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a

Abstract

The sintering process consists of agglomerating fine iron ore with other materials and additives to form a porous 
agglomerate called sinter. The sinter is used as feedstock for blast furnaces, where it is converted into pig iron, which 
is the basis for steel production. One of the major challenges of the sintering process is the degradation of the chemical 
quality of the iron ores, which can affect the quality of the sinter produced. Therefore, this work proposes an approach 
to optimize the parameters for sintering machines. This approach uses machine learning and computational optimization 
techniques based on the simulated annealing algorithm by analyzing production history data with the aim of maximizing 
sinter productivity and yield while ensuring that product quality requirements are met. As a result, the quantity of pellets 
used in pig iron production was reduced by replacing part of this material with additional sinter produced according to the 
recommendations of the mathematical model for the sintering machine parameters.
Keywords: Sintering machine; Parameters optimization; Machine learning; Product quality.

1 Introduction

The sintering process is fundamental to the steel 
industry because it produces an intermediate product for steel 
production. This transformation of iron ore into a material 
optimally suited for blast furnaces has several advantages. 
It allows adequate charging of the blast furnaces, reduces 
heat loss, improves efficiency, and allows the use of fine 
ores. The composition of the blast furnace mix has been 
thoroughly researched, and this mix consists of sinter, pellets, 
and lump ore. Sinter has physical and chemical properties 
ideal for blast furnaces and is also less expensive to produce 
than pellets, making it an excellent choice for steelmakers.

The sinter is a porous and resistant material formed in the 
sintering process by partial melting of fine iron ores, coke, sinter 
feed (the ore most used in sinter production, with particle sizes 
ranging from 0.15 mm to 6.3 mm) and fluxes [1]. One of the 
major challenges in this process is the chemical quality of iron 
ores, such as an increase in the content of impurities, changes 
in mineralogical composition, variations in particle size, and a 
decrease in iron content. In an analogous case, an increase in 
the content of impurities can lead to a decrease in the chemical 
quality of the sinter, since the impurities can affect the physical 
structure of the sinter, which directly affects the yield of this 
product. The yield is the percentage of the starting material that 
is converted into sinter after the sintering process. Although 
investments are made today in monitoring the chemical quality 
of iron ores, it is often not possible to guarantee the quality 
because the iron ores are purchased from external sources.

After investigating possible initiatives to improve 
sintering quality and productivity, three main levers were 
identified to explain fluctuating sintering productivity: raw 
material composition, sintering machine process parameters, 
and blast furnace constraints. Although the chemical quality 
of the raw material is an important factor in producing high 
quality sinter, optimizing the parameters of the sintering 
machine can help improve productivity even when the 
chemical quality of the raw material is poor [2,3]. To achieve 
these goals, mathematical modeling and computer-aided 
optimization techniques have been used to understand system 
behavior and determine the best parameter settings based on 
historical process data. This approach makes it possible to 
increase the productivity of the sintering process and obtain 
a greater quantity of high-quality sinter. With the increase 
in sinter production, it is possible to reduce the quantity of 
pellets used to produce pig iron, as some of this material 
can be replaced by the sinter produced.

Thus, the objective of this paper is to present an 
approach for parameter optimization of sintering machines 
using machine learning and computational optimization 
models. In addition, computational results obtained with 
these models are presented, demonstrating the improvements 
achieved in terms of cost reduction and increased quality of 
the sinter produced for the blast furnaces. Finally, a front-end 
tool was developed to make the results easily accessible to 
business experts.
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candidate solution with the goal of maximizing the yield and 
productivity of the sintering process. Each candidate solution 
represents a possible configuration of the sintering machine.

To build a predictive model as a cost function in a 
metaheuristic algorithm, it is necessary to collect relevant 
historical data and apply machine learning techniques to 
build this model. Therefore, the first step was to understand 
and collect the main variables of the sintering machine 
that are controllable by the operation during the sintering 
manufacturing process (Table 1) and recommended by the 
optimizer. In addition, the data shown in Figure 1 (1, 2) 
were also collected to understand the other data since they 
are the input data for the predictive model.

