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Proof of Security of Quantum Key Distribution With
Two-Way Classical Communications

Daniel Gottesman and Hoi-Kwong Lo

Abstract—Shor and Preskill have provided a simple proof of
security of the standard quantum key distribution scheme by
Bennett and Brassard (BB84) by demonstrating a connection
between key distribution and entanglement purification protocols
(EPPs) with one-way communications. Here, we provide proofs of
security of standard quantum key distribution schemes, BB84 and
the six-state scheme, against the most general attack, by using the
techniques oftwo-way entanglement purification. We demonstrate
clearly the advantage of classical post-processing with two-way
classical communications over classical post-processing with only
one-way classical communications in quantum key distribution
(QKD). This is done by the explicit construction of a new protocol
for (the error correction/detection and privacy amplification of)
BB84 that can tolerate a bit error rate of up to 18.9%, which is
higher than what any BB84 scheme with only one-way classical
communications can possibly tolerate. Moreover, we demonstrate
the advantage of the six-state scheme over BB84 by showing that
the six-state scheme can strictly tolerate a higher bit error rate
than BB84. In particular, our six-state protocol can tolerate a bit
error rate of 26.4%, which is higher than the upper bound of 25%
bit error rate for any secure BB84 protocol. Consequently, our
protocols may allow higher key generation rate and remain secure
over longer distances than previous protocols. Our investigation
suggests that two-way entanglement purification is a useful tool in
the study of advantage distillation, error correction, and privacy
amplification protocols.

Index Terms—Cryptography, key distribution, quantum cryp-
tography, quantum information, quantum information processing.

I. INTRODUCTION

QUANTUM key distribution (QKD) [2], [10]1 allows two
parties to communicate in absolute privacy in the pres-
ence of an eavesdropper. Unlike conventional schemes of
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1The first paper on quantum cryptography was written by Stephen Wiesner
around 1970, but it remained unpublished until 1983 [34]. For a survey on
quantum cryptography, see, for example, [14]. For a review, see, for example,
[12].

key distribution that rely on unproven computational assump-
tions, the security of QKD is guaranteed by the Heisenberg un-
certainty principle of quantum mechanics. Much of the interest
in QKD arises from the possibility of near-term real-life appli-
cations, whereas most other potential uses of quantum informa-
tion remain remote. QKD has been performed experimentally
over about 67 km of telecom fibers, and point-to-point through
open air at a distance of about 23.4 km. There are also proposals
for key exchange from ground to satellites. (See [14], [12] for
discussions.)

Today’s technologies fall short of full control and manipula-
tion of quantum states, so practical QKD protocols must use a
much more restricted set of operations. The best known QKD
protocol was published by Bennett and Brassard in 1984 [2].
The standard quantum key distribution scheme of Bennett and
Brassard (BB84) is a simple “prepare-and-measure” protocol
that can be implemented without a quantum computer (see
[28], [26] for background on quantum computation). In a
“prepare-and-measure” protocol, Alice simply prepares a
sequence of single-photon signals and transmits them to Bob.
Bob immediately measures those signals; thus, no quantum
computation or long-term storage of quantum information is
necessary, only the transmission of single-photon states, which
can be performed through regular optical fibers. Therefore,
“prepare-and-measure” schemes are good candidates for
near-term implementations of quantum cryptography.

Of course, a theoretical description of a protocol is a math-
ematical idealization. Any real-life quantum cryptographic
system is a complex physical system with many degrees of
freedom, and is at best an approximation to the ideal protocol.
Proving the security of any particular setup is a difficult task,
requiring a detailed model of the apparatus. Even a seemingly
minor and subtle omission can be fatal to the security of a
cryptographic system.

Nevertheless, a number of important basic issues have
been identified. See, for example, [27] for a discussion. For
instance, the ideal theoretical version of BB84 uses a per-
fect single-photon source. It is important to know whether
an eavesdropper can, in principle, exploit imperfect photon
sources or other minor deviations from the ideal model (such as
channel loss or detector dark counts). In this paper, we will not
consider the issue of imperfections in the source or detectors.
Instead, we will concentrate on the allowable bit error rate
in the channel, and show that it can be at least 26.4% for a
“prepare-and-measure” scheme.

To prove the security of a protocol, one must specify clearly
what eavesdropping strategies are permissible. In classical cryp-
tography, eavesdroppers are frequently given only a bounded
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amount of computation. Unfortunately, we do not, as yet, have
a good grasp of what can be done with a short quantum com-
putation, and provable bounds are elusive, even for classical
computation. Other assumptions are similarly unreliable, so
we resort to one of the most conservative assumptions, un-
conditional security—that is, security against the most general
attacks allowed by quantum mechanics.

As it turned out, proving unconditional security even for an
idealized system was very difficult. More than a decade passed
between the original proposal for BB84 and the first general but
rather complex proof of security by Mayers [32], [35], which
was followed by a number of other proofs [5], [4]. Another ap-
proach to proving the security is to start by considering pro-
tocols which are less experimentally accessible. In particular,
Lo and Chau [23], building on the quantum privacy amplifica-
tion idea of Deutschet al. [8], have proposed a conceptually
simpler proof of security. However, the protocol proved secure
has the unfortunate drawback of requiring a quantum computer.
Recently, Shor and Preskill [33] have unified the techniques in
[23] and [32], [35] and provided a simple proof of security of
standard BB84. (See also [15] for a detailed exposition of this
proof.)2

The idea of an entanglement purification protocol (EPP) [3]
plays a key role in Shor and Preskill’s proof. An EPP is a pro-
cedure allowing Alice and Bob to create a small number of
reliable Einstein–Podolsky–Rosen (EPR) pairs from a larger
number of noisy pairs. More specifically, Shor and Preskill con-
sider schemes for entanglement purification with a classical side
channel from Alice to Bob (one-way EPPs or 1-EPPs), which,
by the earlier work of Bennett, DiVincenzo, Smolin, and Woot-
ters (BDSW) [3], are mathematically equivalent to quantum
error-correcting codes (QECCs).

As noted by BDSW, EPPs involving two-way communica-
tions between two parties can tolerate a substantially higher
error rate than 1-EPPs. Those two-way EPPs (or 2-EPPs) are
useful for the transmission of quantum signals, but not their
storage in a noisy memory, since in a 2-EPP, the receiver Bob
must send information to the sender Alice.

In this paper, we demonstrate that it is possible to create
“prepare-and-measure” QKD schemes based on 2-EPPs, and
that the advantages of 2-EPPs can survive. More specifically,
we describe versions of BB84 and the six-state scheme [6]
(another “prepare-and-measure” scheme) using two-way com-
muncations and prove their security with allowed error rates
substantially higher than any previous proofs.

Our results are significant for QKD for several reasons. First,
our scheme can tolerate substantially higher bit error rates than
all previous protocols. This may allow us to extend the distance
of secure QKD and increase the key generation rate. Second, we
demonstrate clearly the advantage of usingtwo-way classical
communications in the classical post-processing of signals in
QKD. In particular, for both BB84 and the six-state scheme,
our protocol tolerates a higher bit error rate than any one-way

2Mayers’ and Shor–Preskill’s proofs make different assumptions. While
Mayers’ proof assumes that Alice’s preparation of the BB84 states is perfect,
Shor and Preskill limit the types of imperfections allowed in Bob’s measure-
ment apparatus. A proof that takes into account more general imperfections
remains to be published.

post-processing method. Third, our results show rigorously that
the six-state protocol can tolerate a higher bit error rate than
BB84. These facts can help direct experimentalists toward the
most robust schemes for quantum key distribution.

There are good conceptual reasons as well for studying
two-way QKD. The Shor and Preskill proof of security turns on
the relationship between classical error correction and privacy
amplification and QECCs. EPPs have a close relationship
to QECCs, but the detailed connection between EPPs using
one-way and two-way classical side channels is not well
understood [3]; in fact, very little is known about 2-EPPs. A
study of two-way QKD elucidates the relationship between the
various aspects of quantum cryptography and 2-EPPs. It may
help to spur progress in both the theoretical study of 2-EPPs
and also their practical applications in a real experiment. This
is so because “prepare-and-measure” QKD schemes, which we
consider, can essentially be implemented in a real experiment
[27]. Furthermore, the study of two-way QKD can clarify
other proofs of security of QKD such as that due to Inamori
[18], [19], and may make the connection to earlier studies of
classical advantage distillation [29]–[31].3

In Section II, we present the BB84 and six-state protocols
and review known bounds on the bit error rates they tolerate.
Section III reviews the necessary concepts from the theory of
QECCs and EPPs. Even readers already familiar with these
subjects may wish to read Sections II-C and III to acquaint
themselves with our terminology. Section IV presents the Shor
and Preskill proof of security. In Section V, we attempt a naive
generalization of the proof to two-way protocols, which fails
in an instructive way. In Section VI, we present the main
theorem: EPPs satisfying the correct set of conditions can
be made into secure “prepare-and-measure” QKD schemes
with two-way communications. An example EPP satisfying
the conditions is presented in Section VII; variations of this
EPP produce the achievable error rates cited in this paper. We
prove the main theorem in Section VIII.

II. QKD PROTOCOLS ANDBOUNDS ONPERFORMANCE

A. BB84 and the Six-State Scheme

In the BB84 protocol for QKD, Alice sends a qubit (i.e., a
quantum bit or a two-level quantum system) in one of four states
to Bob. The states and represent the
classical bit , while the states and
represent the bit. Alice chooses one of these four states uni-
formly at random, and sends it to Bob, who chooses randomly
to measure in either the , basis (the “ ” basis) or the ,

basis (the “ ” basis). Then, Alice and Bob announce the
basis each of them used for each state (but not the actual state
sent or measured in that basis), and discard any bits for which

3An important result in classical cryptography based on noisy channels is
that a two-way side channel can actually increase the secrecy capacity of a
noisy channel. That is, the secrecy capacity with a two-way side channelC can
be strictly greater than the secrecy capacity with only a one-way side channel
C . See [29]–[31] for details. This is in sharp contrast with Shannon’s channel
coding theorem which states that two-way side channels do not increase channel
capacity. The process of using two-way communications to share a secret in a
way that is impossible with only one-way communications is called “advantage
distillation.”
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they used different bases. The remaining bits form the raw key,
which will be processed some more to produce the final key.

The six-state protocol is quite similar, but Alice sends one
of six states instead of one of four. The four states from BB84
are used (with the same meanings), plus the two states

and , which represent and in the
“ ” basis. Bob chooses to measure randomly in the, , or

basis, and again Alice and Bob discard any bits for which
they used different bases. Thus, for the six-state scheme, the raw
key consists of one-third of the qubits received on average, as
opposed to one-half for BB84;4 however, as we shall see, the
six-state scheme remains secure under noisier conditions.

