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Recent machine learning advances in computer vision and speech recognition have been largely driven

by the application of supervised neural networks on large labeled datasets, leveraging effective regular-

ization techniques and architectural design. Using more data and computational resources, performance

is likely to continue to improve in the future. Despite these nice properties, supervised neural networks

are sometimes criticized because their internal representations are opaque and lack the kind of inter-

pretability that seems evident in human perception. For example, detecting a dog hidden in the bushes

by looking at its exposed tail is a task that is not yet solved by discriminative neural networks. Another

class of challenging tasks is one-shot learning, where only one training example for a new concept is

available to the model for training. It is widely believed that learned prior knowledge must be utilized

in order to tackle this problem.

My dissertation tries to address some of these concerns by introducing domain-specific knowledge

to standard deep learning models. This domain-specific knowledge is used to specify meaningful latent

representation with structure, which forces the model to generalize better under certain scenarios. For

example, a generative model with latent gating variables that will “switch off” noisy pixels should perform

better when encountering noise at test time. A generative model with latent variables representing 3D

surface normal vectors should do better at modeling illumination variations. These are the kinds of

relatively simple domain-specific modifications that we explore in this thesis. It is true that we should

not rely too much on manual engineering and learn as much as possible. This principle is taken seriously

and we strike a balance between using too much laborious engineering on the one hand and learning

everything from scratch on the other. Adding structure to deep generative models is not only helpful

for computer vision applications, but it is also very effective for unsupervised density learning tasks.
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Chapter 1

Introduction

A big part of machine learning is about building systems that are able to intelligently perceive the

sensory data in their environment: images, videos, speech and natural language. The key to the success

of these systems lies in their ability to extract high-level and semantically meaningful features from the

sensory data. There are two major approaches in trying to achieve this goal: supervised learning of

discriminative models and unsupervised learning of generative models. The advantage of supervised

training is that we are optimizing for a simple final objective (typically classification error). The idea

is that good classification performance by the model must mean that useful and meaningful features

have been learned. The main disadvantage of supervised training is that curated label data are required

for training. On the other hand, generative learning seeks to model the input data, without requiring

any labels at all. With generative learning, we assume that if the model can efficiently and faithfully

generate the data, we must have learned a good latent representation. In other words, we are trying

to solve the perception problem using an analysis-by-synthesis approach. In this approach, perception

can be accomplished by first learning a set of good parameters for synthesis, followed by the inference

of the latent states of model. Generative models have deficiencies as well, the main challenge is learning

high-dimensional data which have complicated data manifolds.

Recent advances in vision and speech recognition have been driven by the successful application of

supervised neural networks to large datasets. Using effective regularization (Hinton et al., 2012) and a

special 2D spatial architectural design (LeCun et al., 1998), the performance of these systems improves

with more data and computational resources (Krizhevsky et al., 2012; Szegedy et al., 2014; He et al., 2015;

Deng et al., 2013; Hannun et al., 2014). While these models are popular, they are sometimes criticized for

their distributed representation. The hidden layers contain a group of nodes which acts as a population

code to represent the input stimulus. This kind of representation lacks concept specificity which is likely

to be present for human high-level reasoning. It is reasonable to expect a more semantically meaningful

representation will lead to better generalization.

This thesis focuses on improving unsupervised generative models, where domain-specific knowledge

is used to guide the models toward better performance. More specifically, many of the models introduced

here will be based on the Deep Belief Network, but with the inclusion of additional latent variables. The

chapters of the thesis share one major theme: an existing model is modified leading to a novel framework

consisting of more structured latent variables. We take care to ensure that the novel frameworks have a

good balance between human engineering and learning entirely from data.

1
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1.1 Contributions of This Thesis

The most significant research contributions in this thesis are the following:

• Two methods for improved learning of binary Restricted Boltzmann Machines and Gaussian Re-

stricted Boltzmann Machines. For binary Restricted Boltzmann Machines, we demonstrate that

the non-intuitive idea of data normalization for binary data works well in improving the learning

process. For Gaussian Restricted Boltzmann Machines, we analyze the inductive bias of the model

in preferring components whose centers have large coordinate values. Using this insight, we pro-

pose a contrast normalization step in the training of Gaussian Restricted Boltzmann Machines,

leading to improved training for images of objects.

• We show how to make Restricted Boltzmann Machines robust to noise and occlusion by introducing

multiplicative gating and additional “clean” data variables. The structure of the occluder can also

be learned after pre-training of the object model.

• We demonstrate how to incorporate surface normal, albedo, and lighting variables into a hidden

layer of the Deep Belief Network. The resulting novel model can use posterior inference to separate

illumination from shape in a single image, leading to better recognition.

• We show how to stack multiple layers of Mixture of Factor Analyzers on top of each other in the

same way that stacking Restricted Boltzmann Machines forms a Deep Belief Network. This gives

a consistent gain in model performance on a wide range of data.

• We propose a model for learning conditional distributions which can be multimodal. The proposed

model is based on a standard feedforward neural network but with some hidden units being stochas-

tic instead of deterministic. A learning algorithm based on Importance Sampling that optimizes

the variational lower-bound is also provided.

• We extend Factor Analysis to the multilinear setting, where latent factors form groups and interact

with each other multiplicatively. This model contains parameters which form a tensor and is

capable of separating style from content during posterior inference.

• Finally, we develop a probabilistic framework with visual attention to learn generative models of

objects within large images. Selective visual attention shifts objects of interest from anywhere in the

image onto a smaller canonical representation, where a Deep Belief Network is used for generative

modeling. Efficient bottom-up inference is performed by a Convolutional Neural Network in order

to quickly explore the posterior distribution.

1.2 Summary of Remaining Chapters

Chapter 2 Building Blocks. In this chapter we provide the technical overview of the basic building

blocks of deep generative models. The models include binary Restricted Boltzmann Machines and

Gaussian Restricted Boltzmann Machines. We also analyze normalization techniques that improve the

learning of those two models. We discuss how to combine building blocks into deeper models via layer-

wise stacking. This results in deep models such as the Deep Belief Network and the Deep Boltzmann
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Machine. There is also a brief discussion of other generative building blocks such as Factor Analyzers

and denoising and contractive Autoencoders.

Chapter 3 Generative models with structure for vision. In this chapter we will detail two

models related to computer vision. The first model is the Robust Boltzmann Machine, which allows

Boltzmann Machines to be more robust to pixel noise and corruptions. Latent variables represent the

spatial structure of the occluders and interact with the visible units using multiplicative gating. The

second model is the Lambertian Deep Belief Network. It contains hidden variables corresponding to the

surface normals and albedo of objects. By transferring learned knowledge from similar objects, albedo

and surface normal estimation from a single image is possible in this model, leading to good one-shot

face recognition performance when facing severe illumination variations. This chapter is based on the

published papers of Tang et al. (2012b,c).

Chapter 4 Density learning with structure. In this chapter we discuss how generative density

models can be improved by adding structure to the latent variables. The first model is called the Deep

Mixture of Factor Analysers, where the aggregate posteriors of the latent factors of Factor Analysis

are modeled by a second level Mixture of Factor Analysers. The second model consists of introducing

stochastic hidden nodes into a standard feedforward neural network. Importance sampling in conjunction

with error backpropagation can then be used to maximize the variational lower bound. This chapter is

based on the published papers of Tang et al. (2012d); Tang and Salakhutdinov (2013).

Chapter 5 A higher-order generative model: The Tensor Analyzer. This chapter proposes

a novel tensor based model which extends Factor Analysis to the multilinear setting. In a Tensor An-

alyzer, the latent factors form groups and higher-order multiplicative interactions occur between the

groups during data generation. An efficient alternating Gibbs sampling algorithm is provided and we

demonstrate its ability to perform style/content separation. The model can be learned using unsu-

pervised, supervised and semi-supervised approaches. Its applications range from density modeling to

separation of style and content (e.g. one-shot learning of face images under illumination). This chapter

is based on the published paper of Tang et al. (2013).

Chapter 6 Learning generative models with visual attention. Building generative models

of full images is challenging. This chapter shows how to leverage visual attention to learn generative

models of objects of interest within high resolution images. A Deep Belief Network is employed as the

deep generative model of small canonical views of objects. A geometric Similarity transformation routes

input to the canonical frame, providing invariance to translation, rotation and scaling. The novel model

introduced is fully probabilistic and is capable of learning objects of interest from large images after the

pre-training stage. This chapter is based on the published paper of Tang et al. (2014).

Chapter 7: Conclusions. In this chapter we provide a brief summary of the thesis, summarizes

our contributions, and provide a discussion for future work.



Chapter 2

Building Blocks

Most unsupervised learning models seek to model the structure or the probability density of data,

without using high-level categorical labels. Algorithms vary in complexity, from simple ones like K-

means to complicated ones such as Boltzmann machines and Bayesian nonparametric models. “Deep

Learning” derives its name from forming a multilayer model where the basic building block of each layer

is an unsupervised model. An example of this is the stacking of Restricted Boltzmann Machines on

top of each other, leading to a Deep Belief Network. Within all unsupervised models, those with latent

variables are particularly interesting. Latent variables can be learned to transform the data from its

input representation to a more useful latent representation.

In this chapter we discuss several popular latent-variable, unsupervised models, which will form the

basic building blocks of the remaining chapters in this thesis. Section 2.1 reviews the Restricted Boltz-

mann Machine, which will serve as the building block of both Deep Belief Networks and Deep Boltzmann

Machines. Both the model equations and some novel insights into improved training will be discussed.

