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Proof of Security of Quantum Key Distribution With
Two-Way Classical Communications

Daniel Gottesman and Hoi-Kwong Lo

Abstract—Shor and Preskill have provided a simple proof of key distribution that rely on unproven computational assump-
security of the standard quantum key distribution scheme by tions, the security of QKD is guaranteed by the Heisenberg un-
Bennett and Brassard (BB84) by demonstrating a connection ¢qrtainty principle of quantum mechanics. Much of the interest
between I§ey distribution and e.nta.nglement purlflcatlo.n protocols in QKD arises from the possibility of near-term real-life appli-
(EPPs) with one-way communications. Here, we provide proofs of Y P y g ) pp
security of standard quantum key distribution schemes, BB84 and Cations, whereas most other potential uses of quantum informa-
the six-state scheme, against the most general attack, by using thetion remain remote. QKD has been performed experimentally
techniques oftwo-way entanglement purification. We demonstrate  gver about 67 km of telecom fibers, and point-to-point through
clearly the advantage of classical post-processing with two-way 4en gjr at a distance of about 23.4 km. There are also proposals

classical communications over classical post-processing with only .
one-way classical communications in quantum key distribution for key exchange from ground to satellites. (See [14], [12] for

(QKD). This is done by the explicit construction of a new protocol ~discussions.)

for (the error correction/detection and privacy amplification of) Today'’s technologies fall short of full control and manipula-
BB84 that can tolerate a bit error rate of up to 18.9%, which is tion of quantum states, so practical QKD protocols must use a
higher than what any BB84 scheme with only one-way classical \,,ch more restricted set of operations. The best known QKD
communications can possibly tolerate. Moreover, we demonstrate - )

the advantage of the six-state scheme over BB84 by showing thatprotocol was published by B_enr_lett _and Brassard in 1984 [2].
the six-state scheme can strictly tolerate a higher bit error rate The standard quantum key distribution scheme of Bennett and
than BB84. In particular, our six-state protocol can tolerate a bit Brassard (BB84) is a simple “prepare-and-measure” protocol
error rate of 26.4%, which is higher than the upper bound of 25% that can be implemented without a guantum computer (see
bit error rate for any secure BB84 protocol. Consequently, our [28], [26] for background on quantum computation). In a

protocols may allow higher key generation rate and remain secure d " tocol. Al imol
over longer distances than previous protocols. Our investigation Prépare-and-measure” protocol, Alice Simply prepares a

suggests that two-way entanglement purification is a useful tool in Se€quence of single-photon signals and transmits them to Bob.
the study of advantage distillation, error correction, and privacy Bob immediately measures those signals; thus, no quantum
amplification protocols. computation or long-term storage of quantum information is
Index Terms—Cryptography, key distribution, quantum cryp-  necessary, only the transmission of single-photon states, which
tography, quantum information, quantum information processing. can be performed through regular optical fibers. Therefore,
“prepare-and-measure” schemes are good candidates for
near-term implementations of quantum cryptography.
|. INTRODUCTION . L )
ST Of course, a theoretical description of a protocol is a math-
UANTUM key distribution (QKD) [2], [10} allows two g matical idealization. Any real-life quantum cryptographic
parties to communicate in absolute privacy in the pre§ysiem is a complex physical system with many degrees of
ence of an eavesdropper. Unlike conventional schemesfo om, and is at best an approximation to the ideal protocol.
Proving the security of any particular setup is a difficult task,
requiring a detailed model of the apparatus. Even a seemingly
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amount of computation. Unfortunately, we do not, as yet, hapest-processing method. Third, our results show rigorously that
a good grasp of what can be done with a short quantum cothe six-state protocol can tolerate a higher bit error rate than
putation, and provable bounds are elusive, even for classiB&84. These facts can help direct experimentalists toward the
computation. Other assumptions are similarly unreliable, swost robust schemes for quantum key distribution.
we resort to one of the most conservative assumptions, unThere are good conceptual reasons as well for studying
conditional security—that is, security against the most genetalo-way QKD. The Shor and Preskill proof of security turns on
attacks allowed by quantum mechanics. the relationship between classical error correction and privacy
As it turned out, proving unconditional security even for aamplification and QECCs. EPPs have a close relationship
idealized system was very difficult. More than a decade passedQECCSs, but the detailed connection between EPPs using
between the original proposal for BB84 and the first general bobhe-way and two-way classical side channels is not well
rather complex proof of security by Mayers [32], [35], whichunderstood [3]; in fact, very little is known about 2-EPPs. A
was followed by a number of other proofs [5], [4]. Another apstudy of two-way QKD elucidates the relationship between the
proach to proving the security is to start by considering prearious aspects of quantum cryptography and 2-EPPs. It may
tocols which are less experimentally accessible. In particul&aelp to spur progress in both the theoretical study of 2-EPPs
Lo and Chau [23], building on the quantum privacy amplificaand also their practical applications in a real experiment. This
tion idea of Deutsclet al. [8], have proposed a conceptuallyis so because “prepare-and-measure” QKD schemes, which we
simpler proof of security. However, the protocol proved secuo®nsider, can essentially be implemented in a real experiment
has the unfortunate drawback of requiring a quantum comput@7]. Furthermore, the study of two-way QKD can clarify
Recently, Shor and Preskill [33] have unified the techniques ather proofs of security of QKD such as that due to Inamori
[23] and [32], [35] and provided a simple proof of security of18], [19], and may make the connection to earlier studies of
standard BB84. (See also [15] for a detailed exposition of thitassical advantage distillation [29]-[3].
proof.p In Section II, we present the BB84 and six-state protocols
The idea of an entanglement purification protocol (EPP) [2lnd review known bounds on the bit error rates they tolerate.
plays a key role in Shor and Preskill's proof. An EPP is a pr&ection Ill reviews the necessary concepts from the theory of
cedure allowing Alice and Bob to create a small number @ECCs and EPPs. Even readers already familiar with these
reliable Einstein—Podolsky—Rosen (EPR) pairs from a largeunbjects may wish to read Sections II-C and Il to acquaint
number of noisy pairs. More specifically, Shor and Preskill cothemselves with our terminology. Section IV presents the Shor
sider schemes for entanglement purification with a classical sidied Preskill proof of security. In Section V, we attempt a naive
channel from Alice to Bob (one-way EPPs or 1-EPPs), whicheneralization of the proof to two-way protocols, which fails
by the earlier work of Bennett, DiVincenzo, Smolin, and Wootn an instructive way. In Section VI, we present the main
ters (BDSW) [3], are mathematically equivalent to quantutineorem: EPPs satisfying the correct set of conditions can
error-correcting codes (QECCSs). be made into secure “prepare-and-measure” QKD schemes
As noted by BDSW, EPPs involving two-way communicawith two-way communications. An example EPP satisfying
tions between two parties can tolerate a substantially highte conditions is presented in Section VII; variations of this
error rate than 1-EPPs. Those two-way EPPs (or 2-EPPs) BRP produce the achievable error rates cited in this paper. We
useful for the transmission of quantum signals, but not thgirove the main theorem in Section VIII.
storage in a noisy memory, since in a 2-EPP, the receiver Bob

must send information to the sender Alice. Il. QKD PROTOCOLS ANDBOUNDS ONPERFORMANCE

In this paper, we demonstrate that it is possible to crea}}e\I .
“prepare-and-measure” QKD schemes based on 2-EPPs, a 08884 and the Six-State Scheme

that the advantages of 2-EPPs can survive. More specifically/n the BB84 protocol for QKD, Alice sends a qubit (i.e., a

we describe versions of BB84 and the six-state scheme [B]antum bit or a two-level quantum system) in one of four states

(another “prepare-and-measure” scheme) using two-way coi@-Bob. The statef)) and|+) = (|0) + |1)/V/2 represent the

muncations and prove their security with allowed error rate$assical bitd, while the statesl) and|—) = (|0) — |1))/v/2

substantially higher than any previous proofs. represent the bit. Alice chooses one of these four states uni-
Our results are significant for QKD for several reasons. Firdgrmly at random, and sends it to Bob, who chooses randomly

our scheme can tolerate substantially higher bit error rates tianmeasure in either the), |1) basis (the " basis) or thg+-),

all previous protocols. This may allow us to extend the distan¢e) basis (the X basis). Then, Alice and Bob announce the

of secure QKD and increase the key generation rate. Second basis each of them used for each state (but not the actual state

demonstrate clearly the advantage of usiwg-way classical sent or measured in that basis), and discard any bits for which

communications in the classical post-processing of signals i . . . .
. . An important result in classical cryptography based on noisy channels is
QKD. In part'CU|ar' for bqth 888_4 and the six-state SChem‘t:hat a two-way side channel can actually increase the secrecy capacity of a
our protocol tolerates a higher bit error rate than any one-wagisy channel. Thatis, the secrecy capacity with a two-way side ch@hrzn
be strictly greater than the secrecy capacity with only a one-way side channel
2Mayers’ and Shor-Preskill's proofs make different assumptions. Whil€;. See [29]-[31] for details. This is in sharp contrast with Shannon’s channel
Mayers’ proof assumes that Alice’s preparation of the BB84 states is perfemdding theorem which states that two-way side channels do not increase channel
Shor and Preskill limit the types of imperfections allowed in Bob’s measureapacity. The process of using two-way communications to share a secret in a
ment apparatus. A proof that takes into account more general imperfectiovey that is impossible with only one-way communications is called “advantage
remains to be published. distillation.”
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they used different bases. The remaining bits form the raw key, TABLE |

; . : BOUNDS ON THEBIT ERRORRATE FOR BB84 AND THE SIX-STATE SCHEME
which will be processed some more to produce the final key' USING ONE-WAY AND TWO-WAY CLASSICAL POST-PROCESSING THE LOWER

The six-state protocol is quite similar, but Alice sends 0Ngyunps FORTWO-WAY POST-PROCESSING 18.9%FOR BB84AND 26.4%FOR
of six states instead of one of four. The four states from BB84 THE SIX-STATE SCHEME, COME FROM THE CURRENT WORK

are used (with the same meanings), plus the two stéest BB84

i|1))/v/2 and(]0) — i|1))/v/2, which represend and1 in the

“Y™” basis. Bob chooses to measure randomly inxheY’, or one-way two-way
Z basis, and again Alice and Bob discard any bits for which Upperbound  14.6% 1/4
they used different bases. Thus, for the six-state scheme, the raw Lowerbound 11.0% 18.9%
key consists of one-third of the qubits received on average, as

opposed to one-half for BB84however, as we shall see, the Six-state Scheme

six-state scheme remains secure under noisier conditions.