Once they have produced the raw key, Alice and Bob select
a sample of sufficient size (assume one-half the total raw key
for simplicity), and publicly announce the values of those bits.
They compare and calculate the fraction of bits which disagree;
this is known as the “bit error rate.” The bit error rate gives an
estimate of the actual error rate for the remaining key bits. If
the bit error rate is too high, Alice and Bob assume there is an
eavesdropper and abort the protocol. Otherwise, Alice and Bob
take their remaining bits and may correct them using a classical
error-correcting code: that is, Alice announces her values for the
parity checks of a classical linear code, and Bob compares his
values for the same parity checks to deduce the locations of er-
rors in the remaining key bits. He corrects those errors. Finally,
Alice and Bob perform privacy amplification whose goal is to
remove the eavesdropper’s information on the final key: they
choose some set of parities, and the final key bits are the values
of those parities. After this procedure, provided the bit error rate
is not too high, the final key is supposed to be secure against an
eavesdropper Eve.

There are a few points about the protocols which deserve ad-
ditional comment. First, all of Alice and Bob’s classical commu-
nications occur over a public channel, so Eve also has available
to her any information that was announced. However, the clas-
sical channel should be authenticated, so that Eve can only listen
to it and not change it. Second, after producing the raw key and
before performing the error test, Alice and Bob should agree on
a random permutation to apply to their raw key bits. This simpli-
fies the analysis, since Eve’s attack under these circumstances
might as well be symmetric over all qubits sent, and improves
the tolerable bit error rate. Third, the meaning of “security” for
this protocol is slightly subtle: for any attack chosen by Eve,
either she will be detected, except with probability exponen-
tially small in some security parameter, or, with probability
exponentially close to, she will have an exponentially small
amount of information, in some security parameter, about the
final key. A QKD scheme is efficient if the resources (in terms
of the number of qubits sent, amount of computational power,
etc.) required for its implementation are at most polynomial in
the security parameters. For simplicity, it is quite common to
take the security parameters to be, the total number of qubits
sent. As discussed in [25], other choices of the security param-
eters are perfectly acceptable.

4Prepare-and-measure QKD schemes can be made more efficient by
employing a refined data analysis in which the bit error rates of the sampled
data of the various bases are computed separately and each demanded to be
small. See [25], [24] for discussions and a proof of the unconditional security
of those efficient prepare-and-measure QKD schemes.

TABLE I
BOUNDS ON THEBIT ERRORRATE FOR BB84 AND THE SIX-STATE SCHEME

USING ONE-WAY AND TWO-WAY CLASSICAL POST-PROCESSING. THE LOWER

BOUNDS FORTWO-WAY POST-PROCESSING, 18.9%FORBB84 AND 26.4%FOR

THE SIX-STATE SCHEME, COME FROM THE CURRENT WORK

B. Known Bounds on the Performance of QKD

There are a number of upper and lower bounds known for the
allowable bit error rate for these two protocols. In Table I, we
summarize the bounds for BB84 and the six-state scheme. The
tables give bounds for schemes that use one-way and two-way
classical communications during the post-processing phase.
The upper bounds are derived by considering some simple
individual attacks, and determining when these attacks can
defeat QKD. The lower bounds come from protocols that have
been proved secure. For both BB84 and the six-state scheme,
our new lower bounds for two-way classical post-processing
schemes are substantially better than the upper bounds for
schemes with one-way classical post-processing. Therefore,
our results demonstrate clearly that our schemes can tolerate
higher bit error rates than any possible schemes with only
one-way classical post-processing can.

The upper bounds for one-way post-processing come from at-
tacks based on optimal approximate cloning machines [11], [7],
[1]. Although perfect cloning of an unknown quantum state is
strictly forbidden by the uncertainty principle of quantum me-
chanics, approximate cloning is possible. Optimal approximate
cloning has recently been experimentally demonstrated [21].
More specifically, Eve intercepts all of Alice’s signals from the
quantum channel. Using the appropriate optimal cloner, Eve
can generate two equally good approximate copies of the orig-
inal signal. In the case of BB84, the resulting bit error rate in
a single copy is about 14.6% [11], [7], and it is for the
six-state scheme [1]. Eve then keeps one copy herself and sends
the second copy to Bob. With only one-way classical processing,
Bob is not allowed to send classical signals to Alice.5 Therefore,
Bob and Eve are in a completely symmetric situation: if Bob can
generate a key based on subsequent classical transmissions from
Alice, Eve must be able to do the same. Therefore, at this error
rate (14.6% or ), the QKD scheme must be insecure with
one-way post-processing.

5If one allows Bob to send classical messages to Alice only (but not from
Alice to Bob), in the context of coherent state QKD, it is known that such
backward one-way communications can actually help to beat the approximate
cloning attack. However, the issue of unconditional security remains open. See
[16] for details.
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The upper bounds for two-way post-processing come from
an intercept and resend eavesdropping strategy. Eve intercepts
each qubit sent by Alice. She chooses to measure in a random
basis from the appropriate list (, for BB84 or , , for
the six-state scheme). She records her measurement outcome
and prepares a single photon in the polarization given by her
measurement outcome and resends such a photon to Bob. Note
that whatever Bob can do from this point on can be simulated by
a classical random variablepreparedby Eve, who has a classical
record of it, and a local random number generator possessed by
Bob. Therefore, secure QKD is impossible even with two-way
classical communications between Alice and Bob. For BB84,
the intercept and resend strategy gives an error rate of 25%: half
the time Eve has chosen the correct basis, so there is no error,
and half the time she has chosen the wrong basis, in which case
there is a 50% chance of an error, for a net error rate of.
For the six-state scheme, intercept and resend gives an error rate
of : Eve has the correct basis only of the time, and the
remaining of the time, she has a 50% chance of introducing
an error.

The lower bounds in Table 1 come from proofs of security.
The Shor and Preskill proof shows that QKD with one-way com-
munications can be secure with data rate at least ,
where is the bit error rate and

is the Shannon entropy. This reacheswhen is about 11.0%.
For the six-state scheme, this result has been slightly improved
by one of us (H.-K. Lo) [22] to allow secure QKD up to a bit
error rate of about 12.7%.6 With two-way communications
during post-processing, Shor and Preskill’s result and Lo’s
result remain the best prior results. (Lo’s result is marginally
better than Inamori’s result [19] for the six-state scheme, which
requires two-way classical post-processing.) In this paper, we
present significant improvements on both lower bounds.

C. EPP Schemes for QKD

For our proof of security, it will be helpful to consider another
class of scheme based on EPPs (which are described in more
detail in Section III). For these QKD schemes, which we will
refer to asEPP schemesor EPP protocols,7 Alice prepares a
number of EPR pairs . On the second
qubit of each pair, Alice then performs a random rotation chosen
either from the set , or the set , , . is the identity
operation, is the Hadamard transform, which swaps states in
the and bases, and is a unitary operation which takes
states in the basis to the basis, states in the basis to the

basis, and states in thebasis to the basis.
We will refer to the first case (with and ) as thetwo-basis

EPP protocol, and the second case (with, , and ) as the
three-basisEPP protocol. The two-basis scheme will produce a

6The result in [22] makes use of the nontrivial mutual information between
the bit-flip and phase error syndromes, and of the degenerate codes studied by
DiVincenzo, Shor, and Smolin [9].

7“EPP protocol” sounds redundant since the second “P” in “EPP” also stands
for “protocol.” However, it is not really redundant, since the full phrase is short
for “quantum key distribution protocol based on an entanglement purification
protocol.”

protocol related to BB84, while the three-basis scheme produces
a protocol related to the six-state scheme. We can also consider
efficientschemes in which the rotations are not performed with
equal probabilities. These produce efficient BB84 and six-state
schemes [25], [24], which have a higher rate of key generation
per qubit transmitted.

After performing the rotation, Alice sends the second qubit of
each pair to Bob. When Bob acknowledges receiving the trans-
mission, Alice announces which rotation she performed for each
pair. Bob reverses this rotation. Then Alice and Bob agree on a
random permutation of the EPR pairs, and select a subset (half
of the pairs by default) to measure (in thebasis) to test for er-
rors. They compare the results of the test, and abort if the error
rate is too high. If not, Alice and Bob perform an EPP to extract
good entangled pairs. Then they measure (again in thebasis)
the remaining pairs and use the result as their secret key.

The security proofs we review in Section IV show that the
security of BB84 and the six-state scheme can be reduced
to the security of the above EPP schemes using appropriate
EPPs. The protocols that lead to traditional prepare-and-measure
one-way post-processing schemes are EPPs using just one-way
communications; in this paper, we present two-way post-
processing schemes that arise from EPPs with two-way classical
communications.

III. ENTANGLEMENT PURIFICATION AND QUANTUM ERROR

CORRECTION

Suppose Alice and Bob are connected by a noisy quantum
channel (and perhaps also a noiseless classical channel). Entan-
glement purification provides a way of using the noisy quantum
channel to simulate a noiseless one. More concretely, suppose
Alice creates EPR pairs and sends half of each pair to Bob.
If the quantum communication channel between Alice and Bob
is noisy (but stationary and memoryless), then Alice and Bob
will share imperfect EPR pairs, each in the state. They may
attempt to apply local operations (including preparation of an-
cillary qubits, local unitary transformations, and measurements)
and classical communications (LOCCs) to purify theimper-
fect EPR pairs into a smaller number,, EPR pairs of high fi-
delity. This process is called an EPP and was first studied by
BDSW [3].

One way to classify EPPs is in terms of what type of clas-
sical communications they require. Fig. 1(a) shows the structure
of EPPs that can be implemented with only one-way classical
communications from Alice to Bob, known as 1-EPPs. Fig. 1(b)
shows the structure of EPPs requiring two-way classical com-
munications, known as 2-EPPs.

Typically, a 1-EPP will consist of Alice measuring a series
of commuting operators and sending the measurement result to
Bob. Bob will then measure the same operators on his qubits. If
there is no noise in the channel, Bob will get the same results as
Alice, but of course when noise is present, some of the results
will differ. From the algebraic structure of the list of operators
measured, Bob can deduce the location and nature of the errors
and correct them. Unfortunately, the process of measuring EPR
pairs will have destroyed some of them, so the resulting state
consists of fewer EPR pairs than Alice sent.
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(a)

(b)

Fig. 1. (a) A 1-EPP. Alice performs some unitary operations and
measurements, then makes a transmission to Bob, who performs another
unitary transformation, possibly based on Alice’s classical transmission. (b) A
2-EPP. Alice and Bob alternate local operations and classical transmissions.
Each operation can depend on the contents of earlier transmissions. The
procedure can extend indefinitely.