Section 2.2.2 reviews an alternate model known as the Autoencoder. The main difference between Au-

toencoders and Restricted Boltzmann Machines is that the latter are probabilistic. Autoencoders have

the advantage of easier training but they do not assign a probability density to data, so handling missing

or noisy data cases can be a problem. Section 2.2 covers other popular models such as Mixture of Factor

Analyzers and sparse models. Section 2.3 reviews the formulation of the Deep Belief Network and the

Deep Boltzmann Machine.

2.1 The Restricted Boltzmann Machine Family

2.1.1 Binary Restricted Boltzmann Machines

A Restricted Boltzmann Machine (RBM) is a type of Markov Random Field, or an undirected graphical

model that has a bipartite structure with two sets of binary stochastic nodes: the visible v ∈ {0, 1}Nv

and hidden h ∈ {0, 1}Nh layer nodes (Smolensky, 1986; Welling et al., 2005). Nv is the number of

visible nodes and Nh is the number of hidden nodes. The RBM has visible to hidden connections but

no intra-layer connections. For any configuration of the nodes, we can define an energy function as:

ERBM (v,h; θ) = −
Nv∑
i

bivi −
Nh∑
j

cjhj −
Nv,Nh∑
i,j

Wijvihj (2.1)

4
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where θ = {W,b, c} are the model parameters. The probability distribution over configurations {v,h}
is:

p(v,h; θ) =
p∗(v,h)

Z(θ)
=

exp−E(v,h)

Z(θ)
(2.2)

where we have used p∗(·) to represent the unnormalized probability distribution and Z(θ) =
∑

v,h exp−E(v,h)

is the normalization constant. One reason for the popularity of the RBM is that it is easy to calculate

the conditional distribution over either layer given the other.

p(v = 1|h; θ) =

Nv∏
i

p(vi = 1|h) = σ
(
WTv + c

)
(2.3)

p(h = 1|v; θ) =

Nh∏
j

p(hj = 1|v) = σ
(
Wh + b

)
(2.4)

Where the σ(x) = 1/(1 + exp(−x)) is the logistic sigmoid function. Unlike directed models, an RBM’s

conditional distribution over hidden nodes is factorial and very easy to compute. In addition, RBMs are

trained with unsupervised Hebbian learning which makes them more biologically plausible than some of

the other models.

Learning

In practice, learning follows not the gradient of the log-likelihood but an approximate objective function,

known as “Contrastive Divergence” or (CD) (Hinton, 2002). The idea of CD is to approximate the

Emodel[·] by running a Gibbs chain for only 1 iteration, instead of ∞ as required for exact maximum

likelihood learning. Specifically, the weights are updated as

∆W = α(Edata[vhT]− Erecons[vhT]) (2.5)

where Erecons[·] is found by starting a Gibbs chain with the data, and running one iteration by sampling

the hidden given the visible, then reconstructing the visible given the hidden activations.

While CD can work well for certain problems (Hinton, 2002; Hinton et al., 2006; Larochelle et al.,

2007), it is in general suboptimal and can leave undesirable modes in state space (Salakhutdinov and

Murray, 2008). This is because by starting the Gibbs chain at the data and running for a short while, it

often fails to explore other low energy parts of the state space. This led to the proposal of more advanced

algorithms called Persistent Contrastive Divergence (Tieleman, 2008), Fast Persistent Contrastive Di-

vergence (Tieleman and Hinton, 2009), and Coupled Adaptive Simulated Tempering (Salakhutdinov,

2010).

Data Normalization

Using the aforementioned training algorithms, learning works well when input data vectors are sparse:

( 1

N

N∑
n

vni

)
� 1.0
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The standard MNIST digits are an example since they are white digits on a black background. We

demonstrate this with the MNIST digits. In Fig. 2.1 top row, we learned a 500 hidden nodes RBM on

the MNIST digits.

(a) MNIST training images. (b) Filters

(c) Negative MNIST training images. (d) Filters

Figure 2.1: Top: MNIST digits and learned filters from a 500 hidden nodes RBM using Fast Persistent
Contrastive Divergence (FPCD) for 30 epochs. Bottom: Negative MNIST digits and learned filters from
a 500 hidden nodes RBM using FPCD for 30 epochs. Notice some filters have not been used by the
model.

However, when the input data mean is near 1.0, learning is considerably worse. On the bottom

row of Fig. 2.1 we can create a new set of input data by using the negative images of MNIST. This

transformation preserves structure in the underlying data density. Therefore, we expect the RBMs to

learn equally well on the new dataset. Using the same training hyper-parameters as before, we obtain

the filters which have many dead units.

Quantitatively, for the RBM trained on the standard MNIST, its average log-probability estimated

using Annealed Importance Sampling (AIS) are -96 nats for both the training and test set.

However, for the RBM trained on Negative MNIST, its average log-probability estimated using AIS

are -110 nats for both the training and test sets. The difference of 14 nats shows that the RBM learning
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using approximate maximum likelihood is prejudiced against input data with large means.

We can find a solution to this asymmetric problem by normalizing the data. In most machine learning

algorithms, it is considered to be standard protocol to remove the mean of data before training:

zi = vi −
1

N

N∑
n

vni

= vi − µi (2.6)

A ensuing whitening step can also be applied. Removing the mean usually allows the optimization

to be easier. Data distribution with a non-zero mean would increase the eigenvalue of the Hessian

of the objective function, affecting optimization detrimentally. While this can be done easily for any

feedforward model, in the binary RBM case, we show that having real-valued inputs can still be used to

effectively train.

Following this principle, we wish to learn an RBM on data with zero-mean, namely the variables

z = v − µ. Note that our original visibles are v ∈ {0, 1}Nv and hidden h ∈ {0, 1}Nh . The new zero-

meaned variable z is still discrete, but its domain have been shifted by µ. For example, the domain of

vi is {0, 1}, while the domain of zi is {−0.3, 0.7}, if µi = 0.3.

In this case, the energy function is:

ERBM (z,h; θ) = −
Nv∑
i

bizi −
Nh∑
j

cjhj −
Nv,Nh∑
i,j

Wijzihj (2.7)

= −
Nv∑
i

bi(vi − µi)−
Nh∑
j

cjhj −
Nv,Nh∑
i,j

Wij(vi − µi)hj (2.8)

The posterior distribution p(hj = 1|z) has the same form as the posterior in a standard RBM:

p(hj = 1|z) =
1

1 + exp(−zTW(:,j) − cj)
(2.9)

The conditional distribution of the visibles zj given the hidden states is:

p(zi = 1− µi|h) =
exp((1− µi)φi)

exp((1− µi)φi) + exp(−µiφi)
, where φi = W(i,:)h + bi (2.10)

The probability of the other state of zi is p(zi = 0− µi|h) = 1− p(zi = 1− µi|h). We can simplify the

above conditional distribution further by multiplying by exp((1−µi)φi)
exp((1−µi)φi) :

p(zi = 1− µi|h) =
1

1 + exp(−φi)
(2.11)

p(zi = 1− µi|h) ≡ p(vi = 1|h) (2.12)

The equivalence of the two conditional distributions p(zi = 1 − µi|h) and p(vi = 1|h) means that we

can implement this solution by easily modifying existing algorithms with minimal intrusion. Specifically,

when sampling zi given h, we first sample vi just like in the standard RBM (using Eq. 2.11). We can

then obtain the value of zi by subtracting the mean from vi: zi = vi − µi. We stress that this operation

is proper due to the equivalence of the two probability distributions in Eq. 2.12.
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After learning the parameters {W,b, c} of the RBM defined over z and h, we can obtain an RBM

over the original visibles v:

ERBM (z,h; θ) = −
Nv∑
i

bi(vi − µi)−
Nh∑
j

cjhj −
Nv,Nh∑
i,j

Wij(vi − µi)hj (2.13)

= −
∑
i

bivi −
∑
j

cjhj −
∑
i,j

Wijvihj +
∑
i,j

Wijµihj +
∑
i

biµi (2.14)

= −
∑
i

bivi −
∑
i,j

Wijvihj −
∑
j

(cj −
∑
i

Wijµi)hj + const. (2.15)

The energy in Eq. 2.15 is equal (up to an additive constant) to the energy of an RBM over v with

weights: W, visible biases: b, and hidden biases: c− µTW.

We give a summarization of the Contrastive Divergence algorithm to learn parameters on zero-meaned

data in Alg. 8. The three additions needed are in bold.

Algorithm 1 Contrastive Divergence Training of RBM on zero-meaned data.

0: Randomly initialize the weights and biases to be small.

1: Subtract data mean from all training data vectors: z = v − µ
for t = 1 : NumberEpochs do

for n = 1 : NumberDataSamples do

Positive Phase:

2: Compute hidden activations and sample using Eq. 3.16.

3: Calculate the MLE gradient of the positive phase.

Negative Phase:

4: Compute reconstructions v̂i and sample using Eq. 2.11.

5: Compute reconstructions ẑ: ẑ = v̂ − µ
6: Compute hidden activations and sample using Eq. 3.16.

7: Calculate the MLE gradient of the negative phase.

8: Approx. gradient = positive phase gradient − negative phase gradient.

9: Update the parameters.

end for

end for

10: Modify hidden biases: cnew ← c− µTW

To demonstrate the advantage of RBM learning using zero-meaned data, we trained a 500 hidden

nodes RBM with FPCD as well as using the zero-mean (ZM) normalization technique. Learning rate

is fixed at 0.01, the weights are initialized from a Gaussian distribution with a standard deviation of

0.01, the visible and hidden biases are initialized to be 0.0. A weight penalty of 0.0002 is used for the

visible to hidden weights. Training was run for 30 and 1000 epochs with 600 mini-batches per epoch.