Once they have produced the raw key, Alice and Bob select Upper bound Oni'/‘zay tW(l)'/V;ay
a sample of sufficient size (assume one-half the total raw key Lowerbound  12.7% 26.4%
for simplicity), and publicly announce the values of those bits.
They compare and calculate the fraction of bits which disagree;
this is known as the “bit error rate.” The bit error rate gives an
estimate of the actual error rate for the remaining key bits. B. Known Bounds on the Performance of QKD

the bit error rate is too high, Alice and Bob assume there is antpere are a number of upper and lower bounds known for the
eavesdropper and abort the protocol. Otherwise, Alice and Bofy,\yaple bit error rate for these two protocols. In Table I, we
take their remaining bits and may correct them using a classiggnmarize the bounds for BB84 and the six-state scheme. The
error-correcting code: that is, Alice announces her values for thg)|as give bounds for schemes that use one-way and two-way
parity checks of a classical linear code, and Bob compares Bigssical communications during the post-processing phase.
values for the same parity checks to deduce the locations of ¢f; upper bounds are derived by considering some simple
rors in the remaining key bits. He corrects those errors. Final|ygividual attacks, and determining when these attacks can
Alice and Bob perform privacy amplification whose goal is tQyefeat QKD. The lower bounds come from protocols that have
remove the eavesdropper’s information on the final key: th@\en proved secure. For both BB84 and the six-state scheme,
choose some set of parities, and the final key bits are the valygs new lower bounds for two-way classical post-processing
of those parities. After this procedure, provided the bit error rafe e mes are substantially better than the upper bounds for
is not too high, the final key is supposed to be secure against@hemes with one-way classical post-processing. Therefore,

eavesdropper Eve. . . our results demonstrate clearly that our schemes can tolerate
_There are a few points about the protocols which deserve gsner pit error rates than any possible schemes with only
ditional comment. First, all of Alice and Bob’s classical commus- e-way classical post-processing can

nications occur over a public channel, so Eve also has avaiIaBPeI_ .
he upper bounds for one-way post-processing come from at-

to her any information that was announced. However, the clas- ks based timal imate cloni hi 111 [7
sical channel should be authenticated, so that Eve can only lis s based on optimal approximate cloning machines [11], [7],

to it and not change it. Second, after producing the raw key abd- Although perfect cloning of an unknown quantum state is
before performing the error test, Alice and Bob should agree 8Hictly forbidden by the uncertainty principle of quantum me-
arandom permutation to apply to their raw key bits. This simplfhanics, approximate cloning is possible. Optimal approximate
fies the analysis, since Eve’s attack under these circumstang@ing has recently been experimentally demonstrated [21].
might as well be symmetric over all qubits sent, and improvédore specifically, Eve intercepts all of Alice’s signals from the
the tolerable bit error rate. Third, the meaning of “security” foquantum channel. Using the appropriate optimal cloner, Eve
this protocol is slightly subtle: for any attack chosen by Evean generate two equally good approximate copies of the orig-
either she will be detected, except with probability exponeinral signal. In the case of BB84, the resulting bit error rate in
tially small in some security parametey or, with probability a single copy is about 14.6% [11], [7], and it ig6 for the
exponentially close td, she will have an exponentially smallgjx-state scheme [1]. Eve then keeps one copy herself and sends
amount of information, in some security parameteabout the  the second copy to Bob. With only one-way classical processing,
final key. A QKD scheme is efficient if the resources (in termp, is not allowed to send classical signals to Alicherefore,
of the nur_nber of quplts sent, amount of computational POW& sk and Eve are in a completely symmetric situation: if Bob can
etc.) requ_lred for its |mplement§1t|or) are at most polynomial | enerate a key based on subsequent classical transmissions from
the security parameters. For simplicity, it is quite common i )

ice, Eve must be able to do the same. Therefore, at this error

take the security parameters todethe total number of qubits . :
sent. As discussed in [25], other choices of the security paraﬁ"*Ie (14.6% orl /G), the QKD scheme must be insecure with

eters are perfectly acceptable. one-way post-processing.

4Prepare-and-measure QKD schemes can be made more efficient b$if one allows Bob to send classical messages to Alice only (but not from
employing a refined data analysis in which the bit error rates of the samplatice to Bob), in the context of coherent state QKD, it is known that such
data of the various bases are computed separately and each demanded badlevard one-way communications can actually help to beat the approximate
small. See [25], [24] for discussions and a proof of the unconditional securitioning attack. However, the issue of unconditional security remains open. See
of those efficient prepare-and-measure QKD schemes. [16] for details.
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The upper bounds for two-way post-processing come fropnotocol related to BB84, while the three-basis scheme produces
an intercept and resend eavesdropping strategy. Eve interceppsotocol related to the six-state scheme. We can also consider
each qubit sent by Alice. She chooses to measure in a randefficientschemes in which the rotations are not performed with
basis from the appropriate lisk(, Z for BB84 or X, Y, Z for equal probabilities. These produce efficient BB84 and six-state
the six-state scheme). She records her measurement outceoiemes [25], [24], which have a higher rate of key generation
and prepares a single photon in the polarization given by hagr qubit transmitted.
measurement outcome and resends such a photon to Bob. Not&fter performing the rotation, Alice sends the second qubit of
that whatever Bob can do from this point on can be simulated bgch pair to Bob. When Bob acknowledges receiving the trans-
a classical random variabpeeparedoy Eve, who has a classicalmission, Alice announces which rotation she performed for each
record of it, and a local random number generator possesseghir. Bob reverses this rotation. Then Alice and Bob agree on a
Bob. Therefore, secure QKD is impossible even with two-wayndom permutation of the EPR pairs, and select a subset (half
classical communications between Alice and Bob. For BB84df the pairs by default) to measure (in tAebasis) to test for er-
the intercept and resend strategy gives an error rate of 25%: halls. They compare the results of the test, and abort if the error
the time Eve has chosen the correct basis, so there is no emate is too high. If not, Alice and Bob perform an EPP to extract
and half the time she has chosen the wrong basis, in which cgsed entangled pairs. Then they measure (again irthasis)
there is a 50% chance of an error, for a net error raté/éf the remaining pairs and use the result as their secret key.

For the six-state scheme, intercept and resend gives an error rafehe security proofs we review in Section IV show that the

of 1/3: Eve has the correct basis orlly3 of the time, and the security of BB84 and the six-state scheme can be reduced
remaining2/3 of the time, she has a 50% chance of introducing the security of the above EPP schemes using appropriate
an error. EPPs. The protocols thatlead to traditional prepare-and-measure

The lower bounds in Table 1 come from proofs of securitpne-way post-processing schemes are EPPs using just one-way
The Shor and Preskill proof shows that QKD with one-way concommunications; in this paper, we present two-way post-
munications can be secure with data rate at léast2h(p), processingschemes that arise from EPPs with two-way classical
wherep is the bit error rate and communications.

h(z) = —zlogyx — (1 — ) log,(1 — x) [ll. ENTANGLEMENT PURIFICATION AND QUANTUM ERROR

is the Shannon entropy. This reaclleshenp is about 11.0%. CORRECTION

For the six-state scheme, this result has been slightly improveduppose Alice and Bob are connected by a noisy quantum
by one of us (H.-K. Lo) [22] to allow secure QKD up to a bitchannel (and perhaps also a noiseless classical channel). Entan-
error rate of about 12.7%.With two-way communications glement purification provides a way of using the noisy quantum
during post-processing, Shor and Preskill's result and Loghannel to simulate a noiseless one. More concretely, suppose
result remain the best prior results. (Lo’s result is marginalkylice createsV EPR pairs and sends half of each pair to Bob.
better than Inamori’s result [19] for the six-state scheme, whid¢hthe quantum communication channel between Alice and Bob
requires two-way classical post-processing.) In this paper, Venoisy (but stationary and memoryless), then Alice and Bob
present significant improvements on both lower bounds. Wil share N imperfect EPR pairs, each in the stat&hey may

attempt to apply local operations (including preparation of an-
C. EPP Schemes for QKD cillary qubits, local unitary transformations, and measurements)
nd classical communications (LOCCS) to purify fiémper-

For our proof of security, it will be helpful to consider anothe g . T
ure Iy, L P I rrF EPR pairs into a smaller number, EPR pairs of high fi-

class of scheme based on EPPs (which are described in . . ! :
detail in Section Ill). For these QKD schemes, which we wi elity. This process is called an EPP and was first studied by
refer to asEPP schemesr EPP protocolg Alice prepares a BDSW [3]. . .

number of EPR pairSi+) = (00) + |11))/v/2. On the second One way to_ chssﬁy EPPs is in te.rms of what type of clas-

gubit of each pair, Alice then performs a random rotation chosgﬁal communlcanons_they require. F|g. 1(2) shows the struc;ure
either from the sef, H or the setl, T, T2. T is the identity of EPPs that can be implemented with only one-way classical

operation H is the Hadamard transform, which swaps states fpmmunications from Alice to BOb’. Known as 1-EPPs. .F'g' 1(b)
the X and Z bases, and’ is a unitary operation which takesShOWS the structure of EPPs requiring two-way classical com-
states in theX basis to th&” basis, states in thE basis to the munlcgtlons, known as.2-EPP§. . . .
7 basis. and states in tHe basis to theX basis. Typ|caIIy_, a 1-EPP will consist (_)f Alice measuring a series
We will refer to the first case (witt and ) as thetwo-basis of commuting operators and sending the measurement result to
EPP protocol, and the second case (Wit", andT?) as the Bob. Bob will then measure the same operators on his qubits. If
three-basisEP’P protocol. The two-basis scr;eme will produceEere is no noise in the channel, Bob will get the same results as
' ice, but of course when noise is present, some of the results
SThe result in [22] makes use of the nontrivial mutual information betweewill differ. From the algebraic structure of the list of operators

the bit-flip and phase error syndromes, and of the degenerate codes St“diemasured Bob can deduce the location and nature of the errors
DiVincenzo, Shor, and Smolin [9]. ’

7“EPP protocol” sounds redundant since the second “P” in “EPP” also stan%g_d Cor_reCt them. Unfortunately, the process of measu_”ng EPR
for “protocol.” However, it is not really redundant, since the full phrase is shopairs will have destroyed some of them, so the resulting state

for “quantum key distribution protocol based on an entanglement purificatigftpnsists of fewer EPR pairs than Alice sent.
protocol.”
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Alice E4— Note that the states in Section Il described as being ikthe
classical Y, or Z bases are, in fact, eigenstates of the operafos, and
info. Z. A Calderbank—Shor-Steane (CSS) code involves measuring
Bob £p just X -type andZ-type Pauli operators. Also, note that any pair
of X, Y, andZ anticommute with each other (so, for instance,
(@ X7 = —ZX). Finally, note that all Pauli operators have only
) eigenvalues-1 and—1. Classical linear error-correcting codes
Alice Em £ can be understood as a measurement of a series of jigie
\ /‘ \ / operators: the eigenvalue ofZxtype operator is the parity of
bits on which the operator acts &s (For instance, measuring
Bob £m €pap— ... Z ® I ® Z gives the parity of the first and third bits.)
(b) When dealing extensively with Pauli operations, it is helpful

) ) ) ) to also look at a more general class of operators which interact
Fig. 1. (&) A 1-EPP. Alice performs some unitary operations and . . .
measurements, then makes a transmission to Bob, who performs anoW@r“ with Pauli operations.
unitary transformation, possibly based on Alice’s classical transmission. (b) A L . . . .
2-EPP. Alice and Bob alternate local operations and classical transmissions!:)ef'_n_ltIon 2 A umtary_ operation _belongs to th_@hﬁord
Each operation can depend on the contents of earlier transmissions. Geupif it conjugates Pauli operators into other Pauli operators.
procedure can extend indefinitely.

Thus, a Clifford group operation will map eigenstates of a
) ] _ Pauli operation into eigenstates of another Pauli operation. For
As noted by BDSW, a 1-EPP is mathematically equivalefisiance, controlled-NOT (CNOT) an#l are both Clifford
to a QECC (see [13], [28] for background on QECCs). Instegflyyp operations. (In fact, the Clifford group is generated by
of measuring a series of operators and transmitting the resuiyyot H, and the phase gafe) — |0), [1) — i1).)

Alice instead encodes Bob’s qubits into a particular prede-

termined eigenspace of the list of operators. Then when BobPefinition 3: We say an EPP (one-way or two-way)sgm-

receives the qubits, he can measure the same list of operatBitricif it can be described with a set of operatgr,, }, plus

telling him the error syndrome for the QECC given by thd¢nitary decoding operatiorl$, ® (P,U,). Each operaton,,

subspace. For instance, if the channel only produces bit-filgscribes a measurement that may be made at some point in the

errors, Alice can encode Bob’s state using a random cofeptocol; the indexy, describes a history of outcomes of earlier

of a classical linear code, and then Bob measures the paffipasurements as a stringi and1’s. On the history., Alice

checks for that code. He determines what error the chanRéfforms the measuremehtf,, on her side, and Bob performs

introduced by calculating how the coset has changed sirff& measurement/,, on his side. (They always perform the

Alice’s transmission. same sequence of measurements, thus the name “symmetric.”)
2-EPPs can be potentially more complex, but frequently hat&ey then update the historyby appending the parity of their

a similar structure. Again, Alice and Bob measure a set of idefft0 measurement outcomesfor the same outcome, for op-

tical operators. Then they compare their results, discard soRfSite outcomes). The protocol begins with each person mea-

EPR pairs, and together select a new set of operators to measth&ing the operatab/y. Each time the history is updated, Alice

An essential feature of a 2-EPP is that the subsequent chdi@§l Bob measure the operator corresponding to the new value

of measurement operators may depend on the outcomes of e, and again update the history according to the result. When

vious measurements. This process continues for a while until fhere is naV,, for the current history, Alice performs the opera-

remaining EPR pairs have a low enough error rate for a 1-Ef@n U, and Bob performs the operatidiU,,, and the protocol

to succeed. Then, a 1-EPP is applied. terminates.

