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EXECUTIVE SUMMARY 
Privacy Preserving Record Linkage Systems (PPRLS) mask sensitive information about the 
entities they are linking through a process such as encryption and secure multi-party 
computation or hashing (also sometimes referred to as tokenization or deidentification). During 
the hashing process, a series of cryptographic functions are applied to the input data— 
consisting of Personally Identifiable Information (PII)—to generate one-way hashes. After the 
input data have been hashed/tokenized, the linkage process compares the hash tokens across 
the records in two or more files to identify sets of records that are believed to belong to the 
same person. 

The proficiency at which PPRLS accurately link individuals across different data sources—both 
to link disparate data for more comprehensive information on an individual and for longitudinal 
analyses—is a topic of interest to the National Cancer Institute (NCI). For the results of a 
longitudinal analysis to be valid, the correct information needs to be linked to each patient; 
therefore, the PPRLS should minimize the number of false positives and false negatives. The aim 
of this evaluation was to assess the speed and accuracy of several commercially available PPRLS 
selected from a prior landscape analysis [1], using data for which the PII represented a wide 
range of data quality and completeness. 

We obtained source data for this assessment from linkages that were previously conducted 
using raw (non-deidentified) PII from six U.S. central cancer registries, CVS, and Walgreens. The 
linkages performed for this evaluation aimed to represent three real-world data scenarios. In 
Scenario 1, the PII was both highly accurate (very few errors) and complete (very few missing 
values). In Scenario 2, the data were slightly less accurate but Social Security number (SSN), 
which is perhaps the single most effective identifier, was missing on the vast majority of records. 
In Scenario 3, the PII was altered by introducing spelling errors, transposed numbers, and so on 
to evaluate how the PPRLS performed in situations where the input data were highly imperfect. 

For each scenario, the source data were linked in a probabilistic, non-privacy preserving record 
linkage system. The results from this linkage were manually reviewed to create a “gold 
standard” set of confirmed person-level matches.  

The PII from each data source was subjected to the encryption function of each PPRL system to 
create de-identified hashed tokens that were subsequently linked using the PPRLS. The matches 
obtained from the PPRLS were compared against the gold standard matches, and the numbers of 
true positives, false positives, true negatives, and false negatives were determined. Those 
numbers were used to derive several quantitative metrics to assess the quality of the results 
obtained from each PPRLS. These quantitative metrics included precision, recall, the F1 score 
(the harmonic mean of precision and recall), the false discovery rate, accuracy, and specificity. 

This report summarizes evaluation results of PPRLS from four vendors (Datavant, HealthVerity, 
Senzing, and Veeva). The F1 scores of the systems evaluated for Scenario 1 (highly accurate PII) 
ranged from 0.574 - 0.964. The F1 scores for Scenario 2 (missing SSN) ranged from 0.123-0.964. 
The F1 scores for Scenario 3 (less accurate or missing PII) ranged from 0.052-0.786. The 
evaluation attempted to present a fair and unbiased comparison between different PPRLS and to 
understand the situations in which different PPRLS might be most useful. The strengths and 
weaknesses of each PPRLS, are presented in the “Discussion” section.  

https://surveillance.cancer.gov/reports/
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INTRODUCTION 
This project has been funded with Federal funds from the National Cancer Institute, National 
Institutes of Health, under Contract No. HHSN261201500003I, Task Order No. HHSN26l00038. 

The NCI convened the Blue-Ribbon Panel (BRP) in 2016 to recommend areas of scientific 
opportunity for the NCI to pursue, which are aligned with the mission of the Beau Biden Cancer 
Moonshot initiative. One of the 10 areas identified by the BRP is the creation of a National 
Cancer Data Ecosystem (NCDE) to enable basic science researchers, clinicians, and patients to 
contribute, share, combine, and analyze cancer relevant data. Critical to the success of the NCDE 
will be its ability to integrate data from a variety of sources to increase the depth and breadth of 
information available to cancer researchers, without compromising patient privacy or 
confidentiality. 

Linking data at the patient level poses several challenges, including protecting patient 
confidentiality, maximizing data security, achieving scalability, ensuring accuracy in linking the 
same patient, and assuring consistency of PII across a variety of sources that may hold different 
components of PII (e.g., name and date of birth [DOB] versus SSN and DOB). To address this, a 
Task Order (TO) was funded under the Cancer Moonshot, Cancer Data Ecosystem to identify and 
evaluate existing software tools that enable privacy-preserving linkages of different data 
sources. This type of linkage is performed through hash tokens, which are used to link individual 
patient data from disparate sources without releasing or sharing PII. 

The TO was executed in two phases. Phase one consisted of the detailed landscape analysis of 
existing encryption software systems and tools (PPRLS). The landscape analysis began in 
January 2019.  After its completion in February 2020, the four software products that scored the 
highest in the composite assessment portion of the analysis were selected for evaluation in 
Phase two: Datavant, HealthVerity, Senzing, and Veeva.  

The objective of the Phase two evaluation is to independently compare the performance of each 
of the four selected PPRLS to the same set of “gold standard” linkages. The “gold standard” 
linkages are based on identifiable PII with human adjudication using data representing three 
different scenarios of real-world PII data quality and completeness. The Phase two evaluation 
for the HealthVerity and Datavant software began in July 2020 and concluded in June 2021. The 
Phase two evaluation for Senzing and Veeva began in January 2022 and concluded in November 
2022. The purpose of this report is to: 1) describe the methodology adopted for the Phase two 
evaluation; and 2) present findings from the evaluation of the HealthVerity, Datavant, Senzing, 
and Veeva software.  

MATERIALS AND METHODS 
Data Sources 

Three linkages were conducted to assess the performance of each privacy-preserving record 
linkage system under a specific set of operating conditions in which the levels of PII data quality 
varied from high, to moderate, to low. The files used in each linkage contained the first name, 
middle name, last name, maiden name, sex, DOB, SSN, telephone numbers, and addresses for 
each patient.  

Scenario 1 was designed to represent a linkage between datasets with high PII data quality 
(complete and accurate PII with SSN). For this component, files were obtained from six of the 
NCI’s Surveillance, Epidemiology, and End Results (SEER) registries (Connecticut, Georgia [GA], 
Iowa, Louisiana, New Jersey, and New York); the files contained PII from individuals who were 

https://seer.cancer.gov/
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diagnosed with cancer in each state between 2005 and 2015. To enable linkage for cancer 
patients who may have moved, the data included each individual’s longitudinal residential 
address and telephone number history. The SEER cancer registries regularly review and 
validate their data, resulting in consistent and accurate PII. Levels of completeness are also very 
high, with most of the PII fields for this linkage having completion rates of over 97%.  Only 6,648 
individuals out of 2,936,933 appeared in more than one registry, representing an overlap of 
0.23%.  The number of false positives tends to increase linearly with the size of the data sets, as 
the chance for coincidental matches increases.  The degree of overlap can significantly impact 
the number of false positives even if the number of true positives remains constant, thereby 
changing the precision and F1 score.   

Scenario 2 was designed to represent a linkage between datasets with moderate and high PII 
data quality (with one of the files largely missing SSN). The files used in this linkage were 
obtained from the GA cancer registry.  The first file contained data from the GA cancer registry 
database.  The second file contained pharmacy claims data, which were provided to the GA 
registry by CVS and Walgreens under public health reporting. The records from the GA cancer 
registry were for individuals who were diagnosed with cancer between 2000 and 2017 in the 
state of Georgia. The pharmacy claims from CVS and Walgreens were generated for GA residents 
who filled prescriptions for anti-neoplastic (chemotherapy) medications between 2013 and 
2020. The pharmacy data included oral cancer treatment as required by state cancer reporting 
procedures and mandates and contained some typographical errors (typos), lower levels of 
completeness and very few SSNs.  Among all the identifiers in the pharmacy dataset, SSN had the 
lowest completeness rate of approximately 0.6% vs. 97.5% in the GA registry data. Both the GA 
registry data and the pharmacy data included the longitudinal residential address and telephone 
number history for each individual. The ability to link via longitudinal addresses and phone 
numbers was an important additional feature that enhanced the ability to link over time as a 
confirmatory variable when SSN was not available. There were 41,488 individuals out of 97,096 
that appeared in both the GA registry and CVS/Walgreens data, representing an overlap of 
42.7%. 

