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Abstract

We report here the adaptation of our electronic microchip technology towards the development of a new method for detecting and enumerating
bacterial cells and spores. This new approach is based on the immuno-localization of bacterial spores captured on a membrane filter microchip
placed within a flow cell. A combination of microfluidic, optical, and software components enables the integration of staining of the bacterial
species with fully automated assays. The quantitation of the analyte signal is achieved through the measurement of a collective response or
alternatively through the identification and counting of individual spores and particles. This new instrument displays outstanding analytical
characteristics, and presents a limit of detection-800 spores when tested wiBacillus globigii (Bg), a commonly used simulant for
Bacillus anthraciqBa), with a total analysis time of only 5 min. Additionally, the system performed well when tested with real postal dust
samples spiked witBgin the presence of other common contaminants. This new approach is highly customizable towards a large number of
relevant toxic chemicals, environmental factors, and analytes of relevance to clinical chemistry applications.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction very low numbers of spores, with great selectivity, and in
a timely fashion. Strategic locations for the detection of
Prompt detection and identification of potentially harmful spores and bacteria include all mail-sorting faciliti€sij
bacteria is essential in the medical, environmental, and foodet al., 2002. For this particular application, continuous
industries. Recent events have emphasized the need fomonitoring of the mailroom atmosphere is crucial in order
appropriate techniques to detect such micro-organisms wherto detect small amounts of contaminants while they are
used in acts of bioterrorism. As bacteria require very little still contained within the facilities. As the postal office
to grow, a great number of them can easily be manufacturedenvironment contains extreme amounts of paper and textile
for use as biological warfare agenBacillus anthracigBa), fiber, dust, and fluorescent brighteners, it represents a very
or anthrax, initially a threat to humans only through infected complex matrix in which the detection of small quantities of
herbivores, has become such an agent. As evidenced by thapores is rendered very complicated.
anthrax attacks of October 2001 on US soil and the extensive  Traditional methods of detection require the growth of
list of potential biological warfare agent€DCA), there is single bacteria into bacterial colonies in different types of
an urgent need for a detection system capable of detectingmedia, followed by a lengthy identification process involv-
ing morphological and biochemical tesEséncis etal., 2001;
* Corresponding author. Tel.: +1 512 471 0046; fax: +1 512 232 7052.  Paton and Jones, 1975; Kaprelyants and Kell, 1992; Phillips
E-mail addressmcdevitt@mail.utexas.edu (J.T. McDevitt). etal., 1983, 1985; Davey et al., 1999; Davey and Kell, 1997;
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Mason et al., 1995 These procedures, although often pro- and build a system that would use a two-step approach for
viding very accurate results, suffer from poor specificity, and the detection and identification of bacteria and spores. For
repose on the expertise of highly trained personnel. Addition- document-handling applications, as required by USPS, it is
ally, they often require complicated interpretation with com- desirable to develop rapid tests that can be used in conjunc-
plete analysis time typically approaching 72 h, which makes tion with PCR confirmation tests to create a practical and
them unsuitable for online rapid analysis. Recent efforts have cost-effective methodology suitable for the identification of
been directed towards developing approaches suitable for thebioterrorist threatsKox et al., 200 Further, the availabil-
entrapment or capture of bacteria, based on a combinationity of such a rapid and specific spore and bacteria detection
of physical characteristics of the capturing medium and the system would have a profound impact on food/water safety
affinity of the bacteria for a variety of chemical functional- and important humanitarian efforts.
ities (Lee et al., 1997; Szczesna-Antczak and Galas, 2001; We have recently reported the use of a bead-based mi-
Chapman et al., 2001While rapid, these methods are non- crochip technology L(avigne et al., 1998; Goodey et al.,
specific, requiring completion of multi-step analysis foriden- 2001; Curey et al.,, 20Q1to measure pH, detect metal
tification and quantification. cations, enzymes, proteins, DNA, and to assess cardiac risk