As noted by BDSW, a 1-EPP is mathematically equivalent
to a QECC (see [13], [28] for background on QECCs). Instead
of measuring a series of operators and transmitting the results,
Alice instead encodes Bob’s qubits into a particular prede-
termined eigenspace of the list of operators. Then when Bob
receives the qubits, he can measure the same list of operators,
telling him the error syndrome for the QECC given by that
subspace. For instance, if the channel only produces bit-flip
errors, Alice can encode Bob’s state using a random coset
of a classical linear code, and then Bob measures the parity
checks for that code. He determines what error the channel
introduced by calculating how the coset has changed since
Alice’s transmission.

2-EPPs can be potentially more complex, but frequently have
a similar structure. Again, Alice and Bob measure a set of iden-
tical operators. Then they compare their results, discard some
EPR pairs, and together select a new set of operators to measure.
An essential feature of a 2-EPP is that the subsequent choice
of measurement operators may depend on the outcomes of pre-
vious measurements. This process continues for a while until the
remaining EPR pairs have a low enough error rate for a 1-EPP
to succeed. Then, a 1-EPP is applied.

Unfortunately, not all EPPs are suitable for making a pre-
pare-and-measure QKD protocol. The next few definitions are
designed to set the stage for the detailed sufficient conditions in
our main theorem. We will, for instance, primarily be interested
in a restricted class of EPPs which involve the measurement of
Pauli operators. The best studied EPPs can all be described in
the “stabilizer” formulation, which employs Pauli operators ex-
tensively. Other EPPs might still be useful for QKD, but are less
well studied.

Definition 1: A Pauli operatoracting on qubits is a tensor
product of individual qubit operators that are of the form(the
identity)

and

An -typeoperator is a tensor product of just’s and ’s, and
a -typeoperator is a tensor product of just’s and ’s.

Note that the states in Section II described as being in the,
, or bases are, in fact, eigenstates of the operators, , and
. A Calderbank–Shor–Steane (CSS) code involves measuring

just -type and -type Pauli operators. Also, note that any pair
of , , and anticommute with each other (so, for instance,

). Finally, note that all Pauli operators have only
eigenvalues and . Classical linear error-correcting codes
can be understood as a measurement of a series of just-type
operators: the eigenvalue of a-type operator is the parity of
bits on which the operator acts as. (For instance, measuring

gives the parity of the first and third bits.)
When dealing extensively with Pauli operations, it is helpful

to also look at a more general class of operators which interact
well with Pauli operations.

Definition 2: A unitary operation belongs to theClifford
groupif it conjugates Pauli operators into other Pauli operators.

Thus, a Clifford group operation will map eigenstates of a
Pauli operation into eigenstates of another Pauli operation. For
instance, controlled-NOT (CNOT) and are both Clifford
group operations. (In fact, the Clifford group is generated by
CNOT, , and the phase gate , .)

Definition 3: We say an EPP (one-way or two-way) issym-
metric if it can be described with a set of operators , plus
unitary decoding operations . Each operator
describes a measurement that may be made at some point in the
protocol; the index describes a history of outcomes of earlier
measurements as a string of’s and ’s. On the history , Alice
performs the measurement on her side, and Bob performs
the measurement on his side. (They always perform the
same sequence of measurements, thus the name “symmetric.”)
They then update the historyby appending the parity of their
two measurement outcomes (for the same outcome,for op-
posite outcomes). The protocol begins with each person mea-
suring the operator . Each time the history is updated, Alice
and Bob measure the operator corresponding to the new value
of , and again update the history according to the result. When
there is no for the current history, Alice performs the opera-
tion and Bob performs the operation , and the protocol
terminates.

Fig. 2 shows a symmetric EPP. See also Section III-A and
Fig. 3 for another representation.

Note that if the history is an extension of the history(i.e.,
it is with additional bits appended), the operators ,
should commute for the EPP to be realizeable using local oper-
ations and no additional resources. On the other hand, for two
different extensions, and , of the same history, the corre-
sponding operators and donotneed to commute. This
is because Alice and Bob never need to measure both operators
for the same state.

For a 2-EPP, the commutation requirement is the only
constraint on the ’s. For a 1-EPP, we also require that
the operators depend only on the length of (i.e., how
many measurements have been made so far) and not the precise
history. This is because in a 1-EPP, Alice cannot learn Bob’s
measurement outcomes and, therefore, cannot know the exact
value of the history .
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Fig. 2. Structure of a symmetric EPP. Alice and Bob measure the same
sequence of operators.r ands are the parities of the outcomes of Alice’s and
Bob’s measurements ofM andM , respectively.

The final operation serves two purposes. First,
the measurements have determined a good deal of information
about the state of the system, and we must disentangle that from
the residual Bell states. Second, it acts to correct, discard, or
otherwise eliminate any errors identified by the measurements.
For instance, if the EPP locates pairs with errors, but does not
identify what kind of errors are present, the final operation
would likely permute the qubits to move the errors to a stan-
dard set of locations, which are then discarded. It is convenient
to separate the decoding operation into two parts:, which
is performed by both people and represents decoding and dis-
carding bad EPR pairs, and , performed just by Bob, which
represents correcting EPR pairs which will be kept. In practice,
it is often easier to specify an EPP by including unitary opera-
tions in between measurements as well as at the end of the pro-
tocol, but this is an equivalent definition, since the measurement
operators can instead be defined to take the change of basis
into account. Notice that in a 1-EPP, cannot depend on,
whereas invariably will—otherwise, there would be no way
to correct any errors discovered in the course of the protocol.

Definition 4: A symmetric EPP is astabilizer EPP if all
measurements are of eigenspaces of Pauli operations, the
decoding operation is a Clifford group operation, and the
correction operation is a Pauli operation. For a 1-EPP, we
again make the restriction that is independent of .
A stabilizer EPP isCSS-likeif all ’s are -type or -type
Pauli operations, and involves only CNOTs.

Stabilizer 1-EPPs can be thought of as another guise of stabi-
lizer QEECs. The measurements correspond to the genera-
tors of the code stabilizer. is the decoding operation, which
for a stabilizer code is always from the Clifford group, and
corrects the Pauli errors that have occurred. CSS-like 1-EPPs
correspond to the class of CSS codes; since they are based on
classical linear codes, the decoding only needs CNOT gates.

The same intuition applies to the case of 2-EPPs. The condi-
tion that decoding only needs CNOT means intuitively that the
encoded operation is, in fact, also of -type; that is, it can
be written as a tensor product ofoperators. The final correc-
tion operation is a Pauli operator because the error syndrome
(disclosed in the two-way classical communication) should con-
tain enough information to identify which Pauli error has oc-
curred in the quantum channel.

The EPPs we will consider in this paper are all CSS-like
EPPs. In fact, we will need to consider Alice and Bob choosing
a random EPP out of a family of similar EPPs, but this does not
produce any further intrinsic complications. For simplicity, we
may describe EPPs that involve Clifford group or Pauli group
operations in the middle of the series of measurements instead

(a)

(b)

Fig. 3. (a) The tree diagram representation of a 1-EPP. The sequence of
operators is fixed, so there is no branching. The 1-EPP shown corresponds
to the 5-qubit QECC. (b) The tree diagram of a 2-EPP. Future operators may
depend on the outcome of a measurement, allowing a branched tree. When the
tree branches, edges are labeled by the outcome of the previous measurement.
When it does not branch, no label is needed. Note that the tree does not need to
branch uniformly, or even have uniform depth. The EPP in part (b) is CSS-like;
the EPP in part (a) is not.

of the end, but this does not affect the definition at all; these
EPPs can be rewritten to conform to the above definition of sta-
bilizer or CSS-like EPPs.

A. A Tree Diagram Representation

The series of operators measured in a stabilizer 1-EPP or
2-EPP can be represented using a tree diagram representation.8

Each vertex is labeled by an operator that could be measured
during the EPP. Each edge is labeled with one or more possible
outcomes of the previous measurements. The edges are directed
from the root of the tree (labeled by ) toward the leaves (la-
beled with for of maximal length), representing the time
ordering of the measurements.

Given a tree diagram of the above form, we can read off the
structure of the EPP. We start at the root of the tree, which is
labeled by measurement . We note the outcome and follow
the edge which is labeled by that outcome. Then we perform the
measurement which labels the new vertex, and follow the edge
corresponding to the outcome of that measurement. We repeat
this process until we reach the bottom of the tree, at which point
we perform the appropriate unitary operation . Each
history corresponds to a path through the tree.

For any 1-EPP, the sequence of measurements does not de-
pend on the outcome of any measurement. Therefore, a 1-EPP
can be represented by a straight (directed) line (see Fig. 3(a)).

8We thank David DiVincenzo and Debbie Leung for suggesting the tree dia-
gram representation.
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On the other hand, in a 2-EPP, the choice of measurement
at any step can depend on the outcome of an earlier measure-
ment . This corresponds to a branch in the tree at step(see
Fig. 3(b)).

IV. THE SHOR AND PRESKILL SECURITY PROOF

Next, we give the Shor and Preskill proof [33] of security
of BB84. See also [15] for a more detailed version. Shor and
Preskill’s proof begins by following Lo and Chau’s proof [23]
of the security of a scheme using EPPs, and then shows that the
security of BB84 follows from the security of the EPP scheme.

As noted before, in the EPP scheme, Alice createsEPR
pairs and sends half of each to Bob. Alice and Bob then test the
error rates in the and bases on a randomly chosen subset
of pairs. If the error rate is too high, they abort; otherwise,
they perform an EPP on the remaining pairs. Finally,
they measure (in the basis) each of the EPR pairs left after

, producing a shared random key about which, they hope, Eve
has essentially no information.

A. Noisy Quantum Channels and Eavesdropping Strategies

All of the QKD protocols we consider will take place over
a noisy quantum channel, even when there is no eavesdropper
present. We shall be primarily interested in a special class of
quantum channels known as Pauli channels.

Definition 5: A quantum channelis any superoperator which
acts on transmitted qubits. APauli channel applies the
Pauli operation with probability (so we require ).
An uncorrelated Pauli channel applies a random
Pauli operator independently on each qubit sent through the
channel. It applies with probability , with probability

, with probability , and with probability
.

