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Abstract  

Background / introduction: SAR image automatic target recognition technology (SAR-ATR) 

is one of the research hotspots in the field of image cognitive learning. Inspired by the human 

cognitive process, experts have designed convolutional neural networks (CNN) based methods 

and successfully applied the methods to SAR-ATR. However, the performance of CNNs 

significantly deteriorates when the labelled samples are insufficient. 

Methods: To effectively utilize the unlabelled samples, a semi-supervised CNN method is 

proposed in this paper. First, CNN is used to extract the features of the samples, and subsequently 

the class probabilities of the unlabelled samples are computed using the softmax function. To 

improve the effectiveness of the unlabelled samples, we remove possible noise performing 

thresholding on the class probabilities. Afterwards, based on the remaining class probabilities, the 

information contained in the unlabelled samples is integrated with the scatter matrices of the 

standard linear discriminant analysis (LDA) method. The loss function of CNN consists of a 

supervised component and an unsupervised component, where the supervised component is 

created using the cross-entropy function and the unsupervised component is created using the 

scatter matrices. The class probabilities are utilized to control the impact of the unlabelled samples 

in the training process, and the reliability of the unlabelled samples is further improved. 

Results: We choose ten types of targets from the Moving and Stationary Target Acquisition 

and Recognition (MSTAR) dataset. The experimental results show that the recognition accuracy of 
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our method is significantly higher than that of the supervised CNN method.  

Conclusions: It proves that our method can effectively improve the SAR-ATR accuracy 

despite the deficiency of the labelled samples. 

Key words: SAR image recognition, convolutional neural network, semi-supervised learning, 

linear discriminant analysis  

1. Introduction 

Synthetic Aperture Radar (SAR) has been widely used due to its high resolution and 

penetrating ability [1-3]. SAR image automatic target recognition technology (SAR-ATR) is one 

of the research hotspots in the field of image cognitive learning [4,5]. Based on the cognitive 

system, humans are able to recognize targets quickly and accurately. Inspired by this, various 

methods that imitate the human cognitive system have been proposed to improve the SAR-ATR 

accuracy.  

The image cognitive system of humans is based on neural networks [6]. Image signals 

acquired by the retina first go through the primary visual cortex for extracting edge and orientation 

features, followed by the generation of shape and contour features. In this way, image signals pass 

through the higher level visual cortex and we can obtain the more abstract features. Hence, human 

image cognition is a process of obtaining abstract features through layer-by-layer visual cortex 

[7,8]. Inspired by this process, people have established various neural network models. By 

simulating the whole process of the human vision system from the retina to the visual cortex, an 

effective SAR image feature extraction method was proposed in [9]. Using the hierarchical 

perceptual inference process embedded in the cortex, Spratling et al proposed a hierarchical neural 

network for visual object recognition [10]. Ren et al. proposed a multiple convolutional neural 
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network (CNN) based on the human visual system (HVS) [11]. CNN simulates the visual cortex 

using convolution layers and each convolution layer contains several convolution kernels for 

extracting abstract features of the image data. Compared with the other neural network models, 

CNN has been successfully applied to SAR-ATR due to its powerful feature extraction capability 

[12-14].  

Chen et al. designed a CNN model with a single layer to automatically extract features for 

SAR target recognition [15]. SAR images are transformed into a set of feature maps after certain 

convolution and pooling operation. Subsequently, the feature maps are used to train the softmax 

classifier. Gao et al. proposed a new SAR-ATR method by combining CNN and Support Vector 

Machine (SVM) [16]. The experimental results prove that the proposed method can achieve an 

average accuracy of 99% on ten types of targets. However, the CNN model needs a large number 

of labelled samples in the training process. When the labelled samples are insufficient, the 

recognition accuracy of the CNN decreases significantly [17]. Because of the imaging nature, 

speckle noise and clutters exist in SAR images and the outline of the targets is weak, which 

increases the difficulty of the sample annotation. As a result, the number of the labelled samples is 

insufficient, which restricts the application of CNN in SAR-ATR. In recent years, researches have 

focused on improving the SAR-ATR’s accuracy with a small labelled dataset. In [18], the center 

loss is adopted and combined with the softmax loss to train the deep CNN. However, compared 

with labelled samples, unlabelled samples are easy to acquire. Besides, unlabelled samples also 

contain a wealth of information which helps to improve the SAR-ATR’s accuracy.  