Unfortunately, not all EPPs are suitable for making a pre- Fig. 2 shows a symmetric EPP. See also Section Ill-A and
pare-and-measure QKD protocol. The next few definitions 3f8y. 3 for another representation.

designed to set the stage for the detailed sufficient conditions i”Note that if the history is an extension of the histopy(i.e.

our main theorem. We will, for instance, primarily be interesteﬁi is 1 with additional bits appended), the operatdi, M,

Ina Ir_estncted clasr? OLEPPS Véh'zh involve the Fsas(jurem_intsﬂould commute for the EPP to be realizeable using local oper-
Pauli operators. The best studied EPPs can all be describedyfg ang no additional resources. On the other hand, for two
the “stabilizer” formulation, which employs Pauli operators ©XJifferent extensionsy, andvs, of the same history, the corre-

tensively. Other EPPs might still be useful for QKD, but are le%?)onding operatordf, andM,, donotneed to commute. This
well studied. is because Alice and Bob never need to measure both operators

Definition 1: A Pauli operatoracting onn qubits is a tensor for the same state.
product of individual qubit operators that are of the fofrtthe For a 2-EPP, the commutation requirement is the only
identity) constraint on theM’s. For a 1-EPP, we also require that
01 0 —i the operatorsV/,, depend only on the length of (i.e., how
—1 1 0 .
X = < > , Y= ( ) and Z = ( ) . many measurements have been made so far) and not the precise
Lo 0 -1 history. This is because in a 1-EPP, Alice cannot learn Bob’s
An X -typeoperator is a tensor product of juss andX’s, and measurement outcomes and, therefore, cannot know the exact
a Z-typeoperator is a tensor product of juss andZ’s. value of the historypu.

i
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. =XQ®ZQZRXQI
Alice MQ) Mr Mrs " M@ ®2828 ®
>
Bob My M, M,, M, =IXQ®Z®ZX
Fig. 2. Structure of a symmetric EPP. Alice and Bob measure the same Ms=XQIQRXQRZQ7Z
sequence of operators.ands are the parities of the outcomes of Alice’s and
Bob's measurements dffy and M., respectively.

Mu=20XRIQXQZ

The final operatior/,, ® P,U, serves two purposes. First, @

the measurements have determined a good deal of information

about the state of the system, and we must disentangle that from My=X@0XX®X

the residual Bell states. Second, it acts to correct, discard, or /\
otherwise eliminate any errors identified by the measurements.

For instance, if the EPP locates pairs with errors, but does not A =720 2® 2 Mi=X®XQIQI
identify what kind of errors are present, the final operafign /\ l

would likely permute the qubits to move the errors to a stan-

dard set of locations, which are then discarded. It is convenient stop My=20IQ0I0Z M,=X®I0X®I
to separate the decoding operation into two palis: which

is performed by both people and represents decoding and dis- \ 1

carding bad EPR pairs, arg,, performed just by Bob, which stop stop
represents correcting EPR pairs which will be kept. In practice, (b)

it is often easier to specify an EPP by including unitary opera- 3. (a) The tree di ation of a 1.EPP. Th .
. . . 3. (a) The tree diagram representation of a 1-EPP. The sequence o
tionsin betwe_en meas_urements as _We” a_ls at the end of the Iglr&'rators is fixed, so there is no branching. The 1-EPP shown corresponds
tocol, but this is an equivalent definition, since the measuremefithe 5-qubit QECC. (b) The tree diagram of a 2-EPP. Future operators may
operatorsM“ can instead be defined to take the change of bagipend on the outcome of a measurement, allowing a branched tree. When the
. . . tree branches, edges are labeled by the outcome of the previous measurement.
into account. Notice that in a 1-EPP,, cannot depend on, e it does not branch, no label is needed. Note that the tree does not need to
whereasP, invariably will—otherwise, there would be no waybranch uniformly, or even have uniform depth. The EPP in part (b) is CSS-like;

to correct any errors discovered in the course of the protocolthe EPP in part (a) is not.

Definition 4: A symmetric EPP is &tabilizer EPP if all
measurementMp are of eigenspaces of Pauli OperationS’ tHg the end, but this does not affect the definition at a.”, these
decoding operatio/,, is a Clifford group operation, and the EPPs can be rewritten to conform to the above definition of sta-
correction operatiorP, is a Pauli operation. For a 1-EPP, wePilizer or CSS-like EPPs.
again make the restriction that, = U is independent of:. . _
A stabilizer EPP i<CSS-likeif all M,,’s are X-type orZ-type A. A Tree Diagram Representation
Pauli operations, and/,, involves only CNOTSs. The series of operators measured in a stabilizer 1-EPP or

Stabilizer 1-EPPs can be thought of as another guise of st -EPP can be represented using a tree diagram represefitation.

: hvertexis labeled by an operaldy, that could be measured
lizer QEECs. The measurements, correspond to the genera- ac . i .
tors of the code stabilizet/,, is the decoding operation, whichdu”ng the EPP. Each edge is labeled with one or more possible

for a stabilizer code is always from the Clifford group, afid outcomes of the previous measurements. The edges are directed

corrects the Pauli errors that have occurred. CSS-like 1-EF’( the root of the tree (labeled ) toward the leaves (la-

correspond to the class of CSS codes; since they are based@9fi% W'théwﬁ for yu of maximal length), representing the time
classical linear codes, the decoding only needs CNOT gatespr ering of the measurements.
Given a tree diagram of the above form, we can read off the

. The same mt_umon applies to the case of ZTEP.P.S' The Congtfucture of the EPP. We start at the root of the tree, which is
tion that decoding only needs CNOT means intuitively that tngeled by measuremen,,. We note the outcome and follow

encoo_ledZ operation is, in fact, also af-type; tha_t IS, It can the edge which is labeled by that outcome. Then we perform the
be written as a tensor product Bfoperators. The final correc- .
measurement which labels the new vertex, and follow the edge

tion operation?, is a Pauli operator because the error syndrorr(n: rresponding to the outcome of that measurement. We repeat

(disclosed in the two-way classical communication) should Cfkis process until we reach the bottom of the tree, at which point

tain enough information to identify which Pauli error has 0 e perform the appropriate unitary operatigne P, U,. Each

curred in the quantum channel. .
The EPPs we will consider in this paper are all CSS—Iikré'Story“ corresponds to a path through the tree.
For any 1-EPP, the sequence of measurements does not de-

EPPs. In fact, we will need to consider Alice and Bob choosin nd on the outcome of any measurement. Therefore, a 1-EPP

a random EPP out of a family of similar EPPs, but this does n . . . .
produce any further intrinsic complications. For simplicity, wé) n be represented by a straight (directed) line (see Fig. 3(a)).

may describe EPPs that involve Clifford group or Pauli groupaye thank bavid Divincenzo and Debbie Leung for suggesting the tree dia-
operations in the middle of the series of measurements instgegh representation.
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On the other hand, in a 2-EPP, the choice of measuretgnt B. EPP Protocols are Secure
at any step can depend on the outcome of an earlier measure-
mentM,,. This corresponds to a branch in the tree at st@ee

Fig. 3(b). In this subsection, we will show that the EPP protocols de-

scribed in Section Il are secure. The argument is essentially that
of [23]. First, what do we mean by “secure?”

IV. THE SHOR AND PRESKILL SECURITY PROOF Definition 8: A QKD protocol to generate key bits iscor-
. . .. rectif, for any strategy used by Eve, either Alice and Bob will
f’\E‘;‘EXé;le gve thelgh?rra”?nprrezk”t' ﬁr%"f’ [?3}] gf ;ﬁc‘:”t%?ort with high probability or, with high probability, Alice and
0 o ce also .[ ] for a ore detared ve s'o - onora ob will agree on afinal ke¥ which is chosen nearly uniformly
Preskill's prpof begins by foIIo_Wlng Lo and Chau’s proof [23]a random. The protocol isecureif, for any strategy used by
of the_secunty of a scheme using EPPS.’ and then shows that %, either Alice and Bob will abort with high probability or
security of BB84 follows from the security of the EPP SChem%ve’s information about the key will be at mostp(—s) for
',A‘S noted before, in the EPP schem.e, Alice credfeBPR ome security parameterin all cases, “with high probability”
pairs and S(_ends half of each to Bob. Alice and Bob then test Rans with probability at least— exp(—r) for some security
error rat.es in theX' andZ bages ona randomly chosen S“*?S Brameter-. The resources required for the implementation of
of m pairs. If the error rate is too high, they abort; otherwis QKD scheme must be at most polynomiakiands. For sim-
they perform an EPP’ on the remainingV — mn pairs. Finally, - yjicity in what follows, we will consider the case where=
they measure (in thg basis) each of the EPR pairs left after

> X and call it simply the security parameter.
C, producing a shared random key about which, they hope, Eve

has essentially no information. Naively, one might consider a security requirement of the
form I.,. < 6n, wherel,,. is the eavesdropper’s mutual in-
formation with the final key and is the length of the final key.
However, such a definition of security is too weak, since it al-

All of the QKD protocols we consider will take place ovelows Eve to learn a few bits of a long message. For instance,
a noisy quantum channel, even when there is no eavesdropper eavesdropper may know something about the structure of
present. We shall be primarily interested in a special classtht message that Alice is going to send to Bob. Imagine that
guantum channels known as Pauli channels. the last few characters of the message contain the password for
launching a nuclear missile. In that case, Eve could compromise
the security of the message by concentrating her information on
the last few bits.

A. Noisy Quantum Channels and Eavesdropping Strategies

Definition 5: A quantum channés any superoperator which
acts on transmitted qubits. Pauli channelP;, ¢;) applies the
Pauli operatiorP; with probabilityg; (so we requiré_ ¢; = 1).
Pauli operator independently on each qubit sent through thee < ¢~ " for any eavesdropping strategy. Unfortunately,
channel. It appliest with probability g, Y with probability Such a definition of security is too strong to be achievable. For

¢y, Z with probability g, and I with probability 1 — ¢y — instance, Eve can simply replace the signal prepared by Alice
@ — qz. by sending Bob some signals with specific polarizations pre-

pared by herself. Such an eavesdropping attack is highly un-

From the perspective of Alice and Bob, noise in the channglely to pass the verification test (by producing a small error
could have been caused by an eavesdropper Eve. We will neeghi@). However, in the unlikely event that it does pass the verifi-
consider two types of eavesdropping strategy by Eve. The fitgdtion test, Eve will have perfect information on the key shared

strategy, the joint attack, is the most general attack allowed Bgtween Alice and Bob, thus violating the security requirement
quantum mechanics. Lo < e—07,

