochastic process. It is based on the expansion of a second-order random process using a set of
functionals. The PC type of expansion involves all of the unique combinations of the expansion
bases at the selected order. The PC is a function of the random variables and can therefore be
considered functional. The distinctive advantage of the PC formulation is that it remains valid for
any level of correlation and converges in the mean square sense given some conditions are met. The
basic principle of this methodology is to project the variables of the problem onto a stochastic space
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spanned by a set of complete orthogonal polynomials. The rate of convergence of a PC expansion
is strongly related to the level of correlation.

A modified version of PC was proposed by Xiu and Karniadakis [14], known as generalized
Polynomial Chaos (gPC) or Wiener- Askey (WA) scheme since it is based on the family of
polynomials found in the Askey scheme [15]. The gPC results in a more efficient representation of
the stochastic process when the process follows a known probability distribution. However, this is
not often the case, therefore the probability distribution should be defined at the input level. The type
of input distribution is represented by a weight function in the polynomials of the expansion basis.
This generalized framework combined with the multi-index notation provides a very flexible method
to represent a random process that has inputs that follow different probability laws. The generalized
PC extends the convergence properties of the classical PC since the polynomials are originated
from the Askey scheme [16]. Through the gPC, it is possible to represent a multi-dimensional
stochastic model with inputs that have different probability distribution functions. In addition to
the extended polynomial families, the random inputs can also be represented through a discrete
type of distributions, a convenient option for cases where the random input is expressed by discrete
samples. If the optimal expansion base is selected, exponential error convergence is achieved as per
the basic PC. In cases where the optimal basis is not selected, the convergence is also guaranteed but
not at an exponential rate. Past publications have dealt with the numerical properties of gPC [17]
and its application to engineering problems[4, 18, 19] and CFD simulations[20, 21]. Application
of gPC to engineering turbulence modelling (TM) is scarce [22, 23, 24, 25]. In its intrusive form,
the method presents a number of challenges when applying it to turbulent flows [26, 27, 28, 29].
One of the main motivations behind the use of the non-intrusive form is its ability to converge,
although not in the mean square sense, even when the response function is not known in advance.
This allows the method to be executed in independent runs fully utilising the black box approach
through decoupled parallel runs. This is in contrary to other methods that are strongly coupled with
the response function. In practise this significantly increases the implementation flexibility of the
method.

TM of shock-induced turbulent mixing associated with hydrodynamic instabilities, such as
Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM) and Kelvin-Helmholtz (KH), encompasses
several challenges. In addition to the shock waves and material discontinuities, turbulent mixing
features baroclinic effects due to variable-density and vorticity production at material interfaces, as
well as anisotropy and inhomogeneity resulting from initial and boundary conditions.

Despite the advances in computer hardware, direct numerical simulation (DNS) for complex
applications will remain impracticable at least in the foreseeable future. As a result, Implicit Large
Eddy Simulation (ILES) has been widely used for studying RM and RT mixing [30, 31, 32]. ILES
combines the ability to directly capture strong shock waves and large flow scales associated with
transition and turbulence at material interfaces without resorting to subgrid scale models. Although
significant progress has been achieved in ILES methods, the approach is still computationally
expensive for complex engineering applications at high Reynolds numbers. For such problems,
turbulence models based on transport equations that predict the “average” behaviour of the turbulent
mixing zone, can be used. These equations allow larger time steps and coarser computational
grids than ILES. However, due to the ensemble averaging of second- and higher-order correlations
of turbulent fluctuations, additional terms arise that require the use of turbulence models. The
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4 CHRISTOS BARMPAROUSIS, DIMITRIS DRIKAKIS

modelling assumptions and closure coefficients are validated and calibrated, respectively, by
comparisons with experiments but even more commonly through high-resolution large eddy (LES)
and direct numerical simulations (DNS).

The simplest type of model uses ordinary differential equations for the width of the RT/RM
mixing layer, where the bubble or spike amplitudes are described by balancing inertia, buoyancy
and drag forces; these are called buoyancy drag models[33, 34, 35, 36]. These models are of limited
use as they cannot model multiple mixing interfaces; cannot be easily extended to two and three
dimensions; and cannot model de-mixing. To address these problems, a second category of models
has been proposed, the so-called two-fluid (or multi-fluid models) [37, 38, 39, 40, 41]. These models
use one set of equations for each fluid in addition to mean flow equations. The models are fairly
complex but provide an accurate modelling framework for de-mixing and capturing correctly the
relative motion of the different fluid fragments. Finally, an intermediate class of models maintains
the individual species fraction but assigns a single fluctuation velocity for the mixture. The models
are also known as two-equation turbulence models because they consist of evolutionary equations
for the turbulent kinetic energy per unit mass and its dissipation rate or the equivalent turbulent
length scale [42, 43, 44]. These models postulate a turbulent viscosity, a Reynolds stress, and
dissipation terms as well as a buoyancy term for modelling RT and RM instabilities. They are able
to handle multi-dimensions, multi-fluids, and variable accelerations, however, they cannot capture
(in their present form) the de-mixing process. A more advanced version of the single fluid approach
is the BHR (Besnard-Harlow-Rauenzahn) model, which has evolved over the years [45, 46]. The
aim of this study is to demonstrate the application of the gPC approach in conjunction with an
existing turbulence model. The study does not aim to provide an assessment of the accuracy of the
K − Lmodel for compressible turbulent mixing or investigate the physics of compressible turbulent
mixing. A comprehensive study on the accuracy of the K − L model has recently been presented
in [47]. The model is popular within the inertial confinement fusion (ICF) community and has
extensively been used in ICF predictions; see [42, 47, 48] and references therein.