From the perspective of Alice and Bob, noise in the channel
could have been caused by an eavesdropper Eve. We will need to
consider two types of eavesdropping strategy by Eve. The first
strategy, the joint attack, is the most general attack allowed by
quantum mechanics.

Definition 6: In a joint attackby Eve, Eve has a quantum
computer. She takes all quantum signals sent by Alice and per-
forms an arbitrary unitary transformation involving those sig-
nals, adding any additional ancilla qubits she cares to use. She
keeps any part of the system she desires and transmits the re-
mainder to Bob. She listens to the public discussion (for error
correction/detection and privacy amplification) between Alice
and Bob before finally deciding on the measurement operator
on her part of the system.

The joint attack allows Eve to perform any quantum operation
on the qubits transmitted by Alice. For the security proof, we
shall also consider a Pauli attack.

Definition 7: A Pauli attackby Eve is a joint attack where the
final operation performed on the transmitted qubits is a general
Pauli channel.

B. EPP Protocols are Secure

In this subsection, we will show that the EPP protocols de-
scribed in Section II are secure. The argument is essentially that
of [23]. First, what do we mean by “secure?”

Definition 8: A QKD protocol to generate key bits iscor-
rect if, for any strategy used by Eve, either Alice and Bob will
abort with high probability or, with high probability, Alice and
Bob will agree on a final key which is chosen nearly uniformly
at random. The protocol issecureif, for any strategy used by
Eve, either Alice and Bob will abort with high probability or
Eve’s information about the key will be at most for
some security parameter. In all cases, “with high probability”
means with probability at least for some security
parameter . The resources required for the implementation of
a QKD scheme must be at most polynomial inand . For sim-
plicity, in what follows, we will consider the case where
and call it simply the security parameter.

Naively, one might consider a security requirement of the
form , where is the eavesdropper’s mutual in-
formation with the final key and is the length of the final key.
However, such a definition of security is too weak, since it al-
lows Eve to learn a few bits of a long message. For instance,
the eavesdropper may know something about the structure of
the message that Alice is going to send to Bob. Imagine that
the last few characters of the message contain the password for
launching a nuclear missile. In that case, Eve could compromise
the security of the message by concentrating her information on
the last few bits.

Another naive definition of security would be to require that
for any eavesdropping strategy. Unfortunately,

such a definition of security is too strong to be achievable. For
instance, Eve can simply replace the signal prepared by Alice
by sending Bob some signals with specific polarizations pre-
pared by herself. Such an eavesdropping attack is highly un-
likely to pass the verification test (by producing a small error
rate). However, in the unlikely event that it does pass the verifi-
cation test, Eve will have perfect information on the key shared
between Alice and Bob, thus violating the security requirement

.

In fact, even the definition we give is probably not strong
enough for some purposes: Eve can retain aquantumstate at
the end of the protocol, and the security definition should refer
to that rather than bounding herclassicalinformation about the
key. For instance, a better definition is: for any eavesdropping
strategy, either Eve will almost surely be caught, or, for any two
final values of the key, Eve’s residual density matrices after the
protocol concludes will have high fidelity to each other. That is,
Eve cannot reliably distinguish between any pair of values of
the key. We do not prove the stronger definition in this paper.

The question of defining security for quantum cryptography
in a way that enables us to prove composibility of protocols
remains an important open problem. For this paper, however,
we simply use Definition 8.

Our method will be to relate the security of BB84 and the six-
state scheme to the security of EPP schemes, and we wish to say
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that when the EPP schemes are secure, so are the “prepare-and-
measure” schemes.

Definition 9: Suppose QKD protocol is correct and secure,
with a security parameter. Then QKD protocol is said to
have securitysimilar to protocol when is also correct and
secure, and its security parameteris polynomially related to
. Furthermore, protocol should abort at a given bit error rate

only if protocol also aborts at that bit error rate.

To prove the security of EPP protocols, we first observe that
we need only show Alice and Bob can generate states close to

EPR pairs. This is a consequence of the following lemma
(originally [23, Note 28]).

Lemma 1: If has a high fidelity (for large ) to a
state of perfect EPR pairs and Alice and Bob measure along
a common axis to generate an-bit key from , then Alice and
Bob will most likely share the same key, which is essentially
random. Moreover, Eve’s mutual information with the final key
is bounded by , where

In other words, Eve’s information is exponentially small as a
function of .

The proof is given in Appendix I. The next step is to restrict
our attention to Pauli attacks.

Lemma 2 [23]: Consider a stabilizer EPP protocol for QKD.
Given any joint attack by Eve, there is a Pauli attack for which
the final density matrix of Alice and Bob has the same
fidelity to EPR pairs, and which gives the same chance of
having the QKD protocol abort.

We will only prove Lemma 2 for EPP protocols based on
stabilizer EPPs, but the result holds for any EPP designed to
correct Pauli channels (see [15] for the general proof). Pauli
channels play a special role in the above lemma because most
known QECCs (stabilizer codes, for instance) are designed to
correct Pauli errors.

Proof: First, note that for a symmetric EPP, it would suf-
fice if Alice and Bob had a way of measuring di-
rectly instead of separately measuring on Alice’s side and
again on Bob’s side. This is because all decisions are based on
the parity of Alice’s and Bob’s results, which is equal to the
eigenvalue of . Also, note that the EPR pair

is a eigenstate of the Pauli operators
and . (It is actually a eigenstate of .)

Thus, let be a Bell measurement for theth EPR pair—a
measurement of both and . For a stabilizer EPP,

commuteswith for all , (note that each
is likely to involve more than one EPR pair). Thus, if Alice and
Bob first measure all the operators and then measure

for all after the EPP is concluded, the result is the same as
if they first measured and then . Since they do not
need the results of the measurements, it is again equivalent
if Eve measures instead of Alice and Bob.

That is, the following two situations are the same: a) Eve per-
forms her attack and then Alice and Bob measure ,

and b) Eve performs , measures , and then Alice and Bob
measure . By the argument of the previous paragraph,
the attack in b) produces a density matrix with the same fidelity
to EPR pairs as the attack in a). The attackfollowed by mea-
surement of is a Pauli attack. The initial state is a Bell state
(the tensor product of for all pairs), and the final state is a
mixture of tensor products of Bell states (the outcome of mea-
suring for each pair ). Each tensor product of Bell
states can be associated with the unique Pauli operationthat
maps to , so Eve’s attack is , where
is the probability of getting the outcome . Therefore, the
lemma holds for a hypothetical protocol in which Alice and Bob
measure directly.

Of course, Alice and Bob have no way of doing this, so
instead they must measure separately and compare results
(with one- or two-way communications, as appropriate).
Since this gives them more information, it certainly cannot
help Eve. On the other hand, they do not actually use that
information—from the definition of a symmetric EPP, only the
relative measurement outcome between Alice and Bob matters.
Therefore, having Alice and Bob measure together
produces the same fidelity and chance of aborting as when they
measure separately.

This lemma is described in [23] as a “classicalization” or
“quantum-to-classical reduction” because it reduces Eve’s gen-
eral quantum attack to a Pauli attack, which is classical in the
sense that it can be described by classical probability theory.
Lemma 2 allows us to simplify our discussion to just Pauli chan-
nels .

We can simplify further by taking into account the sym-
metry of the QKD protocol. Note that in the EPP protocols
we described, Alice and Bob permute their qubits randomly
before doing any other operations. So we may as well assume

whenever is a permutation of . That is, the attack
is symmetric on the EPR pairs. Similarly, in the two-basis
scheme, Alice performs randomly one of the two operations,

, which produces a symmetry between theand bases,
so we can also assume whenever is related to
by the Hadamard transform on any number of qubits. In the
three-basis scheme, we can assume when and
are related by or on some set of qubits.

Now, in the EPP protocols, Alice and Bob measure a random
subset of qubits to test the error rate. From this, they are
supposed to figure out what sort of Pauli channel the system
has undergone. If the noise occurs independently on each qubit,
this is just a straightforward problem in statistical inference. Of
course, an eavesdropper need not use such a simple attack, but
the symmetries of the protocol still allow Alice and Bob to make
a good guess as to the true channel. For one thing, Eve has no
way to distinguish between the test bits and the key bits, so the
error rate measured for the test bits should be representative of
the error rate on the key bits. What’s more, Alice and Bob learn
a good deal about the basis dependence of the channel as well.

Let us first consider the two-basis case more carefully.
Suppose Alice and Bob find there are errors among
the qubits for which Alice did the operation; these
represent and Pauli errors introduced by Eve. Similarly,
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they find errors in the qubits for which Alice did
the operation ; these represent and errors introduced
by Eve. If this channel were an uncorrelated Pauli channel

, on average, we would expect and
. In fact, if we consider the effective error rates

after undoing the , operations, we find
and because and are equally likely.
That is, . The effective error rate .

Note that in the two-basis case, Alice and Bob are unable to
deduce the most likely values of , , and ; they can only
learn and . Given the symmetry
between and , they, in fact, have ,
but our discussion will keep and as separate parameters.
This allows most of our results to also apply to the efficient case
[25], [24], where and have different probabilities.

The fact that Alice and Bob cannot completely learn the char-
acteristics of even an uncorrelated Pauli channel suggests that it
might be helpful to measure in more bases. This is the advan-
tage of the six-state scheme, which is related to the three-basis
EPP protocol. In that case, Alice and Bob measure, , .
For an uncorrelated Pauli channel , ,

, and . Given the symmetry of the
problem, after undoing the rotations, we get

Again, our discussion will allow , , and to be different
to accommodate the efficient six-state protocol.

Given the error test, Alice and Bob deduce some values either
for , or for all three quantities , , . However, the
error rate on the tested bits is onlyclose to the error rate on
the data bits. Therefore, they should use an EPP that is flexible
enough to correct slightly more or less noisy Pauli channels than
indicated by the test. In particular, when they deduce, ,
and , they should perform an EPP capable of correcting any
Pauli channel with for
and some small. Further, we should assume that, for any, the
fidelity of the final state to EPR pairs is exponentially close
to in .

When Alice and Bob only learn and , they should allow
additional flexibility for the value of . That is, their EPP
should correct any Pauli channel (with
all three parameters nonnegative), again with , for

. Provided Alice and Bob use such an EPP, the next
lemma says that the error test works and allows them to correct
any symmetric Pauli channel, not just an uncorrelated one.

Lemma 3: Suppose the EPR pairs experience a Pauli
channel which is symmetric over the pairs, and
that they use an EPP which corrects for any error rate close to
those shown by the test bits, as described above. Then either
they abort with high probability, or the final state has fidelity
exponentially close to in to the state of EPR pairs.