Definition 6: In a joint attackby Eve, Eve has a quantum In fact, even the definition we give is probably not strong
computer. She takes all quantum signals sent by Alice and pepough for some purposes: Eve can retaguantumstate at
forms an arbitrary unitary transformation involving those sighe end of the protocol, and the security definition should refer
nals, adding any additional ancilla qubits she cares to use. $aéhat rather than bounding helassicalinformation about the
keeps any part of the system she desires and transmits thek@y- For instance, a better definition is: for any eavesdropping
mainder to Bob. She listens to the public discussion (for errgirategy, either Eve will almost surely be caught, or, for any two
correction/detection and privacy amplification) between Alicénal values of the key, Eve’s residual density matrices after the

and Bob before finally deciding on the measurement operafiotocol concludes will have high fidelity to each other. That is,
on her part of the system. Eve cannot reliably distinguish between any pair of values of

o _the key. We do not prove the stronger definition in this paper.
The joint attack allows Eve to perform any quantum operation . . .
The question of defining security for quantum cryptography

on the qubits transmitted by Alice. For the security proof, Wi% way that enabl {0 DIV moosibility of brotocol
shall also consider a Pauli attack. a way that enables us to prove composibility ot protocols

remains an important open problem. For this paper, however,
Definition 7: A Pauli attackby Eve is a joint attack where thewe simply use Definition 8.
final operation performed on the transmitted qubits is a generalOur method will be to relate the security of BB84 and the six-
Pauli channel. state scheme to the security of EPP schemes, and we wish to say
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that when the EPP schemes are secure, so are the “prepare-and-b) Eve performgl, measure$V,., and then Alice and Bob
measure” schemes. measureV/,, ® M,,. By the argument of the previous paragraph,
the attack in b) produces a density matrix with the same fidelity
ton EPR pairs as the attack in a). The attatfollowed by mea-
surement o#¥,. is a Pauli attack. The initial state is a Bell state

. : . ; (the tensor product dft +) for all pairs), and the final state is a
secure, and its security paramegeis polynomially related to * .
. . mixture of tensor products of Bell states (the outcome of mea-
p. Furthermore, protocal should abort at a given bit error rate

X ; suring W, for each pairr). Each tensor produgt;) of Bell
only if protocol 3 also aborts at that bit error rate. states can be associated with the unique Pauli oper&tidhat

To prove the security of EPP protocols, we first observe thataps|¥)“V to |®;), so Eve’s attack i§P;, ¢;), whereg;
we need only show Alice and Bob can generate states closéstaéhe probability of getting the outconmé;). Therefore, the
n EPR pairs. This is a consequence of the following lemniamma holds for a hypothetical protocol in which Alice and Bob
(originally [23, Note 28]). measureM,, ® M, directly.

Lemma 1: If p has a high fidelityl — 2= (for largel) to a Of course, Alice and Bob have no way of doing this, so
state ofn perfect EPR pairs and Alice and Bob measure alodgstéad they must measubé, separately and compare results
a common axis to generate arbit key fromp, then Alice and (With one- or two-way Com_municat_ions,_ as appropriate)_
Bob will most likely share the same key, which is essentiall§ince this gives them more information, it certainly cannot
random. Moreover, Eve’s mutual information with the final key’€lP Eve. On the other hand, they do not actually use that

Definition 9: Suppose QKD protocgl is correct and secure,
with a security parameter. Then QKD protocok: is said to
have securitysimilar to protocols whene is also correct and

is bounded by~ + O(2~2'), where Information—from the definition of a symmetric EPP, only the
relative measurement outcome between Alice and Bob matters.
c=1—logy[2n + 1+ (1/log, 2)]. Therefore, having Alice and Bob measuvg, ® M,, together
produces the same fidelity and chance of aborting as when they
In other words, Eve’s information is exponentially small as measurel/,, separately. O

function of .
This lemma is described in [23] as a “classicalization” or

The prqof is given_in Appendix |. The next step is to restriciquantum-to-classical reduction” because it reduces Eve’s gen-
our attention to Pauli attacks. eral quantum attack to a Pauli attack, which is classical in the

Lemma 2 [23]: Consider a stabilizer EPP protocol forQKD.Sense that it can be described by classical probability theory.

Given any joint attackd by Eve, there is a Pauli attack forwhich"elmma 2 allows s to simplify our discussion to just Pauli chan-
the final density matrixoop of Alice and Bob has the same® S(Pi, ¢)-

fidelity to n EPR pairs, and which gives the same chance of We can simplify further by taking in_to account the sym-
having the QKD protocol abort, metry of the QKD protocol. Note that in the EPP protocols

we described, Alice and Bob permute their qubits randomly
We will only prove Lemma 2 for EPP protocols based obefore doing any other operations. So we may as well assume
stabilizer EPPs, but the result holds for any EPP designedgo= ¢; wheneverP; is a permutation oP;. That is, the attack
correct Pauli channels (see [15] for the general proof). Paidi symmetric on the EPR pairs. Similarly, in the two-basis
channels play a special role in the above lemma because mggteme, Alice performs randomly one of the two operatibns
known QECCs (stabilizer codes, for instance) are designedAQ which produces a symmetry between tkieand Z bases,
correct Pauli errors. SO we can also assunge = ¢; wheneverp; is related toP;
Proof: First, note that for a symmetric EPP, it would suf—by the Ha_ldamard fransform on any number of qubits. In the
fice if Alice and Bob had a way of measuring, ® M,, di- three-basis scheme2, we can assume= ¢; when?; andP;
rectly instead of separately measuriff), on Alice’s side and are related byl” or T on some set of qubits.
again on Bob’s side. This is because all decisions are based oNow, in the EPP protocols, Alice and Bob measure a random
the parity of Alice’s and Bob’s results, which is equal to théubset ofm qubits to test the error rate. From this, they are

eigenvalue of\f, ® M,,. Also, note that the EPR pa+) = supposed to figure out what sort of Pauli channel the system
(]00Y+|11))/+/2is a+1 eigenstate of the Pauli operatdfsp X has undergone. If the noise occurs independently on each qubit,
andZ @ Z. (Itis actually a—1 eigenstate of ® Y.) this is just a straightforward problem in statistical inference. Of

Thus, letiW, be a Bell measurement for théh EPR pair—a Course, an eavesdropper need not use such a simple attack, but
measurement of botN ® X andZ ® Z. For a stabilizer EPP, the symmetries of the protocol still allow Alice and Bob to make
W, commutesvith M,, @ M, for all u,  (note that eactds,, @ good guess as to the true channel. For one thing, Eve has no
is likely to involve more than one EPR pair). Thus, if Alice andvay to distinguish between the test bits and the key bits, so the
Bob first measure all the operatal$, ® M, and then measure €rror rate measured for the test bits should be representative of
W, for all r after the EPP is concluded, the result is the same ¢ error rate on the key bits. What's more, Alice and Bob learn
if they first measuredV, and thenM,, ® M,,. Since they do not & good deal about the basis dependence of the channel as well.
need the results of the measuremeénis it is again equivalent  Let us first consider the two-basis case more carefully.
if Eve measuredV,. instead of Alice and Bob. Suppose Alice and Bob find there apgm; errors among

Thatis, the following two situations are the same: a) Eve pehe m; qubits for which Alice did the operatiod; these
forms her attack4 and then Alice and Bob measuté, ® M,,, representX andY Pauli errors introduced by Eve. Similarly,
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they find pgym g errors in themy qubits for which Alice did chance of getting caught, or the final state will have high fidelity
the operationH; these represert’ and Z errors introduced ton EPR pairs. Combining that with Lemma 1, we have shown
by Eve. If this channel were an uncorrelated Pauli chanrtble following.

(a%; (I?f(; Q%)voon average, we would expeet = gx +q3-and o0 The Epp protocols for QKD are secure and
pa = qy- + q%. In fact, if we consider the effective error ratesCorrect

after undoing the, H operations, we findx = (¢% + ¢%)/2 '

andgz = (¢% + ¢%)/2 becausd and H are equally likely.
Thatis,gx = qz. The effectiveY” error rategy = ¢%-. C. Prepare-and-Measure Protocols are Secure

Note that in the.two—basis case, Alice and-Bob are unable tos;en Theorem 4, Shor and Preskill [33] showed that one can
deduce the most likely values gk, gy, andqz; they canonly 546 the security of BB84. The same technique can be applied

learnpx = gy + ¢z andpz = qx + gy. Given the symmetry 1, show the security of the six-state scheme [22]. These two
between/ andH, they, in fact, havex = pz = (pr +pm)/2,  results can be combined into the following theorem.
but our discussion will keepy andp; as separate parameters.

This allows most of our results to also apply to the efficient case Theorem 5—{33]: Given a QKD protocol based on a CSS-
[25], [24], wherel and H have different probabilities. like 1-EPP, there exists a “prepare-and-measure” QKD protocol

The fact that Alice and Bob cannot completely learn the chatith similar security. That is, for any strategy by Eve to attack
acteristics of even an uncorrelated Pauli channel suggests thi§t “prepare-and-measure” protocol, there exists a strategy to
might be helpful to measure in more bases. This is the advaitack the EPP protocol with similar probability of causing the
tage of the six-state scheme, which is related to the three-bdyiatocol to abort and similar information gain to Eve if it does
EPP protocol. In that case, Alice and Bob measyter, pr=. NOt abort. (Similar here means that the security parameters are
For an uncorrelated Pauli chantig!., ¢%., ¢%), pr = ¢% +¢%, Polynomially related.)

pr = ¢% +¢%, andpre = ¢ + ¢%. Given the symmetry of the Proof: The reduction to a “prepare-and-measure” pro-
problem, after undoing the rotations, we get tocol is done as a series of modifications to the EPP protocol

to produce equivalent protocols. The main insight is that
the X-type measurements do not actually affect the final
QKD protocol, and therefore are not needed. Tketype

Again, our discussion will allow ., gy, andg to be different Measurements give the error syndrome for phageerors,
to accommodate the efficient six-state protocol. which do not affect the value of the final key. Inste@derrors

Given the error test, Alice and Bob deduce some values eitfj§Present information Eve has gained about the key. The phase
for px, p or for all three quantities, ¢y, ¢z. However, the nformation thus must be delocalized, but need not actually be

error rate on the tested bits is onfjoseto the error rate on corrected. The upshot is that Alice and Bob need not actually

the data bits. Therefore, they should use an EPP that is flexifi§asure theX-type operators and can therefore manage

enough to correct slightly more or less noisy Pauli channels th4ffout a quantum computer. Our initial goal is to manipulate

indicated by the test. In particular, when they deduge gy-, the EPP protocol to make this clear. Thetype measurements
andq_, they should perform an EPP capable of correcting afp "ot. however, disappear completely: instead, they become
Pauli channelq, ¢'-, q%) with |¢! — ¢;| < efori = X, Y, z Privacy amplification. _ o

and some smadl. Further, we should assume that, for anthe ~ FOr the first step, we modify the EPP to put it in a standard
fidelity of the final state ton EPR pairs is exponentially closeform. Because itis a CSS-like 1-EPP, there is no branching inthe
tolin N. tree diagram, and each operator being measured is gitltgpe

When Alice and Bob only learpy andp, they should allow ©f Z-type. The operators all commute, and do not depend on
additional flexibility for the value ofgt.. That is, their EPP the outcome of earlier measurements, so we can reorder them

should correct any Pauli channgl, — a, a, p'y — a) (with to put all of theZ-type measurements before all of thetype

all three parameters nonnegative), again Wifh- p;| < 2¢, for Mmeasurements. Let us recall Definition 4 for a CSS-like 1-EPP.
i = X, Z. Provided Alice and Bob use such an EPP, the nefow we have an EPP consisting of a series/etype measure-
lemma says that the error test works and allows them to corr&¢nts, followed by a series of-type measurements, followed

any symmetric Pauli channel, not just an uncorrelated one. Py CNOTs and Pauli operations (which we can represeit as

_ ) . X, and/orZ on each qubit). Then Alice and Bob measure all
Lemma 3: Suppqse FheN EPR pairs experience a Pau"qubits in theZ basis.
channel(P;, ¢;) which is symmetric over theV pairs, and g 5 second step, we can move AlIPauli operations to be-

that they use an EPP which corrects for any error rate clos i0a the X -type measurements, since they commute with each
those shown by the test bits, as described above. Then ei

er. Moreover, if Alice and Bob are simply going to measure

they abort with high probabiliy, o the final state has fidelity, ' i” thaz basis, thord is no poit inl?ir)é’?per?ormingZa

exponentially close t@ in N to the state of: EPR pairs. phase-shift operation, since it will not affect at all the distribu-
Since we only need to consider Pauli channels, the prooftign of outcomes of the measurement.