Irrespective of the design details of each of the aforementioned models, all of them include model
coefficients that need to be calibrated against high-resolution simulations; simplified problems
for which analytical solutions can be established; and experimental data, which are, however,
scarce. Moreover, the implementation of the models encompasses uncertainties associated with
the definition of the initial conditions, particularly of the turbulent kinetic energy and turbulent
length scale. A meta-model approach using the gPC can give insight into the dependence of the
TM calculations on the closure coefficients as well as on the initial conditions. In the present
study, the two-equation K − L model has been employed to carry out deterministic calculations
of a planar Richtmyer-Meshkov turbulent mixing case. Using the fluid flow governing equations
in conjunction with the mass fraction and K − L model equations, a meta-model is developed.
The reconstructed response is used to correlate the uncertain inputs to any predicted flow quantity
through an inexpensive algebraic equation that replaces the CFD code. The investigation is split
into two distinct parts in an attempt to provide a complete estimate of the involved uncertainties.
The first section focuses on the effect of the closure coefficients to the prediction of key integral
flow quantities while the second section provides a characterisation of the importance in the initial
conditions assumptions.
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Figure 1. Schematic of the RMI instability growth

2. TURBULENCE MODELLING

RMI occurs as a result of an impulsive acceleration at the interface of two fluids of different
densities, e.g., when a shock wave passes through an interface separating two fluids. An uneven
fluid interface or surface roughness usually creates the perturbed interface. The development of the
instability is due to the misalignment of the pressure gradient with the local density gradient and
grows self-similarly at early times. It grows forming spikes (S) and bubbles (B) that penetrate the
light and heavy fluid with different growth rates (hs and hb Figure 1). At late times, it becomes
highly non-linear, thus leading to turbulence and turbulent mixing.

The amplitude of the perturbation has an effect on the initial growth rate of the instability with
low amplitudes leading to linear growth. A single characteristic (narrowband) perturbation will
grow following a power law that has an exponent of the order θb ≈ 0.26, while the broadband is
more likely to exhibit an exponent of θb ≈ 2/3 :

hb ∝ tθb (1)

In addition, it has been shown that the growth rate is also correlated to the density ratio of the two
fluids[35]. The mixing occurs at high Reynolds number [32, 49], therefore the flow characteristics
can be obtained assuming that the viscosity of the fluid is insignificant without any great loss of
accuracy. The spike and bubble position are identified by the mass fraction level, which in the
present work are 0.01 and 0.99, respectively. The volumetric fraction is given by

fi =

Fri
Mi

Fr1
M1

+ Fr2
M2

(2)

where M is the molecular weight and Fr is the mass fraction. Additional key parameters frequently
investigated are the Integral Length of Mixing Zone (ILMZ) and the Total Mix (TM):

ILMZ =

ˆ L

0

〈f1〉 · 〈f2〉 dx (3)

TotalMIX =

ˆ L

0

ρ1 · Fr1 · ρ2 (1− Fr2) dx (4)

The acceleration and Atwood number before the impulse (denoted as A0) are given by:
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Property STATE 1 STATE 2 STATE 3
Density 6.36 3.00 1.00
Adiabatic exponent 1.66
Molecular Mass 3.00 3.00 1.00
Specific heat 1.00
Velocity -6.15 -29.16

Table I. Fluid properties of the single planar case initialization.

g =
1

ρ

∂P

∂x
(5)

Ao ≡
(ρ2 − ρ1)

(ρ2 + ρ1)
(6)

where ρ1 and ρ2 are the densities of the two fluids. In the case of an impulsive acceleration (RM
instability, the bubble growth is described by the power law:

hb ∝ (Uint · t)θb (7)

where the Uint is the velocity due to the shock passage at the interface between the two fluids
and θb ∼ 0.4(2D), 0.25± 0.05(3D) is the bubble exponent. The impulsive acceleration is usually
achieved through the passage of a shock wave (Richtmyer Meshkov instability).

Similar to [42], a one-dimensional domain is used (x-direction) with the shock wave moving
towards the positive direction. The post shock Atwood number used in the present simulations is
kept constant at A+ ≈ 0.5. The perturbed interface is placed after the shock and the initialization
of the K − L model is applied on two cells around the interface. The domain outside the perturbed
cells is initialized with (K0, L0 = 0).