Most commonly available assays for the detection of through the monitoring of C-reactive protein in human serum
spores or bacteria involve the use of enzyme-linked im- (Christodoulides et al., 200ZThese microchip-based appli-
munosorbent assays (ELISAM6rais et al., 199¥ While cations repose on the use of polymer microspheres placed
demonstrating high specificity, reproducibility, and capacity in the micro-etched wells of a silicon chip. By applying
for multiplexing through the use of specific antibodies, these a mechanical entrapment strategy and the standard opti-
methods generally require lengthy analysis times, and are notcal methodology of our system, we demonstrate here an
compatible with real-time analysis. A large amount of efforts efficient visualization of bacteria and spores. This novel
has been made recently to decrease analysis time and improvapproach is exploited and demonstrated here in the con-
sensitivity and selectivity through the application, modifica- text of online detection of bacillus spores in mail-handling
tion, or combination of various techniques. These include facilities.
polymerase chain reaction (PCR)N( et al., 2002; Makino
et al., 2001; Radosevich et al., 2002; Wilson et al., 2002;
Igbal et al., 2000; Belgrader et al., 1999, 2001; Cheun et al., 2. Experimental
200)), electrochemical transductioBil et al., 2001, 1997;
Yu, 1996, 1998; Brewster etal., 1996; Brewster and Mazenko, 2.1. Flow cell
1998; Mazenko et al., 1999; Gau et al., 2p@iptical and mi-
croarray detectionGheng et al., 1999; Chuang et al., 2001; The flow cell assembly was created from a three-piece
Song et al., 2002; Rowe et al., 1999; King et al., 2000 stainless steel cell holder consisting of a base, a support
flow-through immunofiltration florais et al., 1997; Abdel- and a screw-on cap. Two circular polymethylmethacrylate
Hamid et al., 1999a,b; Weimer et al., 20pdcoustic sensors  (PMMA) inserts house the Nuclep&teMillipore, USA)
(Ivnitski et al., 1999, capillary electrophoresisShintani et membrane. These two PMMA inserts have been drilled along
al., 2003, flow cytometry Davey et al., 1999 and oligonu- their edge and one side to allow for passage of the fluid to
cleotide probes and hybridization detection scher@esifert and from the chip through stainless steel tubing (#304-H-
etal., 2002; MacGregor et al., 2001; Bockelmann etal., 2002; 19.5, Microgroup, Medway, MA). The tubing, which was
Gau et al., 2001; Yang et al., 2002; Liu et al., 2pBlbwever, fixed with epoxy glue in the drilled PMMA inserts, had an
general sensor strategies rarely feature together the highlyouter diameter of 0.03919.5 gauge), and a 0.0255-0.0285
desired long list of attributes necessary for the creation of aninner-diameter. The bottom PMMA insert is modified in or-
“ideal sensor”, as is demonstrated by the small number of der to feature a drain and to contain a plastic screen disc
commercially available sensing unitsritski et al., 1999. (Pall Corporation, New York) that acts as a support for the
Methods based on PCR analysis have been chosen by théilter. The top insert also features an additional outlet, which
US Postal Service (USPS) as a preliminary technological re-is used for regeneration of the filter. Silicone tubing is fit-
sponse to an urgent need for a rapid detection methoB.for ted on the stainless steel tubing, and as such is readily com-
anthracis Despite the excellent specificity, sensitivity, and re- patible with a wide range of fluidic accessories (i.e. pumps,
cent outstanding advances of this technoldggBride et al., valves, etc.) and solvents. The flow cell was shown to be re-
2003; Belgrader et al., 20D3ome of the drawbacks include  sistant to leaks and pressures generated by flow rates as high
difficult sample preparation, long analysis time, the need for as 20 mL/min.
trained personnel, high reagent costs, potential contamina-
tion, false positives, and poor adaptability to multiplexing. 2.2. Fluid delivery, optical instrumentation and software
In a similar manner to the Joint Biological Point Detection
System (JBPDS)NATIBO, 2001, which was designed to The complete analysis system consists of a fluidics system
detect a biological agent within a minute upon release and composed of four P625/275 Instech peristaltic pumps (In-
identify the species in less than 15 min, our goal is to design stech, Plymouth, PA), dedicated to the delivery of the analyte,
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antibody, wash buffer, and clean-up of the flow cell in a re- CA, USA). A bright line counting chamber, or hemacytome-
generation mode. Its integrated software was used to assurger (Hausser Scientific, Horsham, PA) was used to determine
fluid delivery to the chip, and to accommodate wash cycles the exact concentration of bead solutioleikson et al.,
through the proper use of Series 075-P2 pinch valves (Bio- 1939.