Scenario 3 was designed to test a situation in which datasets have low data quality as indicated 
by missing or incomplete data or errors such as typos in the patient’s name or address. A SAS 
program was developed to modify the GA cancer registry and CVS/Walgreens data used in 
Scenario 2 to create the datasets used in Scenario 3. The SAS program generated random 
numbers between 1 and 100. The random number generator was called once for every PII value 
across every record in both files from Scenario 2. If the generator produced a number that was 
less than or equal to 15, then the data for the current field (name, DOB, SSN, address, etc.), for 
the current record, were flagged for modification and then altered in some way. The list of data 
alterations included: transposition of characters within the field, truncation of the field, 
introduction of spelling errors (e.g., doubling or removal of some characters), complete 
replacement of the field’s value with bad data, and complete replacement of the field’s value 
with a missing (i.e., blank) value. Each of these alterations had an independent 10 percent 
chance of occurring, and the program was structured in such a way as to guarantee that at least 
one of these alterations would be made if the original value had been flagged for modification. It 
was therefore possible (albeit rare) for multiple alterations to stack on top of one other. Overall, 
there was a 15 percent chance that any value, chosen at random, would be altered in some way. 
It was also possible for multiple values within each record to have been altered. The result was 
that the modified GA cancer registry data and CVS/Walgreens data used in Scenario 3 each had 
significantly lower levels of accuracy and completeness than the original datasets that were 
selected for use in Scenario 3. 
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The source datasets for each scenario were already in use as part of cancer surveillance 
operations. Permission was obtained from the owners of each data file described above for use 
in this evaluation. Information Management Services, Inc. (IMS) performed the evaluation. IMS 
established Interconnection and Security Agreements (ISAs) with the registries long before the 
initiation of this evaluation and serves as the registries’ trusted third party and honest broker.  
In this role, IMS maintains each registry’s database (which contains PII) and performs 
centralized linkages on behalf of registries. IMS complied with Federal Information Security 
Modernization Act (FISMA) standards when handling the data for this project.  

Evaluation Workflow 

We adopted the following workflow to evaluate the performance of each selected PPRLS using 
data under each respective scenario (See Figure 1): 

 

I. Restructure the Source Data 
Under each scenario, the source data (two input files) included multiple last 
names, addresses, and phone numbers on each record (with some records 
having as many as 30 addresses and phone numbers), but two of the PPRLS 
software we evaluated (Datavant and HealthVerity) could only accept a single 
value per identifier per record. To address this limitation, the source data were 
restructured so that a single last name, address, and phone number were 
present on each record, with each combination of last name, address, and phone 
number in the original dataset resulting in the creation of a new record in the 
restructured dataset (e.g., a record containing one last name, two addresses, and 
three phone numbers in the original dataset would be split into six records in the 
restructured dataset). The number of records in each dataset and the mean 
number of values for each of the PII elements used to link the data, both before 
and after the records were restructured, can be found in Methods: Tables 1-3. 
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II. Link the Restructured Source Data to Create a “Gold Standard” Dataset 
Once the two input datasets were restructured, a probabilistic record linkage 
application called Match*Pro was used to link the data. The record pairs 
generated by Match*Pro were manually adjudicated and classified as being 
either a match or a non-match. Record pairs that were questionable were 
further adjudicated by the cancer registries holding the cases prior to 
classification. Record pairs that were classified as matches, following manual 
adjudication, were stored in the “gold standard” SAS dataset for our analysis. 
The number of true negatives (TN) was obtained by counting the number of 
individuals who did not have any matches. 

 
III. Create SAS Datasets from the Match*Pro Results 

SAS programs were developed to read the gold standard pairs from the 
Match*Pro linkage results to construct SAS datasets. The IDs from the two 
records in each linked pair were concatenated to create a composite ID (e.g., a 
patient from file 1 with the ID “ABC” is linked to a patient in file 2 with the ID 
“123” to produce the composite ID “ABC-123”). The composite ID served as the 
primary key for our evaluation.  
 

IV. Hash the Source Data 
The restructured source data were hashed/de-identified using each PPRLS 
vendor’s tokenization/deidentification software. 

 
V. Link the Hashed Source Data using PPRLS 

https://surveillance.cancer.gov/matchpro/
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The de-identified source data were linked using each vendor’s PPRLS matching 
software. 

 
VI. Create SAS Datasets from the PPRLS Results 

Upon completion of the linkage, each of the PPRLS matching applications 
produced a text file containing a list of linked IDs. SAS programs were developed 
to read these lists and transform them into SAS datasets. During this process, 
the ID pairs from the lists were concatenated to create a composite ID, which 
served as the primary key for our evaluation. 

 
VII. Merge the SAS Datasets 

The SAS datasets created from the PPRLS results were merged with the gold 
standard results (i.e., the SAS datasets created from the Match*Pro gold 
standard results) using the composite IDs in each of the datasets. The process of 
merging the data identified three sets of ID pairs for each software system: 
 
1. A set of false negative (FN) pairs, which consisted of ID pairs from the 

Match*Pro gold standard results that the PPRLS software failed to identify. 
 

2. A set of true positive (TP) pairs, which included ID pairs from the 
Match*Pro gold standard results that the PPRLS software also identified. 
 

3. A set of false positive (FP) pairs, which contained ID pairs that were 
identified by the PPRLS software that were not included in the Match*Pro 
gold standard results. 

The false negatives were manually reviewed to identify trends in the data that 
could be used to explain why the PPRLS software failed to identify a match; for 
example, the same address might have been formatted differently in each file 
(e.g., 123 Fifth Avenue vs. 123 5th Ave). Likewise, the false positives were 
manually reviewed to identify trends in the data that could be used to explain 
why the PPRLS software erroneously identified a match and to ensure that our 
gold standard results were complete. The analysis of FPs is particularly 
important for many end users as linking individuals and incorrectly producing 
combined data may result in incorrect conclusions of an analysis, and thus is 
typically a more important measure than FNs or missing true positives. 

Quantitative Metrics 

Once the numbers of true positives, false positives, and false negatives were obtained, several 
quantitative metrics were derived to assess the quality of the PPRLS linkage results, including: 

1. Precision (Positive Predictive Value) =TP / (TP + FP) = the proportion of returned 
matched pairs that were true matches 
 

2. Recall (Sensitivity) = TP / (TP + FN) = the proportion of all true matched pairs that 
were correctly identified 

 
3. F-Score = (2 x Precision x Recall) / (Precision + Recall) = the harmonic mean of 

Precision and Recall 
 

4. False Discovery Rate (FDR) = FP / (FP + TP) = the proportion of returned matched 
pairs that were false matches 
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5. Accuracy = (TP + TN) / (TP + TN + FP + FN) = the proportion of all pairs that were 
classified correctly as matches or non-matches 
 

6. Specificity (True Negative Rate) = TN / (TN + FP) = the proportion of all true non-
matched pairs that were correctly identified 

Performance and Scalability Benchmarks 

The following metrics were used to further assess the performance and scalability of each 
software: 

1. Runtime: how long an application took to perform a task 
 

2. CPU Usage: the number of CPU cores that the application used expressed as a 
percentage of the total number of CPU cores that were available 
 

3. Memory Usage: the amount of memory (RAM) that the application used 
 

4. Network Communication Size: the amount of data that the application passed through 
a communications network within the IT infrastructure. 

The performance and scalability benchmarks for Datavant and HealthVerity were obtained 
using a desktop computer running in a Microsoft Windows 10 Enterprise environment. The 
computer had an Intel i3-8100 CPU (a 64-bit quad-core processor that operates at 3.60GHz) and 
64GB of DDR3 memory installed. 

The performance and scalability benchmarks for Veeva and Senzing were obtained using a Linux 
server environment that was configured to each vendor’s specifications.  Additional information 
regarding these specifications can be found in the Deployment – Senzing and Deployment – Veeva 
SafeMine sections below.  

PPRLS Software Introduction 

In this report, four commercial vendors’ PPRLS were evaluated: Datavant, HealthVerity, Senzing, 
and Veeva. Details of the tokenization and matching processes used by each vendor are 
provided below. 

HealthVerity Tokenization 

HealthVerity’s Census technology supports and deploys privacy preserving record linkage at the 
patient level. Each individual in the output of the de-identification engine is represented by a set 
of corresponding tokens generated as a byproduct of their input Protected Health Information 
(PHI). The output tokens are represented in the form of salted, one-way cryptographic hashes. 
These hashes are implemented using a standard Secure Hashing Algorithm (SHA-256), and as 
noted, common salts are inserted into the hashing as part of the automated build process by a 
third party. This is sufficient to represent many PHI elements, such as DOB or internal patient 
identifiers. However, achieving accurate record linkage using such hashes is non-trivial because 
a patient’s record often contains typographical and semantic errors. 

To overcome this problem, for fields that are likely to contain typographical errors and are not 
directly attackable using a constraint satisfaction program, HealthVerity will split a patient’s 
identifier into a series of n-grams, whereby the patient’s identifiers are split into a series of 
overlapping substrings that are subject to a set of hash functions and mapped into a Bloom Filter 
(BF), which is a binary array of a fixed length. The use of BFs produces a significant 
improvement in matching accuracy, as traditional means of hashing are fully deterministic and, 
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as a result, are susceptible to significant false negative errors in matching due to source data 
variance. 