In the framework of turbulence modelling for RMI, the governing equations can be reduced to
their one dimensional counterpart. Dimonte and Tipton [42] proposed a two-equation model using
the the turbulent kinetic energy K and the characteristic length scale L. This modelling approach
assumes a single velocity component for both fluids and has been applied successfully to one
dimensional problems [50]. The equation for L describes the average size of the characteristic length
scale of both spike and bubble. The growth of L is self similar and is directly proportional to the
initial perturbation L ∝ h0. The diffusion of L is scaled by a relevant scaling coefficient NL. The
equation includes the compressibility effects and energy exchange. The proposed equation for the
evolution of the average characteristic length scale is given by

ρ̄
DL

Dt
=

∂

∂x

(
µT
NL

∂L

∂x

)
+ ρV + CC ρ̄L

∂ũ

∂x
(8)

The proposed equation for the evolution of the turbulent kinetic energy is given by

ρ̄
DK

Dt
=

∂

∂x

(
µT
NK

∂K

∂x

)
+ SK (9)

The above equations are solved in conjunction with the one dimensional (1D) fluid flow
equations:
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Dρ

Dt
= −ρ∂ũ

∂x
(10)

ρ̄
DF̃r
Dt

=
∂

∂x

(
µT
NF

˜∂Fr
∂x

)
(11)

ρ̄
Dũ

Dt
= −∂P

∂x
− ∂τj
∂x

(12)

ρ̄
Dε̃

Dt
=

∂

∂x

(
µT
Nε

∂ε̃

∂x

)
− P ∂ũ

∂x
− SK (13)

where all the bar-quantities are Favre-averaged; µT is the turbulent eddy viscosity; Nε and NF are
model coefficients. SK is a source term extracting energy from the mean flow and its formulation is
based on the buoyancy-drag model:

SK = ρ̄ · V ·
[
CB ·A · g − CD

V 2

L

]
(14)

where CB and CD are coefficients. V is given by V =
√

2K and the eddy viscosity is modelled as

µT ≡ Cµρ̄LV (15)

Cµ is a finite unknown value whose estimation is mostly influenced by the KH instability. Its
calibration is compromised by velocity limiters used to constrain unphysical strain rates. Due to the
absence of a realisable turbulent shear stress term the model cannot model KH instability growth
reliably. This deficit is somehow compensated by setting Cµ = 1 The Atwood number described in
equation (6) has been modified in order to reproduce the quantities modelled as well as to account
for the flow discontinuities. The deviatoric tensor in the momentum equation is modelled by:

τij = Cp · δij · ρ ·K , (16)

where the coefficient Cp is correlated with the Mach number which is corrected to take into account
the absence of realisable turbulent shear stress. The Atwood number proposed for the K-L model is:

Ai ≡
ρ̄r − ρ̄l
ρ̄r + ρ̄l

+ CA
L

ρ̄+ L |∂ρ̄/∂x|
∂ρ̄

∂x
(17)

The densities are extrapolated into the left and right boundaries of each computational cell
assuming piecewise linear value on each cell. The first term of the modified Atwood number
represents flow cases with relatively small L, while the last term dominates at self-similar and
smooth flows. During the passage of a shock waves the model imposes realisability by simply
not updating the Atwood number in zones affected by the sharp pressure gradient. This avoids
the need to introduce Rankine-Hugoniot relations in order to re-approximate the Atwood number.
Realisability is also imposed by the pressure gradient in the denominator of the second term that
ensures that Atwood number remains physical at high Atwood numbers (A ≈ 1). For the RM
instability it is expected that the spurious contribution of the shock wave is limited to a few percent.

With respect to the discretisation of the equations, the HLLC solver [51, 52, 53, 54] was employed
to discretize the convective fluxes in conjunction with the Van Leer’s MUSCL scheme [55].
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Description Coefficient Nominal value Interval Correlation
Acceleration constant α 0.06 0.008
Spike exponent θ 0.25 0.05
Drag CD 1.25 0.4 (1− 1.5θ)/(2θ)

Atwood CA 2.0 0.13
√

2Cµ/NL
Buoyancy CB 0.84 0.11 8 α

CA
(1 + 2CD)

Viscosity diffusion NL 0.5 0.1 Cµ
32α

Diffusion-Schmidt-Prandtl Nk-F-ε 1 0.2 2NL
Eddy size compressibility CC ≡ 1/3 -
Turbulent pressure CP ≡ 2/3 -
Viscosity Cµ ≡ 1.0 -

Table II. K − L nominal closure coefficients and their corresponding interval calculated from the relevant
correlation formula.

The K-L model has been numerically implemented for the compressible Euler equations
(molecular effects assumed negligible) using the finite volume Godunov-type [56] (upwind) method.
Additionally, the following is used: 1) the isobaric assumption to estimate the heat capacity ratio
of the mixture equation (2); 2) the MUSCL 5th-order [57] augmented by a low Mach number
correction [?] for reconstructing the variables [ρ(1− F ), ρu, p, ρF, ρK, ρL]; 3) the HLLC solver
[52] along with the pressure-based wave speed estimate (PVRS) method for the solution of the
numerical inter-cell flux estimation (Riemann problem); and 4) a third order TVD Runge-Kutta
scheme for time integration; see [58, 59] and references therein. It has been found that the
above procedure does not generate any unphysical pressure oscillations at the interface between
components of different heat capacity ratios (γ1 6= γ2).