Since we only need to consider Pauli channels, the proof is
just an exercise in classical probability, and is given in Ap-
pendix II.

From Lemmas 2 and 3, we know that for the EPP protocols
we consider, given any strategy for Eve, either she has a large

chance of getting caught, or the final state will have high fidelity
to EPR pairs. Combining that with Lemma 1, we have shown
the following.

Theorem 4: The EPP protocols for QKD are secure and
correct.

C. Prepare-and-Measure Protocols are Secure

Given Theorem 4, Shor and Preskill [33] showed that one can
prove the security of BB84. The same technique can be applied
to show the security of the six-state scheme [22]. These two
results can be combined into the following theorem.

Theorem 5—[33]: Given a QKD protocol based on a CSS-
like 1-EPP, there exists a “prepare-and-measure” QKD protocol
with similar security. That is, for any strategy by Eve to attack
the “prepare-and-measure” protocol, there exists a strategy to
attack the EPP protocol with similar probability of causing the
protocol to abort and similar information gain to Eve if it does
not abort. (Similar here means that the security parameters are
polynomially related.)

Proof: The reduction to a “prepare-and-measure” pro-
tocol is done as a series of modifications to the EPP protocol
to produce equivalent protocols. The main insight is that
the -type measurements do not actually affect the final
QKD protocol, and therefore are not needed. The-type
measurements give the error syndrome for phase () errors,
which do not affect the value of the final key. Instead,errors
represent information Eve has gained about the key. The phase
information thus must be delocalized, but need not actually be
corrected. The upshot is that Alice and Bob need not actually
measure the -type operators and can therefore manage
without a quantum computer. Our initial goal is to manipulate
the EPP protocol to make this clear. The-type measurements
do not, however, disappear completely: instead, they become
privacy amplification.

For the first step, we modify the EPP to put it in a standard
form. Because it is a CSS-like 1-EPP, there is no branching in the
tree diagram, and each operator being measured is either-type
or -type. The operators all commute, and do not depend on
the outcome of earlier measurements, so we can reorder them
to put all of the -type measurements before all of the-type
measurements. Let us recall Definition 4 for a CSS-like 1-EPP.
Now we have an EPP consisting of a series of-type measure-
ments, followed by a series of -type measurements, followed
by CNOTs and Pauli operations (which we can represent as,

, and/or on each qubit). Then Alice and Bob measure all
qubits in the basis.

As a second step, we can move allPauli operations to be-
fore the -type measurements, since they commute with each
other. Moreover, if Alice and Bob are simply going to measure
a qubit in the basis, there is no point in first performing a
phase-shift operation, since it will not affect at all the distribu-
tion of outcomes of the measurement.

We now have an EPP protocol consisting of-type measure-
ments, followed by Pauli gates, followed by -type mea-
surements, followed by a sequence of CNOT gates which does
not depend on the measurement outcomes. But nothing in the
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current version of the protocol depends on the outcomes of the
-type measurements, so those measurements are useless. We

might as well drop them. Furthermore, Pauli operations and
CNOT gates are just classical operations, so we might as well
wait to do them until after the basis measurement, which con-
verts the qubits into classical bits.

What’s more, it is redundant to perform-type measure-
ments followed by measurement of for each qubit. We can
deduce with complete accuracy the outcome of each-type
measurement from the outcomes of the measurements on indi-
vidual qubits. For instance, if a sequence of three bits is mea-
sured to have the value , then we know that measurement of

will give the result , as the parity of the three
bits is even.

Thus, we are left with the following protocol: Alice prepares
a number of EPR pairs, and sends half of each to Bob. She
and Bob each perform the correction rotation (or for the
two-basis scheme;, , or for the three-basis scheme), then
measure each qubit in thebasis. They use some of the results
to test the error rate, and on the rest they perform some classical
gates derived from the original EPP.

In fact, since Alice can perform her rotation and measurement
before sending any qubits to Bob, she need not actually pre-
pare entangled states. Instead, she simply generates a random
number, which corresponds to the outcome of her-basis mea-
surement, and sends Bob the state to which the EPR pair would
have collapsed, given that measurement result. That is, she sends
him or rotated by the appropriate gate (, , , or ).
Bob inverts the rotation and measures.

Then they perform classical gates. To understand which gates,
it is helpful to look more closely at the original EPP. When the
EPP is based on a CSS code, the-type operators correspond
to the parity checks of a classical error-correcting code, and
the -type operators correspond to the parity checks of another
classical code , with . The quantum codewords of
the CSS code are superpositions of all classical codewords from
the cosets of in . Measuring the -type operators, there-
fore, corresponds to determining the error syndrome for,
whereas measuring the-type operators determines the error
syndrome for . The usual 1-EPP protocol for correcting er-
rors is for Bob to compute the difference, in both bases, between
Alice’s syndrome and his syndrome, and then to perform a Pauli
operation to give his state the same syndromes as Alice’s state.
That is, Alice and Bob now each have a superposition over the
same coset of within the same coset of (or rather, they
have an entangled state, a superposition over all possible shared
cosets for a given pair of syndromes). The decoding procedure
then determineswhichcoset of they share and uses that as
the final decoded state.

More concretely, we can describe the classical procedure as
follows: For the error correction stage, Alice computes and an-
nounces the parity checks for the code. Bob subtracts his
error syndrome from Alice’s and flips bits (according to the op-
timal error-correction procedure) to produce a state withrela-
tive error syndrome; that is, he should now have the same string
as Alice. Then Alice and Bob perform privacy amplification:
they compute the parity checks of (i.e., they multiply by the

generatormatrix of ) and use those as their final secret key
bits.

There is one final step to convert the protocol to a “pre-
pare-and-measure” protocol. Instead of preparingqubits and
sending them to Bob, Alice prepares (for BB84) or

(for the six-state scheme). Instead of waiting for
Alice to announce which rotation she has performed (, , ,
or ), Bob simply chooses one at random. Instead of rotating
and then measuring in the basis, Bob simply measures in the

, , or basis, depending on which rotation he chose. Then
Alice and Bob announce their bases, and discard those bits for
which they measured different bases. With high probability,
there will be at least remaining bits. Alice and Bob perform
the error test on of them, and do error correction and privacy
amplification on the remaining . Since the discarded
bits are just meaningless noise, they do not affect the security
of the resulting “prepare-and-measure” protocol. The only
difference is that security must now be measured in terms of
the remaining bits rather than the original number of qubits
sent. When we begin with a two-basis scheme, we end up with
BB84; when we begin with a three-basis scheme, we end up
with the six-state protocol.

V. DIFFICULTY IN GENERALIZATION TO TWO-WAY EPP’s

An obvious attempt to generalize Theorem 5 to 2-EPPs would
be to simply use CSS-like (those with-type and -type mea-
surement operators only) 2-EPPs instead of CSS-like 1-EPPs.
Unfortunately, this approach fails; another condition is needed.

For instance, consider the following 2-EPP, which we call
EPP 1: Alice and Bob each measure on pairs of EPR
pairs. This can be implemented as a bilateralXOR: Alice per-
forms anXOR from the first pair to the second, and Bob does
the same. Then both Alice and Bob measure their qubit in the
second pair and broadcast the measurement result. If Alice’s and
Bob’s measurement outcomes disagree, they discard both pairs.
On the other hand, if Alice’s and Bob’s measurement outcomes
agree, then they keep the first pair for subsequent operations.
Now, if there is exactly one bit-flip error between the two pairs,
Alice and Bob will disagree; otherwise, they agree. Note that
at most one EPR pair out of the original two would survive the
measurement, but if Alice and Bob disagree, they discard both
pairs. They do this for a large number of pairs; the surviving
EPR pairs have a lower bit-flip error rate than the original ones.

Unfortunately, the surviving pairs also have ahigher rate of
phase errors, since phase errors propagate backward along a
CNOT. Therefore, in the next round of the EPP, Alice and Bob
measure on pairs of EPR pairs. This can be implemented
by performing a Hadamard transform, followed by the bilateral
XOR and measurement described above. Alice and Bob should
then perform another Hadamard to return the surviving EPR pair
to its original basis. This procedure can detect the presence of
a single phase error in the two pairs. If Alice and Bob discard
EPR pairs for which their measurement results disagree, the sur-
viving pairs will have a lower rate of phase errors than before.

The bit-flip error rate has increased again. However, the net
effect of the two rounds taken together has been to decrease
both the and error rates (provided the error rates are not
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Fig. 4. Tree diagram for EPP 1.

too high to begin with). Alice and Bob can continue to repeat
this procedure, measuring alternately with , and
the error rates will continue to improve. However, each round
reduces the population of EPR pairs by at least half, so a better
strategy is to switch to a more efficient 1-EPP once the error
rates have dropped to the point where one is viable. Provided
the initial error rate is not too large, this procedure eventually
converges. The tree diagram for EPP 1 is given in Fig. 4.

The whole procedure only consists of measuring operators
which are either -type or -type, so the EPP is CSS-like. Still,
we cannot convert this EPP to a “prepare-and-measure” BB84
QKD scheme.

What goes wrong? As is clear from Fig. 4, the EPP described
is very definitely a 2-EPP, not a 1-EPP. In order to know which
measurement to perform for the second round of the protocol,
both Alice and Bob must know which EPR pairs survived the
first round. Similarly, in the third round, they must know which
EPR pairs survived the second round, and so forth.

In a “prepare-and-measure” scheme, Alice and Bob make all
their measurements in thebasis, and ignore the-basis parity
checks because phase errors have no direct effect on the final
key. They can, therefore, easily deduce the values of any oper-
ators which are the product of all’s, but have no way of fig-
uring out the measurement result for a product of all’s. Since
the second round consists of measuringoperators, Alice and
Bob have no way of determining which bits to keep for the third
round of the protocol, and, therefore, cannot complete the third
round of the error-correction/detection process. That is, they do
not know along which branch in the tree diagram they should
proceed.

In a more intuitive language, the problem is that Alice and
Bob do not have quantum computers in a prepare-and-mea-
sure protocol. Therefore, they cannot compute the phase error
syndrome, which corresponds to the eigenvalues of the-type
operators. For this reason, they do not know which photons
to throw away (conditional on the phase error syndrome) and
cannot complete the QKD process.

VI. TWO-WAY QKD

Having understood the failure of EPP 1, we now present a
generalization of Theorem 5.

Theorem 6—Main Theorem:Suppose a 2-EPP is CSS-like
and also satisfies the following conditions.