 Human cognition does not need a large number of labelled samples, Inspired by this 

mechanism, people have designed semi-supervised learning methods to improve the SAR-ATR 
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accuracy when the labelled samples are insufficient [22,23]. The commonly used semi-supervised 

learning methods include self-training, co-training, graph-based methods, and semi-supervised 

support vector machines [24-26]. Lv et al. proposed a semi-supervised predictive sparse 

decomposition method for feature learning [27]. To solve the online semi-supervised learning 

problems, Ding et al. proposed a novel manifold regularized model in a reproducing kernel Hilbert 

space [28].  

Recently, researchers are focusing on combining semi-supervised learning methods with 

neural network models. To effectively utilize the unlabelled samples, a semi-supervised deep 

learning model based on ladder networks was proposed in [29]. Consisting of a corrupted encoder, 

a clean encoder and a decoder, the proposed model is trained to minimize the sum of the 

supervised loss function and the unsupervised loss function. Samuli and Timo proposed two 

simple and efficient semi-supervised CNN models, i.e. the Pi and the temporal ensembling models 

[30]. The two models are based on the self-ensembling method, where the predicted labels of the 

unlabelled samples are generated using the output of CNN at different epochs. According to the 

predicted labels, the unlabelled components of the loss function are obtained. The experimental 

results show that the two models improve the image recognition accuracy greatly when the 

labelled samples are insufficient. Although the above semi-supervised methods are proved to be 

effective, it is found that semi-supervised methods cannot always improve the image recognition 

accuracy because of the noise and interference in the unlabelled samples [31,32]. For example, the 

Pi and the temporal ensembling models use CNN to predict the labels of the unlabelled samples. 

However, the reliability of the unlabelled samples is significantly reduced if the predicted labels 

are incorrect. As a result, the recognition accuracy of CNN will be worse. The reliability of the 
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unlabelled samples restricts the application of semi-supervised methods in image recognition.  

 In this paper, a new semi-supervised CNN method is proposed to improve the SAR-ATR 

accuracy when the labelled samples are insufficient. First, CNN is used to extract the features of 

the samples, and the class probabilities of the unlabelled samples are obtained using the softmax 

function. In order to improve the reliability of the unlabelled samples, we perform thresholding 

processing on the class probabilities. Afterwards, based on the class probabilities, the information 

contained in the unlabelled samples is integrated with the scatter matrices of the standard LDA 

method. The loss function of CNN consists of a supervised and an unsupervised component. The 

supervised component is created by the cross-entropy function and the unsupervised component is 

created using the scatter matrices. The class probabilities are utilized to control the impact of the 

unlabelled samples in the training process, and the reliability of the unlabelled samples can be 

further improved.  

The rest of this paper is arranged as follows. In section 2, CNN and the LDA methods are 

briefly introduced. Section 3 describes the principle of our proposed method in detail. The 

experiments based on the MSTAR database are performed in Section 4. Finally, we summarize our 

contribution in section 5.  

2. Preliminary 

2.1 Convolutional Neural Network 

 CNN is mainly composed of convolution, pooling and fully connected layers. The 

convolution layers are used to extract image features. The pooling layers decrease the risk of 

overfitting by reducing the number of features, and the fully connected layers are used to integrate 

the image features. The training process of CNN consists of forward and backward propagation 
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[33,34]. 

 In the forward propagation process, the current layer of CNN receives the output of the 

previous layer, which is expressed as follows:     

1

( )

l l l l

l l

z w a b

a z

   


 

                           （1） 

where l  denotes the thl  layer. lz , lw  and lb  represent the weighted input of the thl  layer, 

the weight matrix and the bias matrix, respectively.   denotes the nonlinear activation function 

and la represents the actual output value of the thl  layer. If 1l  , 0a  represents the pixel value 

of the input image.  

 In the backpropagation process, the parameters lw  and lb  of CNN are updated using the 

back propagation (BP) algorithm. In detail, the BP algorithm firstly constructs a loss function 

based on the actual and the expected output of CNN. Afterwards, the gradient descent method is 

utilized to update the parameters lw  and lb  along the gradient decent direction of the loss 

function. Suppose that 0E  is the loss function and L  denotes the number of the layers of CNN, 

the error vector of the output layer is expressed as follows:  

0L

L

E

z






                                （2） 

The error vector of the ( 1)thl   layer can be calculated from the error vector of the thl  layer. 