3. SOURCES OF UNCERTAINTY

There are two major sources of uncertainty in the K − L model: (i) the initial conditions at the
perturbed interface; and (ii) the coefficients, which are usually fitted to experimental data and also
varied to match different flow configurations thus presenting both aleatoric and epistemic type of
uncertainties. The uncertainties associated with the initial conditions are attributed to the difficulty
in controlling the surface of the perturbed interface which classifies them as aleatoric uncertainties.
The above sources of uncertainty will be investigated in two independent studies. The nominal
values of the coefficients used by K − L model are listed in Table II.

The coefficients are classified into dependent and independent, which reduces the actual number
of uncertain parameters to two : θ and α. The dependent coefficients (CD, CA, CB, NL, Nk-F-ε)
varied following their correlation formula while the remaining independent coefficients (CC , CP ,
Cµ) were kept constant for every numerical investigation. The nature of the two uncertain parameters
is described in the following subsections.

The dimensional analysis used to formulate the turbulence model does not take into account the
fact that a number of bubbles grow twice as fast compared to a bubble with a similar characteristic
length [60, 61, 62, 63]. For low Atwood numbers (A < 0.05) the variation is small [64, 65]
0.04 < α < 0.044. At Atwood numbers greater than 0.2 experiments [37, 66, 60] indicated that
the linear penetration coefficient can achieve a greater variation 0.05 < α < 0.07. Additionally,
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the corresponding spike exponent can be significantly different and this simplification used in the
turbulence model can be another source of uncertainty. A number of numerical simulations have
been performed in an attempt to estimate the variation of α [35, 67]. The experimental procedures
can vary between different experiments and this is considered as an additional source of uncertainty.
The investigation has been performed by allowing α to vary between 0.052 and 0.068.

Once the flow becomes self-similar the growth of the instability is described by the power law
and the corresponding coefficient θ. Numerical and experimental investigations suggested slightly
different values for θ [68, 35, 69, 35, 66, 70, 33]. The discrepancies in the estimation between the
experiments and the numerical simulations are mainly due to the different perturbation wavelengths
[71]. Furthermore, the power law coefficient is correlated with the density ratio of the two fluids. The
above suggest that θ cannot be universal, however, in the K − L model a universal exponent is used
instead, thus resulting in an additional source of uncertainty. According to the original formulation
of the model, the value of θ has been varied in the range of 0.2 < θ < 0.3.

The dependence of the growth rate on the initial conditions has been investigated in [32]. The
uncertainty arises from the difficulty to precisely control the perturbed interface as well as to take
this into account in the framework of numerical simulations. In high fidelity LES, a two dimensional
perturbation, based on a characteristic length scale η0, is imposed on the interface.

The initialization of K has been obtained using the relation V =
√

2 ·K and its self similar
evolutionary equation:

dV0
dt

= CBA0g ⇒ V0 = CB A0gdt (18)

Equation 18 is derived by 9 assuming an incompressible flow and by taking into consideration that
the buoyancy term in SK is significantly higher compared to the drag term. In reality, K1 should
be equal to zero since no turbulence exists prior to the initiation of the mixing process. This is not
practical since every term that includes V will be equal to zero suggesting no change of the turbulent
kinetic energy during the simulation. To overcome this and make the evolution of K independent of
the initial conditions a two-step process is employed. The initialization ofK is obtained by assuming
that Vnew ≈ CB ·A · g · δt represents the state exactly after the initialization of the flow. TheK1 can
then be found using an iterative process to obtain the acceleration g ≈ 2× 104/6 with a time-step
δt = 10−4:

K1 =
V 2
new − V 2

0

2
≈ 0.11 (19)

Due to its dependence on CB and hence on α, the initialization ofK cannot be achieved assuming
a fixed value. Considering the highest level of uncertainty seen in the experimental investigations of
α, K was assumed to vary in the following interval : 0.05 < K1 < 0.15.

An important source of uncertainty is the initial length scale L1. The interface perturbation can
be correlated to the initial length scale by L1 ≈ η20 . This indicates that the width of the initialization
should be approximately equal to the amplitude of the perturbation. According to Dimonte and
Tipton, the initialization of L1 at t = 0 is given by

L1 ≈
η20
DX

≈ 0.2 (20)
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In this study, the variation of the initial perturbation has been set to 50%, hence 0.1 < L1 < 0.3.

4. THE POLYNOMIAL CHAOS

The original formulation of polynomial chaos was the first step towards the quantification of a
random process whose properties are not known a priori. It is described by Weiner [13] as the theory
of homogeneous chaos and is an efficient formulation that can be used to estimate the uncertainty
involved in a non-linear stochastic process . The “Homogeneous Chaos” as defined by Weiner
provides a formulation for expanding a second-order random process using a set of polynomials
based on a centred, normalized Gaussian type of random variables ξi. The polynomial space of
order p is denoted as Ψ̂p, while the set of polynomials belonging to this space and order are denoted
as Ψp and are known as the basis functions. The polynomial chaos type of expansion involves
all of the unique combination polynomials at the selected order. The polynomial chaos is a set of
functions of the random variables ξ. The distinctive advantage of the PC theory is that it remains
valid for any level of correlation and that it converges in the mean square sense. The basic principle
of this methodology is to project the variables of the problem onto a stochastic space spanned by a
set of complete orthogonal polynomials Ψ. The rate of convergence of a PC expansion is strongly
related to the level of correlation.