Chem Valve, Boonton, NJ) and pumps. Nuclefoteack-

etched _rnembranes (_)f _5 and Quah pore size were also used 5 g Bg spore preparation and characterization

as pre-filters. This fluidics system is coupled to a flow cell po-
sitioned on the motorized stage of a modified compound BX2
Olympus microscope. The microscope is equipped with var-
ious objectives, optical filters, and a charged-coupled device

(CCD) camera, the operation of which can be automated. ;e medium and expressed in colonies formation unit

A mercury lamp was used as the light source. Fluores- (cry) per milligram of spore. The average concentra-
cence images shown in this report were produced with a flu- tjon was determined to be 3108 CFU/mg of spore
oroisothiocyanate (FITC) filter cube (480 nm excitation, 505 preparation.

long pass beam splitter dichroic mirror, and 5354125 nm
emission), and captured by a DVC 1312C (Digital Video
Company, Austin, TX) charge-coupled device mounted on
the microscope and interfaced to Image Pro Plus 4.0 soft- o ]
ware (Media Cybernetics). Counting macros were written | "€ Specificity of the tetracore antibody fBg spores

for both the Image Pro Plus and Image J (Bethesda, MD, was first confirmed W|th in-tube reactlo_ns that were supse—
USA) environments. Areas of interest in the images were se-duéntly evaluated with fluorescence microscopy of stained

lected in an automated fashion and used to extract numericaSPO"€S on_glass slides. The antibody was then employed for
values of the red, green, and blue (RGB) pixel intensities, the detection oBg spores captured on the fllte'r membfane
and spore counts. As the antibody fluorescent label emits at®f OUr system. Parameters evaluated to obtain the highest
519 nm, only the green values were analyzed. Control and5|gnal to noise rat_lo for this on-line assay mclud_ed: (a) the
automation of fluidic and optical systems was realized with €ffect Of pre-treating the system’s tubing and filter mem-

A 1mg/mL spore stock solution (A) was prepared in
sterile water. The concentration of spores per mg of prepa-
ration was evaluated by growing colonies on LB cul-

2.6. Assay optimization

a Pentium 11l Dell Precision 420. brane with BSA (i.e. blocking of non-specific binding sites
for the detecting antibody); (b) varying the rate (i.e. flow
2.3. Reagents rate) of antibody introduction to the flow cell; (c) varying

the antibody concentration; (d) varying the incubation time
Phosphate buffer saline (PBS), pH 7.4 (Pierce, #28374; ©f the antibody withBg spores; (e) identifying the opti-