just an exercise in classical probability, and is given in Ap- We now have an EPP protocol consistingetype measure-

pendix II. ments, followed byX Pauli gates, followed by -type mea-
From Lemmas 2 and 3, we know that for the EPP protocadsirements, followed by a sequence of CNOT gates which does

we consider, given any strategy for Eve, either she has a large depend on the measurement outcomes. But nothing in the

ax = qv = qz = (¢% + @y + a3)/3 = (pr + pr + pr2) /6.
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current version of the protocol depends on the outcomes of theneratormatrix of Cs) and use those as their final secret key
X-type measurements, so those measurements are uselesditde

might as well drop them. Furthermor¥, Pauli operations and  There is one final step to convert the protocol to a “pre-
CNOT gates are just classical operations, so we might as wadire-and-measure” protocol. Instead of prepafihgubits and
wait to do them until after th& basis measurement, which consending them to Bob, Alice prepar28/(1 + ¢) (for BB84) or
verts the qubits into classical bits. 3N(1 + €) (for the six-state scheme). Instead of waiting for

What's more, it is redundant to perforsi-type measure- Alice to announce which rotation she has performedH, 7',
ments followed by measurement Bffor each qubit. We can ©f %), Bob simply chooses one at random. Instead of rotating
deduce with complete accuracy the outcome of edefype and then measuring in the basis, Bob simply measures in the
measurement from the outcomes of the measurements on inéli-Y » Of Z basis, depending on which rotation he chose. Then
vidual qubits. For instance, if a sequence of three bits is mefice and Bob announce their bases, and discard those bits for
sured to have the valu@1, then we know that measurement ofvhich they measured different bases. With high probability,

71 ® Zs @ Zs will give the result+1, as the parity of the three there will be at leastv remaining bits. Alice and Bob perform
bits is even. the error test omn of them, and do error correction and privacy

mplification on the remainingV — m. Since the discarded
its are just meaningless noise, they do not affect the security

and Bob each perform the correction rotatidnof H for the of the resulting “prepare-and-measure” protocol. The only
two-basis schemd:, T, or T2 for the three-basis scheme) thefifference is that security must now be measured in terms of

measure each qubit in tHebasis. They use some of the resultghe remaining bits rather than the original number of qubits

to test the error rate, and on the rest they perform some classE: IE;{'AfWhﬁn we b(;gm_ W'thts tw?h—basE sc_hemr(]e, we end UD(;N'th
gates derived from the original EPP. » when we begin with a three-basis scheme, we end up

. . _ with the six-state protocol. O
In fact, since Alice can perform her rotation and measurement

before sending any qubits to Bob, she need not actually pre-
pare entangled states. Instead, she simply generates a rando¥% DIFFICULTY IN GENERALIZATION TO Two-WAY EPP’s

number, which corresponds to the outcome of idyasis mea- . .
. : An obvious attempt to generalize Theorem 5 to 2-EPPs would
surement, and sends Bob the state to which the EPR pair would, . ) .
€ to simply use CSS-like (those with-type andZ-type mea-

have collapsed, given that measurementresult. Thatis, she sends i . i i
him [0) or [1) rotated by the appropriate gat @, T, or T?). surement operators only) 2-EPPs instead of CSS-like 1-EPPs.

. . f ly, thi h fails; h ition i .
Bob inverts the rotation and measures. Unfortunately, this approach fails; another condition is needed

For instance, consider the following 2-EPP, which we call

Then they perform classical gates. To understand which gateep 1- Alice and Bob each measUfe Z on pairs of EPR
it is helpful to look more closely at the original EPP. When thSairs. This can be implemented as a bilaterak: Alice per-

EPP is based on a CSS code, fi¢ype operators correspondgorms anxor from the first pair to the second, and Bob does
to the parity checks of a classical error-correcting c6deand  he same. Then both Alice and Bob measure their qubit in the
the X -type operators correspond to the parity checks of anothglond pair and broadcast the measurement result. If Alice’s and
classical code’;, with C3- C C1. The quantum codewords of gopy's measurement outcomes disagree, they discard both pairs.
the CSS code are superpositions of all classical codewords frgjq the other hand, if Alice’s and Bob’s measurement outcomes
the cosets of’;- in C;. Measuring theZ-type operators, there- agree, then they keep the first pair for subsequent operations.
fore, correspond; to determining the error syndromedpr Now, if there is exactly one bit-flip error between the two pairs,
whereas measuring th€-type operators determines the erropjice and Bob will disagree; otherwise, they agree. Note that
syndrome forC,. The usual 1-EPP protocol for correcting erat most one EPR pair out of the original two would survive the
rors is for Bob to compute the difference, in both bases, betwegaasurement, but if Alice and Bob disagree, they discard both
Alice’s syndrome and his syndrome, and then to perform a Paghijrs. They do this for a large number of pairs; the surviving
operation to give his state the same syndromes as Alice’s StpR pairs have a lower bit-flip error rate than the original ones.
That is, Alice and Bob now each have a superposition over theUnfortunater, the surviving pairs also havéigherrate of
same coset of’y- within the same coset af; (or rather, they phase errors, since phase errors propagate backward along a
have an entangled state, a superposition over all possible shat®@OT. Therefore, in the next round of the EPP, Alice and Bob
cosets for a given pair of syndromes). The decoding procedyf@asureX ® X on pairs of EPR pairs. This can be implemented
then determinewhichcoset ofCy- they share and uses that agy performing a Hadamard transform, followed by the bilateral
the final decoded state. xoR and measurement described above. Alice and Bob should
More concretely, we can describe the classical procedurethsn perform another Hadamard to return the surviving EPR pair
follows: For the error correction stage, Alice computes and atw its original basis. This procedure can detect the presence of
nounces the parity checks for the co@e. Bob subtracts his a single phase error in the two pairs. If Alice and Bob discard
error syndrome from Alice’s and flips bits (according to the op=PR pairs for which their measurement results disagree, the sur-
timal error-correction procedure) to produce a state Witkla-  viving pairs will have a lower rate of phase errors than before.
tive error syndrome; that is, he should now have the same stringrhe bit-flip error rate has increased again. However, the net
as Alice. Then Alice and Bob perform privacy amplificationeffect of the two rounds taken together has been to decrease
they compute the parity checks@$- (i.e., they multiply by the both theX and Z error rates (provided the error rates are not

Thus, we are left with the following protocol: Alice prepare
a number of EPR pairs, and sends half of each to Bob.
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21® Z2, 23R Z4, 25 ® Zs, ...
Discard pairs 2, 4, 6, ...

000... 10... 010...
Keep pairs 1, 3, 5, ... Discard pair 1 Discard pair 3
X1®X3,X5®X7,... X3® X5, ... X1Xs,...

Discard pairs 5, ...

™

Discard pairs 3, 7, ...

00.;/\10...

Keep pairs 1, 5, ... Discard pair 1
Z1Q® Zs, ... Z5® Zg, ...

NN

Fig. 4. Tree diagram for EPP 1.

Discard pairs §, ...

00...N.

Keep pairs 3,... Discard pair 3
Z3Q Zn, ... Z7® Z11, ...

/N

too high to begin with). Alice and Bob can continue to repeat Theorem 6—Main TheoremSuppose a 2-EPP is CSS-like
this procedure, measuring ® X alternately withZ @ Z, and and also satisfies the following conditions.

the error rates will continue to improve. However, each round 1) The tree diagram only branchesZtype operators, not
reduces the population of EPR pairs by at least half, so a better = 5t x-type operators.

strategy is to switch to a more efficient 1-EPP once the error i ) ) o
rates have dropped to the point where one is viable. Provided2) The final decoding operatiort$, can depend arbitrarily

the initial error rate is not too large, this procedure eventually
converges. The tree diagram for EPP 1 is given in Fig. 4.

The whole procedure only consists of measuring operators
which are eitheX -type orZ-type, so the EPP is CSS-like. Still,

on the outcome of the measuredtype operators, but
cannot depend on the outcomes of the measirdgipe
operators at all. The correction operatiBp can depend
on the outcome of -type operators, but only by factors

we cannot convert this EPP to a “prepare-and-measure” BB84 of Z.
QKD scheme. Then the protocol can be converted to a “prepare-and-measure”
What goes wrong? As is clear from Fig. 4, the EPP describ@KD scheme with security similar to the EPP-based QKD

is very definitely a 2-EPP, not a 1-EPP. In order to know whickcheme.

measurement to perform for the second round of the protocol
both Alice and Bob must know which EPR pairs survived th%
first round. Similarly, in the third round, they must know Whicr}O
EPR pairs survived the second round, and so forth.

To understand these conditions, recall that the outcomes of
-type operators represent the phase error syndrome. Taken
gether, the two conditions say that the outcome&efype
In a “prepare-and-measure” scheme, Alice and Bob make fc,:)‘ﬁerators are used to perform phase error cqrrectlon (by the
) . . ; : . actors ofZ in the correction operatdr,), but nothing else. For
their measurements in tt#ebasis, and ignore th¥ -basis parity . .

: |ns¥ance, no post-selection based on the phase error syndrome
checks because phase errors have no direct effect on the fina ST T .

IS allowed. From there, the intuition is identical to that for the

key. They can, therefore, easily deduce the values of any oper- - .
ators which are the product of ali's, but have no way of fig- proof of the Shor—Preskill result (Theorem 5). Phase errors do

uring out the measurement result for a product of&h8. Since not affect the value of the key, so there is no need for Alice and

. : Bob to compute the phase error syndrome at all. Therefore,
the second round consists of measurii@perators, Alice and lice and Bob do not really need quantum computers and
Bob have no way of determining which bits to keep for the thirﬁ u -

can execute a “prepare-and-measure protocol” instead.

round of the protocol, anq, thereforg, cannot completg the thir The tree diagram of a 2-EPP satisfying the conditions of this
round of the error-correction/detection process. That is, they do

not know along which branch in the tree diagram they shou eorem might look like the one depicted in Fig. 5. The "pre-

pare-and-measure” protocol produced by this theorem has the
proceed.

In a more intuitive language, the problem is that Alice an

fé)llowing form.

Bob do not have guantum computers in a prepare-and-mea-) Alice sends Bol2N (1 + ¢) qubits, randomly choosing

sure protocol. Therefore, they cannot compute the phase error

syndrome, which corresponds to the eigenvalues oftkgpe

|0) or |1) for each and putting each in either theor Z
basis at random.

operators. For this reason, they do not know which photons 2y Bop chooses to measure each qubit inXher Z basis at

to throw away (conditional on the phase error syndrome) and
cannot complete the QKD process.

VI. Two-Way QKD

random.

3) Alice and Bob compare their measurement bases and dis-

card those qubits for which the bases disagree. They keep
N remaining qubits.

Having understood the failure of EPP 1, we now present a4) Alice and Bob usen of the qubits to estimate the error

generalization of Theorem 5.

rate from the channel, getting valugg andp.
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Z-type Suppose the system is now corrupted by some bit-flip errors. A
/\ single bit-flip error can be detected by performing a majority
vote. More precisely, one measurgs”, to see if the first bit
Z-type X-type agrees with the second bit and algpZ3 to see if the first bit
/\ l agrees with the third bit. These two measurements can be done
coherently. The outcomes of the measurements are collectively
X-type Z-type Z-type called the error syndrome and can be used to correct the state

1 /\ /\ coherently.

The three-qubit bit-flip error correction procedure can be
turned into a three-qubit phase error correction procedure by
simply applying the Hadamard transform, and into an EPP,
o ) following BDSW [3].

