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 

Abstract—The paper introduces a probabilistic framework for 

online identification of post fault dynamic behavior of power 

systems with renewable generation. The framework is based on 

decision trees and hierarchical clustering and incorporates 

uncertainties associated with network operating conditions, 

topology changes, faults and renewable generation. In addition to 

identifying unstable generator groups, the developed clustering 

methodology also facilitates identification of the sequence in 

which the groups lose synchronism. The framework is illustrated 

on a modified version of the IEEE 68 bus test network 

incorporating significant portion of renewable generation. 

 
Index Terms—clustering, data analytics, decision trees, phasor 

measurement units, probabilistic transient stability, renewable 

generation. 

I. INTRODUCTION 

HE evolution of power systems driven by economic, social 

and environmental pressures and technology  

advancements is calling for robust techniques and algorithms 

for both, close to real time identification of system dynamic 

behavior and control of the system. With the advent of 

monitoring technologies and market driven investment in 

system development, there is an increasing trend of utilizing 

the assets more effectively. The load growth and more 

restrictive, market driven, investment in the network and 

generation at one hand and integration of stochastic and 

intermittent, hence less controllable, generation on the other  

are commonly identified as major reasons that might lead 

future power systems to operate closer to their stability 

margin. Under such conditions corrective control may become 

crucial to ensure secure and reliable operation of power 

systems. Phasor Measurement Units (PMUs) that are being 

installed in large numbers in power systems around the world 

can facilitate close-to-real-time identification of the dynamic 

behavior of power systems by using advanced data analytics 

techniques and subsequent development and deployment of 

suitable corrective control algorithms. 
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From the plethora of available data mining techniques, 

Decision Trees (DTs) [1]-[6], Ensemble Decision Trees 

(EDTs) [7], Support Vector Machine (SVM) [8], [9] and 

Artificial Neural Networks (ANNs) [10] have been most 

frequently used in online dynamic security assessment. In 

most of the cases, the prediction focuses on whether the 

system will remain stable or not (binary classification) [1]-[5], 

[7]-[9]. However, in [6], [10], [11] the grouping of unstable 

generators after the fault is cleared is also determined. This 

information is significant for assisting corrective control 

actions such as controlled islanding, fast valving, dynamic 

braking, generator tripping, load shedding, use of Flexible AC 

Transmission systems (FACTS), etc. [6], [12]. 

Most of the above methods have been almost exclusively 

demonstrated in systems with conventional synchronous 

generation whose operation and dynamic behavior is well 

understood. The increasing presence of Renewable Energy 

Resources (RES) in the network can affect the dynamic 

behavior of the power system due to various mechanisms, as 

illustrated in past research. The uncertainties associated with 

new market driven operation of the system, and new types of 

load aggravated by uncertainties associated with RES 

technologies are contributing significantly to the steady state 

and dynamic behavior of the system. The inclusion of 

uncertainties associated with the presence and operation of 

RESs is essential for understanding dynamic behavior of the 

system, as their pre-fault operating conditions and 

participation in the overall generation mix can change 

significantly depending on weather conditions, i.e., their 

contribution to overall system dynamics may vary temporally 

and spatially. This might lead to system operating scenarios 

that have not been previously identified and might be critical 

for system stability [13]. 

In addition to uncertainties associated with RES operation   

the impact of topology changes, which may be more frequent 

in systems with RES, may lead to difficulties in assessing 

system post fault behavior. The impact of topology changes on 

the prediction of system stability using DTs was investigated 

in [14], [15]. Using a number of regression trees [14] or 

retraining [15] is proposed to deal with topology changes. In 

both these cases the aim was to identify the system stability 

limits only. In a few other papers, the impact of topology 

change on DT was assessed [2] and it was suggested that DTs 
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should be updated when new operating condition arises [7].  

The SVMs were shown to be more robust to network topology 

changes than DTs [8], [9] however they were only used for 

binary classification (stable/unstable). 

This paper builds on previous work of the authors [5], [6] 

and develops a probabilistic framework for online 

identification of dynamic behavior of uncertain power systems 

with significant penetration of non-synchronous generation 

subject to frequent topology changes. The framework uses 

multiple pre-trained DTs to identify not only “binary status” 

(stable/unstable) of the uncertain power system but also the 

groupings of unstable generators (based on their predicted 

dynamic response) and the sequence in which the generator 

groups loose synchronism. Considering that this prediction is 

made within a fraction of a second, the information provided 

can be effectively used for corrective control to insure system 

stability or to prevent cascading failures.  

In summary the main contributions of this paper with 

respect to the existing literature include: i) the uncertainties 

(and dynamics) of RES (both wind and Photo-Voltaic 

generation) are considered for the first time in the multiclass 

online identification of generator grouping patterns, ii) The 

poor performance of DTs when dealing with network topology 

changes is addressed by training multiple DTs, i.e. Decision 

Forest (DF), for different network topologies; iii) The order in 

which generator groups lose synchronism is identified as an 

addition to the method described in [6]. This provides valuable 

information when designing and applying corrective control 

measures; iv) Finally, the proposed framework deals with the 

problem of online identification of generator grouping patterns 

as a one-step multiclass classification problem rather than a 

two-step process as described in [6]. This improves the 

performance and reduces the complexity of the previously 

proposed method. 