0.008M NaPOj 0.14M NaCl, 0.01M KCI) was fil- mal exposure time for |mage.capture; and (f) comparison
tered through a 0.2m pore size syringe filter (Whatman of u.nl-dlre.ctlonal mode of antibody flow to the cell versus
25mm, 0.2.m polyethersulfone (PES) filters #6896-2502), 'e-circulation.
Polyoxyethylene—sorbitan monolaurate (Tween-20) and
bovine serum albumin (BSA) were purchased from Sigma 2.7. Dose response curve
(#P-1379, and #A-0281). The ariacillus globigii(Bg) an-
tibody, generously donated by Tetracore Inc. (Gaithersburg, To establish the standard curve, spore solutions were pre-
MD), was tagged with a fluorophore according to the protocol pared in a similar fashion as described previously with PBS
described in the Alexa FluBr488 Protein labeling kit from instead of sterile water to cover the range from 1 ng/mL to
Molecular Probes (#A-10235), and stored &t4until use. 1 mg/mL. For each solution, an assay was conducted through
The final concentration of the labeled aBti-globigii was execution of the following steps. The solution is introduced
0.5mg/mL. When prepared for the assay the antibody wasthrough pump 1 for 60 s at a flow rate of 1 mL/min, and fol-
diluted 1:50 in a filtered (0.2m) solution of 1% BSA/PBS.  lowed by a 60 s PBS wash through pump 2 with the same flow
The spore preparations were provided by Edgewood/Dugwayrate. The antibody is then passed to the flow cell through
Proving Grounds. Spores were plated onto Petri dishes withpump 3 for 300s (0.3 mL/min). A final 90s wash ensures
Luria Bertani (LB)medium, composed of Bacto Tryptone, the removal of any unbound or non-specifically attached an-
Bacto Yeast Extract, and Agar Technical, purchased from tibody. The background signal was evaluated through five
Difco (#211705, #212750, #281230, respectively). Distilled independent measurements of the signal obtained from the
water, de-ionized with a Barnstead nanopure column was passage of antibody in five different spore-free flow cells. A

sterilized by autoclaving for 30 min at 12C. fluorescent micrograph of the signal remaining after the final
wash was recorded from five randomly selected areas of the
2.4. Polymer microsphere solutions flow cell and the signal was expressed both as the density of

green intensity per pixel and individual spore counts. Graphs
Green fluorescent 1 and 2481 polymer microspheres representing the average green density per pixel as a func-
were purchased from Duke Scientific Corporation (Palo Alto, tion of spore concentration, and spore count as a function of
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spore concentration, were constructed. For both plots, linearoutlet which is used for regeneration of the filter. We inves-

regression curves were calculated. tigated various types of filter membranes (SEM micrograph
of the filter shown irFig. 1C), and as was suggested by pre-
2.8. Electron microscopy vious independent studieMézenko et al., 1999; Brewster

and Mazenko, 1998Nucleporé track-etched membranes
Correlative light and electron microscopy was accom- were chosen over nitrocellulose, nylon, and cellulose acetate

plished by placing a hL aliquot of antibody-stained spores because of their better resistance to non-specific binding of
on a Formvar-coated TEM grid (Maxtaform H2 finder grids, the antibody and other stains, and their inertness to a vari-
Ted Pella Inc). Due to the thick walls of the spores, it was ety of reagents and buffers. These membranes feature very
possible to avoid more complex dehydration regimens and reproducible sub-micron-size pores that are fairly evenly dis-
simply allow the spore suspension to air dry. After a suit- tributed, allowing for good flow dynamics through the filter.
able area was located and photographed with fluorescenceéddditionally, the flow cell assembly keeps the membrane suf-
microscopy, the grid was placed in a Philips 420 TEM and ficiently flat to enable the capture and detection of all spores
the same grid square was photographed. The grid was then afen a single focal plane through epifluorescence microscopy.
fixed to an aluminum stub with carbon tape and sputter-coated The complete analysis system is shown in schematic in
with gold palladium. Using a Leo 1530 scanning electron Fig. 2 The sample input line (i), can be interfaced to the
microscopy (SEM), images were captured from the area of end-line of an aerosol system, or directly to a vial containing
interest. a transferred sample. Reagent containgrsor and g (i)

contain respectively PBS, the antibody solution, and PBS for

regeneration of the filter. Peristaltic pumpsg p2, p3, and

3. Results and discussion p4 (iii) are dedicated to the delivery to the flow cell of the
analyte, PBS, the antibody solution, and PBS for regenera-
3.1. Description of the system tion. The sample, antibody, PBS, and regeneration lines are