Using this approach every random process can be expressed using the PC expansion. For example,
the finite dimensional representation of a stochastic process U in one dimensional space, which is
dependent on a random variable ω as well as on independent variables x, t, can be represented as:

U(x, t, ω) =

∞∑
i=1

ui(x, t)×Ψi(ξ(ω)) (21)

However, in reality, this has to be limited to a finite number of chaotic expansions M + 1:

U(x, t, ω) =

M+1∑
i=0

ui(x, t)×Ψi(ω)) where : M + 1 =
(Npc + p)!

Npc !× p!
(22)

In the above equations, the following apply:

• ui(x, t) represents the deterministic coefficients, known as PC coefficients , and are denoted
as the random node (i) of the process.

• The spectral representation of uncertainty is based on the trial basis of a set of complete
orthogonal polynomials. It is a function of random variables ξ, which are functions of the
random parameter ω.

• NPC is the number of random dimensions and p is the order of expansion.
• There is direct relation between the basis of the expansion Ψi and the Hermite polynomials
Hn in the formulation proposed by Wiener.

• The dimension of the system is expressed by the basis functions and their polynomials.

The mean-square convergence indicates that the finite expansion converges as p goes to infinity:

lim
p→∞

E
[
(u0Ψ0 + . . .+ upΨp − U)

2
]

= 0 (23)
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The convergence rate is in accordance with the Cameron-Martin theorem and it has been
demonstrated that exponential convergence is achieved when the process is Gaussian. Furthermore,
the expansions of orders greater than zero vanishes:

E [Ψp>0] = 0 (24)

It is clear that the PC efficiency is directly related to the number of random variables and the
requested order. The method becomes rapidly inefficient as the values of the above parameters
increase. The error due to the truncation is also convergent in the mean square sense:

lim
N,p→∞

〈
ε2 (N, p)

〉
= 0 (25)

4.1. The estimation of the expansion coefficients

The number of expansion coefficients M is a function of the uncertain parameters and the desired
expansion order (Eq 22). This results in a set of equations equal to the number of the expansion
coefficients. For three random parameters (three dimensional uncertainty) the expansions take the
following form:

U (0) = u0 +

M∑
i=1

ui1Ψ1
i1 (ξ

(1)
i1 ) +

M∑
i1=1

i1∑
i2=1

ui1i2Ψ2
i1i2 (ξ

(1)
i1 , ξ

(1)
i2 )

+

M∑
i1=1

i1∑
i2=1

i2∑
i3=1

ui1i2i3Ψ2
i1i2 (ξ

(1)
i1 , ξ

(1)
i2 , ξ

(1)
i3 )

U (1) = u0 +

M∑
i=1

ui1Ψ1
i1 (ξ

(2)
i1 ) +

M∑
i1=1

i1∑
i2=1

bi1i2Ψ2
i1i2 (ξ

(2)
i1 , ξ

(2)
i2 ) (26)

+

M∑
i1=1

i1∑
i2=1

i2∑
i3=1

bi1i2i3Ψ2
i1i2 (ξ

(2)
i1 , ξ

(2)
i2 , ξ

(2)
i3 )

...

U (i) = u0 +

M∑
i=1

ui1Ψ1
i1 (ξ

(i)
i1 ) +

M∑
i1=1

i1∑
i2=1

ui1i2Ψ2
i1i2 (ξ

(i)
i1 , ξ

(i)
i2 )

+

M∑
i1=1

i1∑
i2=1

i2∑
i3=1

ui1i2i3Ψ2
i1i2 (ξ

(i)
i1 , ξ

(i)
i2 , ξ

(i)
i3 )

Each code response U (i) corresponds to one of the above equations. In order to calculate the
desired coefficients (ui) the above formulas are transformed into a matrix form which can be solved
once all the deterministic responses U are known. With an equal number of responses the expansion
coefficients can be obtained by solving the following system of equations:
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
1 Ψ1(ξ

(1)
1 ) · · · Ψ1(ξ

(1)
N ) Ψ2

1(ξ
(1)
1 ) · · · Ψ2

K2
(ξ

(1)
N ) Ψ3

1(ξ
(1)
1 ) · · · Ψ3

K3
(ξ

(1)
N )

1 Ψ1(ξ
(2)
1 ) · · · Ψ1(ξ

(2)
N ) Ψ2

1(ξ
(2)
1 ) · · · Ψ2

K2
(ξ

(2)
N ) Ψ3

1(ξ
(2)
1 ) · · · Ψ3

K3
(ξ

(2)
N )

1
...

...
...

...
...

...
...