 
The image shown above originated from one of HealthVerity’s whitepapers and was reprinted here with 
HealthVerity’s permission. 

 

The de-identification software is distributed as a Java.jar file and is executed from the command 
line. HealthVerity provides its clients with customized versions of the de-identification engine 
that are designed to conform with the client’s input record layout; therefore, the version of the 
de-identification engine that was provided to the NCI and IMS for evaluation purposes was 
tailor-made to process the restructured source data. 

The de-identification engine produces an encrypted file. This means that the tokens are not 
visible when the file is viewed through a text editor. 

One feature that differentiates HealthVerity from some other PPRLS vendors is the fact that the 
matching takes place exclusively at HealthVerity, rather than on the client’s PC or server. This 
allows the data to be matched against a much larger encrypted and tokenized dataset that is 
maintained by HealthVerity. This opportunity to match against a larger file potentially provides 
additional opportunity to match, leveraging a broader set of PII data. HealthVerity has set up a 
secure FTP where clients can log in and upload the encrypted files that are produced by the de-
identification engine. After each of the input datasets were de-identified, each of the encrypted 
files were uploaded to HealthVerity’s servers using the FTP.  

https://info.healthverity.com/healthverity-census-for-the-enterprise-white-paper
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HealthVerity Matching 

HealthVerity’s matching engine uses a probabilistic process capable of addressing noisy data 
common to patient identifiers, including typographical errors, nicknames, missing data, and 
changing information. Each candidate match is evaluated based upon the evidence present in 
the observed tokens. A probability is assigned to each token, based on how well the tokens 
match. Even missing information is assigned a probability. In the case of BF tokens, a bit 
difference between the queried token and the candidate match can reveal the likelihood of a 
small change consistent with a typographical error. The only output of the matching is a 
common HealthVerity ID (HVID), a longitudinal patient identifier regardless of space, dataset, or 
time. 

As previously stated, all matching is performed behind HealthVerity’s firewall on their servers. 
Once we received notification from HealthVerity that the matching was completed, we logged 
into the secure FTP to retrieve our results, which were in a pipe-delimited file format. 

HealthVerity PPRLS Performance Tuning 

Due to the flexible nature of HealthVerity’s Census technology, the de-identification engine can 
be tuned by use case to target requested false positive and false negative rates. To support the 
NCI for this evaluation, HealthVerity defined and adjusted the de-identification engine’s false 
positive and false negative ratios to provide a target 0.01 false positive rate and defined patient 
confidence levels. 

To facilitate this level of specification, HealthVerity first processed the SEER registry data 
through the standard de-identification engine to populate an initial list of HVIDs. Once these de-
identified patient identifiers were populated per patient, candidate matches across state 
registries were determined. Upon confirmation of a candidate match between registries, 
HealthVerity evaluated each patient match by risk of its unique potential to be a false positive 
match. This risk evaluation was completed using the inherent ambiguity of the tokenized data 
with regard to name, DOB, location, and SSN, potential variations based on common errors (e.g., 
typos) or changing data (e.g., patterns of change of residence), as well as consideration of field 
population density. 

Taken together, these variable evaluations and determined densities form a local distance 
measure, like a Mahalanobis distance, to identify the relative likelihood that a given candidate 
match was a false positive, based on coincidental similarity of the tokens. This distance measure 
uses a threshold to identify the high-confidence matches that are expected to maintain the 
desired low false positive rate, as well as the low-confidence matches that could lead to a higher 
false positive rate. 

We evaluated the performance of the standard matching approach and the tuned matching 
approach when linking the SEER registry data. We have presented both outcomes in our Results 
section, which follows. 

Datavant On-Premises Tokenization 

Datavant’s on-premises version of the tokenization software, DeID version 3.8.1, was used in 
this evaluation.  The software applies configurable de-identification rules to an input flat file of 
data and generates Datavant tokens. DeID performs automated data cleaning and 
standardization operations prior to tokenization, including stripping leading and trailing 
whitespace, reformatting dates into “YYYYMMDD” format, and capitalizing all alphabetic 
characters. 
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DeID applies validation rules by input field. For example, the SSN field must be a valid U.S. Social 
Security Number in format FNN-NN-NNNN or FNNNNNNNN, where F is a numeric digit from 0-
8, and N is a numeric digit from 0-9. The first three digits cannot be 666 and none of the three 
sections (first three, middle two, or last four digits) can be all zeroes. If a given input field does 
not meet validation rules, DeID generates an error code in place of a Datavant token. There are 
certain pre-cleaning processes that Datavant recommends end-users undertake prior to running 
the Datavant software. 

Token generation is a two-step process: 

1. SHA-256 Hash with Master Salt - makes tokens irreversible 
2. Encryption - makes tokens site-specific to protect against security breaches 

 
The image shown above originated from one of Datavant’s whitepapers and was reprinted here with 
Datavant’s permission. 

 

DeID produces a comma-delimited output file that contains the original (i.e., untokenized) 
patient ID followed by multiple hash tokens across several columns. Each token is created using 
a different combination of PII elements from the source data. The number and types of tokens 
produced by the software are configurable both by Datavant and by the user. Datavant created a 
set of configurations designed to accommodate the restructured versions of the source data and 
to produce a set of tokens based on the information available in the files. For a more detailed 
description of each of the tokens that were produced, see Methods: Table 4. 

https://datavant.com/resources/whitepapers/
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The DeID software is available as a command-line executable and as a Windows application 
(with a graphical user interface / GUI), but there are limits placed on the number of records that 
can be processed efficiently with the Windows application version. The work conducted for this 
evaluation was performed using the command-line version of the application.  

Datavant On-Premises Matching 

Datavant tokens are non-proprietary. The end-user can formulate their own matching 
algorithms on the tokens. Since the token design and form are established and disclosed to the 
end-user, the end-user can apply different matching algorithms for their linkage use cases.  

Matching is a two-step process: 

1. Enable token interoperability – the tokens for each authorized data recipient are 
converted/translated into a shared encryption scheme. 

2. Apply matching algorithm - the records are linked by running the matching algorithms 
on the translated tokens.  

Datavant’s Link software translates between encryption keys to allow data partners to share 
and match data based on their data governance framework. For data source A to share tokens 
with data recipient B, both sites tokenize their data into their own site-specific encryption keys. 
Site A runs Link-Send to translate their tokens into a shared transit scheme with site B, and 
those transit tokens will be delivered to site B. Site B runs Link-Receive to translate the transit 
tokens into site B encrypted tokens, allowing them to perform matching with their own de-
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identified data in the same scheme. The purpose of this process is to ensure that tokens 
associated with a specific initiative can only be processed by the authorized party. Likewise, if a 
data partner sends tokens intended for a different initiative to their authorized processor, that 
party will be unable to link and match on the non-interoperable tokens. 

Datavant’s Link software is available as a command-line executable and as a Windows 
application. There are limits placed on the number of records that can be processed efficiently 
with the Windows application version. These limits did not apply to the command-line version 
of the application, so we used version 3.8.1 of the command-line executable for this evaluation. 

Datavant’s Match software assigns a match ID to each patient based on a comparison between 
the tokens for that patient and the tokens generated for other patients. Patients that are 
assigned the same match ID are called a match. Nine “standardized” matching algorithms are 
available for users of the on-premises Match software. These algorithms were derived from the 
most common algorithms Datavant customers use and have tested. Each algorithm looks at a 
different subset of the tokens that were produced, and each applies a different comparison logic 
to identify a match. The different algorithms are intended to be used in reference to specific sets 
of selected tokens, thus allowing fit-for-purpose matching options. All nine of the algorithms 
were tested in this evaluation. For a description of each matching algorithm, see Methods: Table 
5. 

 
At the time of this evaluation, which began in July 2020, Datavant’s Match software existed 
exclusively as a command-line executable and produced comma-delimited output files. The on-
premises matching application that was assessed in this evaluation (version 3.7.1) was offered 
to partners that have data governance frameworks that only permit the designated party to hold 
tokens and data. 

Senzing Selective Field Hashing 

Senzing’s method of multi-party matching using one-way hashes, whereby any matching records 
can be selectively reidentified if all parties agree, is called “Selective Field Hashing”.   The 
general process that can be followed to ensure discovery without disclosure would be: 

1. The parties that need to share data begin by cryptographically hashing their data’s identity 
attributes, e.g., names, addresses, IDs, phones, etc. with a shared Secret Key (or “Salt”). 

2. The hashed data is sent to a neutral (ideally trusted) third party who can rehash the hashed 
data again for extra protection (using a different “Secret Key”). 
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3. The third party uses Senzing software on the double-hashed data to identify who is who 
and who is related to who. 