also filtered with pre-filters4f 2, f3, and §; (iv) to screen

Our traditional flow cell assemblyLévigne et al., 1998;  out large particulate matter. Pre-filtari a Nuclepor® fil-
Goodey et al., 2001; Curey et al., 2001; Christodoulides et ter with a pore size of pm. Pre-filters $, f3, f4 are 0.4um
al., 2003 (Fig. 1) was modified in order to accommodate the Nucleporé filters. The nature and pore size of each filter
capture of bacterial species using a filter membrane placedwas optimized in order to satisfy efficient capture of large
within the device. Briefly, two circular polymethylmethacry- dust particles or particulate matter aggregates, while resist-
late inserts (A) housing a nuclepore track-etched membraneing clogging and letting the analyte of interest pass through.
are held in a three-piece stainless steel cell holder consistingSpores, whose size is smaller than the pores of pre-filter
of a base, a support and a screw-on cap. An exploded vieware passed through a fluidics manifold (v), and captured in the
of the flow cell is provided irFig. 1B. Each insert features a  analysis flow cell (vi), through the use of valves vo, and s
length of stainless steel tubing, which enters a hole in the side(Vii, viii, and ix). Details of the light source and microscope
of the PMMA disk. The top insert also features an additional optical assembly (x), the charge-coupled device (xi), fluidics

.
S =
Analyte in g

Gasket B i i &

. o
..- .o ‘I

0.4 um membrane

/

Plastic screen

=)
Analyte through

Fig. 1. Description of the membrane-based flow cell capture system.
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for the assay in terms of reducing the non-specific signal.
Nonetheless, we found that when 1% BSA was included in
the antibody solution, thBg-specific signal was enhanced,
resulting in a higher signal to noise ratio and, therefore,
a more sensitive assay. The optimal conditions for the as-
say were an incubation time of 5min with 1.5mL Br
specific antibody at 1Qg/mL, followed by the introduction

of the antibody in the flow cell in a uni-directional mode
(i.e. in to flow cell and out to waste), at a flow rate of
0.3mL/min.

The studies also showed that re-circulation of the antibody
did not offer any significant advantage in terms of shorten-
: ing the assay time or decreasing its detection limit. Even
58 e e Waste though re-circulation could potentially reduce the amount

| p— (xiii) Data | : of antibody utilized in the assay, we decided to move away
(xii)| Fluidics Control| 77 : . L
Line (xiv)| Display | : from such an approach due to problematic precipitation of
.......................................... : the antibody reagents. Likewise, precipitated antibody could
be captured by the membrane and thus result in an in-
crease of the non-specific signal. On the contrary, there was

) . . ) . ] very little precipitation of the detecting antibody when de-
control line (xii), computer (xii), and monitor (xiv), are given  |ivered in uni-directional mode. As shown ifig. 2, we

Fig. 2. Schematic drawing showing the total analysis system.

in Section2. equipped the system with a Quén pre-filter (&), which pre-
_ _ vented any precipitated antibody from reaching the analy-
3.2. Bead tests and functionality sis flow cell, and resulted in a much cleaner assay. Finally,