1) The tree diagram only branches at-type operators, not
at -type operators.

2) The final decoding operations can depend arbitrarily
on the outcome of the measured-type operators, but
cannot depend on the outcomes of the measured-type
operators at all. The correction operation can depend
on the outcome of -type operators, but only by factors
of .

Then the protocol can be converted to a “prepare-and-measure”
QKD scheme with security similar to the EPP-based QKD
scheme.

To understand these conditions, recall that the outcomes of
-type operators represent the phase error syndrome. Taken

together, the two conditions say that the outcomes of-type
operators are used to perform phase error correction (by the
factors of in the correction operator ), but nothing else. For
instance, no post-selection based on the phase error syndrome
is allowed. From there, the intuition is identical to that for the
proof of the Shor–Preskill result (Theorem 5). Phase errors do
not affect the value of the key, so there is no need for Alice and
Bob to compute the phase error syndrome at all. Therefore,
Alice and Bob do not really need quantum computers and
can execute a “prepare-and-measure protocol” instead.

The tree diagram of a 2-EPP satisfying the conditions of this
theorem might look like the one depicted in Fig. 5. The “pre-
pare-and-measure” protocol produced by this theorem has the
following form.

1) Alice sends Bob qubits, randomly choosing
or for each and putting each in either theor

basis at random.

2) Bob chooses to measure each qubit in theor basis at
random.

3) Alice and Bob compare their measurement bases and dis-
card those qubits for which the bases disagree. They keep

remaining qubits.

4) Alice and Bob use of the qubits to estimate the error
rate from the channel, getting values and .
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Fig. 5. Tree diagram of a 2-EPP satisfying the conditions of theorem 6.

5) They now perform a combination of classical two-way
error detection/correction and classical privacy ampli-
fication based on the EPP. The outcomes of’s serve
two different functions: “advantage distillation” and
also error correction. Indeed, Alice and Bob’s ability to
choose which branch to follow (e.g., which EPR pairs
to keep or throw away) depending on theoperators
means that Alice and Bob can perform error detection.
Not necessarily all bit-flip errors are corrected. Since
this is highly analogous to the “advantage distillation”
procedure in classical cryptography, we will use the
same name to denote such a procedure. In addition, the

operators measured in the EPP can also act as classical
parity checks performed for error correction. Finally,
the operators measured become parities extracted for
privacy amplification. If is an -type operator, let

be a vector which is for any coordinate where
has an , and is for any coordinate where acts as
the identity . Consider the vector spacegenerated by
the ’s for consecutive -type operators. Then extract
the parity for all vectors in the dual space of .
These become the bits used in the next round of error
correction.

VII. A NOTHER TWO-WAY EPP

Before proving the main theorem, we give an example of a
2-EPP that satisfies the conditions of Theorem. Like EPP 1, it
will consist of alternating rounds of measurements designed to
handle bit-flip errors (“B steps”) and phase errors (“P steps”).

B Step:A B step is just the same as the first round of EPP 1.
Randomly permute all the EPR pairs. Afterwards, perform a
bilateralXOR between pairs of EPR pairs, and measure one of
the output pairs. This effectively measures the operator
for both Alice and Bob, and detects the presence of a single
bit-flip error. Again, if Alice and Bob’s measurement outcomes
disagree, they discard the remaining EPR pair.

Note that this is similar to a classical protocol by Maurer for
advantage distillation [29].

The second round must deal with phase errors; however, we
will not be able to discard EPR pairs based on the result, since
the conditions of the theorem bar us from altering our protocol
based on the measurement results. Instead, we take inspiration
from the classical repetition code.

A simple way to correct a single bit-flip error is to use the
majority vote and encode the state .
Therefore,

(1)

Suppose the system is now corrupted by some bit-flip errors. A
single bit-flip error can be detected by performing a majority
vote. More precisely, one measures to see if the first bit
agrees with the second bit and also to see if the first bit
agrees with the third bit. These two measurements can be done
coherently. The outcomes of the measurements are collectively
called the error syndrome and can be used to correct the state
coherently.

The three-qubit bit-flip error correction procedure can be
turned into a three-qubit phase error correction procedure by
simply applying the Hadamard transform, and into an EPP,
following BDSW [3].

P Step: Randomly permute all the EPR pairs. Afterwards,
group the EPR pairs into sets of three, and measure and

on each set (for both Alice and Bob). This can be done
(for instance) by performing a Hadamard transform, two bilat-
eral XORs, measurement of the last two EPR pairs, and a final
Hadamard transform. If Alice and Bob disagree on one mea-
surement, Bob concludes the phase error was probably on one
of the EPR pairs which was measured and does nothing; if both
measurements disagree for Alice and Bob, Bob assumes the
phase error was on the surviving EPR pair and corrects it by
performing a operation.

When there is only a single phase error among the three EPR
pairs, this procedure outputs a single EPR pair with no phase
error. However, when there are two or three phase errors, the
final EPR pair always has a phase error. Therefore, when the
phase error rate is low enough, iteration of this procedure will
improve it indefinitely, while for higher phase error rates, the
state will actually get worse.

The complete EPP protocol (EPP 2) consists of alternating B
and P steps for a number of rounds, until the effective error rate
has decreased to the point where 1-EPPs can take over. Then
we decide on an appropriate CSS code and perform the cor-
responding 1-EPP. To get optimal performance, we should in
fact useasymmetricCSS codes, which correct a fraction of
bit flips and a different fraction of phase errors. Note that
whenever , asymptotically, an asym-
metric CSS code exists that will correct those fractions of errors
with high fidelity. (A better bound might be obtained by con-
sidering the correlations between bit-flip and phase errors. See
[22] for details.) We can view the whole EPP protocol as a kind
of two-way concatenated code.

EPP 2 satisfies the conditions of Theorem 6: it is CSS-like,
and measurements do not branch based on the outcome of

-type measurements (which only occur during P steps and in
the final CSS code). Furthermore, we only do Pauli operations
based on the outcome of -type measurements. Thus, we
can apply Theorem 6 to convert EPP 2 into the following
“prepare-and-measure” QKD scheme.

Protocol 2: Repeated Concatenation of BXOR With the
Three-Qubit Phase Code

1) Alice sends Bob a sequence of single photons as in
either BB84 or the six-state scheme.

2) Alice and Bob sacrifice of those pairs to perform the
refined data analysis. They abort if the error rates are too
large.
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3) Alice and Bob randomly pair up their photons. Alice pub-
licly announces the parity (XOR) of the bit values of each
pair of her photons, say . Bob publicly an-
nounces the parity (XOR) of his corresponding pair of pho-
tons, say . If their parities agree, they keep one
of the bits from the pair—i.e., Alice keeps and Bob
keeps . If their parities disagree, they throw away
the whole pair. (This step comes from a B step.)

4) Alice and Bob randomly form trios of the remaining bits
and compute the parity of each trio. They now regard
those parities as their effective new bits. (This step comes
from a P step.)

5) Steps 3) and 4) are repeated a prescribed number of times,
say , which depends on the error rate measured in step
2).

6) Alice and Bob randomly permute their pairs. They then
apply a modified Shor and Preskill error correction/pri-
vacy amplification procedure. That is, Alice randomly
picks a codeword in the code and broadcasts
to Bob, where is her remaining bit string. Owing to the
remaining noise in the channel, Bob’s current bit string is
instead . He now adds to his string to obtain a
corrupted string . He can apply error correction for
the code to recover . Here we use a modified Shor and
Preskill procedure that is based on an asymmetric CSS
code that corrects up to a fractionof bit-flip errors and
a different fraction, , of phase errors.

7) Alice and Bob perform the coset extraction procedure to
obtain the coset , which gives their final key.

In order to determine if the resulting QKD protocol is secure
or not at a given error rate, we need only study the behavior of
EPP 2. Furthermore, by Lemmas 2 and 3 and the intervening
discussion, we need only study the behavior of EPP 2 for un-
correlated Pauli channels with nice symmetry properties.

For the six-state scheme, this is completely straightforward:
we just plug in the upper bounds on the error rates
and see if EPP 2 converges. This upper bound on the error rates
gives the worst case behavior. For the usual six-state scheme,
we may even assume . We can test for
convergence with a simple computer program; we follow the
error rates through B and P steps until they are small enough so
that CSS coding is effective. If the program indicates conver-
gence for , the EPP definitely converges, and we have proved
the six-state protocol is secure at bit error rate. In this way, we
have shown the six-state scheme remains secure to an error rate
of at least 23.6%. If the program does not converge, that does
not necessarily imply that the six-state scheme is insecure using
this post-processing method; it simply means it did not converge
within the regime where our program is numerically reliable.

A study of BB84 is slightly more difficult. Alice and Bob
do not know , only and

. There is one free parameter ; then, for BB84,
, where is the bit error

rate. To show that BB84 is secure using this post-processing
scheme, we must show that EPP 2 converges for all values of

. However, this is not immediately compatible with

a numerical approach, since we would have to check infinitely
many values of . Instead, we first show analytically that
(no errors) gives the worst case; the proof is in Appendix III.
Then we need only check in our program that EPP 2 converges
for the uncorrelated Pauli channel . Our program then
indicates that BB84 is secure to an error rate of at least 17.9%.

It turns out, however, that alternating B and P steps is not op-
timal. EPPs based on other arrangements of these two steps can
converge at higher error rates. For instance, for the three-basis
protocol, we have discovered that a sequence of five B steps, fol-
lowed by asymmetric CSS coding, converges to an error rate of
at least 26.4%, and that, therefore, the six-state scheme remains
secure to at least this bit error rate. Similarly, setting in
the two-basis protocol, a sequence of five B steps, followed by
six P steps, followed by asymmetric CSS coding converges up
to an error rate of at least 18.9%. Since is again the worst
case, this shows that BB84 can be secure to at least this bit error
rate.

We remark that, in the preceding discussion, we have as-
sumed that Alice and Bob simply throw away the error syn-
drome of each round immediately after its completion. Such an
assumption greatly simplifies our analysis. However, in prin-
ciple, Alice and Bob can employ an improved decoding scheme
where they keep track of all the error syndromes and use them
to improve the decoding in future rounds of the algorithm. It
would be interesting to investigate in the future how much the
tolerable error rates can be increased by such an improved de-
coding scheme. Of course, other improvements might be pos-
sible as well, including different kinds of B and P steps. The
threshold error rate (i.e., the maximal bit error rate that can be
tolerated) of a prepare-and-measure QKD scheme remains an
important open question.