4. Pointers to specific records sharing a nexus are revealed by the third party, (e.g., party one 
will be informed that patient #21 in their dataset matches patient #47 in party two’s 
dataset). 

5. Both groups check those files and unilaterally decide if it is legal, and within policy, to have 
a more revealing discussion. If not, nothing more is learned. 

Senzing implements a Public-Key Cryptography Standard (PKCS)#11-interfaced secure store 
that leverages AES-128 encryption using a PKCS#5 like password expansion technique 
augmented with a SHA2-256 hash. 

Secret keys are automatically generated (per instance) using OpenSSL’s random bytes 
generator. The secret key is then placed directly into the secure store (never seen by human 
eyes). Alternatively, if a user’s policies require it, a user can provide a secret key and store it in 
the secure store. When hashing utilities are deployed to multiple locations, the secret key is 
shared by copying the secure store. 

By default, Senzing uses an HMAC-SHA2-256 one-way hashing algorithm with a 1024-bit secret 
key.  While this construct was developed for use in Internet Protocol Security (IPSec), it is used 
here for entity resolution with no modifications. 

The set of fields that are hashed varies by the implementation. Attribution fields (source system 
and record ID) are typically not hashed. 

Where the fields are hashed is implementation-specific, often following one of these patterns: 

1. Local Hashing: As records are being ingested into the Senzing ER engine, selected values are 
hashed as described above. The clear text is discarded. The hashed values are retained in 
the database. 

2. Single-tier Hashing: Before records are transmitted from a source system to a secondary 
system, selected values are hashed as described above. The recipient system then performs 
entity resolution using the hashed values. The hashed values are retained in the database. 

3. Multi-tier Hashing: Before records are transmitted from a source system to a secondary 
system, selected values are hashed as described above. The independent recipient re-
hashes using a different secret key. “n” re-hashing tiers can be implemented. Entity 
resolution is performed on the final hashed values. These hashed values are retained in the 
database. 

Senzing is a Linux shared library with Python and Java interfaces.  The software can run on any 
supported Linux environment, in cloud or on-premises, as long as it is co-located to a supported 
relational database.  We conducted this evaluation using an on-premises deployment of Senzing 
version 2.2. 

When the selective hashing process is finished, a results file containing the hash tokens is 
produced.  This file is written in the JSON file format. 

For additional information and implementation best practices please refer to this document: 
https://senzing.zendesk.com/hc/en-us/articles/360000970834-Selective-Field-Hashing 

 

http://docs.oasis-open.org/pkcs11/pkcs11-base/v2.40/os/pkcs11-base-v2.40-os.html
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
https://tools.ietf.org/html/rfc2898
https://en.wikipedia.org/wiki/SHA-2
https://www.openssl.org/
https://tools.ietf.org/html/rfc4868
https://senzing.zendesk.com/hc/en-us/articles/360000970834-Selective-Field-Hashing
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Senzing Principle-Based Entity Resolution 

Senzing software uses a unique principle-based approach to entity resolution that eliminates the 
need for pre-training, tuning, or experts. Principles are based on the expected behaviors of 
entity attributes, e.g., names, addresses, and identifiers. For example, SSNs typically point to only 
one person, but DOBs behave differently, as many people share the same DOB. There are always 
exceptions. These exceptions are learned in real-time, as new data is received. For example, 
when multiple people are using the same SSN, the software detects it, labels that SSN as generic 
and reevaluates all prior records with that number. 

Senzing’s principle-based method assigns three behaviors to each entity attribute: 

• Frequency – Do one, few, many, or very many entities generally share the same value?  For 
example, SSN is commonly used by one entity, an address is shared by a few, and a DOB is 
shared by many. 

• Exclusivity – Does an entity typically have just one such value or is the value non-
exclusive?  For example, people have just one SSN and DOB, but they may have multiple 
phone numbers.  

• Stability – Is this an exclusive value that is generally constant over an entity’s lifetime, or 
can it change over time? For example, a person’s SSN and DOB remain consistent whereas 
their street address can change. 

The software comes preconfigured with the common attributes and expected behaviors of 
people and organizations.  The user can start loading and resolving entities without any 
configuration, training, or tuning. If there is a need to add a new attribute, such as an additional 
identifier, the user can just add the name of the attribute and assign its three behaviors. 

For additional insights to Senzing Principle Based Entity Resolution, please see 
https://senzing.com/wp-content/uploads/Principle-Based-Entity-Resolution-092519.pdf. 

Veeva SafeMine Tokenization 

Like other PPRLS solutions, Veeva SafeMine supports de-identification of personal data by 
generating anonymized tokens (i.e., cryptographic hashes) of different permutations of PII 
which have been deemed to be uniquely identifying. These tokens are generated at each data 
source and then combined at a central location all in accordance with a HIPAA expert 
determination. 

Different from other PPRLS, SafeMine takes a unique approach by aggregating each patient’s 
data, which may be spread across several records, before it de-identifies the patient as a whole.  
This process uses fully identifiable PII and captures the full patient record over time, unlike the 
one record at a time approach used by other PPRLS. The data are aggregated securely behind 
the data supplier’s firewall in a covered entity environment, and it allows SafeMine to create 
multiple versions of each token for a patient, based on the variations in the PII that were 
observed across all the records for a patient, in a way that is not possible with more 
conventional record-based tokens. Only once this aggregation process has occurred is patient 
data de-identified and output from SafeMine. 

The patient data aggregation process is very powerful. In the real world, almost all health 
datasets will have multiple records for each patient (oftentimes without a reliable internal 
patient ID). We also know that these records frequently will have significant differences in PII 
whether due to data entry errors (i.e., misspellings, entering the wrong value in a field, etc.) or 
due to life events (i.e., last name changing due to marriage, change in address/city/state/zip due 

https://senzing.com/wp-content/uploads/Principle-Based-Entity-Resolution-092519.pdf
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to moving, etc.). Matching on de-identified tokens will oftentimes either miss a match due to not 
being able to account for discrepancies in PII (false negative) or conversely it can make an 
erroneous match due to matching without considering the full set of PII available (false 
positive). The SafeMine data aggregation process significantly reduces the occurrences of these 
false positive and false negatives. 

The patient data aggregation process is configurable and can be tailored to the individual 
dataset depending on which fields are available (ex: if the dataset contains a strong ID or not) 
and whether the goal is to minimize false positives vs false negatives. 

The SafeMine software automatically generates all the tokens that are permissible to be created 
per Veeva’s HIPAA expert determination (assuming the relevant fields are available and 
populated with data).  The software handles HIPAA compliance through technology. All HIPAA 
restrictions are baked into the software itself ensuring privacy sensitive data never leaves 
partner sites. The software itself and all outputs are also fully auditable by data suppliers. 

The Veeva SafeMine de-identification engine is Java-based and operates from the command line.  
Running on Java allows the software to be deployed in a wide variety of environments including 
cloud-based systems such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud.  
On-prem Windows and Linux distributions are also available. SafeMine v1.1804 was the 
software version used in this evaluation. 

The de-identification engine outputs the patient tokens in a comma-delimited file format.  Once 
the files have been created the tokens are matched using the SafeMine matching software.  We 
did not license the matching software for this evaluation and opted to send Veeva the files 
instead, where they were matched behind Veeva’s firewall. 

Veeva SafeMine Matching 

Once the tokens have been extracted from each data supplier, they are compared to each other 
for matching. Any match between two tokens is considered a patient match. As explained above, 
a patient may have multiple versions of the same token owing to the SafeMine patient data 
aggregation process. This allows token matching to account for situations where there are 
discrepancies in PII between two different datasets. For example, a patient may have both her 
maiden name and married name recorded in Database A and only her maiden name recorded in 
Database B. Because SafeMine aggregated the patient’s data in Database A, this patient will have 
two versions of every token that uses Last Name (one with her maiden name and one with her 
married name). This enables matching of the full Database A patient record to the record in 
Database B (including any records in Database A where the married name was used). The same 
idea holds true for differences due to typos, patient moving, etc.  

The set of tokens that are used to match patients between the datasets is fully customizable.  For 
example, if a user wants to limit the number of false positive matches, Veeva will match the data 
using a token set that is comprised of tokens that require exact matches on multiple fields.  
Likewise, if a user wants to minimize the number of false negatives, Veeva will match the data 
using a token set that contains tokens which allow for some fuzzy matching to take place.  We 
evaluated the performance of two token sets for this analysis: one which sought to minimize 
false positives and another which sought to minimize false negatives.  For a more detailed 
description of the tokens and token sets that were used in this evaluation, see Methods: Table 6. 
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The token matching process is recursive in that it will continue linking patients until no 
additional linkage is possible. For example, if Patient A matches to Patient B on one token and 
Patient B matches to Patient C on another token, the system will recursively keep matching until 
Patient C also matches to Patient A (even if they do not share any identical tokens). 