We presented the AIS estimated log-probability (nats) in Table 2.1.
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Dataset FPCD-30 ZM-30 FPCD-1000 ZM-1000

MNIST -96 (-96) -94 (-94) -84(-81) -84 (-81)

Neg. MNIST -110(-110) -96 (-96) -87(-85) -84 (-81)

Table 2.1: AIS est. log-probability in nats. Average training log-probs are in parenthesis. FPCD-30
means the model was trained for 30 epochs using Fast Persistent Contrastive Divergence.

For Negative MNIST, the model learned by FPCD was significantly worse than the equivalent model

from MNIST. However, we see that it makes no difference for the ZM algorithm. For learning using 30

epochs, ZM is better than the standard FPCD on the original MNIST data. When training for 1000

epochs (probably achieving convergence), ZM training achieves the same log-prob for both the MNIST

and Negative MNIST. In Fig. 2.2, we plot the learned filters of Negative MNIST using the ZM algorithm.

Figure 2.2: Filters learned by FPCD on zero-meaned Negative MNIST.

We have shown here that by simply subtracting the mean of the data prior to learning the parameters,

we can achieve similar boost in learning performance. In addition, the extra incurred computation cost

is one matrix subtraction for every step of Contrastive Divergence, which is negligible compared to the

other matrix-matrix multiplications that are required.

2.1.2 Gaussian Restricted Boltzmann Machines

Binary Restricted Boltzmann Machines are designed for modeling binary data, as their visible units

are Bernoulli random variables. For continuous and real-valued data such as images and speech, we

can specify the visible units to be Gaussian. This leads to Gaussian Restricted Boltzmann Machines

(GRBMs) (Hinton and Salakhutdinov, 2006). They have been successfully applied to tasks including

image classification, video action recognition, and speech recognition (Lee et al., 2009; Taylor et al.,

2010; Mohamed et al., 2011). GRBMs can be viewed as a mixture of diagonal Gaussians with shared

parameters, where the number of mixture components is exponential in the number of hidden nodes.

While there are more complicated models for density learning, GRBMs still remain very popular due

to their ease of implementation. This is especially true if backpropagation will be used to fine-tune the
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resulting deep network for a discriminative task. GRBMs have been used as the first layer of Deep Belief

Nets for image category classification (Krizhevsky, 2009), and 3D object Recognition NORB (Nair and

Hinton, 2010).

Formally, the GRBM is a bipartite Markov Random Field over the Nv visible nodes V ∈ RNv and

Nh hidden nodes H ∈ {0, 1}Nh , defined by an energy function:

E(v,h; θ) =
1

2
vTΛv − vTΛb− hTc− vTΛ

1
2 Wh (2.16)

θ = {W,b, c,Λ} are the model parameters. Λ is the diagonal precision matrix of v, and Λii
1/2 = λi =

1/σi. Using the Gibbs distribution, we can exponentiate the energy function to obtain the probability

density over the variables:

p({vi, hj}) ∝ exp
[
− 1

2

Nv∑
i

v2i
σ2
i

+

Nv∑
i

bivi
σ2
i

+

Nh∑
j

cjhj +

Nv,Nh∑
ij

Wij

σi
vihj

]
(2.17)

For a given V = v, marginalizing over all possible hidden configurations, we have

log p∗(v) = −1

2
vTΛv + vTΛb +

Nh∑
j

log
(

1 + exp{ 1

σ
vTW(:,j) + cj}

)
(2.18)

log p∗(h) = cTh +
1

2
b̂TΛb̂, b̂i(h) = bi + σi

∑
j

Wijhj (2.19)

Here we use p∗(·) to denote the unnormalized probability density function and W(:,j) to mean the j-th

column of matrix W. Conditional distributions required for inference are:

p(hj = 1|v) = sigmoid
(
cj +

v

σ

T
W(:,j)

)
(2.20)

p(vi|h) ∼ N (bi + σi
∑
j

Wijhj , σ
2
i ) ≡ N (µi(h), σ2

i ) (2.21)

Gradients for maximum likelihood learning are as follows:

∂ log p(v)

∂W
= Edata[

1

σ
vhT]− Emodel[

1

σ
vhT] (2.22)

∂ log p(v)

∂b
= Edata[

1

σ2
v]− Emodel[

1

σ2
v] (2.23)

∂ log p(v)

∂c
= Edata[h]− Emodel[h] (2.24)

Note that λi = 1/σi is the inverse standard deviation of the model. We can also learn λi by using

the gradient:

∂ log p∗(v)

∂λi
= −λiv2i + 2λivibi +

Nh∑
j

p(hj |v)viWij (2.25)

Just like binary RBMs in Section 2.1.1, we can use CD, PCD and FPCD for learning the parameters

of the GRBM. The only modification is the inclusion of the residual variance parameters as specified by

the above equations. Additional layers of binary RBMs are often stacked on top of a GRBM to form
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a Deep Belief Net (DBN) (Hinton et al., 2006). A DBN can be shown to increase the variational lower

bound of the model’s data log-likelihood. Inference in a DBN is approximate but efficient, where the

probability of the higher layer states is a function of the lower layer states (see Equation 2.20).

AIS for GRBM

The partition function for GRBMs is intractable, as in the case of binary RBMs. However, we have

an algorithm to find an approximation of the partition function. In Salakhutdinov and Murray (2008),

Annealed Importance Sampling (AIS) was applied to quantitatively evaluate binary RBMs. We now

extend the AIS algorithm for estimating the log-partition function of a GRBM.

For any GRBM which defines an unnormalized probability p∗B(v) over the visible vector v, we would

like to estimate its log partition function logZB = log
∫
v
dvp∗B(v). Here we use p∗(·) to represent the

unnormalized probability distribution. We require a simpler distribution p∗A(v) with a tractable log

partition function logZA as well as a set of intermediate distributions:

pk(v) ∝ p∗A(v)1−βkp∗B(v)βk (2.26)

where k = 1 . . .K − 1 and 0.0 = β0 < β1 < ... < βK = 1.0.

p∗B(v) is the GRBM distribution of interest. For ease of notation, we assume a spherical noise model

by using σ2, noting that it is trivial to use AIS with a diagonal noise model instead.

log p∗B(v) = − 1

2σ2
vTv +

1

σ2
vTb +

Nh∑
j

log
(

1 + exp{ 1

σ
vTW(:,j) + cj}

)
(2.27)

For the tractable distribution p∗A(v), we use a spherical Gaussian with a mean at bA:

log pA(v) =−Nv log(
√

2π)−Nv log(σ)− 1

2σ2
bA

TbA

− 1

2σ2
vTv +

1

σ2
vTbA (2.28)

log p∗A(v) =− 1

2σ2
vTv +

1

σ2
vTbA (2.29)

Applying Eq. 2.26 to the joint density over v and h, the unnormalized log-probability of an intermediate

GRBM is:

log p∗k(v,h) = (1− βk) log p∗A(v,h) + βk log p∗B(v,h) (2.30)

Marginalizing out the hiddens:

log p∗k(v) = − 1

2σ2
vTv +

1

σ2
vTb̃ +

Nh∑
j

log
(

1 + exp{βk(
1

σ
vTW(:,j) + cj)}

)
(2.31)

where b̃ = (1 − βk)bA + βkb. The conditional distributions needed for the Markov Chain transition

operators are obtained from the intermediate GRBM’s joint density:

p∗k(v,h) = exp
(
− 1

2σ2
vTv +

1

σ2
vTb̃ + βkh

Tc +
βk
σ

vTWh
)

(2.32)
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pk(h|v) = σ
(
βk(

1

σ
vTW + c)

)
(2.33)

pk(v|h) ∼ N (b̃ + βkσWh, σ2) (2.34)

Using these the modified MCMC transition operator associated to Equation 2.32, we can use the

AIS algorithm outlined in Salakhutdinov and Murray (2008) to estimate the partition function. To see

how accurate is the above procedure at estimating the log partition function of GRBMs, we trained

two GRBMs with a small number of hidden nodes so that their log partition function can be calculated

exactly. The first GRBM is trained on 2D synthetic data points with 6 hidden nodes. The second GRBM

has 15 hidden nodes and is trained on a downsampled version of NORB which is 16× 16 pixels. For the

first GRBM, exact integration gave the log partition function of -43.11 nats, while the AIS estimation

with 20,000 intermediate distributions and 100 chains gave the log partition function of -43.018 ± 0.096

nats (3 standard deviation). For the 16×16 NORB GRBM with 15 hidden nodes, the exact log partition

function was -197.854 nats while AIS estimation gave -197.89 ± 0.077 nats.

Learning

When building models such as deep autoencoders or deep neural networks for classification, GRBM

training acts as a pretraining step. The goal of pretraining is to use unsupervised learning to find good

weights to initialize a fully discriminative network (Hinton and Salakhutdinov, 2006). In these tasks, the

ultimate goal is feedfoward inference where the residual variances are not involved, therefore, learning

proper values are not very important. This led to many papers that used a fixed residual variance (Hinton

and Salakhutdinov, 2006; Lee et al., 2007) e.g. σi = 1. This would be a gross approximation since while

the marginal distribution over the entire dataset maybe 1.0, the residual variance conditioned on the

hidden states should be much smaller than that. For density modeling and tasks such as denoising

involving feedback processing, the residual variance is very important. This can be seen by looking at

the log-probability equation that GRBM uses to assign log-prob to a test case:

log p∗(v) = −1

2
vTΛv + vTΛb +

Nh∑
j

log
(

1 + exp{vTΛ
1
2 W(:,j) + cj}

)
(2.35)

Residual variance has a big effect on the log-probability assigned to a data vector. For example,

in a Gaussian, the partition function involves the log determinant of the covariance matrix log p(v) =

const −
∑
i log σi − 1

2

∑
i
(vi−µi)2

σ2
i

. A small log-determinant, or equivalently small residual variance σ2
i ,

is desired for a high log-probability.