VIII. PROOF OF THEMAIN THEOREM

To prove Theorem 6, we begin with a QKD protocol using
the 2-EPP directly. The security of this protocol follows imme-
diately from Theorem 4. As in the Proof of Theorem 5, we then
rearrange the protocol into a standard form in which it is clear
that the -type measurements are unnecesarry. From there, it is
an easy step to a prepare-and-measure protocol.

1) Alice prepares EPR pairs. She performs a Hadamard
transform on the second qubit for half of them, chosen at
random.

2) Alice sends the second qubit from each EPR pair to Bob.
Bob acknowledges receiving them, and then Alice tells
him which ones have the Hadamard transform. Bob re-
verses all Hadamard transforms.

3) Alice and Bob select EPR pairs to test the error rate in
the channel.

4) Alice and Bob perform the 2-EPP on the remaining
EPR pairs. They now have a number of EPR pairs of very
good fidelity.

5) Alice and Bob measure each remaining EPR pair in the
basis to produce a secure shared key.
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Fig. 6. Two equivalent ways to measure the operatorsX X andX X .

The above protocol assumes a two-basis QKD scheme. For a
three-basis scheme, Alice and Bob apply one of the three oper-
ations , , instead of or .

To reduce the above EPP protocol to a prepare-and-measure
one, we would like to eliminate the phase-error correction steps
in the EPP protocol. For a CSS-like EPP, phase-error correction
comes completely from the measurement of-type operators

. We can perform such a measurement as a Hadamard trans-
form, followed by a series of CNOTs with the same target qubit.
Then we measure the target qubit, and Hadamard transform the
others back to the original basis (see, for instance, the left net-
work in Fig. 6). This procedure computes the parity of all the
control qubits and the target qubit in thebasis, and gives the
eigenvalue of . (Of course, in the context of an EPP, both
Alice and Bob perform this procedure, and compare results.)

However, this series of gates, Hadamard, CNOT, Hadamard,
is equivalent to a single CNOT gate with control and target re-
versed. This means, for example, that the two circuits depicted
in Fig. 6 are mathematically equivalent. Note that the right-hand
side depicts an essentiallyclassicalcircuit composed of CNOTs
(with a couple of -basis measurements at the end). Instead of
working with a quantum circuit for phase-error correction, as
depicted by the left-hand side of the figure, one can work with
the essentially classical circuit in the right-hand side.

The same principle holds in general.-basis measurements
can be written as effectively classical circuits consisting of a
series of CNOTs (with the same control qubit but different target
qubits), followed by a Hadamard transform and measurement on
the control qubit. The qubits which survive the procedure have
only experienced the CNOT gates. So it will be easy to convert
this circuit to a truly classical one.

Note that each target qubit gets replaced by itsXOR with the
control qubit; in other words, by a parity which is orthogonal to
the vector derived from by replacing ’s with ’s. For
instance, in our sample EPP 2, we measure twooperators in
a row for a set of three qubits, and . The effect of
these measurements in thebasis is to map

That is, the first qubit gets replaced by the parity of all three
qubits. We could also see this by noting that the only nontrivial
vector which is orthogonal to both and is

.
However, for EPPs satisfying the conditions of Theorem 6, no

choice of later in the protocol depends on the outcome of
the -type measurement . Therefore, we can delay making
the actual measurement until the end of the protocol, after we
have measured all operators. The EPP may call for correcting
phase errors immediately by performingrotations based on

the measurement results, but we can delay those as well using
the identities

CNOT CNOT (2)

CNOT CNOT (3)

That is, we can move a rotation from before a CNOT to
after it, possibly at the price of having to do two of them
instead. Ultimately, we end up with a circuit consisting only
of -basis measurements and quantum CNOT gates (whose
position may depend on the outcome of ameasurement),
followed by -basis measurements and phase shifts. This is
an equivalent EPP to the one we began with.

In the QKD protocol, after performing the EPP, Alice and
Bob measure each surviving EPR pair in thebasis to produce
a key. But phase shifts are irrelevant if we are immediately going
to measure in the basis, so Alice and Bob need not actually
perform them or the -basis measurements controlling them.

Alice and Bob now have a completely classical circuit, fol-
lowed by measuring all the qubits in thebasis. They get the
same result if they instead measure all the qubits first, andthen
perform the classical circuit. The circuit they have is exactly the
error correction and privacy amplification protocol described in
Section VI as coming from the EPP. Note that any communica-
tion from Bob to Alice occurs during the classical circuitafter
the initial measurement.

To complete the transformation to a “prepare-and-measure”
protocol, we follow a few additional steps from Shor and
Preskill. Instead of preparing a number of EPR pairs and
measuring them, Alice can just generate a random bit string,
and send Bob the state he would have gotten if she made the
EPR pairs and got that measurement result. That is, she sends
Bob a series of ’s and ’s chosen at random, and puts half
of them in the basis (when in the EPP protocol she would
perform a Hadamard transform in Step 1), and puts half of
them in the basis (when there would be no Hadamard in the
EPP protocol). Bob receives them, waits for Alice to tell him
the basis, and then measures in that basis.

Of course, we can wait to decide on the EPP until after Bob
receives his states, so it is equally good if Bob guesses a basis for
each qubit and measures immediately. Then, when Alice tells
Bob which basis she used, they discard any bits where the bases
disagree. This gives the final “prepare-and-measure” protocol.

To prove the security of a six-state protocol, one uses three
bases , , and in the appropriate place instead of just the

and bases. Otherwise, the proof is identical.

IX. CONCLUDING REMARKS

We have proven the unconditional security of standard
quantum key distribution schemes including BB84 and the
six-state scheme. Our proof allows Alice and Bob to employ
two-way classical communications. Compared to previous
schemes, it has the advantage of tolerating substantially higher
bit error rates. Indeed, we have shown that the BB84 scheme
can be secure even at a bit error rate of 18.9% and the six-state
scheme at 26.4%. By tolerating such high bit error rates, our
result may extend the distance of QKD and increase the key
generation rate. Our result is conceptually interesting because it
may spur progress in the study of 2-EPPs. We have introduced a
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new subclass of 2-EPPs and demonstrated that such a subclass
of protocols can be reduced to standard BB84 and the six-state
scheme. Our results demonstrate clearly that two-way classical
communications can be used to enhance the secrecy capacity
of a QKD scheme and also show the six-state scheme can
intrinsically tolerate a higher bit error rate than BB84.

Our versions of the BB84 and six-state QKD schemes require
two-way classical communications between Alice and Bob in
the post-processing step of classical data (i.e., in the error cor-
rection and privacy amplification stage). This is not a bad thing
in itself becauseany protocol of BB84 (or six-state) requires
two-way classical communications anyway. Indeed, in the basis
comparision step, Alice and Bob publicly announce their bases
and throw away the polarization data that are transmitted and
received in different bases. In order for both Alice and Bob to
know which polarization data to keep, it is necessary to employ
two-way classical communications. Of course, the “one-way”
classical post-processing schemes require fewer rounds of com-
munication (and, therefore, less time) to complete, so there ap-
pears to be a tradeoff between round complexity of the protocol
and tolerable error rate.

Relating to earlier work on QKD, we remark that we have pro-
vided the first examples of unconditionally secure schemes for
advantage distillation [29]–[31] in QKD. Finally, two-way en-
tanglement purification techniques may provide a simple way to
understand other security proofs. For instance, in Appendix IV,
we provide a simple derivation of Inamori’s security proofs [18],
[19]. For future work, it would be interesting to take into account
the effects of imperfections including faulty photon sources,
lossy channels, and photon dark counts [20].

APPENDIX I
PROOF OFLEMMA 1

The statements that Alice and Bob will most likely share
the same key and that the key is essentially random are clear.
We will focus on proving the bound on Eve’s information. The
proof of this crucial part of Lemma 1 follows from the following
two claims, which originally appeared in [23, supplementary
Note II].

Claim 7—High Fidelity Implies Low Entropy:If

singlets singlets (4)

where , then von Neumann entropy

Proof: If singlets singlets , then the largest
eigenvalues of the density matrix must be larger than . The
entropy of is, therefore, bounded above by that of

That is, is diagonal with a large entry and with the re-
maining probability equally distributed between the remaining

possibilities.

Claim 8—Entropy is a Bound to Mutual Information:Given
any pure state of a system consisting of two subsystems

and , and any generalized measurementsand on and
, respectively, the entropy of each subsystem (where

) is an upper bound to the amount of
mutual information between and .

Proof: This is a corollary to Holevo’s theorem [17].

APPENDIX II
PROOF OFLEMMA II

We wish to show that, given any (not necessarily uncorre-
lated) Pauli channel, our procedure of testing the error rate and
then choosing an appropriate code actually does correct the
errors with high probability. The idea is that, because of the
random permutation, the EPP treats symmetrically all errors
with a given breakdown into , , and errors (the “type” of

). The type of the true error will be close to the estimated
type. We then show that the EPP performs well for the likely
types of error.

Since the channel is symmetric over all pairs, the pairs
chosen for error testing are a representative sample, and the
number of errors of any given kind in the sample will be close
to the number of errors of the same kind in the remaining pairs.
What we mean by the “same kind” bears a little explanation. As
discussed before the statement of Lemma 3, we only directly
measure the presence of two out of the three types of error, de-
pending on which operation (, , , or ) we perform. For
instance, when is performed, we measure the presence of only

or errors. However, since Eve has no knowledge of which
operation is used for any particular qubit, the sample of test bits
with a particular operation gives a good estimate of the number
of the appropriate pair of errors in the remaining qubits of the
sample. For instance, the fraction of errors amongtest qubits
gives us a good estimate of the number of qubits with either
or errors in them. Then the deduced rates of, , and er-
rors (as discussed before Lemma 3) give a good estimate of the
actual error rates in the untested pairs.

For any particular instance of the protocol, the channel per-
forms a particular -qubit Pauli operation (with probability

). For any particular , let be the deduced fraction of er-
rors of type in the sample and let be the
actual fraction of errors of typein the untested pairs (“d” for
“deduced” and “u” for “untested”). Then for large, with high
probability

(5)

(That is, the deduced error rate is close to the true error rate.)
Naturally, and will depend on , but we suppress this de-
pendence to simplify the notation.

Let us now restrict attention to one particular set of values for
and (which need not be equal, but which satisfy condition

(5)). If the are large, Alice and Bob will abort the protocol.
Otherwise, we wish to show that the EPP used by Alice and Bob
will correct most errors with these parameters.