II. PROPOSED FRAMEWORK 

A schematic of the proposed framework is shown in Fig. 1. 

The purpose of the framework is the online identification of 

the transient stability status of the system and the power 

system dynamic signature, after a disturbance. The power 

system dynamic signature here refers to post-fault responses 

of the synchronous generators in the system characterized by 

their rotor angle behaviors and corresponding generator 

groupings defined by the stability status of generators 

(stable/unstable) and the sequence in which instability occurs 

for each group. The identification of the sequence in which 

unstable groups lose synchronism and the ability to 

incorporate frequent topology changes in assessment are key 

contributions compared to previous work on power system 

dynamic signature identification [6]. 

The core of the framework is a Decision Forest (DF), 

consisting of several DTs that perform the online 

identification of the power system dynamic signature. It has 

been observed that changes in the network topology can have 

a significant impact on the performance of DTs [14], [15]. To 

address this issue, the DF concept is proposed in this paper, 

consisting of several DTs that are trained and used for 

different specific network topologies. Each DT is trained for a 

24 hour period considering uncertainties resulting from the 

system load and the level of penetration of wind and Photo-

Voltaic (PV) generation for a specific network topology. Since 

the topology of the transmission network at given time is 

known the corresponding DT from the DF is then used to 

predict the grouping of generators and their dynamic behavior 

following the disturbance. 

 

 
Fig. 1.  Decision Forest framework. 

 

Investigating the performance of the online identification 

method including the impact of RES poses the following 

challenges: i) increased uncertainty in the pre-fault operating 

conditions due to the intermittent behavior of RES and their 

availability, both temporal and spatial, that can have a 

significant impact on transient stability, ii) the displacement of 

synchronous generation, either by de-loading or 

disconnection, due to RES and therefore change of the overall 

system inertia and consequently system dynamic response; iii) 

the different dynamic behavior of RES changes the system 

dynamic behavior (change in generator grouping patterns as 

presented in Section V A below). 

The proposed framework also includes an offline procedure 

for probabilistic transient stability assessment based on which 

several indices are calculated and statistical analysis is carried 

out to determine critical generator behavior. The results of the 

offline analysis of the simulated data used to train the DTs can 

be further used for network planning and protection studies. 

The offline transient stability analysis however, is out of the 

scope of this paper. 

III. METHODOLOGY 

There are four main stages in the development of the DF 

highlighted in Fig. 2: i) the off-line generation of the training 

datasets; ii) the off-line development of clustering method to 

determine the generator grouping patterns; iii) the off-line 

training of DTs and iv) the online classification using the 

appropriate pre-trained DT. The rotor angles of generators, 

obtained from detailed dynamic simulations, are used to 

initially identify the patterns of unstable generator groupings 

using an unsupervised learning approach (i.e. hierarchical 

clustering) and a corresponding pattern number is assigned to 

each simulated contingency. The simulated contingencies are 

Network 

planning, 

protection 

studies, risk 

assessment

Disturbance

Multiple 

Decision Trees

Known 

Topology

Online 

identification of 

power system 

dynamic 

signature

Predefined 

corrective 

control actions 

for each 

grouping pattern

Critical 

generators/

groups

Statistical 

analysis

Impact of RES, 

network 

topology

Online Procedure

Offline procedure/

Probabilistic transient 

stability assessment



> ACCEPTED VERSION OF THE PAPER < 

 

3 

obtained following a probabilistic Monte Carlo approach, to 

generate a realistic training dataset (with pre-defined accuracy 

of coverage of possible contingencies) for the DTs. Following 

this, the DTs are trained as multiclass classifiers for the 

purpose of identifying in real time the generator grouping 

patterns. The values (measured by PMUs or, as in this study, 

obtained by computer simulations) of generator rotor angles 

are used as predictors. In practical applications the rotor 

angles can be obtained from PMU measurements [16]-[18] or 

alternatively through dynamic state estimators which offer 

increased accuracy [19]. 

A. Generation of Training Database 

The procedure for generating the required training dataset is 

shown in Fig. 2. A full power system dynamic model suitable 

for stability studies is required, taking into consideration the 

connected RESs with the respective controllers. After the 

dynamic model is developed, the uncertainties concerning 

system loading and wind/PV generation for a 24 hour period 

are considered. Moreover, the uncertainties of the fault 

location and duration are also accounted for. All random 

variables are sampled according to appropriate probability 

distributions describing the behavior of corresponding 

uncertain parameter. Further details can be found in [6], [20]. 

The reason for performing probabilistic studies ensures that 

the representative (most probable) contingencies and operating 

conditions, from the set of all possible contingencies and 

operating conditions (determined by setting realistic ranges of 

uncertainties considered) will be considered and used for the 

training of the DTs (for the given system within the time 

frame of the study) which will consequently enable them to 

perform well in a realistic environment. 