Therefore, we seek to learn a much smaller σi from data, using Eq. 2.25. However, in practice,

learning proper residual variance parameters σ2
i has been observed to be difficult using CD, PCD,

or even FPCD algorithms (Hinton, 2010), requiring a much smaller learning rate and longer training

time (Hinton and Salakhutdinov, 2006). A trick which is often employed is to not add any noise during

reconstruction (Hinton, 2010). Even with many tricks, the learned σi is often too large, about the same

as the marginal variance of a pixel across the training set. Some papers have tried to use different

types of RBM altogether (Le Roux et al., 2011). At the heart of the problem is that learning a small

value for σi, or equivalently a big value for λi is difficult even if it is warranted by the data. Without

learning precise noise parameters for the visible nodes, the sampling required during the negative phase

of learning would be very blurry and add too much noise to the gradients.
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Figure 2.3: Examples of GRBM trained on 2D synthetic data. The λ is fixed to be 0.5 for both the x
and y dimensions, and CD-1 is used for training. Best viewed in color.

Here we show an example of how learning GRBMs fails for simple 2D synthetic data consisting of

4 clusters. Figure 2.3 shows a synthetic dataset where the the data points are red ‘x’ (bottom-left

panel). A GRBM with 3 hidden units is trained on this dataset with CD-1. The top-left panel is the

unnormalized log-probability over the 2D visible space as specified by the learned GRBM. The top-right

panel is the normalized probability density. In the bottom-left panel, the binary hidden configurations of

the 3 hidden nodes (8 configurations in total: 8 = 23) are displayed in black. Each hidden configuration

is associated with a conditional Gaussian mean in the visible space which are shown in blue squares,

µ(h), see Equation 2.21. The bottom-right panel plots the random samples (blue ‘x’) of the GRBM using

MCMC with simulated annealing. Note that the GRBM places all of its mass around a single hidden

configuration whose µ(h) is farthest from the origin. It is also of interest that while CD learning can

accurately place 4 component means on modes of the data, the GRBM does not assign any significant

probability mass to the mixing proportion of those components.

The issue is not due to the learning algorithm (CD, PCD or FPCD), but rather a property of the

GRBM model itself. The inability to learn a large λi is related to the fact that posterior inference in

the GRBM is designed to be factorial for computation efficiency purposes. To justify this argument, we

first view the GRBM as an exponential (in Nh) mixture of diagonal Gaussians:

p(v) =
∑
h

N (b + Λ
1
2 Wh,Λ−1)p(h) (2.36)

where the center of each diagonal Gaussian is µ(h) = b + Λ
1
2 Wh. Integrating out the visible nodes

from Eq. 2.16, we find that the prior on each components of the mixture is:

p(h) ∝ exp{cTh +
1

2
µ(h)TΛµ(h)} (2.37)
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This prior will tend to be very big for components of the mixture with a big µ(h)1. In other words, the

component with its center farthest from the origin will tend to be favored. This is exactly the reason why

the GRBM in Figure 2.3 places all of its mass around coordinate (0,10). This affinity for components

with large means is not a problem if we just want to learn useful hidden features. However, when it

comes to density modeling, a model with small precision is still much better then a precise model with

biased hidden component mixing proportions.

Figure 2.4: A very imprecise density learned by the GRBM due to its affinity for hidden configurations
with large means.

This flaw of the GRBM as an (exponential) mixture density model means that when trained using

PCD (in order to learn a better density model), a large λ for the visible nodes will mean that other than

the favored component, none of the data “belonging” to other components will have any meaningful

probability at all. Therefore, it is much better if the GRBM learned a small λ so that all data can

be assigned a moderate density from the favored component. Figure 2.4 illustrates the density that is

typically learned using PCD.

Since the culprit seems to be 1
2µ(h)TΛµ(h) from Equation. 2.37, we might want to add a negative

term in the GRBM’s energy function to cancel it out. However, any term we want to add will have to

be quadratic in h and will reintroduce the Explaining-Away problem during inference. In fact, adding

such terms will lead us back to a directed graphical model without any of the fast inference advantages

of a GRBM. Therefore, the “bad prior” property of GRBM is an inductive bias of the model and a side

effect of having a factorial posterior.

A Remedy

Instead of modifying the model, we will add a data preprocessing step to ameliorate the above mentioned

“bad prior” problem. The standard preprocessing for training a GRBM (on images) consist of removing

the mean of each pixel across training samples and also dividing each pixel by its standard deviation over

training samples. Instead of the standard procedure, we advocate the alternative method of subtracting

from each pixel the mean of all pixels within a single image and then dividing all pixels by a value such

that the norm of the image vector is a constant. In computer vision, this method is known as contrast

normalization and is often included as a preprocessing step to account for affine transformations of

image intensity. Our reason for using this normalization technique is to keep the inductive bias of the

probability assigned to the hidden configurations more-or-less the same, irrespective of the data cluster

1The bias c typically only has a small influence.
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location. This is a sensible method to use since in high dimensional space, contrast normalization simply

removes image intensity variations and does not lose any critical information of the object. As a concrete

(a) Contrast normalized data.

(b) Standard preprocessing.

Figure 2.5: Preprocessing methods. Contrast normalization gets rid of background intensity variations,
but does not lose any significant information for building a generative of objects.

(a) Contrast normalized data. (b) Standard preprocessing.

Figure 2.6: Contrast normalization and its effect on learning precision. Note that for clarity in presenta-
tion, the display intensity range of the two plots are set differently. The “index” value are the standard
deviation learnt for each pixel.

example, we trained a GRBM on the NORB dataset (LeCun et al., 2004). Figure 2.5 shows the input

images based on (a) contrast normalization and (b) standard mean and standard deviation normalization.

Visually, all the important information of the objects is preserved by contrast normalization. We trained

a GRBM with 1000 hidden nodes using CD-1 for 100 epochs. We then looked at the residual standard

deviation learned for every pixel. In Figure 2.6, we show the learnt standard deviation of the visible

nodes. Note the different intensity scaling of each subfigure. The contrast normalized GRBM is able

to learn a much more appealing variance of the pixels with much smaller values on average. Residual

variances are bigger in the middle where different object parts appearances creates more variance. Note

that highest standard deviation learned from contrast normalized data is 0.13 while for the normal

preprocessed data it is much higher at 0.45. We also show the negative particles of each model during

learning in Figure 2.7. Comparing them to the training data, we can see that the negative samples for
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(a) Contrast normalized preprocessing. (b) Standard preprocessing.

Figure 2.7: Samples of the model from the negative phase of learning, using contrast normalized data
vs. standard data. Samples from the model trained on contrast normalized data (a) are clearly better
and sharper compared to (b).

the contrast normalized version are much sharper. In particular, there are a lot of blob-like clouds in

Figure 2.7 (b).

Stepped Sigmoid Units

A simple method to increase the dynamic range of the hidden units of the GRBM is proposed by Nair

and Hinton (2010), called Stepped Sigmoid Units (SSUs). For every hidden unit in the original GRBM,

K copies of it with the same weights and bias can be instantiated. Each copy has a different but fixed

offset: −0.5,−1.5,−2.5, . . . . This gives hidden units more dynamic range in response to input x without

adding any additional parameters. During learning, instead of sampling K times more hidden units

as before, we can simply compute the expected value of the sum of all copies. The expected value of

the sum copies is approximately log(1 + ex) as K approaches infinity (Nair and Hinton, 2010). After

training, we can convert a SSU back into a standard GRBM by replicating the hidden nodes K times

with the fixed bias offsets. These units have been shown to be better at classification and this helped to

popularize Rectified Linear Units (ReLUs) in deep learning.

In addition, SSUs are also better generative models than GRBMs. While a GRBM is an exponential

mixture of diagonal Gaussians, a SSU is an exponential mixture of Gaussians with non-diagonal covari-

ances. A hidden unit hj of a SSU can be either off (hj = 0) or activate approximately linearly with

respect to the incoming signal. There are 2Nh hidden configurations for a SSU with Nh hidden units,

where each hidden configuration gives a different linear model. Hence, a SSU is an exponential mixture

of linear models2. Therefore, SSUs can model correlation in the data more efficiently than GRBMs.

However, the “bad prior” problem as discussed in the above subsection is still present for the SSUs,

since every SSU has an equivalent GRBM.

We compared GRBMs and SSUs as density models on two image databases and one audio database.

2Although most of the configurations are only assigned a very small prior probability.
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Annealed Importance Sampling is used to estimate the log partition functions. For the GRBM, the Fast

PCD algorithm (Tieleman and Hinton, 2009) was used where the fantasy particles were run for 20 Gibbs

iterations between parameter updates. The learning rate is linearly decayed to 0 and its initial value was

picked using a validation set. For the SSU, Fast PCD was also used. The number of replicated hidden

nodes K was picked using the validation set, typically the best K was between 4 and 6.

Dataset GRBM (nats) SSU (nats)

12× 12 pixels Toronto Face Database −19 −27

48× 48 pixels Toronto Face Database 2835 3345

24× 24 TFD with translation 32.2 36.7

24× 24 TFD with rotation 296 352.1

TIMIT acoustic spectrograms 1175 1268

Berkeley 8× 8 image patches −98 −105

Table 2.2: Toronto Face Database (TFD) (Susskind, 2011) is a dataset of 100,000 cropped face images.
Berkeley database (Martin et al., 2001) contains natural image patches. TIMIT1 is a database for speech
recognition. TFD with translation is created by randomly translating a face within a noise background
image. TFD with rotation is created by using random rotations. Higher numbers correspond to better
models.