Therefore, the error vector l  of each layer can be calculated by the Chain Rule: 

1 1 '( )l l l lw z    o                          （3） 

where the symbolic o represents the element-wise product of the two vectors. The partial 

derivative of 0E  to lw  and lb  can be calculated by Eqs. (1) and (3): 
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Then, the change values of lw  and lb  are calculated: 
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Where   denotes the learning rate.  

2.2 Linear Discriminant Analysis (LDA) 

 LDA is used to search a subspace where the samples of different classes are distant from each 

other while the samples of the same class are close to each other [35,36]. In case of binary 

classification, given the training dataset   
1

,
m

i i i
D x y


 , where ix denotes the training samples 

and  0,1iy   denotes the label of the samples, m  represents the number of the samples in the 

training dataset. Suppose that i  and iC  represent the mean vector and covariance matrices of 

the thi  class respectively, and w  denotes the projection vector. In order to make the samples of 

the same class as close as possible in the subspace, 0 1
T Tw C w w C w  should be small. While 

2

0 1
2

T Tw w   should be large to make the samples of different classes as distant as possible. 

Thus, taking these into consideration, we get the optimization objective function as follows.  
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             （6） 

Then we define the within-class scatter matrix 0 1wS C C   and the between-class scatter matrix 

  0 1 0 1

T

bS       . Then the objective function Eq. (6) can be rewritten as Eq. (7), which is 

called the “generalized Rayleigh quotient” of wS  and bS . 

T
b

T
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w S w
                                （7） 
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Next, the LDA algorithm is extended to the field of multi-classification. Suppose that there are N  

classes and the number of the samples of the thi  class is im . First, the total-class scatter matrix 

is defined as follows,  

  
1

m
T

t b w i i

i

S S S x x 


                       （8） 

where m  denotes the total number of the samples and   represents the mean vector of all the 

samples. The within-class scatter matrix is defined as the sum of the covariance matrices for each 

class:  

1

N

w i

i

S C


                               （9） 

According to Eqs. (8) and (9), the between-class scatter matrix is obtained:  

  
1

N
T

b t w i i i

i

S S S m    


                    （10） 

There are various ways to construct the optimization objective function of LDA for 

multi-classification, and one of the common ways is expressed in Eq. (7). 

3. The proposed method  

 First, we define the system parameters. The training dataset consists of two parts: 

[ , ] d NX L U R   , where 1 2[ , , , ] d l
lL x x x R  L  represents the labelled dataset and 

1 2[ , , , ] d u
l l l uU x x x R 
   L  represents the unlabelled dataset. d  denotes the dimension of the 

samples. N l u   is the number of the training samples.  
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Figure 1: The flowchart of the training process 

 As shown in Figure 1, the training process of our method is composed of three parts: feature 

extraction, supervised learning and semi-supervised learning. In the feature extraction, we use 

CNN to extract the features of the samples. 'L  and 'U  represent the feature vector of the 

labelled and unlabelled datasets respectively. In the process of supervised learning, the labelled 

samples are utilized to obtain the supervised component of the loss function for CNN. The 

semi-supervised learning process which consists of two steps is the core of our method. First, we 

calculate the class probabilities of the unlabelled samples using the softmax function. To improve 

the reliability of the unlabelled samples, we perform thresholding processing on the class 

probabilities. Afterwards, based on the class probabilities, the information contained in the 

unlabelled samples is integrated to the scatter matrices of the standard LDA method, and the 

unsupervised component of the loss function is constructed using the scatter matrices. Next, the 

two steps of the semi-supervised learning process are analyzed in detail. 

3.1 Class probabilities of unlabelled samples 

Softmax function 

L’ 

U’ 

CNN 

Feature extraction 

Semi-supervised Learning 

Cross-entropy  

loss function 

Supervised Learning 

 L : labelled 
samples  

 
 U : unlabelled 

samples  

Label 

Thresholding processing 

The new LDA method  

class probabilities  

sum 

loss 

output 
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 To effectively utilize the unlabelled samples, we calculate the class probabilities at first. 