2 Development

Machine learning algorithms can efficiently analyze 
large amounts of data generated by the sintering machine 
and identify the most important parameters affecting 
sintering performance. Therefore, the project consisted in 
developing a tool capable of providing recommendations 
for the parameterization of the sintering machine to ensure 
optimal performance and productivity based on the chemical 
composition of the raw materials.

The diagram in Figure 1 illustrates the blueprint 
consisting of a metaheuristic capable of providing 
recommendations for the parameterization of the variables 
associated with the sintering machine based on the input 
data (1) and (2) of Figure 1.

A metaheuristic is an optimization technique that 
attempts to find solutions to complex problems through an 
iterative search process. One of the most important steps of 
a metaheuristic is to define a cost function that measures the 
quality of a candidate solution with respect to the objective 
of the problem. The modeled cost function for this problem 
was obtained from the product of the outputs of two machine 
learning models: Yield Prediction and Sinter Productivity, as 
shown in Figure 1 (3). This was done because productivity 
and sintering yield are important metrics for the steel 
industry as they directly affect the efficiency, quality, and 
cost of the process.

Therefore, the tool performs a local search [4] based 
on the simulated annealing metaheuristic [5], as shown 
in the flowchart in Figure 2, and iteratively improves the 

Figure 1. Blueprint of the proposed macro-level solution.

Table 1. Identified parameters of the sintering machine

Controllable Non-controllable
Information on the composition 

and granulometry of the fuel
Raw material quality

Homogeneous pile composition Fuel quality
Layer height Sintering speed

Loading density Crusher speed
Burning-through point (BTP) Ignition gases quality

Limestone percentage Seasonality
Ignition parameters
Burden humidity

Gases temperature average
Exhaust fan temperature

Sinter temperature
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The data sources are different, some are stored in a 
database, others are from Excel spreadsheets.

Therefore, it was necessary to aggregate and process 
the data, including handling missing data, outliers, and 
other necessary manipulations to the data of interest. Once 
this phase was completed, the next step was to identify and 
understand the correlations between the input and output 
variables of the machine learning models (sinter yield and 
productivity). This step is critical to the development of 
predictive models because it can significantly improve the 
performance of the final model by excluding unnecessary 
information. To understand this information, methods 

such as the Spearman test [6], a non-parametric test to 
evaluate the correlation between two variables, were used. 
In addition, graphical analysis and descriptive statistics 
were used. The mutual information method [7] was also 
used as several non-linear or complex relationships were 
identified. Following this process, the permutation-importance 
method [8] was used to reduce the size of the problem by 
considering only the input variables that have the greatest 
impact on the outputs. In this way, predictive models were 
developed, trained with sufficiently representative data, 
and validated on an independent data set before being 
used in metaheuristics. A tree-based algorithm [9] was 
chosen to develop these machine learning models due to 
its advantageous properties such as scalability, flexibility, 
and robustness. This algorithm can efficiently process large 
amounts of data, adapt to a variety of problem types, and 
handle missing or anomalous data without compromising 
accuracy or reliability.

After developing the predictive models, the cost 
function was integrated into the optimizer. The assumptions 
and constraints shown in Figure 1, item 6, and explained 
in Table 2 were also considered to ensure the accuracy and 
effectiveness of the optimization process. The approach 
chosen to implement the constraints in the simulated annealing 
algorithm was “penalization”. In this approach, solutions 
that violate a constraint are penalized with a high value 
in the objective function, preventing the algorithm from 
exploring infeasible solutions. Another approach was to 
restrict the search space of feasible solutions. For example, if 
the algorithm violates a quality objective, the cost function, 
which is the product of sintering productivity and yield, is 
penalized by a predetermined value to prevent the algorithm 
from searching for a solution with that parameter. It is worth 
noting that these approaches were chosen with the goal of 
ensuring that all generated solutions are viable and meet 
the imposed constraints.