Table 2.2 summarizes the results. The values are the test set log-probability in nats. For the data

with higher dimensionality, the SSU performed better than the GRBM. However, for the data with lower

dimensionality (e.g. 12× 12 and 8× 8 images), GRBMs perform better.

SSUs are very similar to a later proposed model called the Spike and Slab RBM (ssRBM) (Courville

et al., 2011). Motivated by the inability of Gaussian RBMs to model non-diagonal input correlations

efficiently, a ssRBM contains spike (the original binary hidden variables) as well as slab (continuous)

hidden variables. The idea is that for every particular binary hidden configuration, the continuous

slab variables result in a non-diagonal Gaussian model of the input data. Learning requires alternating

sampling between the spike and slab variables.

To see the similarity, we note that the energy function of the ssRBM can be written as:

−E(v, s,h) = −1

2
vTΛv +

N∑
i=1

(
vTWisihi −

1

2
s2i + cihi

)
(2.38)

where an isotropic Gaussian prior is placed on s (slab variables). Conditioned on h (spike variables),

the model becomes an undirected Factor Analysis model.

Instead of having both the slab and spike variables, hidden units of an SSU correspond to a new

variable gi which is obtained by multiplying the spike and the slab: gi = hisi. Let us also define a useful

function that enforces s to be positive:

H(s) =

{
s if s ≥ 0

−∞ else
(2.39)

2http://www.ldc.upen.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1.
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If we modify the ssRBM energy function by enforcing s to only be positive,

−E(v, s,h) = −1

2
vTΛv +

N∑
i=1

(
vTWisihi −

1

2
H(si)

2 + cihi

)
, (2.40)

then the latent variable of interest is gi, and we are interested in the expected value

Ep(hi,si|v)[gi] =

∫
hi,si

hisip(hi, si|v)dhidsi

=

∫
hi,si

gi
exp(vTWisihi − 1

2H(si)
2 + cihi)∫

hi,si
exp(vTWisihi − 1

2H(si)2 + cihi)
dhidsi

=

∫
hi,si

gi exp(vTWisihi − 1
2H(si)

2 + cihi)dhidsi∫
hi,si

exp(vTWisihi − 1
2H(si)2 + cihi)dhidsi

(2.41)

denoting φi = vTWi and because hi is binary, the numerator is expanded into integrals with hi = 0 and

hi = 1:

0 +

∫ ∞
0

si exp(φisi −
1

2
s2i + ci)dsi (2.42)

=
√

2πeci+
1
2φ

2
i

∫ ∞
0

siN (φi, 1)dsi (2.43)

and the denominator is

√
2π

∫ ∞
0

(2π)−
1
2 exp(−1

2
s2i )dsi +

√
2πeci+

1
2φ

2
i

∫ ∞
0

(2π)−
1
2 exp−

1
2 (si−φi)

2

dsi

=
√

2π(
1

2
+ eci+

1
2φ

2
iΦ(φi)) (2.44)

where Φ(·) is the cumulative distribution function of the standard normal. Therefore,

Ep(hi,si|v)[gi] =

√
2πeci+

1
2φ

2
i

∫∞
0
siN (φi, 1)dsi√

2π( 1
2 + eci+

1
2φ

2
iΦ(φi))

=

∫∞
0
siN (φi, 1)dsi

( 1
2e
−ci− 1

2φ
2
i + Φ(φi))

(2.45)

We plot the expected value of gi in blue as a function of φi (if we assume ci = 1.0):
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Figure 2.8: Activation function of the ssRBM (blue) is very similar to that of SSU’s (Relu in black).
Best viewed in color.

As φi >> 0, E[gi] = φi: the numerator of Eq. 2.45 approaches the expected value of a Gaussian

centered at φi, while the denominator approaches 1.0. The above analysis shows that the expected

value of SSU’s hidden units is very similar to the expected value of the ssRBM’s spike hj times the slab

variable sj .

In conclusion, we find that using contrast normalization as the preprocessing step led to better

generative models learned by both the GRBM and the SSU. Learning a very precise noise model has a

tremendous effect on the log-probability assigned to the data by the generative model. SSUs are typically

better than GRBM for data with larger dimensionality, however their performance is sensitive to the

number of replicated hidden units K.

2.2 Other Models

2.2.1 Higher-order Boltzmann Machines

We briefly discuss some of the other types of Boltzmann Machines that have been used as building

blocks for deeper models. The hidden units of a single RBM still model only linear correlations among

the visible units. In other words, there are no visible-visible interaction or multiplications in an RBM.

Therefore, an RBM is not suitable for modeling higher-order correlations among the visible units.

Multiplications among the visible units are introduced in (Memisevic and Hinton, 2010; Ranzato and

Hinton, 2010; Memisevic and Hinton, 2010), leading to a model known as covariance RBMs and the

mean and covariance RBM (mcRBM). Instead of having 1 visible layer and 1 hidden layer, the visible

layer is duplicated, resulting in 2 visible (although identical) layer and 1 hidden layer. A factorized

tensor is used to model the interaction between the 3 groups of variables. Results on modeling natural

images have shown this type of model is effective at learning Gabor-like colorful filters from real life

datasets.

Third-order RBMs have been used as powerful classifiers for object recognition. In an implicit

mixture of RBMs (Nair and Hinton, 2009b), one-of-K class codes gate the slices of a tensor which leads

to a different RBM per class. Training can proceed using the Contrastive Divergence algorithm, resulting
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in a more flexible and higher-order RBM mixture model.

2.2.2 Autoencoders

Feedforward neural networks are usually used to transform input data (images or other modalities) into

output class labels. In the absence of labels, the target output could be assigned to be the original

input data, where the objective is to reconstruct the data as well as possible. Since the model seeks to

transform or encode the data into a code space before decoding again, this type of model is known as

an autoencoder. In order to prevent the network from learning the identity function, regularization of

the parameters of autoencoders by restricting the dimensionality of the codes are needed. Autoencoders

are useful for performing nonlinear compression of data and learning efficient representation or codes

useful for additional tasks. Autoencoders are a type of unsupervised learner, not requiring any labels

for training.

A better way to train multilayer or deep autoencoders was proposed by Hinton and Salakhutdinov

(2006), where already trained Restricted Boltzmann Machines were stacked on top of one another in

order to help optimization. That paper is arguably the seminal paper of deep learning, as it popularized

the idea of “pre-training”.

Instead of mapping the data back to itself, we can first corrupt the data randomly and try to denoise.

This is the central aim of Denoising autoencoders (Vincent et al., 2010; Bengio et al., 2013). One way

to corrupt the input is to randomly select a subset of the features and set their value to zero. During

training, different features are set to zero during every weight update. The idea of denoising autoencoders

is to learn the low-dimensional manifold of the data, since projecting a noisy data vector back to its

clean version will create an energy ravine around the data manifold in data space.

Another recent model in the Autoencoder family is the Contractive Autoencoder (Rifai et al.,

2011b,a). Contractive Autoencoders differ from standard Autoencoders in the addition of a regular-

ization term which penalizes the Jacobian of the hidden nodes with respect to the input. In other

words, the objective encourages the encoder to not change much around training data points. However,

the overall objective also includes the reconstruction error of the input. Learning balances these two

objectives and will end up learning an encoder which changes only along the data manifold.

Sparse versions of Autoencoders have also been proposed (Ranzato et al., 2007; Henaff et al., 2011).

In sparse Autoencoders, the activities of the hidden layers are encouraged to be sparse. A simple

criterion which restricts the information content of the code is proposed, thereby leading to the learning

of informative features.

Central to all of the aforementioned autoencoders is the data reconstruction cost. A particularly

novel feature learning method known as Sparse Filtering proposes the radical idea of not caring about

reconstruction cost (Ngiam et al., 2011). Arguing against the reconstruction cost in terms of the added

computation cost, Sparse Filtering simply tries to find projections of the data which lead to both pop-

ulation sparsity and lifetime sparsity of the hidden features. Empirical results showed Sparse Filtering

to be an effective way of unsupervised pre-training before supervised fine-tuning.

2.2.3 Factor Analysis

Factor analysis was first introduced in psychology as a latent variable model to find the “underlying

factors” behind covariates. The latent variables are called factors and are of lower dimension than the
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covariates. Factor analyzers are linear models as the factor loadings span a linear subspace within the

vector space of the covariates. To deal with non-linear data distributions, Mixtures of Factor Analyzers

(MFA) (Ghahramani and Hinton, 1996) can be used. MFAs approximate nonlinear manifolds by making

local linear assumptions.

Let x ∈ RD denote the D-dimensional data, {z ∈ Rd : d ≤ D} denote the d-dimensional latent

variable, and c ∈ {1, . . . , C} denote the component indicator variable of C total components. The MFA

is a directed generative model, defined as follows:

p(c) = πc,

C∑
c=1

πc = 1, (2.46)

p(z|c) = p(z) = N (z; 0, I), (2.47)

p(x|z, c) = N (x; Wcz + µc,Ψc), (2.48)

where I is the d× d identity matrix. The parameters of the c-th component include a mixing proportion

πc, a factor loading matrix Wc ∈ RD×d, mean µc, and a diagonal matrix Ψc ∈ RD×D, which represents

the independent noise variances for each of the variables.