The matching system is also not limited to matching just two datasets; it can be used to match an 
unlimited number of datasets simultaneously (crucial because typically several datasets are 
being matched at once). 

RESULTS 
Scenario 1 – Linkage with High Data Quality and Completeness 

F1 scores for the linkage between the six SEER registries ranged from 0.574 to 0.964. The 
number of true positive pairs ranged from 3,096 to 6,519 and the number of false positive pairs 
ranged from 2 to 9,428. These and other quantitative metrics are presented in Results: Table 1A. 

 
The Veeva token set that attempted to minimize false positives (token set 1) earned the highest 
F1 score, followed very closely by Datavant’s Net Tokens + SSN algorithm. Datavant’s Datavant 
Required algorithm earned the lowest F1 score. The F1 scores are ranked from highest to lowest 
in Results: Figure 1A.  
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The Windows-based tokenization software processed between 1,547 and 7,602 records per 
second. CPU usage for the Windows software ranged from 25% (a single CPU core) to 100% 
(four CPU cores). Memory usage ranged from 50-800 MB. The Linux-based tokenization 
software processed between 157 and 187 records per second.  CPU usage for the Linux software 
ranged from 4.6-9.4%. Memory usage ranged from 14-18GB. Performance and scalability 
metrics for the tokenization utilities are presented in Results: Table 1B. 
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HealthVerity’s tokenization software performed the fastest in our testing. The Linux-based 
software packages were substantially slower than the Windows-based alternatives even though 
they were deployed on servers with specifications that exceeded each vendor’s 
recommendations.  The processing speeds for the tokenization utilities are visually represented 
in Results: Figure 1B. 
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Both HealthVerity and Veeva conducted the matching behind their firewalls, which was outside 
of our testing environment, so we were only able to collect performance and scalability metrics 
for the Datavant and Senzing matching software.  The Datavant software, which is Windows-
based, processed between 1,423 and 2,857 records per second depending on the matching 
algorithm that was used. CPU usage for the Datavant software never exceeded 25% (a single 
CPU core). Memory usage for the software consistently averaged around 54 GB. The Senzing 
software, which is Linux-based, processed 320 records per second.  The CPU usage for Senzing’s 
software was 99%, taking full advantage of the CPU resources that were available.  The Senzing 
software used approximately 107GB of memory to perform the matching.  Performance and 
scalability metrics for these utilities are presented in Results: Table 1C. 
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Datavant’s Waterfall algorithm linked records the fastest in our testing. The Senzing software 
performed the slowest.  Once again, there was a large gap in terms of speed between the 
Windows and Linux software packages. The processing speeds for the matching utilities are 
visually represented in Results: Figure 1C. 

 

Scenario 2 – Linkage with Moderate Data Quality and Completeness 

F1 scores for the linkage between the GA registry and CVS/Walgreens ranged from 0.123 to 
0.964. The number of true positive pairs ranged from 2,720 to 39,893, and the number of false 
positive pairs ranged from 0 to 1,389. These and other quantitative metrics are presented in 
Results: Table 2A. 
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Datavant’s Datavant Required algorithm earned the highest F1 score, followed very closely by 
HealthVerity. Datavant’s Full PII algorithm earned the lowest F1 score. The F1 scores were 
ranked from highest to lowest in Results: Figure 2A. 

 
The Windows-based tokenization software processed between 1,121 and 7,437 records per 
second. CPU usage for the Windows software ranged from 25% (a single CPU core) to 100% 
(four CPU cores). Memory usage ranged from 50-800 MB. The Linux-based tokenization 
software processed between 1 to 204 records per second.  CPU usage for the Linux software 
ranged from 4.5% to 10.5%.  Memory usage ranged from 14-19 GB.  Performance and scalability 
metrics for these utilities are presented in Results: Table 2B. 
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HealthVerity’s tokenization software performed the fastest in our testing. The Linux-based 
software packages were substantially slower than the Windows-based alternatives even though 
they were deployed on servers with specifications that exceeded each vendor’s 
recommendations.  The processing speeds for the tokenization utilities are visually represented 
in Results: Figure 2B. 

 
Both HealthVerity and Veeva conducted the matching behind their firewalls, which was outside 
of our testing environment, so we were only able to collect performance and scalability metrics 
for the Datavant and Senzing matching software.  The Datavant software, which is Windows-
based, processed between 2,406 and 6,722 records per second. CPU usage for the Datavant 
software never exceeded 25% (a single CPU core). Memory usage was consistent across all our 
testing, averaging at around 49 GB. The Senzing software, which was Linux-based, processed 
325 records per second.  The CPU usage for Senzing’s software was 99%, indicating the software 
took full advantage of the CPU resources that were available.  The Senzing software used 
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approximately 126 GB to perform the matching.  Performance and scalability metrics for these 
utilities are presented in Results: Table 2C.  

 

 
Datavant’s Waterfall algorithm linked records the fastest in our testing. The Senzing software 
performed the slowest.  Once again, there was a large gap in terms of speed between the 
Windows and Linux software packages. The processing speeds for the matching utilities are 
visually represented in Results: Figure 2C. 

 

Scenario 3 – Linkage with Low Data Quality and Completeness 

F1 scores for the linkage between the modified GA registry data and the modified 
CVS/Walgreens data ranged from 0.052 to 0.786. The number of true positive pairs ranged from 
863 to 23,751, and the number of false positive pairs ranged from 0 to 4,066. These and other 
quantitative metrics are presented in Results: Table 3A. 
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HealthVerity earned the highest F1 score, followed very closely by Datavant’s Datavant Required 
algorithm. Datavant’s Full PII algorithm earned the lowest F1 score. The F1 scores were ranked 
from highest to lowest in Results: Figure 3A. 

 
The Windows-based tokenization software processed between 831 and 7,258 records per 
second. CPU usage for the Windows software ranged from 25% (a single CPU core) to 100% 
(four CPU cores). Memory usage ranged from 50-800 MB. The Linux-based tokenization 
software processed between 2 and 204 records per second.  CPU usage for the Linux software 
ranged from 4.5-10%.  Memory usage ranged from 14-20GB.  Performance and scalability 
metrics for these utilities are presented in Results: Table 3B. 
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HealthVerity’s tokenization software performed the fastest in our testing. The Linux-based 
software packages were substantially slower than the Windows-based alternatives even though 
they were deployed on servers with specifications that exceeded each vendor’s 
recommendations.  The processing speeds of the tokenization utilities are visually represented 
in Results: Figure 3B. 

 
Both HealthVerity and Veeva conducted the matching behind their firewalls, which was outside 
of our testing environment, so we were only able to collect performance and scalability metrics 
for the Datavant and Senzing matching software.  The Datavant software, which runs on 
Windows, processed between 2,249 and 7,236 records per second. CPU usage for the Datavant 
software never exceeded 25% (a single CPU core). Memory usage was consistent across all our 
testing at around 50 GB. The Senzing software, which runs on Linux, processed 288 records per 
second.  The CPU usage for Senzing’s software was 99%, which means it took full advantage of 
the CPU resources that were available.  The Senzing software used approximately 142 GB of 
memory to perform the matching.  Performance and scalability metrics for these utilities are 
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presented in Results: Table 3C. 
 

 
Datavant’s Waterfall algorithm linked records the fastest in our testing. The Senzing software 
performed the slowest.  Once again, there was a large gap in terms of speed between the Windows 
and Linux software packages. The processing speeds of the matching utilities are visually 
represented in Results: Figure 3C. 

 

Deployment – HealthVerity and Datavant 

The tokenization software developed by HealthVerity was distributed as a stand-alone Java jar 
file.  The tokenization and matching software developed by Datavant were distributed as a 
stand-alone executable.  Both applications were very easy to deploy and were up and running in 
a very short amount of time, due in large part to their stand-alone nature and the Windows 
environment. 
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Deployment – Senzing 

The process of deploying the Senzing software was very straightforward and well documented.  
It’s distributed as a Linux package and the process of installing a package should be second 
nature to anyone familiar with Linux. 

Senzing provides instructions for the installation of the software and Postgres configuration 
directly on their website, including tuning the database for high input/output performance.  The 
installation and configuration instructions were straightforward and did not present any 
obstacles. 

The Senzing software was deployed on an HP ProLiant DL360 Gen9 server chassis with the 
following components: 

• Two Intel Xeon  E5-2650 v3 CPUs operating at 2.30GHz with hyperthreading enabled so 
that they are presented to the Linux operating system as 40 CPUs. 