To see this, we note that the EPP will correct the uncorre-
lated Pauli channel on EPR pairs with
high fidelity . Suppose the EPP gives fidelity whenever the

-qubit Pauli operation occurs (for a stabilizer EPP, will
be either or ). Then

(6)
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where is the probability of the Pauli operation for the
uncorrelatedPauli channel (not the true channel). We can break
the sum over into two parts. The first part will consist of the
set of for which contains exactly
errors, errors, and
errors (the are integers by the definition of ). The second
part consists of all other. Now, let be the probability of any
particular error in , so

(7)

so

(8)

(9)

(10)

But

(11)

where is the probability of identity
operations, and is the actual number of identity
operations. contains elements, so
using Stirling’s approximation, we find

(12)

This is only polynomially small in . In order for to
be exponentially close to in (10), we therefore require that

be .
Now we can approximate the fidelity of the EPP for the gen-

eral Pauli channel . We again write (with
the same ’s, which only depend on the EPP, not the channel),
and recall that whenever and have
the same numbers of , , and errors. That
means we can write

(13)

But, except with exponentially small probability, the values,
, are within the allowed -sized window for the EPP,

which we have shown means that

Thus,

(14)

Since

(15)

it follows that the fidelity for the general Pauli channel is expo-
nentially close to .

APPENDIX III
PROOFTHAT IS THE WORSTCASE

In this appendix, we will show that it is sufficient to check the
case (with no errors) when determining convergence

of the 2-EPPs we study for the BB84 protocol.

Theorem 9: Suppose an EPP starts with a B step, followed
by any series of B and/or P steps, followed by asymmetric CSS
coding. Suppose . If the EPP converges for the
uncorrelated Pauli channel , then it will also converge
for all uncorrelated Pauli channels , with

.
The initial condition simply ensures that (for any

value of ) the state is more likely to be correct than incorrect,
and will be satisfied easily by all parameter sets we consider. In
fact, when , an intercept–resend attack defeats BB84
(see Section II).

Proof: To do this, we will need to look at the behavior of
the three error rates as we perform steps of the protocol. After
each B or P step, there is a new set of effective error rates on the
pairs surviving the round.

It is worth noting two things about protocols of the given
form. First, if the initial density matrix comes from a Pauli
channel, then the effective channel after any number of rounds
will also be a Pauli channel. This is because all operations
are from the Clifford group, which preserves the Pauli group.
Second, if the initial channel causes errors which are uncorre-
lated between EPR pairs, this property will also be preserved
after an arbitrary number of B and P rounds. This is because
both B and P rounds keep at most one of the pairs which
interact, so there is no opportunity to create correlations
between pairs which survive to the next round. Therefore, we
can completely describe the effective error rates at any given
point in the protocol by a triplet .

Suppose we start with error rates and perform
a B step. Given any of the 16 possible configurations of errors,
we can deduce whether the remaining pair is discarded, and if
not, whether it has an error, and what kind of error it is. The new
error rates on the surviving pairs are then

(16)

(17)

(18)

(19)

where is the probability that a pair will survive the check.
If we have error rates and perform a P step, we

get new error rates

(20)

(21)

(22)

(23)

where is the initial probability of no error.
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To prove the theorem, we change variables. Instead of
working with , we will work with

(24)

(25)

(26)

As increases, and stay the same, while decreases.
We will show that the protocol behaves worse for larger, so
the worst case is .

In the new variables, a B step maps the error rates from
to

(27)

(28)

(29)

(30)

Since always in the regime of interest, is
increasing in , and never depends on at all. Provided

, also increases with . When this is true,
and also both increase with .

A P step takes the error rates from to
with the following relations:

(31)

(32)

(33)

This time, and only depend on and , respectively,
never on . increases with . only depends on and

, and increases with if two conditions—
and —are simultaneously satisfied.

Claim 10: The following inequalities hold:

1) at all points after the initial B step, ;
2) always.

Note that when , so that at least half the
time there is no error, it follows that , since

. However, it is not clear if the condition
is preserved under the B and P steps.

From this claim, the theorem will follow: consider running
the protocol starting with error rates
or , with . Since the value of at any given
time only depends on the previous value of, will always
be equal in these two cases. At any time,for the first case will
be greater than or equal to for the second case, andfor the
first case will be greater than or equal tofor the second case.
This is true by induction: it is true initially, and at all steps,
and increase with and from the previous step. Thus,
the worst case is when , which means .

Proof (of Claim): Immediately after the initial B step,
, because in this step, by the symmetry

of BB84, and . After subsequent B steps, if
, since and are always positive.

After a P step, if . This will
immediately follow if we can show , since
before a P step, always. Then, by induction, we will have
shown at all points after the initial B step.

Now, after a B step

(34)

(35)

The first term is always positive, so the sum is clearly positive
as well when .

After a P step

(36)

so

(37)

(38)

Again, this is positive when and .
This proves the claim and the theorem.

APPENDIX IV
INAMORI’S SECURITY PROOFS

In this appendix, we provide a simple derivation of Inamori’s
proofs of BB84 and the six-state scheme and discuss why our
protocols can tolerate a higher rate than his.

Inamori’s protocols require two-way communications. His
protocol can be rephrased as follows.

1) Alice and Bob are assumed to share initially a random
string and the goal of QKD is to extend this string. Alice
and Bob also choose a classical error-correcting code.

2) Alice sends Bob a sequence of single photons as in either
BB84 or the six-state scheme.

3) They throw away all polarization data that are prepared in
different bases and keep only the ones that are prepared
in the same bases.

4) They randomly select of those pairs and perform a re-
fined data analysis to find out the error rate of the various
bases.

5) Alice measures the remaining particles to
generate a random string. Since is a random string, it
generally has nontrivial error syndrome when regarded as
a corrupted state of the codeword of. Alice transmits
that error syndrome in an encrypted form to Bob. This is
done by using a one-time pad encryption with (part of)
the common string they initially share as the key.

6) Bob corrects his error to recover the string.

7) Alice and Bob discard all the bits where they disagree and
keep only the ones where they agree.

8) Alice and Bob now perform privacy amplification on the
remaining string to generate a secure string.

We remark that Inamori’s protocol is, in fact, a simple error-
correction scheme and satisfies the conditions of Theorem 6.
Therefore, it is convenient to study it using the language of
2-EPPs introduced in the current extended abstract.
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A. BB84 With Inamori’s Protocol

Let us now consider the efficiency of BB84 based on In-
amori’s protocol. Suppose the error rate of each basis is found
to be in Step 4). Now, in Step 5) above, Alice and Bob have to
sacrifice a pre-shared secret key whose length must be at least
the size of the error syndrome of an-bit string. In other words,
the length of the pre-shared secret key used up by Alice and Bob
is at least

(39)

bits where .
What is the length of the key they generate from the process?

Recall that in Step 7), Alice and Bob discard all the bits where
they disagree and keep only the ones where they agree. The
length of their reconciled key is, therefore, given by the number
of bits where Alice and Bob agree. In other words, Alice and
Bob generate a reconciled key of the length

(40)

Since Eve may have some partial information on the recon-
ciled key, Alice and Bob have to sacrifice some of the reconciled
key for privacy amplification. Let us consider privacy amplifi-
cation. For BB84, the worst case density matrix is again of the
form

(41)

in the Bell-basis using the convention in [3].
In Step 7), Alice and Bob post-select only the bits where they

agree. With such post-selection, the (unnormalized) conditional
density matrix becomes

(42)

In other words, the phase error rate is

(43)

Therefore, Alice and Bob must sacrifice a further fraction

(44)

of their reconciled key for privacy amplification.
In summary, the length of the reconciled key is , as

given by (40), ff which, a fraction has to be consumed
for privacy amplification. Therefore, the final key generated by
Alice and Bob is of length . In addition,
from (39), a length of of a pre-shared secret key
has to be consumed. Therefore, thenet key generation rate is
given by

(45)

From (45), one can conclude that in Inamori’s protocol, the
net key generation rate is positive provided that

(46)

which is exactly what appears just before [18, Sec. 5].

Note that, for BB84, the maximal tolerable error rate of In-
amori’s scheme is actually worse than in Shor–Preskill.

B. Six-State Scheme With Inamori’s Protocol

Let us now consider the six-state scheme. Suppose that in
Step 4), the error rate is found to be. In Step 5), the length
of the pre-shared key sacrificed by Alice and Bob is the same as
in BB84 and is given by (39). Also, the length of the reconciled
key is the same as in BB84 and is given by (40).

Here is the key difference between the six-state scheme and
BB84: For the six-state scheme, there is more symmetry. In
particular, as discussed in Section IV-B, for an EPP that cor-
responds to the six-state scheme, one only needs to consider a
depolarizing channel. The density matrix is

(47)

On post-selecting the bits where Alice and Bob agree, the
(unnormalized) density matrix becomes

(48)

Therefore, the post-selected phase error rate is

(49)

Comparing (43) and (49), we see that a big difference be-
tween BB84 and six-state in the Inamori’s protocol is that the
post-selected phase error rate for the six-state is only half of that
for BB84. Consequently, Alice and Bob sacrifice fewer bits for
privacy amplification in the six-state case. In fact, only a smaller
fraction, namely, a fraction

(50)

of the reconciled key needs to be sacrificed in the privacy am-
plification process.

In summary, the length of the reconciled key is ,
as given by (40). Of which, from (50), only a fraction

has to be consumed for privacy amplification.
Therefore, the final key generated by Alice and Bob is of length

. In addition, from (39), a length of
of a pre-shared secret key has to be consumed.

Therefore, thenetkey generation rate is given by

(51)

From (51), one can conclude that in Inamori’s protocol for the
six-state scheme, the net key generation rate is positive provided
that

(52)

which is precisely what Inamori gave in the equation just under
[19, Property 1 on p. 3]. Comparing (46) and (52), one can see
that the key difference between BB84 and six-state for Inamori’s
protocol is in the second term of the expressions. In the case
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of the six-state scheme, there is an extra factor ofin the de-
nominator inside the entropy function. As noted before, this is
because the six-state scheme has more symmetry and gives a
lower phase error rate (upon post-selection of bits where Alice
and Bob do agree) than BB84.

From (52), Inamori’s protocol for the six-state case can tol-
erate a bit error rate of roughly 12.6%. A more recent protocol
[22] for the six-state scheme can tolerate a marginally higher
bit error rate and, unlike Inamori’s scheme, it requires only
one-way classical post-processing. We remark that the six-state
scheme with our Protocol 2 tolerates a much higher error rate
(about 23%, or as high as 26.4% varying the sequence of B and
P steps) than a six-state scheme with Inamori’s protocol.
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