Following random sampling of different parameter values 

including RES availability at given time, an Optimal Power 

Flow (OPF) problem is solved to determine the output of 

conventional generators. The dispatch obtained from OPF 

determines also the amount of disconnection of conventional 

generation and consequently system inertia reduction due to 

increased RES penetration. 

A number of Monte Carlo dynamic simulations, Ns, are 

executed by sampling all the above mentioned probability 

distributions. The sampling of the respective distributions is 

performed separately for each load and each RES unit in the 

system to consider independent behavior of loads and RES 

units within the system. The rotor angles of each generator are 

stored in a vector δig for a duration of ts seconds, where 

i=1…Ns is the case number and g=1…Ng is the generator 

number. The vector δig consists of n=1…ns samples for the 

duration of ts with a sampling time of 1 cycle (0.0167s for a 60 

Hz system). A database of a large number of cases is 

generated for a 24 hour period and used to train a single DT 

for the specific network topology. 

 
Fig. 2.  Flowchart illustrating DF training and online identification procedure. 

 

The whole procedure is repeated for all possible (viable) 

network topologies generating a number of NDT datasets for 

different network topologies. In case, the number of possible 

transmission network configurations (i.e., line 

connections/disconnections) is too large and becomes 

impractical, the representative set of most critical topologies 

can be used by observing changes in generator grouping 

patterns caused by the topology change. 

The proposed framework offers significant flexibility in 

creating the training database. The sampling of uncertain 

factors can be done according to any probability distribution 

based on historical data, prior knowledge or forecast [21]. 

Using probability distributions based on actual historical data 

(when available) is expected to provide more realistic results 

since some aspects of the uncertain behavior of power systems 

would be represented more accurately. Moreover, solving the 

OPF problem can include any number of additional security 

constraints associated with RESs as proposed in [22].  

By using a selected set of topologies and operating 

conditions the number of required cases to be considered can 

be reduced. While the proposed framework can be used in this 

manner, sampling using probability distributions is proposed 

in this study in order to cover possible cases that may arise 

due to the inclusion of new uncertainties in the system (i.e. 

wind/PV generation). These new uncertainties could cause 

significant changes in power flows, as well as the dynamic 

behavior of the system. Certain contingencies and/or operating 

conditions can therefore become more or less important, 

possibly rendering a predefined database inefficient. 

B. Power System Dynamic Signature 

 Since transient stability is the main focus of this paper, it is 

important that the grouping of generators (based on similarity 

of rotor responses) reflects which generators are unstable, 

what group they belong to and in which order the groups of, 

or individual generators, lose synchronism. There are several 

clustering algorithms available in the literature that have been 

applied to identify coherent groups of generators, such as 

fuzzy C-means, principal and independent component 
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analysis, support vector clustering and hierarchical clustering 

[23]-[26]. Hierarchical clustering is applied in this study, to 

determine the unstable generator groups, for each simulated 

contingency following the Monte Carlo probabilistic 

approach. This way the unstable generator groups that might 

appear in the specific system under study for a time frame of 

one day are obtained. 

 The agglomerative (bottom up) method is used to create a 

hierarchical cluster tree in this paper. The clustering begins by 

assuming that each object (generator in this case) forms a 

cluster of its own and then iteratively merges appropriate 

clusters until all the objects are in a single cluster. To measure 

the distance between two clusters the maximum distance 

linkage measure is used (complete linkage criterion) [27], i.e., 

the distance between two clusters is determined as the distance 

between the elements of each cluster (generator rotor angles) 

that are the farthest away from each other. The similarity 

between each pair of objects according to the linkage criterion, 

is measured by a similarity measure (Euclidean distance is 

used in this paper [6]). Finally, the obtained hierarchical 

cluster tree is cut using a predefined threshold for the linkage 

criterion to form the final clusters [27]. The important 

advantage of hierarchical clustering is that it facilitates setting 

a threshold with a physical meaning (when cutting the 

hierarchical tree), based on which the number of clusters can 

be automatically determined without having to provide it 

beforehand, which is an important feature of the developed 

methodology. Moreover, the obtained clusters are directly 

related to transient stability rather than to slow coherency as it 

has been done in the majority of past work. More information 

on the application of hierarchical clustering to determine 

unstable generator groups are also given in [6]. 

A generic case of generator rotor angle responses after the 

disturbance is cleared, is shown in Fig. 3a. The values of the 

vectors δig(nc) after a specified period of time tc for each  of 

the Ng generators, are used as the observations for the 

hierarchical clustering process. The period of time tc is defined 

by the time tm<tc after which the system operator will start 

applying the corrective measures. The value of tm should be 

smaller than tc to allow enough time to apply corrective 

measures following the identification of characteristic 

generator groups. Therefore, Ng values of generator rotor 

angles at the instance tc, i.e. δig(nc), are used as input in the 

hierarchical clustering method. 