5) They now perform a combination of classical two-way P Step: Randomly permute all the EPR pairs. Afterwards
error detection/correction and classical privacy ampl'b-roup the EPR pairs into sets of three, and meadyr¥, and '

fication based on the EPP. The outcomesZdé serve . .
two different functions: “advantage distillation” angs1-X3 on each set (for both Alice and Bob). This can be done

also error correction. Indeed, Alice and Bob’s ability téforl instance) by perforr?lnfgts I—:adftrFNarcleg;nsfqrm, tv‘éo b:cl.at'l
choose which branch to follow (e.g., which EPR pairaradXORs,dmeaSl:remelr; :I' € a;’ B lg)d' paurs, and a fina
to keep or throw away) depending on tieoperators '1adamard transform. It Alice and Bob disagree on one mea-

means that Alice and Bob can perform error detectiofiur€ment, Bob concludes the phase error was probably on one
Not necessarily all bit-flip errors are corrected. Sinc@f the EPR pairs which was measured and does nothing; if both

this is highly analogous to the “advantage distillationfeasurements disagree for Alice and Bob, Bob assumes the

procedure in classical Cryptography, we will use thghase error was on the SUrViVing EPR pair and corrects |t by
same name to denote such a procedure. In addition, #fforming aZ operation.

7 operators measured in the EPP can also act as classicAVhen there is only a single phase error among the three EPR
parity checks performed for error correction. Finallypairs, this procedure outputs a single EPR pair with no phase
the X operators measured become parities extracted tmror. However, when there are two or three phase errors, the
privacy amplification. If},, is an X-type operator, let final EPR pair always has a phase error. Therefore, when the
v, be a vector which id for any coordinate wher&/,  phase error rate is low enough, iteration of this procedure will
has anX, and is0 for any coordinate wher@/,, acts as improve it indefinitely, while for higher phase error rates, the
the identity!. Considgr the vector spadegenerated by state will actually get worse.

thev,,’s for consecutiveX -type operators. Thfn extract The complete EPP protocol (EPP 2) consists of alternating B
the parity for all vectors, in th? dual spacé’= of V. gnqp steps for a number of rounds, until the effective error rate
These _become the bits used in the next round of €MMs decreased to the point where 1-EPPs can take over. Then
correction. we decide on an appropriate CSS code and perform the cor-
responding 1-EPP. To get optimal performance, we should in
VII. ANOTHER TWO-WAY EPP fact useasymmetricCSS codes, which correct a fractign of

Before proving the main theorem, we give an example Ofbt flips and a different fractiory, of phase errors. Note that

2-EPP that satisfies the conditions of Theorem. Like EPP 1} eneverl — H(fl)__ H(f2) = 0, asymptotically,_an asym-
will consist of alternating rounds of measurements designed'ﬁ?tr'c_css, co.de exists that will corrept those fracpons of errors
handle bit-flip errors (“B steps”) and phase errors (“P steps”)W'th high fidelity. (A better bound might be obtained by con-

B Step: A B step is just the same as the first round of EPP gidering the correlations between bit-flip and phase errors. See
Randomly permute all the EPR pairs. Afterwards, perform[g2] for details.) We can view the whole EPP protocol as a kind
bilateralxoRr between pairs of EPR pairs, and measure one ®f two-way concatenated code.
the output pairs. This effectively measures the operdter 7 EPP 2 satisfies the conditions of Theorem 6: it is CSS-like,
for both Alice and Bob, and detects the presence of a singled measurements do not branch based on the outcome of
bit-flip error. Again, if Alice and Bob’s measurement outcomes -type measurements (which only occur during P steps and in

Fig. 5. Tree diagram of a 2-EPP satisfying the conditions of theorem 6.

disagree, they discard the remaining EPR pair. the final CSS code). Furthermore, we only do Pauli operations
Note that this is similar to a classical protocol by Maurer fosased on the outcome of-type measurements. Thus, we
advantage distillation [29]. can apply Theorem 6 to convert EPP 2 into the following

The second round must deal with phase errors; however, Wfepare-and-measure” QKD scheme.
will not be able to discard EPR pairs based on the result, since . i
the conditions of the theorem bar us from altering our protocol Protocol 2: Repeated Concatenation of BXOR With the
based on the measurement results. Instead, we take inspirafiBfee-Qubit Phase Code
from the classical repetition code. 1) Alice sends Bob a sequence &f single photons as in
A simple way to correct a single bit-flip error is to use the either BB84 or the six-state scheme.
majority vote and encode the std@ — |000), |1) — |111).

Therefore, 2) Alice and Bob sacrificen of those pairs to perform the

refined data analysis. They abort if the error rates are too
@|0) + S|1) — «|000) + 3[111). (1) large.
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3) Alice and Bob randomly pair up their photons. Alice puba numerical approach, since we would have to check infinitely
licly announces the parityKOR) of the bit values of each many values of.. Instead, we first show analytically that= 0
pair of her photons, say»;_1 @ z2;. Bob publicly an- (noY errors) gives the worst case; the proof is in Appendix IlI.
nounces the parityER) of his corresponding pair of pho- Then we need only check in our program that EPP 2 converges
tons, sayy»;—1 @ ye. If their parities agree, they keep onéfor the uncorrelated Pauli channgl, 0, p). Our program then
of the bits from the pair—i.e., Alice keeps; ; and Bob indicates that BB84 is secure to an error rate of at least 17.9%.
keepsy»;—1. If their parities disagree, they throw away |t turns out, however, that alternating B and P steps is not op-
the whole pair. (This step comes from a B step.) timal. EPPs based on other arrangements of these two steps can
4) Alice and Bob randomly form trios of the remaining bitsonverge at higher error rates. For instance, for the three-basis
and compute the parity of each trio. They now regangrotocol, we have discovered that a sequence of five B steps, fol-
those parities as their effective new bits. (This step comksved by asymmetric CSS coding, converges to an error rate of
from a P step.) at least 26.4%, and that, therefore, the six-state scheme remains

5) Steps 3) and 4) are repeated a prescribed number of tinf@Eure to at least this bit error rate. Similarly, setiing: 0 in

sayr, which depends on the error rate measured in st two-basis protocol, a sequence of five B steps, followed by
2). six P steps, followed by asymmetric CSS coding converges up

6) Alice and Bob randomly permute their pairs. They thelp an error rate of at least 18.9%. Since- 0 is again the worst

apply a modified Shor and Preskill error correction/prigase’ this shows that BB84 can be secure to at least this bit error

vacy amplification procedure. That is, Alice randomiyate- , S ,
picks a codeword. in the code’’; and broadcasts + w We remark that, in the preceding discussion, we have as-

to Bob, wherew is her remaining bit string. Owing to the Sumed that Alice and Bob simply throw away the error syn-
remaining noise in the channel, Bob’s current bit string @rome of each round immediately after its completion. Such an
insteadw + e. He now adds: +w to his string to obtain a @ssumption greatly simplifies our analysis. However, in prin-
corrupted string: + e. He can apply error correction for Ciple, Alice and Bob can employ an improved decoding scheme
the code”; to recover:. Here we use a modified Shor andvhere they keep track of all the error syndromes and use them

Preskill procedure that is based on an asymmetric ngimprove the deCOding in future rounds of the algorithm. It
code that corrects up to a fractign of bit-flip errors and would be interesting to investigate in the future how much the

a different fraction,f», of phase errors. tolerable error rates can be increased by such an improved de-
ﬁ9ding scheme. Of course, other improvements might be pos-
sible as well, including different kinds of B and P steps. The
threshold error rate (i.e., the maximal bit error rate that can be

In order to determine if the resulting QKD protocol is securglerated) of a prepare-and-measure QKD scheme remains an
or not at a given error rate, we need only study the behaviorigfportant open question.

EPP 2. Furthermore, by Lemmas 2 and 3 and the intervening
discussion, we need only study the behavior of EPP 2 for un-
correlated Pauli channels with nice symmetry properties. VIIl. PROOE OF THEMAIN THEOREM

For the six-state scheme, this is completely straightforward:
we just plug in the upper bounds on the error rétes, ¢y, qz) To prove Theorem 6, we begin with a QKD protocol using
and see if EPP 2 converges. This upper bound on the error rdtes2-EPP directly. The security of this protocol follows imme-
gives the worst case behavior. For the usual six-state schegtigtely from Theorem 4. As in the Proof of Theorem 5, we then
we may even assumgy = gy = gz = ¢. We can test for rearrange the protocol into a standard form in which it is clear
convergence with a simple computer program; we follow tHgat theX -type measurements are unnecesarry. From there, itis
error rates through B and P steps until they are small enough?beasy step to a prepare-and-measure protocol.

that CSS coding is effective. If the program indicates conver- 1) Alice preparesV EPR pairs. She performs a Hadamard

gence forg, the EPP definitely converges, and we have proved  ransform on the second qubit for half of them, chosen at
the six-state protocol is secure at bit error ratin this way, we random.

have shown the six-state scheme remains secure to an error ra% Alice sends the second qubit from each EPR pair to Bob
of at least 23.6%. If the program does not converge, that does Bob acknowledges receiving them, and then Alice teIIs.

not necessarily imply that the six-state scheme is insecure using him which ones have the Hadamard transform. Bob re-
this post-processing method; it simply means it did not converge verses all Hadamard transforms.

within the regime where our program is numerically reliable. _ _ _
A study of BB84 is slightly more difficult. Alice and Bob 3) Alice and Bob select: EPR pairs to test the error rate in
do not know(qx, gy, gz), only px = gy + gz andp, = the channel.

qx + qy. There is one free parameigr = a; then, for BB84, 4) Alice and Bob perform the 2-EPP on the remainiigm
gx = qz = p — a, wherep = px = pz is the bit error EPR pairs. They now have a number of EPR pairs of very

rate. To show that BB84 is secure using this post-processing 9ood fidelity.
scheme, we must show that EPP 2 converges for all values of5) Alice and Bob measure each remaining EPR pair in the
a € [0, p]. However, this is not immediately compatible with 7 basis to produce a secure shared key.

7) Alice and Bob perform the coset extraction procedure
obtain the coset + C5, which gives their final key.
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—{H] [H}— —P— the measurement results, but we can delay those as well using
_@ & Meas. = @_ Meas. the identities
CNOT(Z ® I) =(Z @ I)CNOT (2)
(H}——&— Meas. (H} Meas. CNOT(I ® Z) = (Z @ Z)CNOT. 3)

That is, we can move & rotation from before a CNOT to
after it, possibly at the price of having to do two of them
instead. Ultimately, we end up with a circuit consisting only
The above protocol assumes a two-basis QKD scheme. F@faZ-basis measurements and quantum CNOT gates (whose
three-basis scheme, Alice and Bob apply one of the three opggsition may depend on the outcome ofZameasurement),
ations!, T', T? instead off or H. followed by X -basis measurements and phase shifts. This is
To reduce the above EPP protocol to a prepare-and-measameequivalent EPP to the one we began with.
one, we would like to eliminate the phase-error correction stepsin the QKD protocol, after performing the EPP, Alice and
in the EPP protocol. For a CSS-like EPP, phase-error correcti8ab measure each surviving EPR pair in héasis to produce
comes completely from the measurementffotype operators akey. But phase shifts are irrelevant if we are immediately going
M,,. We can perform such a measurement as a Hadamard trdagneasure in theZ basis, so Alice and Bob need not actually
form, followed by a series of CNOTs with the same target qubjperform them or theX -basis measurements controlling them.
Then we measure the target qubit, and Hadamard transform thélice and Bob now have a completely classical circuit, fol-
others back to the original basis (see, for instance, the left nketwed by measuring all the qubits in tiebasis. They get the
work in Fig. 6). This procedure computes the parity of all theame result if they instead measure all the qubits first,thed
control qubits and the target qubit in tAg basis, and gives the perform the classical circuit. The circuit they have is exactly the
eigenvalue ofd,. (Of course, in the context of an EPP, botterror correction and privacy amplification protocol described in
Alice and Bob perform this procedure, and compare results.)Section VI as coming from the EPP. Note that any communica-
However, this series of gates, Hadamard, CNOT, Hadamati@n from Bob to Alice occurs during the classical circafter
is equivalent to a single CNOT gate with control and target ré€ initial measurement.
versed. This means, for example, that the two circuits depictedlo complete the transformation to a “prepare-and-measure”
in Fig. 6 are mathematically equivalent. Note that the right-hafiiotocol, we follow a few additional steps from Shor and
side depicts an essentiattjassicalcircuit composed of CNOTs Preskill. Instead of preparing a number of EPR pairs and
(with a couple ofX -basis measurements at the end). Instead @easuring them, Alice can just generate a random bit string,
working with a quantum circuit for phase-error correction, a&hd send Bob the state he would have gotten if she made the
depicted by the left-hand side of the figure, one can work withPR pairs and got that measurement result. That is, she sends
the essentially classical circuit in the right-hand side. Bob a series ofi’'s and 1's chosen at random, and puts half
The same principle holds in general-basis measurements®f them in theX basis (when in the EPP protocol she would
can be written as effectively classical circuits consisting of Rerform a Hadamard transform in Step 1), and puts half of
series of CNOTS (with the same control qubit but different targét€m in theZ basis (when there would be no Hadamard in the
qubits), followed by a Hadamard transform and measurement®RP Pprotocol). Bob receives them, waits for Alice to tell him
the control qubit. The qubits which survive the procedure ha{@e basis, and then measures in that basis.
only experienced the CNOT gates. So it will be easy to convertOf course, we can wait to decide on the EPP until after Bob
this circuit to a truly classical one. receives his states, so itis equally good if Bob guesses a basis for
Note that each target qubit gets replaced bydg with the each ql_Jbit ano_i measures immeqliately. Then_, when Alice tells
control qubit: in other words, by a parity which is orthogonal t80P Which basis she used, th?y discard any bits whe’r,e the bases
the vector,, derived fromaM,, by replacingX’s with 1’s. For disagree. This gives the final prepare-and-measure protocol.
instance, in our sample EPP 2, we measure ¥voperators in To prove the security of a six-state protocol, one uses three