• 256 GBs of memory. 
• A direct-attached Samsung consumer grade 1TB SSD. 
• The Linux kernel of 3.10.0-1160.53.1 as part of the CentOS 7 distribution. 
• Postgres version 12.9 
• Additional software requirements as noted by Senzing, including softhsm2 which is 

used for hashing data, and various other supporting python modules. 
 
The server was sized based on recommendations provided by Senzing.  Senzing sizes servers 
based on the expected number of records to be processed.  This includes their recommendations 
for CPU cores, memory, and storage; as well as hosting the Postgres database on a solid-state 
hard drive physically attached to the same server as the Senzing software.  Senzing did not 
provide specific CPU requirements beyond the number of cores, and they did not specify 
requirements for the SSD aside from size.  The server as built exceeds the CPU core and memory 
requirements specified by Senzing. 

The hashing of data required the user to maintain an active connection for a long period of time 
and to respond to a command prompt during the process after long wait periods.  This conflicted 
with IMS’ idle time disconnect policy.  To resolve the issue, IMS were forced to disable the idle 
time disconnect for the server.   

The Senzing software was bundled with an outdated version of Java.  After consulting with 
Senzing, this outdated version of Java was replaced with the latest release that was available at 
the time of the evaluation. 

The requirements of a physically attached solid state hard drive forced IMS to deviate from its 
preferred practices for server construction.  There was not a clear reason given for this 
requirement versus using network attached/managed storage.  During the evaluation period, 
we did not notice disk access as being a bottleneck and are dubious about the requirement. 

Deployment – Veeva SafeMine 

The process of getting the SafeMine software up and running was time consuming and raised 
many issues and questions. 

The software was provided to us via a secure file transfer mechanism as a set of compressed 
files. The prerequisite software came from our own software repositories which are clones from 
the public repositories of Red Hat.  The deployment of the SafeMine software required a script to 
be run.  Upon running the script, one of the first things it did was to remove the controlled 

https://www.intel.com/content/www/us/en/products/sku/81705/intel-xeon-processor-e52650-v3-25m-cache-2-30-ghz/specifications.html


Evaluating PPRLS 

28 

repositories that we use.  Instead, the software used a set of local files that were delivered as 
part of the software package.  These were older versions of the packages that we already had 
installed.  The newer versions, which were removed, were updated by RedHat for security and 
bug fixes.  The script also disabled all the firewalls and secure Linux components that were in 
place, which is a violation of IMS’ deployment requirements.  IMS needed to go back after the 
fact to update the software libraries for security patches and reenable all of their security 
protocols. 

The initial deployment instructions were to setup a virtual machine (VM) with the SafeMine 
software and configurations in place, and to then clone that VM nine times so that we would 
have one VM for each of the ten files being hashed.  In normal operations deploying software 
should generally be straightforward, but in this case, there were many post-deployment steps 
that we had to go through for the SafeMine software to be able to process the specific data set 
we were hashing on each server. 

The database server ran on an HP Proliant DL325 Gen10 server chassis with the following 
components: 

• A 16-core AMD Epyc 7351p CPU operating at 2.4GHz (2.9GHz boost) with 
hyperthreading enabled so the 16 cores can do the work of 32 cores. 

• 256 GBs of memory. 
• The Linux kernel of 3.10.0-1160.53.1 as part of the CentOS 7 distribution. 
• MariaDB version 5.7. 

Each of the 10 VMs, which were configured to process the data files, had the following 
components: 

• A 10-core Xeon 4114 Silver CPU operating at 2.2GHz (3.0GHz boost) with 
hyperthreading enabled so the 10 cores can do the work of 20 cores. 

• 64 GBs of memory. 
• The Linux kernel of 3.10.0-1160.53.1 as part of the CentOS 7 distribution. 

 
The servers were sized based on the recommendations from Veeva.  

With regards to the amount and types of resources required for the deployment, the database 
server requirements seem in line with other products we’ve used previously, but we feel that it 
is unreasonable to deploy a server for each file being hashed.  By using just one of the 
application servers we were able to use most of the database’s resources and with two of the 
application servers running at the same time we completely saturated the database. 

Ease of Use 

Each of the applications tested in this evaluation were run from the command line. Command-
line applications require more memorization and familiarity to operate than applications with 
GUIs, which are typically more intuitive and easier to use. 

HealthVerity, Datavant, and Senzing provided user manuals that summarized the command-line 
options for their respective tools and included examples of how those options should be used. 
These manuals were very helpful during the evaluation process, as even after using each of the 
applications for several weeks we would still need to refer to them from time to time. 

Due to how the deployment was setup, and how the configuration files were put in place, one of 
IMS’ Systems Administrators needed to work directly with Veeva’s engineering team to do the 
work for this project, as the files were stored in locations that required root access to the server.  
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All-in-all, it required several phone calls with Veeva’s team to tune each server’s configuration 
file to get the output to work properly.  We generally feel like deploying and using the Veeva 
SafeMine software would be impossible without working directly with Veeva’s engineering 
team, as very little documentation was provided beyond the resources required. 

Though not strictly necessary, it would be advantageous nonetheless if each of the vendors we 
evaluated were to develop GUI-based versions of their tokenization and matching utilities. This 
would allow non-technical personnel to use the software more easily.  Datavant does provide a 
GUI-based version of its tokenization utility, as mentioned earlier, but this version of the 
application is less efficient when processing files with many gigabytes of records. The reason 
behind this limitation is unclear given that the GUI-based application could be designed to call 
the command-line version using the arguments that the user entered on the GUI. It would be 
preferable if Datavant would address this issue and develop a GUI-based version of its matching 
utility to go alongside the tokenization utility. 

Pre-Processing 

The tokenization utilities from the first two vendors we evaluated (HealthVerity and Datavant) 
were only capable of accepting one value per identifier type per record. It is not uncommon for 
patients to have more than one last name, telephone number, or address on file, and quite often, 
data systems will export all the information onto a single line. 

To get around this constraint, we were able to develop a SAS program to restructure the source 
data that were used in each of the linkages. The SAS program generated all the permutations of 
last name, telephone number, and address for each patient, and then output each permutation to 
a separate line alongside the other identifiers such as first name, DOB, and SSN. While this 
workaround overcame the limitations of these two systems, it may not be feasible for all users to 
have this capability and represents a limitation in the out-of-the-box use of these applications. 

The source data for the SEER registry and pharmacy linkages did not share a common record 
layout, so we needed to develop two separate SAS programs to restructure each of those 
datasets. We feel that it is unlikely that many users of the PPRLS software will have the technical 
skills and/or staff on-hand to write a program to restructure the source data each time they 
encounter a new record layout to satisfy the constraints of the tokenization utilities. 

In addition, the restructuring process significantly increased the number of records, often by a 
factor of 15 or more, as shown previously in Methods: Tables 1-3. Because the same first name, 
middle name, DOB, SSN, and sex appeared on each record for an individual, this repetition 
profoundly increased the size of each of the input files. We suspect that it may have also 
negatively impacted the performance and scalability metrics of the tokenization and matching 
utilities, as it is quite likely that the utilities performed the same work multiple times across 
multiple records for the same patient.  

The tokenization utilities developed by Veeva and Senzing were capable of handling multiple 
values per identifier on a single line or multiple values on multiple lines, thus eliminating the 
need to restructure any records.  That said, we opted to use the same set of files (with one value 
per identifier type per record) in order to try to maintain a level playing field throughout the 
evaluation process. 

Post-Processing - HealthVerity 

The HealthVerity PPRLS generates one match result file for each tokenized input file it receives. 
The match result files are in a delimited file format and each file contains the patient’s original 
ID from the source data alongside a HealthVerity ID. We provided HealthVerity with six 
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tokenized input files for the SEER registry linkage (Scenario 1), two tokenized input files for the 
pharmacy linkage (Scenario 2), and two tokenized input files for the pharmacy linkage with 
modified PII (Scenario 3). We received 10 match result files in return. 

To identify matches between registries or between the GA registry and CVS/Walgreens, we 
wrote a SAS program to merge the data in each file using the HealthVerity ID. The thinking 
behind this is that two patients in separate files who link to the same HealthVerity ID are the 
same person. We could have also loaded the results into a database and used SQL to perform 
this work, so that is an option for users who do not have access to SAS. In either case, a person 
with knowledge of either SAS or databases will be required to perform this step. 

The typical use case for HealthVerity involves linking a file to the HealthVerity database and 
retrieving information from their system, so we understand why they take this approach to 
generating their results files. It would enhance the end user experience if there were an option 
to produce a results file that does not rely on use of the HealthVerity ID as an intermediary, but 
instead produced an output file containing the original IDs from each of the input files that were 
linked, essentially eliminating the need to use SAS or a database to identify the pairs of linked 
IDs. This would reduce the expertise necessary to leverage the HealthVerity PPRLS.  