By integrating out the latent variable z, a MFA model becomes a mixture of Gaussians with con-

strained covariance:

p(x|c) =

∫
z

p(x|z, c)p(z|c)dz = N (x;µc,Γc) (2.49)

Γc = WcW
T
c + Ψc

p(x) =

C∑
c=1

πc N (x;µc,Γc). (2.50)

For inference, we are interested in the posterior:

p(z, c|x) = p(z|x, c)p(c|x) (2.51)

The posterior over the components can be found using Bayes rule:

p(c|x) =
p(x|c)p(c)∑C
γ=1 p(x|γ)p(γ)

(2.52)

Given component c, the posterior over the latent factors is also a multivariate Gaussian:

p(z|x, c) = N (z; mc,V
−1
c ), (2.53)

where

Vc = I + WT
c Ψ−1c Wc,

mc = V−1c WT
c Ψ−1c (x− µc).

Maximum likelihood learning of a MFA model is straightforward using the EM algorithm (Rubin

and Thayer, 1982). During the E-step, Eqs. 2.52, 5.3 are used to compute the posterior over the latent



Chapter 2. Building Blocks 22

Figure 2.9: The RBM on the left has an equivalent DBN on the right.

variables given the current setting of the model parameters. During the M-step, the expected complete-

data log-likelihood is maximized with respect to the model parameters θ = {πc,Wc,µc,Ψc}Cc=1:

Ep(z,c|x;θold)[log p(x, z, c; θ)]

2.3 Deep generative models

We briefly review Deep Belief Networks (DBNs) and Deep Boltzmann Machines (DBMs).

2.3.1 Deep Belief Network

A Deep Belief Network is a hybrid of directed and undirected graphical model where the top layer

is an RBM and subsequent lower layers form a directed graphical model known as a Sigmoid Belief

Network (Neal, 1992). DBNs are attractive due to their capabilities as a generative model as well as

the greedy layer-wise training algorithm. DBNs are built from stacking together RBMs and have been

successfully adapted to handwritten digit recognition, dimensionality reduction, natural image modeling,

and speech recognition (Hinton et al., 2006; Hinton and Salakhutdinov, 2006; Osindero and Hinton, 2007;

Mohamed et al., 2011).

An RBM defines a joint distribution which can be factored into a prior and a conditional:

p(v,h) = p(v|h)p(h) (2.54)

Using this definition, the original RBM has an equivalent 2 layer network shown in Fig. 2.9. The network

on the right is a DBN composed by stacking 2 RBMs on top of each other. The weight for the top RBM

(W 1)T is the transpose of the bottom RBM W 1. Note that the top RBM has undirected connections

while the bottom RBMs function as a directed network.

For any distribution approximating the true posterior q(h1|v) ≈ p(h1|v), we have a variational lower

bound on the log probability of the data

log p(v; θ) =
∑

h1 q(h1|v)
[

log p(v,h1; θ)
]

+H(q(h1|v)) +KL(q(h1|v)||p(h1|v)) (2.55)

≥
∑

h1 q(h1|v)
[

log p(v|h1;W 1) + log p(h1;W 2)
]

+H(q(h1|v)) (2.56)

H(·) is the entropy functional and KL(·) is the Kullback-Leibler divergence. When the RBM is formu-
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lated as a 2 layer DBN as in Fig. 2.9, the bound is tight.

Greedy learning of a DBN requires the freezing of W 1 and learning W 2 to optimize this lower bound.

This is essentially maximizing ∑
h1

q(h1|v) log p(h1;W 2) (2.57)

At first, when W 2 ≡ (W 1)T, any increase in the lower bound will increase the log-likelihood, since

the bound is tight. However, when the bound is not tight (KL(q||p) > 0), changing W 2 to increase

the bound might actually decrease the actual log-likelihood, since KL(q||p) might decrease more. Such

could be the situation when greedily learning deeper layers. Despite a lack of guarantee, in practice the

CD algorithm tends to find good weights to model p(v|h1;W 1), and learning a W 2 will better model

p(h1;W 2), thus improving the DBN.

Algorithm 2 summarizes the greedy learning of a DBN. For a L layer DBN, its joint probability can

be defined as

p(v,h1, . . . ,hL−1,hL) = p(v|h1) . . . p(hL−1,hL) (2.58)

Algorithm 2 Greedy Learning DBN

1: Learn W 1 for the 1st layer RBM.
2: Freeze W 1, learn 2nd layer RBM with q(h|v) as its visible layer data.
3: Freeze W 2, learn 3rd layer RBM with q(h2|h1) as its visible layer data.
4: Recursively learn as many layers as desired.

To generate data from a DBN, the standard way is to run Gibbs sampling for the top RBM, then

propagate down the stochastic activation to the visible layer. For posterior inference, q(·) is used to

approximate the true posterior which is in general intractable to compute.

2.3.2 Deep Boltzmann Machines

While the DBN is an hybrid generative and discriminative network, the DBM is a multilayer network

which is entirely undirected and defined by a single energy function. In this section, we briefly discuss

the DBM as an alternative deep generative model to the DBN.

A 3 layer DBM is defined by the energy function

E(v,h1,h2,h3) = −vTW 1h1 − (h1)TW 2h2 − (h2)TW 2h3 (2.59)

p(v,h1,h2,h3) =
1

Z
exp−E(v,h1,h2,h3) (2.60)

the conditional distributions over each of the layers are given by3

p(vi = 1|h1) = σ
(∑

j

W 1
ijh

1
j

)
(2.61)

p(h1j = 1|h2,v) = σ
(∑

i

W 1
ijvi +

∑
k

W 2
jkh

2
k

)
(2.62)

3We ommitted the biases for clarity of presentation.
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p(h2k = 1|h3,h1) = σ
(∑

j

W 2
jkh

1
j +

∑
l

W 3
klh

3
l

)
(2.63)

p(h3l = 1|h2) = σ
(∑

k

W 3
klh

2
k

)
(2.64)

Approximate maximum likelihood learning can be used to learn the model. However, unlike in the

learning of RBMs, the first term in the objective involves the calculation of data-dependent expectations,

is no longer independent given the visible nodes due to the multiple hidden layers. For DBMs, we can

use a variational approach to estimate the data-dependent expectations. For any value of the parameters

θ, we can decompose the log-likelihood of the data as

log p(v; θ) =
∑
h

q(h|v;µ)
[

log p(v,h; θ)
]

+H(q) +KL(q(h|v;µ)||p(h|v; θ)) (2.65)

≥
∑
h

q(h|v;µ)
[

log p(v,h; θ)
]

+H(q) (2.66)

where we have used h above to include all hidden nodes. In variational learning, we first optimize µ to

tighten the lower bound of log p(v; θ). As a consequence of the decomposition, it also means we minimize

the Kullback-Leibler divergence between the approximating and true posteriors. For simplicity, we take

the approximating posteriors to be q(h|v;µ) =
∏Nh
j=1 q(hj), where µj ≡ q(hj = 1). We can solve for µj

by running mean-field fixed-point equations to convergence

µ1
j ← σ

(∑
i

Wijvi +
∑
k

Wjkµ
2
k

)
(2.67)

µ2
k ← σ

(∑
j

Wjkµ
1
j +

∑
l

Wklµ
3
l

)
(2.68)

µ3
l ← σ

(∑
k

Wklµ
2
k

)
(2.69)

where the superscript of the µ’s indicate the layer of the hidden nodes. Empirically, 25 iterations of

this mean-field updates guarantees convergence. Additionally, damping by using a momentum term can

also help convergence. After finding variational parameters µj , learning proceeds by optimizing θ while

fixing µ.

By using mean-field for approximating p(h|v), the assumption is that the true conditional distribution

is unimodal. This assumption is often not a bad one to make when the task at hand is to interpret

visual or auditory data. It is also advantageous for h to be unimodal if the system requires further

processing (Salakhutdinov and Hinton, 2009; Hinton et al., 2006).

In order for the DBM to work in practice, a pre-training step is also required similar to DBNs.

The pre-training is also greedy and layer-wise and will initialize the weights at a better location before

learning. In addition, sparsity constraints4 on the hidden layers are also found to be critical for DBM

learning.

The main advantage of the DBM is that the conditional distribution of any intermediate layer is a

function of both the bottom layer and the top layer. In contrast, the approximate inference procedure

for DBN is only a function of the bottom layer. This fact allows for the top-down influence to alter

4Typically the hidden layers nodes are encouraged to have an average activation between 0.1 and 0.2.
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the purely bottom-up inputs and allows for the posterior inference to take into account the correlation

between hidden nodes. Empirically, Salakhutdinov and Hinton (2009) has demonstrated that DBMs

is slightly better than DBNs on MNIST and NORB, both for generative modeling and discriminative

performance.

The main disadvantage of the DBM is the computational resources used during learning and influ-

ence. Let n be the number of mean-field iterations needed during variational influence, that’s n times

more expensive than the approximate inference computation needed for a DBN. This problem can be sig-

nificantly alleviated by using separate weights to “predict” the variational parameters µ (Salakhutdinov

and Larochelle, 2010).

In the remaining chapters of this thesis, the generative model of the novel frameworks we propose is

the Deep Belief Network. The fundamental ideas and general tenants of our approach will not change

had we used the Deep Boltzmann Machine instead. However, we chose to use Deep Belief Networks

because they are easier to train and the results are comparable to Deep Boltzmann Machines for many

tasks explored in this thesis.



Chapter 3

Generative models with structure

for vision

Deep learning based probabilistic generative models include the Deep Belief Network (Hinton et al.,

2006), the Deep Boltzmann Machine (Salakhutdinov and Hinton, 2009), and Sigmoid Belief Networks (Neal,

1992). These models are very generic regarding the types of data they are capable of modeling. They

are all very flexible, each one of them being a jack-of-all-trades model for any data, from images to text

to acoustic signals. However, this flexibility means that some simple and very useful domain-specific

knowledge is not being employed to increase accuracy and improve generalization. Specifically, domain-

specific knowledge from vision can easily be incorporated into a model to allow for better generalization.