...
...

1 Ψ1(ξ
(M)
1 ) · · · Ψ1(ξ

(M)
N ) Ψ2

1(ξ
(M)
1 ) · · · Ψ2

K2
(ξ

(M)
N ) Ψ3

1(ξ
(M)
1 ) · · · Ψ3

K3
(ξ

(M)
N )



×


u0

u1
...
uM

 =


U0

U1

...
UR

 (27)

Or in a more compact form Aijuj = U (i), i = 1, · · ·M + 1, j = 1, · · ·M

4.2. The generalized Polynomial chaos

In this work the distribution of the uncertain parameters do not follow the Gaussian profile
requiring the use of the generalised polynomial chaos (gPC) An increase in the efficiency for the
representation of the stochastic process is achieved in cases where the process in question follows a
known probability distribution. In reality this is rarely the case, indicating that the only stage where
efficiency increase can be achieved is at the representation of the random input. The type of input
distribution has to be reflected by the weight function used in the polynomials of the expansion
basis. If the optimal expansion base is selected, exponential error convergence is achieved as per the
basic PC. In cases where the optimal basis is not selected convergence is also guaranteed but not at
an exponential rate.

Since no specific knowledge on the distribution is known, for this work all the random inputs
will be assumed to follow a uniform distribution hence the expansion basis will be the Legendre
polynomials:

Ψi(ω) = Lei(ω) =
1

2i

[i/2]∑
l=0

(−1)l

(
i

l

)(
2i− 2l

n

)
ωi−2l (28)

where [ ] denotes the integral part.

4.3. Algorithmic implementation

The gPC implementation is achieved through the development of a relevant computational code [72]
. The code performs symbolic and not numerical operations, a method known to preserve accuracy
and computational efficiency [73, 74, 11, 75]. It has been developed following the modular approach
verifying each part in a step by step process. In addition to the PC functionality the code was also
extended to automate the post processing using the reconstructed response. Each investigation has
been performed using a three step process:

1. Sampling process

(a) Collocation sampling, finding the roots of the polynomials (based on the selected
distribution) .
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(b) Generation of quadrature points.
(c) Transformation and normalisation of the random sample sets between the required

distributions.

2. Expansion construction

(a) Construction of multidimensional polynomials using the multi index algorithm.
(b) Tensor product estimation.
(c) Expansion coefficients estimation through direct matrix inversion.

3. Post processing

(a) Meta model construction using the previously estimated coefficients
(b) Statistical sampling studies using the symbolically reconstructed response (functional

approach).
(c) Execution of parametric studies (sensitivity, uncertainty bars and optimisation).

The code has been parallelised to run on shared memory machines. The solution of the system
of equations is obtained for the PCM methods using direct solvers. The code is monitoring the
stiffness of the system and is able to switch to iterative solvers. The solution of the system is not
preconditioned and the conversion from symbolic manipulations to numerical approximations is
obtained using fixed point arithmetic methodologies with 25 digits of accuracy. The aforementioned
reconstruction process is separately performed for each monitoring point.

5. PARAMETRIC STUDY USING GPC

The sampling of the random parameters (α, θ and K1, L1) has been done at the collocation points
of the expansion basis. The convergence has been monitored through the response shape and the
variation of the mean and CI with respect to the expansion order. In most cases, the polynomial
expansion converged after the 4th expansion but for consistency an 8th order reconstruction will be
used. The response Rei for the ILMZ and Tmix has been logged for i = 30 points at an interval of
0.5s starting at 0.5s. The cumulative error is obtained through relevant high fidelity data [32] and
normalized at the same monitoring points mp in a percentage scale:

Comulative Error =

i=mp∑
i=1

∣∣ReiKL −ReiILES∣∣
ReILES

∗ 100

mp
(29)

The initial conditions and the closure coefficients studies have been performed independently
using the corresponding nominal values for the unaffected parameters. The sensitivity studies have
been performed by imposing the variation of Table III in the reconstructed response. The imposed
variation is marginally higher than the observed experimental variation in an attempt to get a wider
view of the response. Although a number of statistical properties, uch as the mean and standard
deviation, could be directly estimated from the expansion coefficients, high order statistics such as
CI would require a relatively large number of expansion coefficients. Given the meta-model nature
of the formulation a sampling method has been employed instead allowing the estimation of high
order statistics using a relatively lower PC expansion order. For this research work statistical analysis
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Coefficient α θ
Mean (experimental) 0.06 0.25
Linear Variation (±) 0.008 0.05

Minimum value 0.052 0.2
Maximum Value 0.068 0.3

Table III. Coefficients variation used for the sensitivity analysis

has always been performed using the Monte Carlo method over a set of 500,000 realisations of the
reconstructed response and the CI covered 95% of the sample distribution. The monitoring points
of the volume fraction (VF) investigations are presented in Table IV.

Point 1 2 3 4 5 6 7 8
Cell ID 4015 4020 4025 4030 4035 4040 4045 4050
Location (cm) 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Centered location (cm) -1.35 -0.85 -0.35 0.15 0.65 1.15 1.65 2.15
Approximate ILES VF 0.978 0.849 0.610 0.377 0.210 0.100 0.040 0.012

Table IV. Position properties of the selected points for the VF investigation at t = 10s.