3 Results and discussion

After studying the correlations between the variables 
shown in the diagram in Figure 1 (items 1 and 2) and the 
outputs (item 4), the most important information that has 
predictive power in terms of yield and productivity were 
identified, as shown in Figure 3 and 4, respectively.Figure 2. Flowchart for the simulated annealing algorithm.

Table 2. Constraints implemented in the optimization module

Type of constraint Information source Implementation
Minimum and maximum constraints Sintering machine parameters Linear constraint

Shatter Results of laboratory Predictive model
Granulometry of sinter greater than 5 Results of laboratory Predictive model

Sinter temperature Results of laboratory Predictive model
Correlation coefficient between variables Sintering machine parameters Correlation coefficient

Composition of blast furnace burden* Results of laboratory Linear constraint
Load composition constraints have been mapped but will be implemented and detailed in a future work.
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It is necessary to carry out this study because this 
information allows a more accurate prediction of the targets 
and helps to avoid overfitting, which occurs when a model 
is overfitted to the training data, resulting in less accurate 
predictions with new data. To understand these key predictive 
insights, a Random Forest model was employed with the 
parameters set as follows: max_depth configured as 15 (the 
square root of the number of features), n_estimators set to 
100, min_samples_split of 2, min_samples_leaf of 1, and 
bootstrap set to True for sampling with replacement.

Business experts had already anticipated that some 
variables would have these predictive capabilities, while for 
others there was no prior understanding due to the amount of 
data and lack of information needed to perform this analysis. 
This opened new perspectives for the business unit.

The data used to develop the models were obtained 
from all the data shown in Figure 1 (3), which were collected 
from the year 2019 to the end of the year 2021. To evaluate 

the performance of the developed models, more than two 
metrics were used.

Equation 1 shows the main metric chosen, namely the 
root mean square error (RMSE), as it is a robust and sensitive 
error measure that accounts for both positive and negative 
errors, while larger errors are penalized proportionally. 
In this equation, the difference between the predicted value 
ŷ  and the actual value y is performed, which is then squared. 
However, to keep the result on the same scale as the data, 
the square root is applied to the result.

( ) ( )2
1

1RMSE  ˆ ˆ, 
n

i i
i

y y y y
n

=

= −∑  (1)

To evaluate the effectiveness of the predictive models 
implemented as constraints, the recall metric was primarily 
used. This was done because false negatives are more 

Figure 3. Process variables that most impact sinter yield.

Figure 4. Process variables that most impact sinter productivity.
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important in the context of the quality issues observed in 
this study. For instance, if the model predicts that there will 
be no problem when there is one (false negative), this may 
be more detrimental in the context of a particular solution 
proposed for the parameterization of the sintering machine 
than predicting a quality problem that does not ultimately 
occur. It should be noted that while the implementation of 
these constraints is relevant to this topic, the main objective 
of this paper is to study in more detail the results obtained by 
the optimization module. This aspect has been less addressed 
in the literature so far.

Figures 5 and 6 show the scatter plot between the 
values predicted by the model compared to the actual values 
in the data set reserved for testing, i.e., the model did not have 
prior access to these data. The results in terms of the RMSE 
metric are shown in Table 3. They show that the models 
obtained satisfactory results that can be implemented as a 
cost function of the optimization algorithm. In developing 
the models, the cross-validation method was used, which 
consists of dividing the data set into smaller subsets (folds) 
so that the model can be trained on one part of the data and 
tested on another, ensuring accurate evaluation and more 
robust model performance. The cross-validation method 
was also used to fit the hyperparameters of the models. 
Therefore, the standard deviation shown in Table 3 represents 
the variation in the RMSE metric for each fold in this cross-
validation process.