At the same time, the new model can still learn statistically from the data and learn useful latent

representations.

In this chapter we look at two glaring shortcomings of deep generative models and look toward

computer vision for simple ideas to address these concerns. The first model allows us to better deal with

occlusion and noise of the input. Occlusion and noise affecting one part of the input image should not

affect all of the hidden latent variables. This can be achieved with multiplicative interactions at the pixel

level which is not part of the standard models. Section 3.1 introduces a simple way to make Boltzmann

machines more robust to noise and corruptions, the Robust Boltzmann Machine. It contains additional

binary noise indicators which allow Boltzmann machines to be robust to corruptions. In the domain of

visual recognition, the Robust Boltzmann Machine is able to accurately deal with occlusions and noise

by using multiplicative gating to induce a scale mixture of Gaussians over pixels. Image denoising and

inpainting correspond to posterior inference in the Robust Boltzmann Machine. This model is trained in

an unsupervised fashion with unlabeled noisy data and can learn the spatial structure of the occluders.

Compared to standard algorithms, the Robust Boltzmann Machine is significantly better at recognition

and denoising on several face databases.

The second model allows us to better deal with lighting or illumination variations for improved

recognition. Section 3.2 leverages the Lambertian image formation process and combines it with a Deep

Belief Network to provide better modeling of illumination variations. The idea is to first estimate an

illumination invariant representation before using it for recognition. The object albedo and surface

normals are examples of such representations. In this section, we introduce a multilayer generative

model where the latent variables include the albedo, surface normals, and the light source. Combining

26
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Deep Belief Nets with the Lambertian reflectance assumption, our model can learn good priors over the

albedo from 2D images. Illumination variations can be explained by changing only the lighting latent

variable in our model. By transferring learned knowledge from similar objects, albedo and surface normal

estimation from a single image is possible in our model. Experiments demonstrate that our model is

able to generalize as well as improve over standard baselines in one-shot face recognition.

In this chapter, we tried very hard to strike a balance between using too much laborious hand

engineering on the one hand and the laissez-faire connectionist learn-everything approach on the other.

By adding more modeling capability in these higher-order multiplicative operations, we nudge the model

to learn to use these new features to improve generalization. Both proposed models show dramatic

performance gain by using minimal hand engineering.

3.1 Robust Boltzmann Machines

While Boltzmann Machines have been successful at unsupervised learning and density modeling of

images and speech data, they can be very sensitive to noise and occlusion. Occlusion in particular

can be devastating to test recognition performance as the appearance of the occluded object can vary

dramatically. Examples include trying to recognize the face of a person who is drinking from a red coffee

mug or trying to find an object partially occluded by a stack of papers. In both cases, the appearance

of the occluders should not affect the recognition of the objects of interest, yet many algorithms are

significantly influenced by their appearance.

Typical approaches for dealing with occluders are to use an architecture which is engineered to be

robust against occlusion and/or to augment the training set with noisy examples. Local descriptors,

such as SIFT (Lowe, 2004) and Convolutional Neural Nets (LeCun et al., 1998) are examples of such

engineered architectures. There are, however, some drawbacks to these approaches. For SIFT and

Convolutional Nets, hyper-parameters such as the descriptor window size and local filter size need to be

specified. Augmenting the training set requires the ability to synthetically generate corruptions, which

is challenging for shadows, specular reflections and occlusion by unknown objects.

This section describes an alternative unsupervised approach that learns to distinguish between cor-

rupted and uncorrupted pixels and to find useful latent representations of both that lead to improved

object discrimination. The family of Boltzmann Machine models have been shown to give good results

on facial expression (Ranzato et al., 2011) and speech recognition tasks (Mohamed et al., 2011). We

present a novel model that allows Boltzmann Machines to be robust to corruptions in the data. Build-

ing on a similar model for binary data (Tang, 2010), our model uses multiplicative gating to induce a

scale mixture of two Gaussian distributions over the data variables. Furthermore, our framework can

successfully learn the statistical structure of the noise and occluders without explicit supervision. Our

model has several key advantages:

• Multiplicative gating allows for the presence of novel occluders with exotic appearances.

• The structure of the occluders and noise statistics can be learned from the data in an unsupervised

fashion.

• Completely automated image inpainting and denoising correspond to posterior inference in the

model.
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Generative image models with occlusion have been well studied in the vision and machine learning

literature (Kannan et al., 2005; Williams and Titsias, 2004). Recently, models involving Restricted

Boltzmann Machines have also been applied to image segmentation (Roux et al., 2011) and foreground-

background modeling (Heess et al., 2011). Compared to the above work, the fully undirected nature

of our model facilitates efficient inference. Face recognition under occlusion has also been explored

in (Wright et al., 2009; Zhou et al., 2009; Jia and Martinez, 2008). Zhou et al. (2009) used an MRF to

model contiguous occlusion. However, their model is not as flexible since its parameters are not learned

from data.

3.1.1 The Model

The Robust Boltzmann Machine (RoBM) is an undirected graphical model with three components. The

first is a Gaussian Restricted Boltzmann Machine (GRBM) (See Section 2.1.2) modeling the density

of the noise-free or “clean” data. The second is a Restricted Boltzmann Machine (RBM) modeling

the structure of the occluder/noise. The RoBM also contains a multiplicative gating mechanism which

allows it to be robust to unexpected corruptions of the observed variables. Section 2.1 gives a indepth

discussions on RBMs and GRBMs.

The GRBM is not robust to noise as it assumes a diagonal Gaussian as its conditional distribution

over the visible nodes. This means that the log probability assigned to a noisy outlier would be very low

and classification accuracy tends to be poor for noisy, out-of-sample test cases. The RoBM solves this

problem by using gating at each visible node, inducing a scale mixture of two Gaussians.

g layer h layer

Figure 3.1: The Robust Boltzmann Machine with real images demonstrating its latent representations.
ṽ is observed, s and v are inferred. g denotes the binary hidden variables of the RBM modeling the
structure of the occluder, while h denotes the binary hidden variables of the RBM modeling the “clean”
face. The model uses the higher layer RBMs to separate out the clean face and the occluder/noise. Best
viewed in color.

Fig. 3.1 shows how an RoBM model should decompose an occluded face. Note that only ṽ is

observed and the RoBM model uses its prior over face images to infer the unoccluded face and the

occluding shape. Fig. 3.2 shows the graphical model of the RoBM model. Filled triangles emphasize

that si can dynamically change the weight between vi and ṽi.
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g layer h layer

pixel 0 pixel 1 pixel 2 pixel 3

Figure 3.2: Graphical model of the Robust Boltzmann Machine. Filled triangles indicate gating of the
connection between vi and ṽi by si. The yellow connections are the weights of the RBM while the green
connections are the weights of the GRBM. Each pixel is modeled by three random variables: vi, ṽi and
si. Best viewed in color.

Its energy is obtained by combining gating terms involving an RBM of binary indicator variables si,

a GRBM with real-valued variables vi, and a Gaussian noise model of ṽi:

ERoBM (v, ṽ, s,h,g) =
1

2

∑
i

γ2i
σ2
i

si(vi − ṽi)2

−
∑
i

disi −
∑
k

ekgk −
∑
i,k

Uiksigk

+
1

2

∑
i

(vi − bi)2

σ2
i

−
∑
j

cjhj −
∑
ij

Wijvihj

+
1

2

∑
i

(ṽi − b̃i)2

σ̃2
i

(3.1)

In the above energy function, the first line is the gating interaction term involving si, vi, and ṽi. It

allows ṽi to be very different from vi when si = 0. γ2i regulates the coupling between vi and ṽi when

si = 1. The second line is the energy function of the RBM modeling the structure/correlations of the

noise indicators s. The third line is the energy function of the GRBM modeling “clean” data v. The

last line in the above energy function specifies the noise distribution: b̃i is the mean of the noise and σ̃2
i

is the variance of the noise. In particular, if the model estimates that the i-th node is corrupted with

noise (si = 0), then ṽi ∼ N (ṽi|b̃i; σ̃2
i ).

3.1.2 Properties of the model

The motivation for using the RoBM is to achieve better generalization by eliminating the influence of

corrupted pixels. The gating serves as a buffer between what is observed (ṽi) and what is preferred by

the GRBM (vi). When ṽi is corrupted, RoBM can still set vi to the noiseless value while turning off si.

If the RBM model of s assigns equal energies for both states of si, then no data penalty costs would be
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incurred by the corruption to ṽi.
1

Robust Statistics, such as the M-estimator (Huber, 1981), use loss functions which do not increase

super-linearly. For fitting parametric mixture models, robustness is provided by using a heavy-tailed

distribution for the likelihood function of each component (Svensén and Bishop, 2005). The RoBM model

is also a robust mixture model with a scale mixture of two Gaussians over the observed ṽ. To see this,

we can formulate RoBM as a mixture model with 2Nh+Ng components: p(ṽ) =
∑

h,g p(ṽ|h,g)p(h,g),

where each component’s likelihood function is factorial, p(ṽ|h,g) =
∏
i p(ṽi|h,g). It can be shown that

p(ṽi|h,g) =
∏
i

{
πiN (ṽi|b̃i; σ̃2

i ) + (1− πi)N (ṽi|µnewi ;
σ2
i σ̃

2
i

σ̃2
i + σ2

i

)

}
, (3.2)

where πi is a function of g and h, and µnewi is a linear combination of b̃i and µi (Eq. 2.21). This means

that p(ṽi|h,g) is a mixture of two Gaussians with different variances: one large (σ̃2
i ) and one much

smaller, since σ̃ >> σ. The mixing proportions are not fixed but rather depend on g and h, which can

learn the spatial structures (if any) of the corruptions.