5.1. Initial conditions

Rapid convergence rate has been observed for most of the initial conditions studies. The
investigation with respect to α indicates only small changes in the results (figure 2a), which cannot
be adequately captured due to the nature of the polynomials as explained by the Runge function
theory [76, 77]. The relatively small response in the variation magnifies the numerical rounding
error of the reconstruction process, which is manifested by the high residual level in the coefficient
matrix inversion. The effect of the initial conditions on θ has been captured using second-order (and
higher) expansions, as shown in figure 2b, while the initial value of the turbulent kinetic energy does
not significantly affect the exponent. It has been shown that the initialisation of L has the highest
influence producing a smooth variation along its interval. An identical response is also observed
for the ILMZ case, where the response is weakly correlated with the initial TKE (figure 2c). The
cumulative error of the volume fraction (figure 2d) also indicates that the response is not affected
by the uncertainties associated with the initialisation of K. The response minimises its deviation
from the reference data at a unique value of initial characteristic length at approximately L1 ≈ 0.24.
The level of deviation from the reference data increases when increasing L. A lower rate of error
increase is observed at the smallest values of L.

The variation due to the imposed uncertain initial values of K and L indicates that the total
TKE is the most influenced parameter (figure 3a). Its variation starts at 70% for the early times and
reduces to approximately 60% at the late times stabilising after t = 12s. The rest of the monitored
quantities are significantly less affected by the uncertainties associated with the initial conditions
having approximately 35% variation that decreases towards late times.
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Figure 2. Response plots of the initial conditions study(varying K0 − L0).

5.1.1. Atwood number dependence The Atwood number investigation has been performed by
changing the initial conditions for the heavy fluid, while keeping constant the density of the
light fluid as ρL = 1g/cm. The initialization of K has also been adjusted by using equation 18.
Using a 6th-order PCM type of expansion, the stochastic input has been sampled at 7 points. The
uncertain parameter ρH varied in the interval 1.1 to 9 resulting in an Atwood number variation of
0.04 < A < 0.8. The growth exponent θ is estimated by fitting the non-linear bubble equation 7 to
ILMZ, bubble and spike position plots.

Figure 3b shows the reconstructed growth exponent variation. The low Atwood numbers produce
the highest exponents for all three monitored growths (ILMZ, bubble and spike). In the low Atwood
regions (A < 0.5) the growth exponents showed a decrease. Both the Bubble and ILMZ exponents
increased towards the high Atwood numbers. A sharper increase is observed for the bubble exponent
followed by an equally sharp decrease in the very high Atwood numbers region.
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Figure 3. Growth exponent variation and uncertainty decay over time for the initial conditions study.

5.2. Closure coefficients

5.2.1. Convergence properties: The ILMZ convergence study shown in figures 4a and 4b indicates
that there are two characteristic regions of convergence. At early time, convergence is achieved using
the second order expansion for the case of mean with almost no oscillations at higher orders. This
is also the case for the CI at early times with the fourth and sixth orders showing some oscillations.
The late time mean convergence also reaches a characteristic point when using the second order
expansion, albeit the oscillatory behaviour that is more evident in the convergence of the CI at late
times. The convergence analysis for the volume fraction investigation indicates two regions with
shared convergence characteristics; the inner and the outer points region. Due to the smoothness of
the response, the convergence of the reconstructed response is acceptable for the inner points (figure
4c) but it is significantly deteriorated in the outer points, as shown in figure 4d.
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Figure 4. Convergence plots of Mean and Standard deviation for the ILMZ and VF profile

5.2.2. Reconstructed response: Good agreement with the ILES data is observed for the prediction
of the ILMZ when the nominal values of the closure coefficients are used (Figure 5a). The level
of uncertainty increases as a function of time for both integral quantities (Figure 5b) stabilising at
approximately 30% deviation. A strong dependence on θ is observed at late times. The highest and
lowest predictions were highly correlated and the reconstructed response captured well this property
(figure 5d). This was not the case for the early time TKE profile (Figure 5c), where the maximum
and minimum value were not strongly correlated with the extreme values of the two exponents. A
self-similar profile is observed at the late time. The volume fraction profile shown in figure 5e has
been well represented by the mean values of the reconstructed response with the variation increasing
towards the outer points.
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Figure 5. Error plots due to the uncertain closure coefficients.

The relative ILMZ response shown in Figure 6a indicates a characteristic region where any
combination of α and θ can produce results very close to the ILES simulation. Through the gPC
reconstructed response the relatively higher influence of θ in the level of the mixing zone is
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highlighted. The highest levels of deviation with respect to the reference data are obtained by the
outer values of the recommended interval of the two coefficients; however, the deviation is not
symmetric.