As mentioned earlier, the agglomerative (bottom up) 

method is applied with a cut-off value of 360 degrees, since 

this is considered to be the transient stability limit. Euclidean 

distance between the data points is used as the similarity 

measure and complete linkage is chosen as the linkage 

criterion [6]. This results in generator groupings where 

generators belonging to one group have less than 360 degrees 

difference in rotor angles. In the case where only one group 

exists, the difference between the rotor angles of all generators 

is below 360 degrees and consequently the case is stable, as 

shown in Fig. 3a. When two or more groups appear in a 

pattern, this means that at least one generator of the additional 

groups has exhibited instability and therefore the case is 

unstable. The hierarchical clustering method is applied in such 

a manner (use of complete linkage criterion, bottom-up 

strategy, 360 degrees threshold, etc.) that it is certain that the 

obtained generator groups always follow the rules specified 

above.  

After the generator groupings are obtained for the time 

instance tc, the sequence in which groups lose synchronism is 

determined. The Euclidean distances and complete linkage 

criterion are calculated sequentially for each set of samples 

δig(n) for n=1…nc (i.e. the above described methodology is 

applied for each time instance), for the cases that there is more 

than one group. Assuming there are m unstable groups in one 

case, the time instances tu1, tu2…tum when the linkage criterion 

exceeds 360 degrees for generators belonging to groups 1, 

2…m, respectively, is recorded. Time instances tu1, tu2…tum 

correspond to sample (and therefore cycle) numbers nu1, 

nu2…num. In this way the order and the time at which groups 

lose synchronism is identified. The first group of generators 

(at least one generator of the group) to exceed the threshold of 

360 degrees is considered to be the critical group. The rest of 

the groups are presented in the order the threshold is exceeded. 

In Fig. 3b the rotor angles of 16 generators (G1-G16) 

clustered within three groups is shown. Generators G4 and G5 

form the critical group and G6 and G7 belong to the second 

unstable group. The cycles where the linkage criterion 

between groups exceeds 360 degrees are also marked in the 

figure. For the critical group the nu1=36 cycles is the sample 

when the linkage between G4 and G1 exceeds 360 degrees 

while for the second unstable group the linkage criterion is 

exceeded at nu2=74 cycles for G6 and G1. 

Following the proposed methodology of identifying 

grouping patterns, there is no need for separate binary 

detection of instability as in [6]. Multiclass classification can 

therefore, be directly applied in the following step, 

distinguishing simultaneously between stable and unstable 

cases using the assigned patterns from hierarchical clustering. 

The identification of unstable generator groups and the order 

in which those groups exhibit instability is the aim of applying 

the hierarchical clustering methodology. A more detailed 

reflection of the similarity of observed generator responses in 

the obtained clusters is not considered important as part of the 

proposed methodology, which aims at applying corrective 

control measures. For this reason, further evaluation of the 

hierarchical clustering procedure (e.g. calculation of 

cophenetic correlation) is not significant in terms of the aim of 

the methodology proposed in this paper. 

C. DF Training Procedure 

The identified generator grouping patterns for a large 

number of simulated contingencies are used as the targets to 

train DTs as multiclass classifiers. Generator rotor angles δig 

for a duration tDT are used as predictors. All values of the 

vector δig between the time when the fault is cleared and tDT 

(i.e. nDT samples) are used for both training the DTs and for 

the online identification of grouping patterns. The value of tDT 

is defined as a trade-off between the accuracy of the prediction 

and the time delay in corrective control actions. tDT should be 
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less than or equal to tm to ensure the prediction is available to 

the operator when needed in order to successfully apply the 

corrective measures. Ensemble Decision Tree (EDT) methods 

are used following the finding that they perform better for this 

class of problems as demonstrated in [6]. From the total of Ns 

simulated cases, a sub-set is used for training and the rest for 

testing purposes. A total of NDT DTs are trained for different 

network topologies. 

 

 
Fig. 3.  Representative cases of stable and unstable grouping patterns. 

 

When the training datasets for different network topologies 

are clustered, different grouping patterns tend to appear for 

different network topologies. A number of common patterns, 

usually the most critical ones, appear between all datasets. 

However, the frequency of the appearance of those patterns 

can change and more importantly new patterns can also 

appear. This means that a DT trained with a dataset 

corresponding to only one specific topology would be less 

accurate, since it would not be able to recognize at all the new 

patterns. Moreover, even for patterns appearing in both 

datasets, there can be slightly different rotor angle responses 

that lead to an increase in the prediction error. The DF concept 

is suitable to deal with this problem. Furthermore, different 

DT rules that may appear for different DTs can provide an 

insight considering parameters that affect the dynamic 

behavior of the system. 

Therefore, it is proposed that specific DTs are trained and 

used for different network topologies. Within the 24 hour time 

frame considered, the correct DT according to the current 

network topology is chosen from a database (i.e. the DF) to 

perform the classification. When a disturbance occurs, the 

corresponding DT is fed with the generator rotor angles δig for 

duration tDT. The output of the DT is the prediction of the 

generator grouping pattern about to happen. 

IV. SYSTEM UNDER STUDY 

The test network used, is a modified version of the IEEE 68 

bus, 16 machine reduced order equivalent model of the New 

England Test System and the New York Power System (NETS 

– NYPS). The conventional part of the test network is adopted 

from [28], [29] and RESs are added at the buses shown in Fig. 

4. Two types of RES units are connected to each bus: Doubly 

Fed Induction Generators (DFIGs), representing wind 

generators and Full Converter Connected (FCC) units, 

representing both wind generators and Photo-Voltaic (PV) 

units. 