After evaluating and implementing the cost function 
and the constraints described in the methodology, the 
optimization algorithm was run to explore the solution space 

in search of the best possible solution. The experiment was 
conducted using sintering process data from the past, i.e., 
the optimization algorithm was run on a test data set from 
2021 to verify that the resulting recommendations offered an 
increase in productivity and throughput, as well as a better 
understanding of the characteristics of this material compared 
to the process performed during this period. For this test, 
it was necessary to remove data from the models, so there 
was no prior knowledge of this test set.

The optimization module was tested in practice. 
For each raw material (i.e., each HP), 50% of the sintering 
process was carried out with the usual parameterization, 
while for the other 50% the recommendations of the model 
developed in this work were used.

This process was performed on 5 homogeneous piles. 
After the test period, an average percentage increase in liquid 
sinter (product between gross productivity and yield) of 
3.42% was observed, as shown in Figure 7.

Finally, a web platform was successfully developed 
(Figure 8) to provide sintering process specialists with a 

Table 3. RMSE metric result for the training and testing datasets after 
developing the models.

Model Data Set RMSE Standard 
Deviation

Productivity (ton/h) Train 1.549 0.022
Yield (%) Train 2.383 0.012

Productivity (ton/h) Test 2.147 0.037
Yield (%) Test 3.214 0.002

Figure 5. Comparison between values predicted by the gross productivity model and actual values using a data set not observed by the model.

Figure 6. Comparison between values predicted by the yield model and actual values using a data set not observed by the model.
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front-end tool to monitor parameters and key KPIs resulting 
from this work. By implementing this tool, users can access 
an integrated solution that enables a more comprehensive 
analysis of the sintering process and provides valuable 
insights to improve production quality and efficiency.

Figure 9 shows the parameter simulation function, 
which is useful when the optimization model solution cannot 
be implemented due to external or unmonitored factors. This 
function allows fine tuning of the parameters. The platform 
shows the impact on the monitored KPIs, providing valuable 
information to adjust improve the sintering process.

The platform is a significant step forward in the 
digitalization of the sintering process and demonstrates the 
potential of digital technologies to improve production results 
and increase efficiency. In addition, other processes were 
improved during the development phase of this project, such as 
automating data collection for granulometric analysis of fuels.

Previously, this information was stored in Excel 
spreadsheets. Now this automated process is expected to save 
costs and time while improving production efficiency and quality.

Reference has been made to several articles [2,3,9-11] 
to illustrate various approaches to optimizing sintering.

Figure 7. Test results of the SYO (Sinter Yield Optimization) tool.

Figure 8. Web platform developed and made available for specialists in the sintering process.

Figure 9. Parameter simulation module parameter simulation.
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While these articles discuss increases in process 
efficiency and improvements in productivity, the present 
work also stands out for its significant enhancement in 
productivity through computational optimization of sintering 
machine parameters.

4 Conclusion

One of the ways to optimize sintering production is to 
optimize the parameters of the sintering machines, which can 
contribute to higher productivity, regardless of the quality of 
the raw material. The study proposes the use of mathematical 
modeling and computational optimization techniques using 
machine learning and the simulated annealing algorithm to 
analyze historical production data and determine the best 
parameter settings to maximize productivity and quality of the 
sinter produced. The use of the optimization module for the 
sintering process showed positive results in practice. The test 

performed on 5 homogeneous ore piles showed an average 
increase in liquid sinter of 3.42% when comparing the usual 
parameterization with the recommendations of the model 
developed in this work. These results show the importance of 
using optimization tools in the industry to improve the efficiency 
of production processes, reduce costs and increase product 
quality. In summary, the intuitive and user-friendly front-end 
platform was developed to encapsulate an optimization model 
and provide business specialist with results that enable more 
accurate and strategic decisions. It is hoped that these results 
can be replicated in other areas of activity to promote the use 
of optimization techniques in various industries.
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