The volume fraction (Figure 6b) response does not follow the characteristics observed for the
previous monitoring quantities. More than one region, where the deviation with respect to LES data
can be minimized, is detected, while the effect of θ variation is not as significant as it was for the
previous cases.The maximum and minimum magnitude of the TKE profile (Figure 6c) is highly
correlated to θ and weekly correlated to α. The two closure coefficients mainly affect the inner
region of the profile, which appears to be captured adequately by the reconstruction process. The
unphysical values of the outer points (Figure 6d) in the reconstructed responses, where negative TKE
values are observed, can be attributed to the limitation of the reconstruction process to accurately
capture sudden changes of the response.
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Figure 6. Response surfaces.

5.2.3. Sensitivity analysis: Given that the viscosity Cµ is defined as a fixed value, the sensitivity
study was performed on the two (Table II) independent coefficients : θ and α. The analysis was
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performed for the key flow quantities (ILMZ, otMix and Total TKE ). The selected quantities have
been monitored at five time points (1.5, 4.5, 7.5, 10.5 and 15 seconds) in an attempt to get an evenly
spaced set of sensitivity results. All the reconstructed responses were of 8th order and were obtained
after 45 deterministic code realisations.

The definition of ILMZ (Eq.3) shows its direct dependence on the mass fraction transport equation
(equation 11), hence also its dependence on α through NF . It is evident from figures 7a and 7b that
the ILMZ is more sensitive to α at early times, while during late times it becomes more sensitive
to θ in a non-linear sense. The variation of α produces an almost linear response with a similar
shape between each time step. This is not the case for the θ variation, which produces a non-linear
response during late times. The total mix sensitivity plots illustrated in figures 7c and 7d for α and
θ, respectively, indicate a fairly linear response both at early and late times. The early time exponent
had little influence in the generation of TKE, which is dominated by the non-linear dependence to
the late time growth exponent. An excellent agreement between the PC reconstructed response and
the deterministic sensitivity plots is observed for all cases.

6. CONCLUSIONS

This research work introduced the use of gPC in the parametric study of the K-L turbulence model.
The gPC reconstruction method has been successfully been employed allowing the simultaneous

optimisation, estimation of sensitivity and quantification of uncertainty in an integrated manner.
The estimation of the turbulent flow field is obtained through the use of classical finite

volume based schemes whose performance and accuracy is well documented in the literature. The
above allowed the macroscopic description of key flow parameters resulting in a non-intrusive
implementation of the gPC method. Using a computerised approach for the generation of the
polynomials ensured that the required level of accuracy in their generation, a critical part of the
reconstruction process, is achieved. The study showed the suitability of gPC for parametric studies
of turbulence models and highlighted the limitations of the methods, which can result in loss of
accuracy.

The investigation of the uncertainty associated with the initial conditions revealed that the initial
characteristic length scale L0 has an order of magnitude higher influence to the predicted flow field
compared to K0. This influence is clearly reflected on the reconstructed response surfaces, where a
smooth dependence of the flow quantities with respect to the initial conditions is observed. The TKE
within the examined interval does not affect the response of any monitored flow quantity and the
growth of the instability depends almost exclusively on the level of L. The late time growth exponent
increases, as expected, with respect to K0 and L0, whereas the early time exponent did not present
a strong correlation. From the variational analysis it was shown that the ILMZ and total mix are
approximately equally influenced from the uncertainties in the initialisation process, an influence
that shows a relatively small decrease towards the late times. The variation of the total TKE was
doubled in magnitude with a decreasing trend at late times. The Atwood number dependence was
not captured adequately by the existing formulation of the selected turbulence model, which is
highlighted by the limitation of the model to produce the expected growth in the low and very high
Atwood number regions. The nature of the polynomials was not able to capture the fairly flat profile
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Figure 7. Reconstructed sensitivity plots of ILMZ, Tmix and the total TKE. The marks represent the
deterministic code response and the lines represent the 8th order reconstructed response.

of the early time exponent, thus producing non-physical oscillations in the corresponding response
surface.
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Through the estimation of the TKE and volume fraction profiles, it was shown that K − L is
capable of preserving the self-similar nature of the instability across a wide range of coefficient
variation. The level of uncertainty due to the imposed variation in the closure coefficients increases
as a function of time for all the integral quantities. It was shown that the ILMZ deviation from the
reference data can be minimized through a number of α and θ combinations. All three integral
quantities showed a non linear dependence on the late time exponent and a linear dependence
on the early time exponent. In the cases where the response surface fitted well the nature of the
polynomials, rapid convergence was observed. In the outer points of the profiles where a sharp
response occurs the accuracy of the reconstructed response was significantly compromised.

The classical formulation of the gPC method performed well for most of the cases when the
code response matched the polynomial nature of the expansion. In those cases, the method required
a fourth order expansion to achieve acceptable levels of convergence. It’s accuracy deteriorated
when the response involved non-smooth variations or when high number of code realisations are
used (oversampling), a limitation that is explained by the Runge function theory. The nature of
the sampling has also proved inadequate for a number of cases negatively affecting the efficiency
and the accuracy of the reconstructed response, particularly in the endpoints. This research work
has shown that the gPC is an efficient alternative to the costly sampling based methods when the
response fits well the nature of the selected polynomials.
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