 
Fig. 4.  Modified IEEE 68 bus test network. 

A. Components modelling 

The test network consists of 16 generators (G1-G16) in five 

interconnected areas. NETS consists of G1 to G9, NYPS of 

G10 to G13 and the three areas are represented by equivalent 

generators G14, G15 and G16, respectively. Standard 6th order 

models are used for all synchronous generators. G1-G16 are 

equipped with either slow IEEE DC1A dc exciters or fast 

acting static exciters type IEEE ST1A and G9 is equipped 

with a Power System Stabilizer (PSS). All generators are also 

equipped with generic governors, representing gas, steam and 

hydro turbines. 

A Generic type 3 model, suitable for large scale stability 

studies is used in this paper to represent DFIGs. The model 

has a structure similar to the one proposed by WECC [30] and 

IEC [31], as shown in Fig. 5 and is available in DIgSILENT – 

PowerFactory [32]. It takes into consideration the 

aerodynamic part and the shaft of the wind turbine/generator 

as well as the pitch control of the blades. The rotor side 

converter controller is also modeled including relevant 

limitations, ramp rates and protection mechanisms, such as the 

crowbar. The DFIG is represented by a typical 2nd order 

model of an induction machine neglecting the stator transients 

and including the mechanical equation [33]. The rotor side 

converter is controlling the voltage in the rotor as in [34]. 

Therefore, the model represents all the relevant parts that 

influence the dynamic behavior of DFIGs. 

Similarly, a type 4 wind generator model is used to 

represent all FCC units. Both wind generators and PV units 

can be represented by a type 4 model in stability studies, since 

the converter can be considered to decouple the dynamics of 
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the source on the dc part. This is also suggested by the WECC 

Renewable Energy Modeling Task Force [35], which develops 

a PV model by slightly modifying the type 4 wind generator 

model. The FCC model used in this paper and shown in Fig. 6 

has a similar structure to [30], [31] and is available in the 

DIgSILENT – PowerFactory software [32]. 

Both DFIGs and FCC units are treated as aggregate units. 

Each RES unit model has a 2 MW power output and the 

number of connected units is varied to determine the output of 

the aggregate unit. Furthermore, all RES units are considered 

to have Fault Ride Through (FRT) capability and remain 

connected during the fault. 

 

 
Fig. 5.  DFIG control structure. 

 
Fig. 6.  FCC unit control structure. 

 

The nominal apparent power of synchronous generators is 

derived considering 15% spare generation capacity available 

based on the nominal power flow data from [28]. A power 

factor of 0.85 is also assumed as nominal value. For the base 

case study, 20% of RES penetration based on conventional 

synchronous generation nominal values is considered for each 

of the five areas of the network. This means that the nominal 

capacity of connected RES generation is 20% of the nominal 

synchronous generation available (i.e. 16.67% of total 

generation). Out of this 20%, around 66.67% (i.e., 

approximately 11.11% of total generation) are considered to 

be DFIG wind generators and the remaining 33.33% (approx. 

5.56% of the total generation) are FCCs. FCCs are further 

considered to be 30% wind generators (approx. 1.67% of total 

generation) and 70% PV units (approx. 3.89% of total 

generation). 

B. Modelling of uncertainties 

The daily loading and PV curves are initially used as shown 

in Fig. 7. The curves shown are typical pu curves obtained 

from National Grid data [36] and from the literature [37], 

respectively. First, the hour of the day is sampled randomly 

following a uniform distribution to determine the pu values for 

all the loads and all PV units according to the respective 

curves. For every hour within the day, the corresponding 

uncertainties are also modeled using a normal distribution for 

the system load [5] and a beta distribution for the PV 

generation [38]. Therefore, an extra uncertainty scaling factor 

for loads and PVs is introduced which is eventually multiplied 

with the corresponding value from the daily loading or PV 

curve, respectively. The normal distribution for the system 

loading uncertainty has mean value 1 pu and standard 

deviation 3.33% and the beta distribution a and b parameters 

are 13.7 and 1.3 respectively [39]. For wind generation, the 

mean value of the wind speed within one day is considered 

constant [40], and the uncertainty of the wind speed is 

modelled using a Weibull distribution [41]. After considering 

the wind speed uncertainty, the power curve of a typical wind 

generator is used [42] to derive the power output. The Weibull 

distribution parameters used are φ =11.1 and k=2.2 [41]. 

In case forecasted daily curves are used, the above 

mentioned PDFs are considered to include both the forecast 

error as well as the inherent uncertain behavior of the 

respective parameters (loads, wind/PV generation). As 

mentioned in Section III A, the proposed framework offers 

flexibility in using more realistic PDFs without compromising 

the performance of the method since the DTs will eventually 

be trained with the resulting simulations. 

 

 
Fig. 7.  Load and PV uncertainties modeling. 

 

The above mentioned normal, beta and Weibull 

distributions are sampled separately for each load and RES 

unit in the system. Therefore, independent random variables 

are used for each specific load and RES to represent the 

variability of the uncertainties in a more realistic manner. 