Post-Processing – Datavant 

The Datavant PPRLS produces a delimited file for its match results. All of the matches are 
contained within this file. This means we received just one output file for each of the three 
linkage scenarios, which makes post-processing the match results a little easier. 

The first column in the results file contained a group ID, the second column contained the 
patient’s original ID from the source data, and subsequent columns in the file contained the 
patient’s tokens. Individuals who are assigned the same group ID are considered a match, and 
the records in the file are sorted by group ID and patient ID, which makes it much easier to use 
the files. 

Because the match result files contained all of the tokens for each patient, the size of the files 
was often an issue. Many of the match result files generated during this evaluation process 
exceeded eight gigabytes or more. We feel that if users had the option to prevent the tokens 
from being written to the result files, it would boost the efficiency of the process, ameliorate the 
file size issue, and improve the overall user experience. 

Another issue with the result files, that could be addressed, is the lack of a column containing the 
filename of the file from which the patient IDs originated. The lack of such a column in the match 
result files makes it difficult to identify the source of each patient ID in situations where the 
patient IDs are formatted identically across multiple input files. The inclusion of a column or 
columns that indicate the ID numbers of the tokens that matched might also prove useful for 
further study/analysis and refinement of the matching algorithms. 

Post-Processing – Senzing 

The match results from the Senzing PPRLS are stored in a database until they are needed.  They 
can be viewed and exported using the Senzing software.  The software can output several 
different types of reports, but we were really looking for more of a crosswalk-style report that 
mapped the linked IDs to one another.  We were unable to find this type of report among the 
default set of reports produced by the software, however, due to the way the Senzing software is 
set up, it is possible to query the database directly using database administrative software, like 
PGAdmin.  Doing so allows users to create results files that are tailored specifically to their 
needs.  Senzing’s support staff assisted us with the creation of a query that was used to generate 
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a set of CSV files that mapped Senzing’s internal Resolved Entity ID to the original patient IDs.  
Individuals who are assigned the same resolved entity ID are considered a match.  The format of 
the file we were able to create was very easy to work with using SAS and was exactly what we 
needed. 

Post-Processing – Veeva SafeMine 

After sending the hashed data to Veeva we received an Excel file that listed all the matching ID 
pairs for each of the linkages in return.  This file was very easy to work with and required little-
to-no post-processing other than to split the data on each of the tabs into one of three CSV files 
(one for each linkage).  Once the CSV files were created, the process of reading the data using 
SAS was very trivial. 

DISCUSSION 
Match Quality – HealthVerity 

The HealthVerity PPRLS achieved F1 scores of 0.912 in Scenario 1, 0.962 in Scenario 2, and 
0.786 in Scenario 3. As with all PPRLS, the use of the HealthVerity system should be done 
carefully with a comprehensive understanding of the end users’ willingness to accept a certain 
level of FPs or FNs. 

HealthVerity uses one algorithm to match patients to its data system. Their algorithm does not 
use SSN, as SSN is seldom available to them within the context of their primary objective, which 
is linking real-world data sources together. We feel that using SSN when it is available would 
improve their matching algorithm because many of the false negative matches from Scenario 1, 
and a smaller number of false negative matches from Scenario 2, were among patients who 
matched on first name, last name, DOB, and SSN. 

The false discovery rates for the HealthVerity PPRLS were 8.8% in Scenario 1 initially, 2.1% in 
Scenario 2, and 14.6% in Scenario 3. These rates, especially those for Scenarios 1 and 2, are 
limiting for some use cases such as population cancer registry linkages. These scenarios (and 
Scenario 1 in particular) should be ideal for PPRLS, given the accuracy and completeness of the 
data, and yet the false discovery rates are 8.8 and 2.1 times higher than desirable. 

We followed up with HealthVerity to discuss these findings. They presented us with an option to 
adjust the sensitivity level of their algorithm to reduce the number of false positives to achieve a 
false discovery rate of < 1% as a proof of concept. After re-linking the data from Scenario 1 using 
the new sensitivity level, the F1 score improved from 0.912 to 0.928 and the false discovery rate 
decreased from 8.8% to 0.8%. Given these results, we believe the HealthVerity PPRLS to be a 
viable tool for linking individuals in longitudinal studies, provided that the sensitivity level is 
properly adjusted, and the data are of high quality.  

Match Quality – Datavant 

The F1 scores for the Datavant PPRLS varied significantly across each of the matching 
algorithms and linkage scenarios that were tested. A total of nine matching algorithms are 
available to users of the Datavant PPRLS, and each matching algorithm is designed for a specific 
use case. The tables of the tokens and their constituent data elements are provided in Methods: 
Table 4 on page 11 and Table 5 on page 12. The default matching algorithm for the Datavant 
PPRLS is the Net Tokens algorithm. 

We feel that the linkage between the six SEER registries (Scenario 1) represents a common use 
case for the NCI (cohort studies or clinical trials with other data sources such as registries). For 
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these types of uses, the PII for the linkage is likely to feature high levels of accuracy and 
completeness for each of the identifiers, which may or may not include SSN. In this situation, the 
Net Tokens + SSN algorithm, which combines the logic of both the Net Tokens and SSN 
algorithms, earned the highest F1 score. The SSN and Net Tokens algorithms also performed 
well on their own. However, many data sources will not include SSN, so it is important to 
recognize the potential value for several of the other tokens such as address and telephone 
number. 

The data that were used to link the GA cancer registry’s cases and CVS/Walgreens pharmacy 
claims in Scenarios 2 and 3 contained very few SSNs. This had a profoundly negative effect on 
the results obtained for the standalone version of the SSN algorithm. Nevertheless, the Net 
Tokens and Net Tokens + SSN algorithms remained among the best performing algorithms 
under these scenarios. The Demographic and Soundex PII algorithms performed well in 
Scenario 2 but slipped in the rankings in Scenario 3. This may indicate that these algorithms are 
more sensitive to errors in the data compared to some of the others. The Datavant Required 
algorithm earned the highest F1 score in Scenarios 2 and 3. 

The tokens created for the Datavant Required algorithm represent the token set that Datavant 
recommends most of its customers generate. Even though the Datavant Required algorithm was 
the top performer in two of the three scenarios we tested, we cannot recommend it due to its 
lackluster performance in Scenario 1, where it had an F1 score of just 0.574. The low F1 score 
was due to the high number of false positives that were identified (9,428 out of 15,895 of the 
pairs returned). As shown previously in Methods: Table 4 and Table 5, the Datavant Required 
algorithm accepts a match on token 37, which is comprised of a combination of Soundex of first 
name, Soundex of last name, and DOB. We believed this to be the main point of weakness for this 
algorithm and a closer examination of the 9,428 false positives bore out our suspicion, with the 
vast majority having completely different first and last names that coincidentally shared the 
same Soundex (e.g., the last names Jamison and Jenkins share a common Soundex value of J525). 
We suspect the use of Soundex was more of an issue in Scenario 1 because of the large pool of 
records (n=44,427,148) and the fact that the records belonged to patients from across the 
country. Scenario 2 (n=11,736,145) and Scenario 3 (n=13,199,314) relied on comparatively 
smaller pools of records that belonged to patients who all reside in Georgia, and the pharmacy 
records belonged to patients who were prescribed antineoplastic medications, which 
significantly increased the likelihood of those patients appearing in the GA cancer registry data. 
The Datavant Required algorithm appears to have an unacceptable risk of FPs for many 
applications. 

Based on the results of our analysis, the Net Tokens + SSN algorithm appears to be the best 
algorithm compared with others, including the Net Tokens (default) algorithm for population-
based linkages. The Net Tokens + SSN algorithm performed well even in situations where the fill 
rate for SSN was low (Scenario 2), and it outperformed the Net Tokens algorithm in each of the 
three linkage scenarios we tested. 

One potential (but not the only) application for PPRL products is to link data for conducting 
longitudinal analyses of individuals diagnosed and treated with cancer across the U.S.: in 
particular, the ability to monitor these patients longitudinally to identify subsequent treatment, 
recurrence, and treatment of those recurrences. This use case has a very low tolerance for false 
positive matches, with a false discovery rate of 0-1% being optimal. The false discovery rates for 
the top performing Datavant algorithms ranged from 1.8%–3.1% in Scenario 1, 1.4%–3.4% in 
Scenario 2, and 11.4%–12.1% in Scenario 3. The high false discovery rates observed in Scenario 
3 are likely due to the modifications made to the identifiers to represent data sources with 
incomplete, missing, or inaccurate PII values. Scenario 3 and the real-world scenarios it’s meant 
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to mimic seem to be less-than-ideal fits for PPRLS, considering the high frequency of 
typographical errors and missing data present in these (and many real-world) datasets. The 
false discovery rates for Scenarios 1 and 2 are also less than optimal, given the overall quality 
and completeness of the original data that were used in those scenarios—and Scenario 1, in 
particular—as they are between 1.4 and 3.4 times higher than the preferred false discovery rate 
of < 1%. 