a row for a set of three qubits; X, and X, X5. The effect of basesX, Y, andZ in the appropriate place instead of just the
these measurements in tAebasis is to map X andZ bases. Otherwise, the proof is identical.

Fig. 6. Two equivalent ways to measure the operaloys’, and X, X;.

la, b, ¢) = |a+b,b,c) s latb+e, b, c). IX. CONCLUDING REMARKS

We have proven the unconditional security of standard

That is, the first qubit gets replaced by the parity of all threguantum key distribution schemes including BB84 and the

qubits. We could also see this by noting that the only nontriviglx-state scheme. Our proof allows Alice and Bob to employ

vector which is orthogonal to botfi, 1, 0) and (1, 0, 1) is two-way classical communications. Compared to previous
(1,1, 1). schemes, it has the advantage of tolerating substantially higher
However, for EPPs satisfying the conditions of Theorem 6, rimit error rates. Indeed, we have shown that the BB84 scheme
choice of M, later in the protocol depends on the outcome afan be secure even at a bit error rate of 18.9% and the six-state
the X -type measurememnit/,,. Therefore, we can delay makingscheme at 26.4%. By tolerating such high bit error rates, our
the actual measurement until the end of the protocol, after wesult may extend the distance of QKD and increase the key
have measured all operators. The EPP may call for correctinggeneration rate. Our result is conceptually interesting because it
phase errors immediately by performidgrotations based on may spur progress in the study of 2-EPPs. We have introduced a
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new subclass of 2-EPPs and demonstrated that such a subglass= Trp|écp){Pcpl) is an upper bound to the amount of
of protocols can be reduced to standard BB84 and the six-statatual information betweeX andY .
scheme. Our results demonstrate clearly that two-way classical Proof: This is a corollary to Holevo's theorem [17]. O
communications can be used to enhance the secrecy capacity
of a QKD scheme and also show the six-state scheme can APPENDIX |
intrinsically tolerate a higher bit error rate than BB84. PROOF OFLEMMA I

Our versions of the BB84 and six-state QKD schemes requireW . . . i
two-way classical communications between Alice and Bob in N WISh. to show that, given any (not n_ecessarlly uncorre

|ated) Pauli channel, our procedure of testing the error rate and

the post-processing step of classical data (i.e., in the error ¢ lan choosing an appropriate code actually does correct the

rection and privacy amplification stage). This is not a bad thineqrrorS with high probability. The idea is that, because of the

in itself becauseany protocol of BB84 (or six-state) requires ! .
awo-way classical communications anvway. Indeed. in the bag?ndom permutation, the EPP treats symmetrically all errors
Y yway. ' With a given breakdown int&, Y, andZ errors (the “type” of

comparision step, Alice and Bob publicly announce their bases . The type of the true error will be close to the estimated

and throw away the polarization data that are transmitted a{T e. We then show that the EPP performs well for the likely
received in different bases. In order for both Alice and Bob @/ e.s of error

know which polarization data to keep, it is necessary to empl YSince the channel is symmetric over all pairs, the pairs

two-wi lassical communications. Of course, the “one-w . .
o-way class ommunications. Of course, the “one ¥ hosen for error testing are a representative sample, and the

classical post-processing schemes require fewer rounds of com- : L A
number of errors of any given kind in the sample will be close

munication (and, therefore, less time) to complete, so there #5the number of errors of the same kind in the remaining pairs.
pears to be a tradeoff between round complexity of the prOtOWhat we mean by the “same kind” bears a little explanation. As

and tolerable error rate. . .
. . i fore th ment of Lemm we only directl
Relating to earlier work on QKD, we remark that we have prod- scussed before the statement of Lemma 3, we only directly

. i " re the presen f tw f the thr f error, de-
vided the first examples of unconditionally secure schemes trgreasu e the presence of two out of the three types of error, de

S . . X _Ppending on which operatiod (H, T', or T%) we perform. For
advantage dlstl_ll_atpn [29]_[3.1] in QKD. Flnglly, tW.O way en instance, wheif is performed, we measure the presence of only
tanglement purification techniques may provide a simple way

understand other security proofs. For instance, in Appendix | or ' errors. However, since Eve has no knowledge of which
i . yp ’ S  INAPP peration is used for any particular qubit, the sample of test bits
we provide a simple derivation of Inamori’s security proofs [18

. . . . ith a particular operation gives a good estimate of the number
[19]. For future work, it would be interesting to take into accoun(;[f the appropriate pair of errors in the remaining qubits of the

Tgsssf::?\(:ﬁnzflslrgegfsr?gtoonns dlg::llucdcl)zgt;a[uzlg]/ photon S’Ourceg'ample. For instance, the fraction of errors amdngst qubits
' ' gives us a good estimate of the number of qubits with eifher

orY errors in them. Then the deduced rateXofY’, andZ er-
rors (as discussed before Lemma 3) give a good estimate of the
actual error rates in the untested pairs.

The statements that Alice and Bob will most likely share For any particular instance of the protocol, the channel per-
the same key and that the key is essentially random are cléarms a particulafV-qubit Pauli operatiod; (with probability
We will focus on proving the bound on Eve’s information. The;). For any particulag, let ¢! be the deduced fraction of er-
proof of this crucial part of Lemma 1 follows from the followingrors of typei (: = X, Y, Z) in the sample and lef* be the
two claims, which originally appeared in [23, supplementargctual fraction of errors of typein the untested pairs (“d” for
Note II]. “deduced” and “u” for “untested”). Then for larg€, with high
probability

APPENDIX |
PROOF OFLEMMA 1

Claim 7—High Fidelity Implies Low Entropylf
(n singlet$p|n singlets > 1 — 6 (4) lgh — ¥ < e (5)

whered <1, then von Neumann entropy (That is, the deduced error rate is close to the true error rate.)

S(p) < —(1 —6)logy(1 — &) — dlog, (213—_1) Naturally,qs' andg! will depend onj, but we suppress this de-
Proof: If (n singletsp|n singlet$ > 1—4, then the largest Pendence to simplify the notation. _
eigenvalues of the density matrix must be larger thars. The Let us now restrict attention to one particular set of values for

entropy ofp is, therefore, bounded above by that of ¢ andg}* (which need not be equal, but which satisfy condition
5 5 5 (5)). If the ¢! are large, Alice and Bob will abort the protocol.
po = diag (1 — 0, PR 1) @R_1) " (PR 1)) Otherwise, we wish to show that the EPP used by Alice and Bob

will correct most errors with these parameters.

To see this, we note that the EPP will correct the uncorre-
Yated Pauli channelgy, ¢3+, ¢) on N — m EPR pairs with
high fidelity /. Suppose the EPP gives fidelityf whenever the

Claim 8—Entropy is a Bound to Mutual InformatiorGiven /V-qubit Pauli operatior; occurs (for a stabilizer EPP;; will
any pure statécp) of a system consisting of two subsystem8e either0 or 1). Then
C andD, and any generalized measuremexitandY onC and F = Z piF; (6)

J

That is,pg is diagonal with a large entriy— § and with the re-
maining probabilitys equally distributed between the remainin
22R _ 1 possibilities.

D, respectively, the entropy of each subsyst&tpc) (where
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wherep; is the probability of the Pauli operatioR; for the

uncorrelatedPauli channel (not the true channel). We can breaientially close tal.
the sum oveyj into two parts. The first part will consist of the

setS of j for which P; contains exactly,x = ¢% (N —m) X
errors,ny = ¢y-(N —m) Y errors, anthy = ¢3(N —m) Z
errors (then; are integers by the definition @f'). The second

part consists of all othei. Now, letp be the probability of any a

particular error inS, so

SopiFi<> pi=1-Yp @)
Jj¢s j¢s jeS
SO
F=Y piFi+Y pF; (8)
jes j¢s
SPZ Fy +1-plS| ()]
jES
=1—plS| [ 1= F;/IS| (10)
JjES
But
p=(q%)"*(¢5)" (g2)"7 (a7)™" (11)

whereq} = 1 — (¢% + ¢§ + ¢%) is the probability of identity

operations, and; = ¢} (N —m) isthe actual number of identity
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it follows that the fidelity for the general Pauli channel is expo-
d

APPENDIX Il
PROOFTHAT a = 0 Is THEWORSTCASE

In this appendix, we will show that it is sufficient to check the
= 0 case (with naY” errors) when determining convergence
of the 2-EPPs we study for the BB84 protocol.

Theorem 9: Suppose an EPP starts with a B step, followed
by any series of B and/or P steps, followed by asymmetric CSS
coding. Supposé < p < 1/4. If the EPP converges for the
uncorrelated Pauli chann@l, 0, p), then it will also converge
for all uncorrelated Pauli channdlg — a, a, p — a), with 0 <
a < p.

The initial conditionp < 1/4 simply ensures that (for any
value ofa) the state is more likely to be correct than incorrect,
and will be satisfied easily by all parameter sets we consider. In
fact, whenp > 1/4, an intercept-resend attack defeats BB84
(see Section 1).

Proof: To do this, we will need to look at the behavior of
the three error rates as we perform steps of the protocol. After
each B or P step, there is a new set of effective error rates on the
pairs surviving the round.

It is worth noting two things about protocols of the given

operations$ containg N —m)!/(nx!ny!nz!n;!) elements, so form. First, if the initial density matrix comes from a Pauli

using Stirling’s approximation, we find

S ( 2 )3/2 1
p ~ U U U U
N-—-m VAax 9%y 9z49r

This is only polynomially small inV — m. In order for F' to

(12)

channel, then the effective channel after any number of rounds
will also be a Pauli channel. This is because all operations
are from the Clifford group, which preserves the Pauli group.

Second, if the initial channel causes errors which are uncorre-
lated between EPR pairs, this property will also be preserved
after an arbitrary number of B and P rounds. This is because

be exponentially close to in (10), we therefore require thatphoth B and P rounds keep at most one of the pairs which

Y jes Fj be[l —exp(=O(N))][S].

interact, so there is no opportunity to create correlations

Now we can approximate the fidelity of the EPP for the gethetween pairs which survive to the next round. Therefore, we

eral Pauli channglP;, ¢;). We again writef' = >~ ¢; F; (with

the same";’s, which only depend on the EPP, not the channelgint in the protocol by a tripleyy,

and recall thay; = ¢; = Gny,n,,n, Whenever and; have
the same number@.x, ny, nz) of X, Y, andZ errors. That
means we can write

nx,ny,ng

nx,ny,nz

F= F. (13)

nx,ny,nz
i€S.