Since the samples in L  and U  are high-dimensional, we use CNN to extract the features so as 

to obtain the class probabilities. Compared with optical images, the signal to noise ratio (SNR) 

and resolutions of SAR images are relatively low. Therefore, CNN models such as AlexNet and 

VGGNet for optical images are not suitable for SAR images. As shown in Figure 2, we designed 

the CNN model for SAR images based on comprehensive experiments. The size of the input 

images is 64*64. Conv1, Conv2 and Conv3 represent the convolution layers. The number of the 

convolution kernels in Conv1 is 20, and the kernel size is 3*3. The number of the convolution 

kernels in Conv2 is 40, and the kernel size is 4*4. The number of the convolution kernels in 

Conv3 is 80, and the kernel size is 3*3. We adopt the Relu activation function in the convolution 

layers. Maxpool denotes the maximum pooling operation, and the pool size is 2*2. The Flatten 

layer stretches the output of Conv3 to create a 2880 dimensional column vector. Linear1, Linear2 

and Linear3 represent the fully connected layers. The output dimensions of each layer are 2880, 

2880 and 10 respectively. The Relu activation function is also adopted in the fully connected 

layers.  
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Figure 2: The CNN model employed in the proposed method. 

Suppose that the number of the neurons in the output layer is K, that is, the CNN eventually 

divides the input images into K classes. As expressed in Eq. (11), we utilize the softmax function 

to normalize the output of CNN, and the class probabilities of the unlabelled samples are obtained.  
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Where 1 2[ , , , ]Ka a aL  is the output of CNN. Hence, the class probabilities of a sample can be 

represented as 1 2[ , , , ]Kp p pL , where kp  denotes the probability of the sample belonging to the 

thk  class. The larger the value of kp , the greater the probability that the sample belongs to the 

thk  class. 
1

1
K

k

k

p


 , and if one item increases, the sum of the others will be decreased.  

 The reliability of a sample is related to the probability that belongs to the class corresponding 

to its true label. We define the reliability factor (RF) to measure the reliability of samples. As 

expressed in equation Eq. (12), 
truep  denotes the probability of a sample belonging to the class 

Input image 64*64 

Conv1(20*3*3 /Relu /Maxpool 2*2) 

Conv2(40*4*4 /Relu /Maxpool 2*2) 

Conv3(80*3*3 /Relu /Maxpool 2*2) 

Flatten(2880) 

Linear1(2880 /Relu) 

Linear2(2880 /Relu) 

Linear3(10 /Relu) 



12 
 

that corresponding to its true label. The larger the value of RF, the more reliable of a sample. In 

general, a sample with the RF value greater than 0.9 can be regarded as a reliable sample.  

1

true

K

k

k

p
RF

p





                             （12） 

 Suppose that 1i Np R   denotes the class probabilities of all the unlabelled samples 

belonging to the thi  class. To improve the reliability of the unlabelled samples, we apply 

thresholding processing to ip : 

   
0,

, 1,2, , , 1,2, ,
,

i
ji

j i
j

p t
p i K j u

p others

 
  


L L              （13） 

where i
jp  represents the thj  element of ip  and t  is the threshold. The greater the value of 

t , the higher the reliability requirement for the unlabelled samples. If the maximum class 

probability of a sample is less than t , all the class probabilities of the sample will be set to 0. We 

utilize the unlabelled samples based on the class probabilities and the new LDA method. Thus, the 

unlabelled samples whose class probabilities are all set to 0 will not be utilized in the training 

process.  

3.2 The new LDA method  

 After obtaining the class probabilities, how to effectively utilize the unlabelled samples is the 

key to improving the recognition accuracy of the CNN model. Most of the semi-supervised CNN 

methods extend the labelled dataset by using CNN to label the unlabelled samples. And the CNN 

is retrained using the extended dataset subsequently. However, when the initial labelled samples 

are insufficient, the generalization ability of the CNN model is weak. As a result, the “pseudo 

labels” for the unlabelled samples are not credible, which restricts the improvement of the 

recognition accuracy. In contrast, the LDA method constructs an optimization function based on 
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the within-class and between-class distance of the samples. Using the projection vector, the 

samples of different classes are distant from each other while the samples of the same class are 

close to each other. Here, we design a new LDA method to exploit the unlabelled samples. In our 

method, the information contained in the unlabelled samples is integrated to the scatter matrices of 

the standard LDA method based on the class probabilities. Then the unsupervised component of 

the loss function is calculated using the scatter matrices.  