After considering the uncertainties, OPF is solved to 

determine the conventional generators dispatch Pig, where 

g=1…16 for the specific test network and i=1…Ns. The cost 

functions for OPF are taken from [5]. The nominal capacity of 

each generator Sig is then adjusted by adding 15% spare 

capacity according to Sig = Pig / 0.85. In case the resulting Sig is 

larger than the nominal apparent power of the generators it is 

set to the nominal value. This means that there is no room for 

conventional generation disconnection in this case. The 

disconnection of conventional generation due to both load 

variations and RES penetration is considered in the following 

way. Since the generators are considered equivalent 

generators, reducing the nominal power, is equivalent to a 

reduction in the moment of inertia of the power plant and an 

increase in the generator reactance. 

Only three phase faults are considered in this study due to 
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their strongest impact on system dynamic behavior. However, 

the simulation database could be extended to include other 

contingencies as well. A uniform distribution is used to model 

the fault location which means that the fault may happen with 

equal probability at any line of the test network and at any 

point along the line. A normal distribution with mean value of 

13 cycles and standard deviation 6.67% is used to model the 

fault duration [6]. 

C. Monte Carlo Simulations 

After considering all the uncertainties for a 24-hour time 

frame, 6000 cases (Ns) are simulated to construct the training 

and testing database for each one of the DTs within the DF. 

70% (4200) of the cases is used as the training set and 30% 

(1800) as a testing set for each DT. The number of simulations 

Ns is chosen by keeping the error of the sample mean up to 

5%, for 99% confidence interval, considering the TSI as the 

random variable. The error of the sample mean is calculated 

using (1), where Φ-1 is the inverse Gaussian CDF with a mean 

of zero and standard deviation one, σ2 is the variance of the 

sampled random variable, δ is the confidence level (i.e. 0.01 

for this study) and XN is the sampled random variable with N 

samples [43]. In most cases increasing the number from 5000 

to 6000 simulations, produced none, or only one new grouping 

pattern with no more than one corresponding case. The 

number of required Monte Carlo simulations might be affected 

by the shape of probability distributions used to represent the 

system uncertainties. Using the error threshold to define the 

number of required simulations ensures there is no loss of 

generalization of the proposed method. 

eX̅N
=

Φ-1(1-
δ
2

)√
σ2(XN)

N

𝑋𝑁̅̅ ̅̅
 

(1) 

To illustrate the concept of DF, four different topologies are 

considered with a total of 24000 simulations performed. The 

DF therefore consists of four DTs, each one trained for the 

respective Test Case (TC). In the base case (TC1) no line is 

disconnected and the network is as described in Section IV. In 

TC2, all the RES units are disconnected and therefore the 

associated uncertainties are also not considered. TC3 and TC4 

are the same as TC1 but lines 1 (between bus 21 and 68) and 2 

(between bus 33 and 38) of NETS and NYPS are out of 

service, respectively. TC2 is used to compare the performance 

of the online identification method with and without RESs. 

The error of the sample mean ranges from 3.7% for TC1 up to 

5% for TC3. 

V. ONLINE IDENTIFICATION OF POWER SYSTEM DYNAMIC 

SIGNATURE 

A. Hierarchical clustering results 

The total number of unstable cases and different patterns 

observed in each TC are shown in Table I. Tripping of line 1 

(TC3), which is a critical line within NETS, leads to the 

highest number of unstable cases. However, there are only few 

different patterns observed for this TC. For the case without 

considering RESs (TC2), there is the highest number of new 

patterns observed, leading to the conclusion that the 

introduction of RESs changes the power system dynamic 

signature, and hence invalidates the DT training that might 

have been done with the network without RES. This 

difference is caused by the uncertainties introduced by RESs 

as well as the dynamic behavior of RES units. Finally, tripping 

line 2 does not cause significant changes. However, a few new 

patterns appear and the number of unstable cases slightly 

increases.  
TABLE I 

NUMBER OF UNSTABLE CASES AND PATTERNS OBSERVED FOR TCS 

TCs % of 

unstable 
cases 

No of 

patterns 

New 

patterns 

Common 

patterns 

TC1 9.45% 30 - - 

TC2 11.13% 32 13 19 

TC3 13.48% 20 4 16 

TC4 9.82% 29 5 24 

 

In Table II the most significant identified unstable patterns 

are presented. The unstable groups are shown in bold letters 

and the order in which they are presented is the order they lose 

synchronism as described in Section III B. The percentages 

shown refer to the total number of unstable cases for each TC. 

New grouping patterns appear for different TCs and the 

frequency of appearance of common patterns is also changing. 

Pattern 1, in which G9 alone goes unstable, is the most 

common pattern in all cases. The frequency of appearance, 

however changes between TCs. The same applies for other 

patterns as well, such as pattern 2 and 3. Considering TC2, 

there are some patterns such as 1, 2, 8, etc. that appear less 

frequently, while others such as 3, 5, 12, 13 appear more 

frequently. This fact along with the fact that 13 new patterns 

appear in TC2 leads to the conclusion that RES units cause an 

overall change in the power system dynamic signature. In TC3 

pattern 14 is introduced with a very significant number of 

cases. In Fig. 4, it can be seen that line 1 in NETS area is close 

to G6 and G7. Tripping line 1 therefore, weakens the network 

at that point and causes G6 and G7 to become more frequently 

unstable and resulting in a new distinct generator grouping 

pattern. In TC4 there are no significant changes in the most 

important groups leading to the conclusion that tripping line 2 

in NYPS area is not so critical. 