But, except with exponentially small probability, the values,

ny, ny are within the allowed-sized window for the EPP,

which we have shown means that

Y Fi=[1—exp(=O(N))]|S|.

i€s
Thus,

F= nx,ny ,nz|S|[1 — exp(=O(N))]

2

—exp(—O(N)). (14)
Since

(Inx,ny,nz|5| =1 (15)

>

nx,ny,nz

can completely describe the effective error rates at any given
Qv 4z)-

Suppose we start with error ratésy, ¢y, ¢z) and perform
a B step. Given any of the 16 possible configurations of errors,
we can deduce whether the remaining pair is discarded, and if
not, whether it has an error, and what kind of error it is. The new
error rates on the surviving pairs are thef, ¢, ¢%)

v = (% + 4¢)/ps (16)
4y =2qxqy/ps an
4z =2(1 —qx — qv — qz)qz/ps (18)
ps =1—-2(qx +qv)(1 —gx — qv) (19)

wherepg is the probability that a pair will survive the check.
If we have error rate§;x, gy, qz) and perform a P step, we
get new error rate§, ¢, q%)

dx =3qi(ax + qv) + 6qraxqz + 3axav + g%  (20)
¢y =6qrqvqz + 3qx (6% + ¢%) + 3avaz + ¢ (21)
0y =3a1(ay + dy) + 6axavaz + 369z + 4 (22)
g=1-qx —qv —qz (23)

wheregq; is the initial probability of no error.
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To prove the theorem, we change variables. Instead ofNow, after a B step
working with (¢x, gy, qz), we will work with (pz, px, A
( ) ( ) 1-2ply, —2A" = [1-2p% —2px (1-2pz) —2A(1—2px)]/ps

Pz =qx +qv (24) (34)
px =qv + 4z (25) =[(1-2pz—2A)(1-2px)+2pz(1-pz)]/ps-
A =qz — gy =px — 2a. (26) (35)

As a increasespy andpz stay the same, whil&\ decreases.
We will show that the protocol behaves worse for largerso
the worst case is = 0.

In the new variables, a B step maps the error rates from

The first term is always positive, so the sum is clearly positive
as well whenl — 2pz — 2A > 0.
After a P step

(pz, px, A) 1o (py, p'x, A7) 1—2p, = (1—2pz)° (36)
plZ :P2z/ps (27) SO
/ 2
Py =[px —px + A1 —2pz — A)]/ps (28) , ‘
1—2p, —2A = (1 - 2pz)® —6A%(1 —2pz) +4A% (37
N =lpx(1-2) £ A0 pylfps @9 1T HETER Tl AR T e S G
ps =1—2pz + 2. (30) R

. . . . . [(1=2pz)* +2A(1 - 2pz — A)]. (38)
Sincepx, pz < 1/2 always in the regime of interesfy’ is
increasing inA, andp/, never depends oA at all. Provided Again, this is positive whed — 2pz — 2A > 0 andA > 0.
1—-2pz —2A > 0, p'y also increases with. When this is true, This proves the claim and the theorem.
A’ andp’y also both increase withy .

A P step takes the error rates frofpz, px, A) to APPENDIX IV
(', Py, A’) with the following relations: INAMORI’ S SECURITY PROOFS
Py =3pz(1 —pz)> +p% (31) In this appendix, we provide a simple derivation of Inamori’s

Py = 3% (1 = px) + (32) proofs ?f BB84 ?nd the E@x—hstate schhemeh_and discuss why our
A —3A2(1 — 99, — A} AD (33) protoco s_,can tolerate a higher rate than his. o _

( Pz )+ Inamori’s protocols require two-way communications. His
This time,p’y, andp’, only depend omx andpz, respectively, protocol can be rephrased as follows.
never onA. py increases witlpx. A’ only depends o and
pz, and increases with if two conditions— — 2p; — A > 0
andA > 0—are simultaneously satisfied.

1) Alice and Bob are assumed to share initially a random
string and the goal of QKD is to extend this string. Alice
and Bob also choose a classical error-correcting €dde

Claim 10: The following inequalities hold: 2) Alice sends Bob a sequence of single photons as in either
1) at all points after the initial B steg\ > 0; BB84 or the six-state scheme.
2) 1 -2pz —2A > 0 always. 3) They throw away all polarization data that are prepared in
Note that wherpy + pz < 1/2, so that at least half the different bases and keep only the ones that are prepared
time there is no error, it follows that— 2p, — 2A > 0, since in the same bases.
A < px.However, itis notclear if the conditigny +pz < 1/2 4) They randomly seleet. of those pairs and perform a re-
is preserved under the B and P steps. fined data analysis to find out the error rate of the various
From this claim, the theorem will follow: consider running bases.
the protocol starting with error ratész, px, A) = (p, p, p) 5) Alice measures the remaining — m = s particles to
or (p, p, Ag), With Ag < p. Since the value ofz at any given generate a random string Sincev is a random string, it
time only depends on the previous valuepgf, pz will always generally has nontrivial error syndrome when regarded as
be equalinthese two cases. At any time for the first case will a corrupted state of the codeword@f. Alice transmits
be greater than or equal g for the second case, arddfor the that error syndrome in an encrypted form to Bob. This is
first case will be greater than or equalAofor the second case. done by using a one-time pad encryption with (part of)
This is true by induction: it is true initially, and at all stepé; the common string they initially share as the key.

and A’ increase withpy andA from the previous step. Thus,

the worst case is whef — p, which means: = 0. 6) Bob corrects his error to recover the string

) ) o 7) Alice and Bob discard all the bits where they disagree and
Proof (of Claim): Immediately after the initial B step, keep only the ones where they agree.
A’ > 0, because in this stepx = pz = p by the symmetry

of BB84, andA > —p. After subsequent B stepd’ > 0 if
A > 0, sincel — 2px and1 — 2p; are always positive.

After a P stepA’ > 0 if 3(1 — 2pz — 2/3A) > 0. This will We remark that Inamori’s protocol is, in fact, a simple error-
immediately follow if we can show — 2pz — 2A > 0, since correction scheme and satisfies the conditions of Theorem 6.
before a P step) > 0 always. Then, by induction, we will have Therefore, it is convenient to study it using the language of
shownA > 0 at all points after the initial B step. 2-EPPs introduced in the current extended abstract.

8) Alice and Bob now perform privacy amplification on the
remaining string to generate a secure string.
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A. BB84 With Inamori’'s Protocol Note that, for BB84, the maximal tolerable error rate of In-

Let us now consider the efficiency of BB84 based on irgmori’s scheme is actually worse than in Shor—Preskill.

amori’s protocol. Suppose the error rate of each basis is fougd
to bep in Step 4). Now, in Step 5) above, Alice and Bob have to
sacrifice a pre-shared secret key whose length must be at leas€t us now consider the six-state scheme. Suppose that in
the size of the error syndrome of asbit string. In other words, Step 4), the error rate is found to peln Step 5), the length
the length of the pre-shared secret key used up by Alice and B¥ishe pre-shared key sacrificed by Alice and Bob is the same as
is at least in BB84 and is given by (39). Also, the length of the reconciled
key is the same as in BB84 and is given by (40).
lsac = sh(p) (39) Here is the key difference between the six-state scheme and

] BB84: For the six-state scheme, there is more symmetry. In

bits whereh () = —zlog, # — (1 — z)logy(1 — x). particular, as discussed in Section IV-B, for an EPP that cor-

What is the length of the key they generate from the procesgZnonds to the six-state scheme, one only needs to consider a
Recall that in Step 7), Alice and Bob discard all the bits Whe'f?epolarizing channel. The density matrix is

they disagree and keep only the ones where they agree. The

length of their reconciled key is, therefore, given by the number diag(1 — 3(p/2), p/2, p/2, p/2). 47
of bits where Alice and Bob agree. In other words, Alice and

Bob generate a reconciled key of the length

Six-State Scheme With Inamori’s Protocol

On post-selecting the bits where Alice and Bob agree, the
(unnormalized) density matrix becomes
r=s(l—p). (40)

diag(1 — 3(p/2), 0, p/2, 0). 48

Since Eve may have some partial information on the recon- fag( (p/2), 0, /2, 0) (48)
ciled key, Alice and Bob have to sacrifice some of the reconcil@therefore, the post-selected phase error rate is

key for privacy amplification. Let us consider privacy amplifi-

cation. For BB84, the worst case density matrix is again of the p/2 -_r (49)
_ Comparing (43) and (49), we see that a big difference be-
diag(1 — 2p, p, p, 0) (41) tween BB84 and six-state in the Inamori’s protocol is that the

post-selected phase error rate for the six-state is only half of that

in the Bell-basis using the convention in [3]. : o .
In Step 7). Alice and Bob post-select only the bits where thé;vr BB84. Consequently, Alice and Bob sacrifice fewer bits for

agree. With such post-selection, the (unnormalized) conditio fjvacy amplification in the six-state case. In fact, only a smaller

al . .
. i raction, namely, a fraction
density matrix becomes

- 2(1-p)
In other words, the phase error rate is ) B ) )
D P 43) of the reconciled key needs to be sacrificed in the privacy am-
(I—-2p+p) 1-p plification process.

In summary, the length of the reconciled key is: s(1 — p),

Therefore, Alice and Bob must sacrifice a further fraction as given by (40). Of which, from (50), only a fraction

fBBs4=h< p > (44) h(ﬁ) has to be consumed for privacy amplification.
I-p Theref%re, the final key generated by Alice and Bob is of length
of their reconciled key for privacy amplification. [1 - h(ﬁ)]s(l — p). In addition, from (39), a length of

In summary, the length of the reconciled key is s(1—p),as I,,. = sh(p) of a pre-shared secret key has to be consumed.
given by (40), ff which, a fractior(2-) has to be consumed Therefore, thenetkey generation rate is given by
for privacy amplification. Therefore, trie final key generated b
Alice and Bob is of lengthl — h(-2-)]s(1 — p). In addition, Il —h ( P )} s(1 —p) — sh(p)

1—
from (39), a length of,.. = sh(p) of a pre-shared secret key 2(1-p)
has to be consumed. Therefore, tiet key generation rate is = s(1—p) [1 _h < p > _ h(p) ] . (5))
given by 2(1-p) 1-
1—h P (1—p) — sh(p) From (51), one can conclude thatin Inamori’s protocol for the
— 5 p)— smp six-state scheme, the net key generation rate is positive provided
h that
o1 p) [1_h<L> —ﬂ]. (45)
L=p) 1-v T (R A N6 ) (52)
From (45), one can conclude that in Inamori’s protocol, the 2(1-p) 1-p
netkey generation rate s positive provided that which is precisely what Inamori gave in the equation just under
1—h (L) _ h(p) >0 (46) [19, Property 1 on p. 3]. Comparing (46) and (52), one can see
IL—p I-p that the key difference between BB84 and six-state for Inamori’'s

which is exactly what appears just before [18, Sec. 5]. protocol is in the second term of the expressions. In the case
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of the six-state scheme, there is an extra factdt of the de-  [10]
nominator inside the entropy function. As noted before, this is
. =11

because the six-state scheme has more symmetry and g|ve£ el
lower phase error rate (upon post-selection of bits where Alice
and Bob do agree) than BB84. (12]

From (52), Inamori’s protocol for the six-state case can tol-
erate a bit error rate of roughly 12.6%. A more recent protocoj13]
[22] for the six-state scheme can tolerate a marginally highe
bit error rate and, unlike Inamori’'s scheme, it requires onl
one-way classical post-processing. We remark that the six-state
scheme with our Protocol 2 tolerates a much higher error raté>]
(about 23%, or as high as 26.4% varying the sequence of B aqge]
P steps) than a six-state scheme with Inamori’s protocol.

14]

(17]
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