We reached out to Datavant to discuss our findings and to determine whether there were 
options to reduce the number of false positives. A possible solution that was discussed involved 
the creation of a custom token set, which has been done in other studies that Datavant has 
supported. This was not possible within the constraints of this evaluation and thus we were 
unable to explore whether this would improve the results. It is also worth mentioning that the 
custom tokens aren’t necessarily HIPAA-certified and that they would need to be submitted to a 
HIPAA compliance expert for an audit before they could be used in a linkage in which HIPAA 
compliance is required.  

Similar to HealthVerity, the results of this evaluation reflect a fair comparison of the products 
that were made available during the evaluation period (July 2020 through June 2021).  Datavant 
has written whitepapers that describe how Datavant leveraged their software in other 
situations. 

Match Quality – Senzing 

The Senzing PPRLS achieved F1 scores of 0.945 in Scenario 1, 0.911 in Scenario 2, and 0.703 in 
Scenario 3. The F1 score that was achieved for Scenario 1 ranked third in our evaluation and 
was very close to the top two spots (which were nearly tied).  The F1 score for Scenario 2 
ranked ninth and the F1 score for Scenario 3 ranked fifth.  The drop-off in the rankings was 
mostly caused by an increase in the number of false negative matches. 

The false discovery rates for the Senzing PPRLS were 1.0% in Scenario 1, 2.0% in Scenario 2, 
and 5.8% in Scenario 3. The rates for Scenarios 1 and 3 were better than the averages for those 
scenarios, which were 11.1% and 7.1% respectively.  At 2.0%, the false discovery rate for 
Scenario 2 was slightly higher than the average (1.4%). 

Overall, the results seem to suggest that the Senzing software functions with a high level of 
specificity, which is ideal in situations where one’s tolerance for false positive matches is low. 

Match Quality – Veeva SafeMine 

We used two sets of tokens to perform the matching when we used the Veeva software: one that 
aimed to limit the number of false positives (token set 1) and another which sought to limit the 
number of false negatives (token set 2). 

Token set 1 performed very well in Scenario 1, where the data were highly accurate and 
complete but lagged in Scenarios 2 and 3, where the data were often missing or misspelled.  This 
was in line with our expectations given what we know about these datasets.  The F1 scores for 
token set 1 were 0.964 in Scenario 1, 0.893 in Scenario 2, and 0.651 in Scenario 3.  The false 
discovery rates for token set 1 were 0.03% in Scenario 1, 5% in Scenario 2, 5.9% in Scenario 3.  
The extremely low false discovery rate in Scenario 1 was very impressive and one of the main 
reasons why this token set ranked the highest, in terms of its F1 score, across all the software / 
token sets / algorithms we evaluated. 

Token set 2 performed better in Scenarios 2 and 3 than it did in Scenario 1.  Again, this was in 
line with our expectations given what we know about the data.  The F1 scores for token set 2 

https://datavant.com/resources/whitepapers/
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were 0.723 in Scenario 1 (mostly due to the high number of false positives), 0.948 in Scenario 2, 
and 0.743 in Scenario 3.  The false discovery rates for token set 2 were 42.7% in Scenario 1, 
2.5% in Scenario 2, and 9.8% in Scenario 3.  One of the tokens in this set was based on the 
Soundex of first and last name.  We discussed the issues with creating tokens based on Soundex 
in the Match Quality – Datavant section above.  The same issues we discussed there apply here 
as well. 

Performance and Scalability - HealthVerity 

HealthVerity’s tokenization/de-identification software utilizes a single CPU core for its 
operation and processed records at an average rate of approximately 6,285 records per second 
across all 10 source data files used in this evaluation. 

HealthVerity hashes each identifier using a bloom filter and can hash all of the identifiers for a 
record in a single pass, which makes the tokenization/de-identification process very efficient. 

Even though the HealthVerity tokenization software was very efficient, the fact that it is limited 
to a single CPU core means that it does not scale well. We would encourage HealthVerity to 
explore the possibility of upgrading its tokenization/de-identification software in the future to 
make use of multiple CPU cores. Such an enhancement may improve the already impressive 
processing speed significantly.  

HealthVerity’s tokenization/de-identification tool consistently used approximately 800 MB of 
memory regardless of which of the source data files were being de-identified. 

We were unable to obtain any metrics regarding the performance and scalability of 
HealthVerity’s matching utility because the matching took place behind HealthVerity’s firewall.  

Performance and Scalability – Datavant 

When operating on a single CPU core, Datavant’s tokenization/de-identification software 
processed an average of 1,443 records per second across all ten of the source data files. When 
operating on four CPU cores, the performance improved to an average of 4,037 records per 
second. 

Our tests were conducted using a desktop PC with four CPU cores, but Datavant’s 
tokenization/de-identification utility can also be run on a server or on a desktop PC with an 
increased number of CPU cores. The performance would likely improve considerably under 
these conditions, given that the software is designed to scale with the number of cores that are 
available, and it scales well. 

Datavant’s tokenization/de-identification utility generates multiple tokens per record. It does 
this by combining each of the identifiers from the source data in various ways and then hashing 
the result (for a full list of the tokens that were generated for this evaluation see Methods, Table 
4). When data are hashed in this way, even the smallest differences between two values can 
produce radically different hash results. When this happens, records that belong to the same 
individual may not be linked. Datavant’s tokenization software uses a probabilistic approach, 
where different combinations of identifiers are generated in tandem, to reduce the chance of a 
false negative result occurring. The logic behind this strategy is that the same individual will 
only differ on, at most, a small number of fields. Other methods for PPRL (such as bloom filters) 
have been shown to provide greater accuracy and efficiency but trade-off greater re-
identification and security risks [2, 3]. 
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Datavant’s tokenization/de-identification software used approximately 50 MB when operating 
on a single CPU core and approximately 350 MB when operating on four CPU cores, meaning 
that the memory requirements scale with the number of CPU cores in use. 

Datavant’s matching tool utilizes a single CPU core for its work, and this number cannot be 
increased. The memory requirements of the matching tool increase with the number of records 
being matched and the number of tokens. In the case of the SEER linkage data (Scenario 1), 64 
GB of memory were insufficient to perform the linkage in a single pass, and we needed to break 
the work up into three smaller linkages and combine the results to complete the linkage. While 
not a direct comparison, the linkage tool that was used to create the gold standard linkage 
results, Match*Pro, used less than 2 GB to link the raw data for the same number of records. We 
would recommend Datavant do whatever it can to reduce the memory consumption of its 
matching tool given what we observed in our testing. 

Performance and Scalability – Senzing 

Senzing’s hashing software ran as a single-threaded process, not taking advantage of the 
computing power of the server, with CPU usage averaging around 4.6%.  Multiple hashing 
instances were run simultaneously for different datasets to take better advantage of the server’s 
computing power. The software hashed data at an average rate of 178 records per second across 
all ten of the source data files.  Memory usage averaged around 14 GB. 

Based on our recorded metrics it appears that the Senzing matching software could use the full 
computing power of the server as configured, with CPU usage averaging around 99%.  The 
software matched data at an average rate of 311 records per second across each of the three 
scenarios we examined.  Memory usage averaged around 14 GB. 

Performance and Scalability – Veeva SafeMine 

Veeva’s hashing software ran as a single-threaded process, not taking advantage of the 
computing power of the server, with CPU usage averaging around 9.4%.  We attempted to run 
multiple hashing instances simultaneously, but as mentioned before, the database server 
became bottlenecked after running just two concurrent hashing processes.  The software hashed 
data at an average rate of 115 records per second across all ten of the source data files.  Memory 
usage averaged around 19 GB. 

We did not license the SafeMine matching software, so we did not collect any performance and 
scalability metrics for it.  The matching process took place behind Veeva’s firewall. 

FINAL THOUGHTS 
The process of conducting privacy-preserving record linkages is complex and the approaches 
taken to perform these linkages can vary significantly from one vendor to another.  The results 
of scenarios 2 and 3 suggest that, regardless of the approach used, privacy-preserving record 
linkages are more negatively affected by typographical errors and lower levels of completeness 
than standard (non-privacy preserving) record linkages. We base that assertion on the fact that 
the F1 scores for scenario 3 were always significantly lower than the F1 scores for scenario 2 for 
the same software package and/or token set and the fact that hashing algorithms and bloom 
filters (though often to a lesser extent) are innately sensitive to minor discrepancies in the data. 

Before using any PPRLS, potential users should consider the biases, strengths, and weaknesses 
inherent to each PPRLS (and PPRLS as a whole) as well as their own use case, the quality and 
completeness of their data, and their tolerance for false positive and false negative matches. 
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