 
TABLE II 

MOST SIGNIFICANT UNSTABLE PATTERNS 

Pat. Grouping TC1 TC2 TC3 TC4 

1 (G9)/(G1-G8,G10-G16) 49.38 42.96 35.19 49.38 

2 (G11)/(G1-G10,G12-G16) 22.12 19.91 15.49 22.12 

3 (G2-G9)/(G1,G10-G16) 2.65 7.63 0.12 2.65 

4 (G4-G5)/(G6-G7)/(G1-

G3,G10-G16) 

1.95 1.35 3.84 1.95 

5 (G3)/(G1-G2,G4-G16) 3.01 4.04 2.73 3.01 

6 (G4-G7,G9)/(G3)/(G1-
G2,G8,G10-G16) 

0.88 - 0.12 0.88 

7 (G4-G7)/(G1-G3,G8-G16) 4.78 5.69 8.67 4.78 

8 (G4-G5)/(G1-G3,G6-G16) 4.60 1.20 1.73 4.60 

9 (G1-G9)/(G10-G16) 1.59 2.40 - 1.59 

10 (G8)/(G1-G7,G9-G16) 2.12 1.80 1.61 2.12 

11 (G5)/(G1-G4,G6-G16) 0.88 0.15 0.25 1.27 

12 (G1-G10)/(G11-G16) 0.35 2.69 - 0.71 

13 (G10)/(G1-G9,G11-G16) 0.18 2.25 0.12 0.18 

14 (G1-G9)/(G10)/(G11-G16) - 2.25 - - 
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B. Decision Tree Performance 

The DF for the studied system consists of four DTs for the 

four TCs studied. tDT is chosen as 60 cycles, which 

corresponds to 1 second duration for a 60 Hz system. In Fig. 8, 

the performance results of all the DTs within the DF are 

presented. Each DT trained with the simulations from a 

specific TC is tested against all TCs. The DTs trained and 

tested with simulations from the same TC are the ones chosen 

for the DF. In Fig. 8a the overall performance of the DTs in 

identifying both stable and unstable cases is shown, while in 

Fig. 8b the performance related only to unstable cases (i.e. 

identify correctly the specific unstable grouping pattern) is 

presented. The performance considering both stable and 

unstable cases is always higher. More specifically for the DTs 

within the DF, the accuracy is around 99% for all TCs. In 

general, stable cases are more easily identified by the DTs. 

Stable cases appear in larger numbers in both the training and 

testing dataset and only very few are misclassified as unstable. 

Therefore, the accuracy of the DTs in identifying between 

stable and unstable cases is very high. However, it is also 

critical to identify the correct generator grouping pattern. For 

this reason, the performance in identifying the correct 

grouping pattern considering only the unstable cases is also 

provided as a performance measure. 

 

 
Fig. 8.  Performance of DTs for a) all simulated cases (stable and unstable) 

and b) only for unstable cases. 

 

The accuracy of DTs drops as low as 62% when they are 

trained with a different topology than the one used to test 

them. The drop in accuracy can be either attributed to new 

patterns with small occurrence frequency (as in TC4) or to a 

new pattern with significant number of cases (as in TC3). This 

fact supports the use of the DF to increase the overall 

performance and is essentially a comparison with methods 

based on DTs that do not address changes in network topology 

(e.g. [6]). The overall performance of the DF is calculated by 

summing all the misclassified cases of each DT within the DF 

and dividing by the total number of test cases for all the DTs 

within the DF. The DF can identify generator grouping 

patterns for the unstable cases with 93% accuracy, accounting 

for different network topologies and connection of RES. This 

is a significant improvement, e.g. approximately 30% for 

critical topology changes and 10% with or without RES. It 

should be mentioned, that in some cases new unstable 

generator grouping patterns could appear in the test dataset. 

This means that the DTs have not been trained to identify 

those patterns and are therefore guaranteed to misclassify 

them. The errors presented in this paper include this type of 

errors to reflect the possible accuracy drop in a realistic 

environment. The number of these new generator grouping 

patterns can be minimized by increasing the training data set, 

which can be achieved during the off-line training of DTs. 

Considering the accuracy of the proposed methodology with 

respect to the network size; the possible impact of the network 

size on the performance of the DF is related to the number of 

generator grouping patterns appearing and therefore the 

number of classes and features of the multiclass classification 

problem. However, the total number and the frequency of 

appearing patterns depends also on the specific system 

dynamics. For example, for the given test network, the number 

of patterns varies from 20 to 32 for different network 

topologies. Comparing between TC1 and TC3 there are 30 and 

20 patterns respectively. The performance of the respective 

DTs is 91.88% and 95.38%, respectively (i.e. higher for the 

case with reduced number of patterns). However, comparing 

between TC1 and TC2 with 30 and 32 patterns the 

performance of the DTs is 91.88% and 92.23%, respectively 

(i.e. slightly higher for the case with increased number of 

patterns). In general it can be concluded that the performance 

of DTs might be affected by both the number and the 

frequency of appearance of the patterns. 