 In the standard LDA method, if we map the samples to a space and assume that the density of 

each sample is 1. Then the mean vectors is used to denote the center of each class. We redefine the 

within-class mean vector iu  and the total mean vector u  in the new LDA method:  
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Compared with the standard LDA method, we use the class probabilities as the density of the 

unlabelled samples. The larger the probability of a sample belonging to a class, the greater the 

impact on the class center. Since the information contained in the unlabelled samples is effectively 

utilized, the mean vectors are more reliable.  

 Afterwards, we define the new scatter matrices:  
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where 
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where i
jh  is expressed as follows: 

1,

0,
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Compared with the scatter matrices of the standard LDA method, we redefined the im  in the 

between-class scatter matrix. In addition, the class probability i
jp  is added as the weight 

coefficient in the within-class and total-class scatter matrices. The greater the class probabilities of 

the unlabelled samples, the greater the impact on the scatter matrices. The new LDA method 

controls the impact of the unlabelled samples through the class probabilities. Thus, the reliability 

of the unlabelled samples is improved.  

 When constructing the “generalized Rayleigh quotient” optimization function, we can use 

any two scatter matrices, and one of the common ways is expressed in Eq. (19).  

T
w

T
b

W S W
J

W S W
                             （19） 

where 1 2( , , , )KW w w w L  denotes the projection matrix. Since both the numerator and 

denominator of Eq. (19) are matrices, the optimization function cannot be optimized as a scalar 

function. Therefore, an alternative optimization function is adopted:  
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According to the nature of the “generalized Rayleigh quotient”, the minimum value of J   is the 

minimum eigenvalue of 
1

w bS S
. Afterwards, the unsupervised component of the loss function for 

CNN is obtained, as shown in Eq. (21).  

1min( ) min[ ( )]w bJ eig S S                       （21） 

Because of the simplicity and convergence rate of the cross-entropy function, we utilize it to 

construct the supervised component of the loss function for CNN, as shown in Eq. (22).  

0

1
ln (1 ) ln(1 )k k k k

x K

E y a y a
N

                  （22） 

Where 1 2( , , , )Ky y yL  represents the expected output of CNN and 1 2( , , , )Ka a aL  denotes the 

actual output. Based on Eqs. (21) and (22), the loss function of CNN is the sum of the two 

components:  

11
[ ln (1 ) ln(1 )] min[ ( )]k k k k w b

x K

E y a y a eig S S
N

         （23） 

 After the training process has been achieved, the test samples are the input of the CNN model, 

and the predicted labels are obtained.  

4. Experiments 

 The experiments consist of two parts. First, we discuss the effectiveness of the relevant steps 

in our method. Then we compare the performance of our method with that of the other 

semi-supervised methods. The experiments are performed on the Moving and Stationary Target 

Acquisition and Recognition (MSTAR) dataset which contains multiple types of targets. In our 

experiments, we choose ten types of targets, namely, 2S1, ZSU234, BRDM2, BTR60, BMP2, 

BTR70, D7, ZIL131, T62 and T72. Figure 3 shows the SAR and optical images of each type. 

Although the optical images are distinct from each other, the corresponding SAR images are 

difficult to be recognized because of the imaging nature. The dataset used in this paper consists of 
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the training and testing datasets. The detailed information is listed in Table 1.  

 

Figure 3: The SAR and optical images of ten types of targets in the MSTAR dataset.  

Table 1: The training and testing datasets of our experiment.  

Type Tops Model 
Training set  Testing set 

Depression Number  Depression Number 

2S1 
Artillery 

B_01 17° 299  15° 274 

ZSU234 

 

 

D_08 17° 299  15° 274 

BRDM2 

Truck 

E_71 17° 298  15° 274 

BTR60 K10YT_7532 17° 256  15° 195 

BMP2 SN_9563 17° 233  15° 195 

BTR70 

 

 

C_71 17° 233  15° 196 

D7 92V_13015 17° 299  15° 274 

ZIL131 E_12 17° 299  15° 274 

T62 
Tank 

A_51 17° 299  15° 273 

T72 #A64 17° 232  15° 196 

 Sum:2747  Sum:2425 

4.1 Evaluation of our method  

4.1.1 Evaluation of the new LDA method  

In our method, a new LDA method is designed to utilize the unlabelled samples. First, in 

order to verify the effectiveness of the proposed LDA method, we compare the overall accuracy 

(0)2S1 

(5)BMP2 

(2)BRDM-2 (3)BTR60 (4)BTR70 

(6)D7 (8)T62 (9)T72 (7)ZIL131 

(1)ZSU234 
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and the Kappa coefficients of our method with those of the supervised CNN method which only 

utilizes the labelled samples. The overall accuracy refers to the ratio of the number of correctly 

recognized samples to the number of all the samples. The calculation of Kappa coefficient is based 

on the confusion matrix, which can well represent the recognition accuracy of each class. The 

definition of Kappa coefficient is shown in Eq. (24), where 
op  is the relative observed 

agreement between the recognition results for the test data and the real labels, and 
ep  represents 

the hypothetical probability of the chance agreement.  