we determined that the exposure time providing the high-

In order to demonstrate the functionality as well as the est signal to noise ratio for capturing the final images for
analytical validity of our system, we challenged our inte- this assay was 184 ms. This exposure time was such that it
grated system with 2.3 andpIn fluorescent polymer mi-  produced the stronge&g-specific signal and the weakest
crospheres. The size of these particles was chosen to bespackground, non-specific signal resulting from contaminants
simulate populations of spores and bacteria. Increasing num-sych as dust, irrelevant unstained bacteria and fluorescent
bers of 2.3um beads captured on the membrane were im- paper fibers, all of which could potentially be found in the
aged at various magnifications (Figure S1, Supplementarysystem.
Materials). Calibration curves displaying the average den-  |n order to demonstrate the specificity of the interaction
sity of green per pixel as a function of added volume of of the antiB. globigii antibody with theBg spores, we con-
bead suspension were calculated from the analysis of the pic-ducted correlation studies between the fluorescence micro-
tures shown in Figure S1, and are provided in supplementalgraphs Fig. 3A), and the images obtained from scanning
materials (Figure S2). Examination of these graphs revealselectron microscopyHig. 3B). The Formvar-coated TEM
that the linearity of the detected response is not affected byfinder grid made it possible to unequivocally locate the same
the magnification. However, as expected, the slope of the re-area in each instrument, clearly indicating that the fluores-
gression lines increases with the magnification, as the signalcence signal arises from the Aléx488-tagged antibody that
from the beads is brighter at higher magnifications. Since the s specifically binding to th&g spores. Zooms of both re-
magnification does not change the linearity of the calibration gions on four individual spores are shown respectively in
curves, and in order to accommodate a sustained flow throughrig. 3C and D. Digital superimposition of these two re-

the flow cell, an objective of five times was chosen for the gions further points at the excellent specificity of the new

assay. method Fig. 3E). Fluorescence micrographs obtained at a
total magnification of~400x are shown in order to bet-
3.3. Spores and bacteria ter represent this correlation. However, the correlation of

the fluorescence signal from spores with TEM or SEM mi-

To further illustrate the capabilities of our detection crographs is also established with magnification as low as
system, we targete®. globigii, a commonly used non- ~100x.
pathogenic simulant fd8. anthracis An immuno-assay was The limit of detection of our system was determined
established wher®8g spores were captured on the mem- through a dose-dependence study. Aliquots of the spore so-
brane and then stained with a fluorescently labeled Alexa lutions were plated to determine the exact spore concentra-
488-labeled antB. globigii specific antibody. Our studiesre-  tion in terms of colony forming units per milliliter. An assay
vealed that blocking the system’s tubing and the flow cell’s was run for each aliquot with concentration ranging from
filter chamber with BSA offered no significant advantage 30 to 30,000 CFU/mL. The signal for each concentration of
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Fig. 3. Correlative light and electron microscopy.

spores was measured as both the average density of green of
the entire image, and the total number of identified spores.
The background was determined as the signal obtained af-
ter passage of the antibody alone through a blank filter and
subsequent rinsing with PBS. Standard deviations were cal-
culated from the average of five such measurements of the
background or blanks. The limit of detection (LOD) for
both approaches was calculated using the regression equa-
tion whereby the intersection between the data line and the
level defined by 3 standard deviations above the average
background noise. The LOD was established to~46.00
spores from the calibration curve shownhig. 4A, using

the integrated average density of green as the signal. Count-
ing algorithms were developed within standard imaging ap-
plications in order to evaluate the signal as the total num-
ber of individual spore counts. These counts were available
through an automated custom macro using various algorithms
designed to remove the background, recognize shape and
size of the analyte of interest, and adjust for the potential
presence of clusters. Results, as showrrig. 4B, show

a decreased limit of detection of500 spores using this
method, the difference being explained by increased back-
ground discrimination with the individual enumeration. The
possibility of using both individual counts and integrated

Pixel Density Green (a.u.)