To determine the robustness of the DTs, results for 30 and 

10 cycles tDT duration (0.5 and 0.167 seconds respectively in a 

60 Hz system) are also provided in Fig. 9. In all cases, the 

performance of the DTs does not fall below 80%. If both 

stable and unstable cases are considered the performance is 

still high (above 97%) for each specific DT as well as for the 

whole DF. Considering the accuracy of identifying generator 

grouping patterns for unstable cases, there is a general 

performance drop as the prediction time is reduced. From 60 

to 30 cycles, the drop in accuracy is not very significant. It 

ranges from less than 1% for TC3 up to almost 6% for TC2. A 

more significant drop is noticed when only 10 cycles are used 

for the prediction. However, TC3 still exhibits high 

performance (91.6% for unstable cases). This is attributed to 

the fact that patterns appearing frequently can be identified 

more easily, even with smaller duration of prediction time. In 

general, different TCs are affected in a different way by the 

reduction of tDT due to different patterns that can be either 

identified more or less easily with shorter predictor time. The 

overall DF performance remains acceptable at 89.86% and 

84.32% for 30 and 10 cycles respectively. 
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Fig. 9.  Performance of DTs for different length of predictors. 

 

C. Computational speed and practical considerations 

Considering the online part of the method, the 

computational time required for the respective DT to perform 

the prediction is in the order of 10-4 seconds. Therefore, the 

time delay which is added to tDT until the actual prediction is 

available can be considered negligible. 

Considering the offline part, the most computation intensive 

task is the dynamic simulations used to train and test the DTs. 

The simulations are performed in DigSILENT/PowerFactory 

software as mentioned before. For the TC without RES, 

approximately 18 hours are required to perform 6000 Monte 

Carlo simulations. For the TCs that include RES, 

approximately 60 hours are required for 6000 dynamic 

simulations. After the dynamic simulations are obtained, 

approximately 13 seconds are required to obtain the generator 

grouping patterns for 6000 simulated responses, by applying 

the hierarchical clustering approach described in Section III A. 

Finally, the training of one DT requires approximately 10 to 

20 seconds using the C5.0 boosting algorithm. An Intel Core 

i7 3.4 GHz with 16 GB of RAM is used for all the 

computations. In case there is need to decrease the 

computational time required when performing the offline 

simulations, efficient sampling techniques can be applied to 

reduce the required number of simulations [43]. Alternatively, 

since the offline Monte Carlo simulations can be performed in 

parallel, the computational time can be reduced by utilizing 

multi-core processors or even multiple computers. 

Another possible practical issue that might arise from the 

proposed method is related to communication error and signal 

loss of PMU measurements. This has been investigated by the 

authors in [16] and [18]. In [16] the effect of PMU 

measurement errors is studied and the importance of measured 

signals from each generator is also investigated. It has been 

concluded that measurement signals from specific generators 

might be more important in order to identify the unstable 

generator grouping pattern. This means that even with fewer 

available signals (only from certain identified important 

generators), the prediction error can be maintained low. In 

[18], the effect of signal loss is investigated (due to possible 

disruption of the communication channel) and it is concluded 

that ensemble decision tree methods are more robust under 

measurement signal loss. This is one of the reasons for which 

C5.0 with boosting algorithm is chosen in this paper. 

VI. CONCLUSIONS 

A probabilistic framework for online identification of the 

power system dynamic signature in systems with RES is 

presented in this paper. There are three main improvements 

with respect to previous methodologies: i) it considers the 

impact and uncertainties related to RESs; ii) it is more robust 

and capable of handling  topology changes in the network  by 

training multiple DTs; iii) the prediction of the unstable 

generator grouping pattern includes the sequence in which the 

groups lose synchronism. 

While the connection of RES as well as network topology 

changes alter the dynamic behavior of the system, DTs trained 

for specific topologies can still achieve high performance. The 

proposed DF can achieve very high accuracy (close to 99%) 

when distinguishing between stable and unstable cases. When 

it comes to specific unstable grouping pattern identification, 

the accuracy is lower but still high (93%). The best 

improvement in the accuracy of identification of system status 

resulting from the application of the DF when dealing with 

topology changes was from 62.18% to 95.38%. For very fast 

prediction, the overall DF performance is still very high with 

89.86% and 84.32% accuracy for 0.5 and 0.167 seconds 

respectively, when it comes to identification of specific 

generator grouping pattern. 

Finally, the proposed framework has been also applied  to a 

modified version of the IEEE 118 bus test system, with 54 

generators, 19 of which are modelled as synchronous 

generators (using full detailed 6th order models) and  the rest 

as synchronous compensators [45]  and the results obtained 

were fully constraint (speed, accuracy, etc.) with those 

presented in the paper. This confirms that the methodology 

can be easily scaled up to larger and/or different systems 

without any problem,  and therefore  is  generally applicable. 
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