1

o e

e

p p
k

p





                                (24) 

In the experiments, the training dataset is divided into a labelled dataset L  and an 

unlabelled dataset U . During the partition, we randomly select the same number of the samples 

from each class in the training dataset, and L  consists of the selected samples. U  consists of 

the remaining samples in the training dataset. We design six different partitions and the 

corresponding numbers of the samples in L  and U  are shown in Table 2. The Adam optimizer 

is adopted when we train the CNN, and the parameters are set experimentally as follows: 

0.001  , 
1 0.9  , 

2 0.99  . When performing the thresholding processing on the class 

probabilities, the value of t  is set to 0.2. We repeated the experiments under different partitions 

for ten times and the average results are shown in Table 3.  

Table 2: Six different partitions of the training dataset and the corresponding numbers of samples in L and U. 

 Number of L Number of U 

1 300 2447 

2 400 2347 

3 500 2247 

4 600 2147 

5 800 1947 

6 1000 1747 
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Table 3: The performance of the supervised CNN method and our method under different partitions of the training 

dataset. The supervised CNN method only utilizes the labelled samples while our method utilize both the labelled 

and unlabelled samples.  

Training set  L:300, U:2447  L:400, U:2347  L:500, U:2247  L:600, U:2147  L:800, U:1947  L:1000, U:1747 

Method  CNN Ours   CNN Ours   CNN Ours   CNN Ours   CNN Ours   CNN Ours 

2S1  0.70 0.73  0.68 0.79  0.77 0.84  0.83 0.87  0.84 0.89  0.91 0.95 

BMP2 

 

 

 

 0.64 0.69  0.74 0.85  0.81 0.95  0.88 0.92  0.89 0.95  0.91 0.97 

BRDM2  0.63 0.77  0.77 0.86  0.84 0.88  0.86 0.90  0.91 0.92  0.86 0.95 

BTR70  0.58 0.74  0.76 0.89  0.79 0.89  0.81 0.90  0.89 0.94  0.88 0.96 

BTR60  0.64 0.67  0.81 0.88  0.79 0.86  0.86 0.87  0.90 0.93  0.91 0.95 

D7 

 

 

 0.88 0.89  0.91 0.92  0.96 0.97  0.96 0.96  0.97 0.98  0.99 0.98 

T62  0.64 0.73  0.76 0.83  0.79 0.81  0.87 0.87  0.86 0.89  0.91 0.94 

T72  0.55 0.64  0.70 0.82  0.80 0.87  0.83 0.87  0.84 0.92  0.89 0.94 

ZIL131  0.59 0.71  0.75 0.87  0.77 0.86  0.74 0.86  0.83 0.90  0.88 0.92 

ZSU234  0.75 0.81  0.86 0.90  0.91 0.90  0.91 0.93  0.94 0.96  0.96 0.97 

Overall accuracy  0.67 0.74  0.78 0.86  0.83 0.88  0.85 0.90  0.89 0.93  0.91 0.95 

Kappa score  0.63 0.71  0.75 0.85  0.81 0.87  0.84 0.88  0.87 0.92  0.90 0.95 

As can be seen, the overall accuracy and the Kappa coefficients of our method outperforms 

those of the supervised CNN method. The fewer the labelled samples, the more significant the 

difference of the performance. And the difference gradually decreases as the number of the 

labelled samples increases. The reason is that, compared with the supervised CNN method, our 

method utilizes the unlabelled samples effectively. As a result, the generalization ability of our 

method is enhanced and the overall accuracy and the Kappa coefficients are improved. With the 

increasing labelled samples, the generalization ability of the CNN model is gradually augmented, 

hence the performance difference between the two methods decreases.  

 Next, we illustrate the effectiveness of the new LDA method. We extract the 1×10 feature 

vectors of the testing samples from the output of our method and the supervised CNN method. 