Spore Count (x 100)

3 -
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24

14
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306 above background

0

0 5 10 15 20 25 30
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14 1
12 4!
10 1.
8.
6
+f
24

Spore Concentration (x 1000 CFU)
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5 10 15 20 25 30
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Fig. 4. Dose-response curve obtained for increasing spore amounts with the
signal expressed as average fluorescence intensity in the green channel (A),

Signal is eXtremer important as this Signiﬁcantly extends and as the total of individual spore counts (B).
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the dynamic range of this instrument. Indeed, for higher spore ticle sizing (APS) or flow cytometry (FC), and for the reasons
concentrations (not shown here), where the number of over-exposed previously, do not appear as the ideal trigger systems
laps between adjacent spores is too overwhelming for in- (DOT and E, 2001; Fox et al., 20pDur system was tested in
dividual counts to be performed, the integrated signal was a blind study against triggering by yeast, talc, and powdered
found to be a more accurate estimate of the actual sporedetergents. The rate of success was 100% as no false positive
concentration. was generated. Another major potential problem arising from
While the excellent limit of detection here provided for a accumulation of dust in our system is clogging of the filter.
rapid spore assay may be attributed in part to the choice of theWe have conducted studies which showed that failure of the
antibody used in this study, a number of prior studies com- flow cell operation occurs only after 60 mg of dust are passed
pleted with our membrane system on other cellular assaysthrough, building a pressure greater than 60 psi, correspond-
yield similarly impressive analytical characteristics. Direct ing to 400 h of postal operation, assuming that the concen-
comparisons of the LOD values for bacillus spore with the tration of dust reaching the flow cell is an average &2..
gold standard method of ELISA are insightful into the gen- However, this result is widely dependent on the efficiency of
eral capabilities of the new system, but must be viewed with the aerosol system and it is based on the assumption that the
some caution as the choice of reagents influences the LODaerosol collection system has a built-in capability of discard-
values. Typical ELISA detection limits for the same system ing at least 95% of dust particles of fudn or higher. In these
fall into the range of 16-1C° spores $peight et al., 1997;  conditions, even though the accumulation of dust in the flow
Rowe et al., 1999 cellisinevitable in the long run, the device still exhibits a life-
The capture of spores or bacteria in ELISA depends on time well above that desired for military applicatiom3@T
the specificity, avidity and the affinity of the antibody that and E, 200} Additionally, we have shown that it is possible
serves as the capturing entity for the intended target. Sinceto regenerate the flow cell and extend its lifetime by flushing
antibody—spore complex formation is dependent on the prob-out up to 99% of the dust, spores, or debris accumulated on
ability of their interaction via diffusion in the well of an the filter. This function was easily implemented through the
ELISA plate, the established method suffers from slower use of an additional outlet within the top insert of the flow
assay time and reduced capture efficiency. In contrast, thecell, and application of an automated flush protocol sequence
more efficient entrapment of microorganisms viaa membrane
fosters improvements in the detection process by allowing
for the direct counting of stained organisms. Furthermore,
ELISA, unlike the membrane system imposes experimental
constrains that severely limit the ability to efficiently capture,
and ultimately monitor the presence of spores and bacteriaun-
der continuous fluid flow conditions, such asin the case ofthe P
intended application. Likewise, the membrane system offers
unique advantages over the ELISA approaches by providing .
a direct visualization, and characterization of the captured
species through epifluorescence imaging. This procedure al-
lows for individual particle counting, and the identification
of other species that may potentially be presentin the sample
through computer algorithms and pattern recognition meth- B e
ods.

3.4. Considerations on dust and contaminants 100%

Postal environments are commonly characterized with
abundantvarieties and amounts of dust, which are particularly
relevant to these studies. The SEM studies (data not shown
have demonstrated that the dust produced through transport
manipulation, and processing of postal mail contains fibers,
debris, and various kinds of bacteria. Most significantly, dust
contains a large number of particles with a wide size distribu- I
tion encompassing the size range of a number of biological
agents of interest. Furthermore, many of the dust components ©
exhibit autofluorescence, due to the use of fluorescent bright-(B) a b
eners and inks in the paper and document industries. Many OfFig. 5. lllustration of the regeneration capabilities. Surface plot representa-

the trigger systems currently used in military type detectors tjons of the signal obtained from five consecutives load—unload cycles of the
repose on size selection principles such as aerodynamic parfiow cell (A). Bar plot displaying removal efficiency reaching 99% (B).

(9]

d e
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