Then we transform the feature vectors to two-dimensional ones using the t-Distributed Stochastic 

Neighbor Embedding (t-SNE) method. In the experiment, we use the fourth partition of the 
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training dataset shown in Table 2 to train the two methods. The supervised CNN method only 

utilizes the labelled samples while our method utilize both the labelled and unlabelled samples. 

The distribution of the feature vectors from the output of our method and the supervised CNN 

method are shown in Figure 4. Different colors represent different classes. As can be seen, 

compared with the supervised CNN method, our method can effectively reduce the distance 

between the samples of the same class and increase the distance between the samples of different 

classes. Hence, the recognition accuracy of our method is improved, which is consistent with the 

experimental results shown in Table 3.  

(Ⅰ) CNN: 

          

(1) L:400            (2) L:600            (3) L:800           (4) L:1000 

(Ⅱ) Ours: 

          

(5) L:400, U:2347     (6) L:600, U:2147     (7) L:800, U:1947    (8) L:1000, U:1747 

Figure 4: The distribution of the feature vectors from the output of our method and the supervised CNN method. 

The first row represents the supervised CNN method’s outcome and the second row represents our method’s 

outcome. Different colors represent different classes.  

4.1.2 Evaluation of the thresholding processing 

After the class probabilities have been obtained, thresholding processing is applied to 
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improving the reliability of the unlabelled samples. Next, the effectiveness of the thresholding 

processing is discussed. We select two partitions of the training dataset shown in Table 2 to train 

our method, and the number of the samples in U  is 2347 and 1947, respectively. In the 

experiment, we utilize the softmax function to calculate the class probabilities of the unlabelled 

samples. Then the reliability factors (RF) of the unlabelled samples are obtained based on the class 

probabilities and the true labels. We regard the samples with a RF value greater than 0.9 as reliable 

samples, and the remaining samples are regarded as unreliable samples. In the thresholding 

processing, we set the threshold t  as 0, 0.2, 0.7 and 1, respectively. During the experiment, we 

record the number of the reliable samples, unreliable samples and available samples in U  with 

different thresholds. The experimental results are shown in Table 4.  

Table 4: The number of the reliable samples, unreliable samples and available samples in the unlabelled dataset 

with different thresholds.  

Training set  L:400, U:2347  L:800, U:1947 

Threshold   t=0 t=0.2 t=0.7 t=1  t=0 t=0.2 t=0.7 t=1 

Unreliable samples   329 259 198 20  125 112 80 8 

Reliable samples   2018 2088 2034 891  1822 1835 1841 1646 

Available samples  2347 2347 2232 911  1947 1947 1921 1654 

 As can be seen, if the threshold is set to 0, there will be more unreliable samples. As the 

threshold increases, the reliability of the unlabelled samples is improved. Compared with the case 

of 0t  , when 0.2t  , the number of the unreliable samples is reduced, and the number of the 

reliable samples is increased. Hence, the thresholding processing can effectively improve the 

reliability of the unlabelled samples. However, if the threshold continues to increase, the number 

of the available samples is gradually reduced. The reason is that, if the maximum probability of a 

sample is less than the threshold, all the probabilities of the sample are set to 0. As shown in 
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Figure 1, we utilize the unlabelled samples based on the class probabilities and the new LDA 

method. The unlabelled samples, whose class probabilities are all set to 0, will not be utilized in 

the training process. Therefore, as the threshold increases, the number of the available unlabelled 

samples drops.  

 Next, we analyze the performance of our method with different thresholds. The experimental 

results are shown in Figure 5. When the number of the labelled samples is less than 500, the 

performance of our method is better whilst the threshold is set to be 0.2. As the number of the 

labelled samples increases, the recognition accuracy is almost the same at different thresholds, in 

other words, the impact of the thresholding processing becomes weak. This is because the 

generalization ability of the CNN model is weak when the labelled samples are insufficient. 

Compared with the case of 0t  , setting 0.2t   helps to improve the reliability of the 

unlabelled samples. Thus, the recognition accuracy is improved. However, if we continue to 

increase the threshold, the number of the available unlabelled samples drops and the recognition 

accuracy become worse. As the number of the labelled samples increases, the generalization 

ability of the CNN model is improved. As a result, the reliability of the unlabelled samples is 

improved, and the impact of thresholding processing is weaker. Thus, in order to achieve the best 

recognition performance, the threshold should be set to 0.2.  

 

（1）                               （2） 
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（3）                               （4） 

 

（5）                                     （6） 

Figure 5: The recognition accuracy of our method at different thresholds and different training dataset partitions.  

4.2 Comparison with other semi-supervised methods 

In this section, we compare the performance of our method with that of the semi-supervised 

ladder network model [25], Pi model and temporal ensembling model [26]. The semi-supervised 

ladder network model combines the semi-supervised learning and deep learning methods. Based 

on the self-ensembling method, the Pi and temporal ensembling models are both semi-supervised 

CNN methods.  

4.2.1 Recognition accuracy 

First, we compare the overall accuracy of these methods. As shown in Figure 6, our method 

outperforms the semi-supervised ladder network. The reason is that the ladder network is 

composed of fully connected layers whose feature extraction ability is weaker than that of the 
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CNN model used in our method. Furthermore, our method is superior to the other two models. 

This because the Pi and temporal ensembling models utilize the CNN to predict the labels of the 

unlabelled samples. According to the predicted labels, the unlabelled component of the loss 

function is obtained. However, if the initial labelled samples are insufficient, the generalization 

ability of the CNN is weak. Therefore, the reliability of the predicted labels is low and the 

unlabelled samples are not contributing to the augmentation of the system performance. In 

contrast, our method can accurately estimate the class probabilities of the unlabelled samples. 

Based on the class probabilities, the impact of the unlabelled samples is well controlled in the 

training process. As a result, the reliability of the unlabelled samples is improved and the 

recognition accuracy is increased.  

 

Figure 6: The recognition accuracy of our method, temporal method, Pi model and semi-supervised ladder network 

with different partitions of the training dataset.   

4.2.2 Training time 

 To evaluate the computation complexity of our method and the other three semi-supervised 

methods, we calculate the average training time for each epoch. During the training process, the 

numbers of samples in L  and U  are 600 and 2147, respectively. The number of the epochs is 
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set to 400. The experiments are implemented in the Pytorch 0.3.1 framework. And the main 

configurations of the computer are: GPU: Tesla K20c; video memory: 4G; operating system: 

Ubuntu 16.04.  

Table 5: The running time of each epoch of our method, temporal method, Pi model and semi-supervised ladder 

metwork trained. All the four methods are trained by 600 labelled samples and 2147 unlabelled samples.  

Methods Training time (sec/epoch ) 

Our method  2.53 

Temporal ensembling 1.56 

Pi model 2.45 

semi-supervised ladder network 5.08 

 As shown in Table 5, the average training time of our method is 2.53sec/epoch, much less 

than that of the semi-supervised ladder network. The reason is that the structure of the ladder 

network is complex than that of the CNN used in our method. Thus there are more parameters that 

need to be trained in the ladder network, resulting in longer training time. Besides, the average 

training time of the Pi model and temporal ensembling model is less than that of our method. This 

is because the Pi and temporal ensembling models utilize the CNN to predict the labels of the 

unlabelled samples. Afterwards, the unlabelled component of the loss function is obtained based 

on the predicted labels. Thus, the computation complexity of the two methods is less than our 

method. However, our method can effectively maintain the reliability of the unlabelled samples. 

Although the computation complexity of our method is increased, the recognition accuracy is also 

improved.  

5. Conclusion 

 To effectively utilize the unlabelled samples, inspired by the neural network structure and the 

semi-supervised learning mechanism of the human cognitive system, a new semi-supervised CNN 
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method has been presented in this paper. In the training process, the class probabilities are utilized 

to control the impact of the unlabelled samples. As a result, the reliability of the unlabelled 

samples is enhanced and the SAR-ATR accuracy of our method is improved. The contributions of 

this paper are summarized as follows.  

(1) We utilized the CNN to extract the features of the samples, and then the class probabilities of 

unlabelled samples were obtained by the softmax function.  

(2) To improve the reliability of unlabelled samples, we performed thresholding processing on the 

class probabilities.  

(3) Based on the class probabilities, a new LDA method was designed to utilize the unlabelled 

samples. As a result, the recognition accuracy was improved.  

 We performed the experiments on the MSTAR dataset. First, we verified the effectiveness of 

the relevant steps used in our method. Then we compared the performance of our method with that 

of the other semi-supervised methods. From the experimental results, we conclude that our 

method can effectively improve the SAR-ATR accuracy despite the lack of the labelled samples.  
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