The RoBM model is also a generalization of the common MRF framework used for image restoration

and denoising (Geman and Geman, 1984; Roth and Black, 2005). Setting si = 1,∀i, and
γ2
i

σ2
i

to the

noise variance of the data penalty, we recover an MRF model with the GRBM specifying its image prior

instead of the usual local smoothness potentials. Whereas the parameters of the data penalty in standard

MRFs are usually manually specified, the equivalent parameters in the RoBM, siγ
2
i , are actually random

variables. We will show in section 3.1.4 that the distribution of siγ
2
i can be learned from noisy data in

an unsupervised fashion.

3.1.3 Inference

Inference in the RoBM consists of finding the posterior distribution of the latent variables conditioned

on the observed variables: p(v, s,g,h|ṽ). This distribution is complicated but we can use the alternating

Gibbs operator to sample from this posterior. Alternating Gibbs is much more efficient than standard

Gibbs as we have two alternating conditional distributions which are easy to sample from.

Conditional 1: p(v, s|g,h, ṽ)

Conditional 2: p(g,h|v, s, ṽ)

Conditional 1: we can efficiently draw samples by first sampling p(s|g,h, ṽ), then p(v|s,h, ṽ), since:

p(v, s|g,h, ṽ) = p(v|s,h, ṽ)p(s|g,h, ṽ). (3.3)

In addition, due to the form of Eq. 3.1, when given g and h, the distribution over v and s is factorial:

p(v, s|g,h, ṽ) =
∏
i

p(vi, si|g,h, ṽ)

=
∏
i

p(vi|si,g,h, ṽ)p(si|g,h, ṽ). (3.4)

1There will still be a small penalty from the noise model.
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Algorithm 3 Inference in the RoBM: p(v, s,h,g|ṽ)

1: Randomly initialize the layers of h, g.
for t = 1 : NumberGibbsSteps do

2: Sample from p(s|g,h, ṽ), using Eq. 3.5.
3: Sample from p(v|s,h, ṽ), using Eq. 3.8.
4: Sample from p(g,h|v, s, ṽ), using Eq. 3.9.

end for

Moreover, it can be shown by integrating out vi that

p(si|g,h, ṽ) =
αsiβ1−si

α+ β
(3.5)

α = σ̂i exp
{

(di + Uig)− 1

2

γ2i
σ2
i

ṽ2i +
1

2

µ̂2
i

σ̂2
i

}
(3.6)

β = σi exp
{1

2

µ2
i

σ2
i

}
, (3.7)

where µi is defined by Eq. 2.21, µ̂i =
µi+γ

2
i ṽi

γ2
i+1

, and σ̂i = σi√
γ2
i+1

. Note that di + Uig is the total input

coming from the g layer, and µ is the total input coming from the h layer. After sampling si, the

conditional distribution over vi is:

p(vi|si,h, ṽ) ∼ N
( siγ

2
i

siγ2i + 1
ṽi +

µi
siγ2i + 1

,
σ2
i

siγ2i + 1

)
(3.8)

The above equation has a very intuitive interpretation. When si = 0, node i is corrupted, vi is

distributed according to vi ∼ N (µi;σ
2
i ), where µi is determined by the hidden nodes of the GRBM.

However, when si = 1, node i is not corrupted, and its mean is a weighted average of µi and the ob-

served input ṽi. The weighting is determined by the parameter γ2i , which acts as the precision of the

sensor noise. When it is large, vi will be very similar to ṽi. When it is small, vi is allowed to be different

from ṽi since its deviation can be explained by the observation noise.

Conditional 2: The 2nd conditional is efficient to compute as it can be factored into a product of the

RBM and GRBM posteriors:

p(g,h|v, s, ṽ) = p(g,h|v, s) = p(h|v)p(g|s), (3.9)

where p(h|v) =
∏
j p(hj |v) (see Equation 2.4). Similarly, we also have p(g|s) =

∏
k p(gk|s). The

algorithm for performing posterior inference is shown in Algorithm 3.

3.1.4 Learning

The parameters of the RoBM can be learned by maximizing the log-likelihood over the observed noisy

images ṽ:

θ̂ = arg max
θ

log p(ṽ; θ), (3.10)

where θ is the collection of all parameters of the RoBM in Eq. 3.1. In an undirected graphical model,

such as a Boltzmann Machine, maximum likelihood learning can be accomplished by gradient ascent,
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where gradients with respect to the parameters are given by the difference of two expectations:

∂

∂θ
E[log p(ṽn; θ)] = Emodel

[∂ERoBM
∂θ

]
− Edata

[∂ERoBM
∂θ

]
. (3.11)

Emodel[·] denotes the expectation with respect to the distribution defined by the RoBM model (Eq. 3.1),

while Edata[·] denotes the empirical expectation with respect to the data distribution pdata(ṽ,v, s,h,g) =

p(v, s,h,g|ṽ)pdata(ṽ), where pdata(ṽ) = 1
N

∑
n δ(ṽ − ṽn).

Exact maximum likelihood learning in this model is intractable, but efficient approximate learning

can be done as follows. We first approximate Edata[·] by sampling from the posterior p(v, s,h,g|ṽ)

using a small number of alternating Gibbs updates (see Alg. 3). To approximate Emodel[·], we need

to sample ṽ as specified by the RoBM parameters. To sample from ṽ given v and s, we can sample

each ṽi independently since p(ṽ|v, s) =
∏
i p(ṽi|v, s). The conditional distribution over ṽi is a Gaussian

distribution:

p(ṽi|v, s) ∼ N
(
ṽi

∣∣∣αvi + βb̃i,
σ2
i σ̃

2
i

σ2
i + siγ2i σ̃

2
i

)
,

α =
siγ

2
i σ̃

2
i

σ2
i + siγ2i σ̃

2
i

, β =
σ2
i

σ2
i + siγ2i σ̃

2
i

.

The mean of this distribution is a linear combination of what the GRBM expects and what the noise

term expects. In addition, the coefficients α and β depend on the random variable si. When si = 0,

indicating that noise is present, ṽi is correctly sampled from the noise model with mean b̃i and variance

σ̃2
i .

During learning, we use a type of Stochastic Approximation of the Robbins-Monro type also known

as Persistent Contrastive Divergence (Tieleman, 2008) to compute the model’s expectation. Using PCD,

we only need to run the Gibbs chain for a small number of iterations after each update of the parameters.

With some mild conditions on the learning rates (Younes, 1998), we are guaranteed to converge to a

locally optimal solution.

While it is possible to learn to maximize the objective function in Eq. 3.10 starting with random

weights, it is much faster and easier if we first pretrain the parameters of the GRBM on “clean” data.

It is not unreasonable for a model to have seen many noise-free examples of face images before learning

on faces disguised with sunglasses. Learning is still unsupervised as no corresponding pairs of images

of the same person, one with sunglasses and one without, are used during learning. The algorithm for

RoBM learning is outlined in Alg. 4.

3.1.5 Experiments

We demonstrate the effectiveness of the RoBM on several standard face databases. Since the novelty of

our model is in its ability to learn the structure and statistics from noisy data, we will first demonstrate

it by using the Yale Face Database (Georghiades et al., 2001). We will then show that denoising with the

RoBM is significantly better than standard algorithm on the large Toronto Face Database (Susskind,

2011). Finally, we investigate the RoBM’s recognition performance when test images contain noise

or occlusions as in the Yale Database or contain disguise as in the AR Face Database (Mart́ınez and

Benavente, 1998).
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Algorithm 4 Parameter Estimation for the RoBM

1: Pretrain the {v, h}GRBM with “clean” data and initialize {W,b, c} of the RoBM with the pretrained
parameters. Initialize other parameters randomly.

2: Initialize randomly the state of negative fantasy particles {vfp, ṽfp, sfp,gfp,hfp} needed by PCD.
3: Initialize learning rate η0 ← 0.001

for m = 1 : number learning epochs do
for n = 1 : number of training cases do

4: Use Alg. 3 to sample from p(v, s,h,g|ṽn)

5: Calculate Edata
[
∂ERoBM

∂θ

]
using the samples of {v, s,h,g, and ṽn}.

6: Use Alg. 3 sample from p(vfp, sfp,hfp,gfp|ṽfp)
7: Calculate Emodel

[
∂ERoBM

∂θ

]
using the fantasy particles {vfp, sfp,hfp,gfp, and ṽfp}.

8: Update: θt+1 ← θt +
∂ log p(ṽn)

∂θ (see Eq. 3.10).
end for

9: Decrease learning rate: ηt+1 = η0/m
end for

Effects of Learning

We first demonstrate that RoBM’s learning algorithm described in Sec. 3.1.4 can be successfully applied

to learn directly from noisy data, without any knowledge of a clean image and its noisy version. We use

the Yale Database for this experiment. The Yale Face Database contains 15 subjects with 11 images per

subject. The face images are frontal but vary in illumination and expression. Following the standard

protocol, we randomly select 8 images per subject as training and 3 for testing. We cropped images to the

resolution of 32×32 and trained a GRBM model with visible nodes v and hidden nodes h on the “clean”

faces. The training used Persistent Contrastive Divergence for a total of 50 epochs. We then initialized

the RoBM’s parameters {W,b, c} with the pretrained GRBM and applied the learning algorithm in

Algorithm 4 to learn the parameters of the RoBM model. In all of our experiments, Uik, ek, b̃i are

initialized to 0.0, di to 4.0, γi to 20.0, and σ̃2
i is initialized to 1.0.

Fig. 3.3 shows the learning process of the RoBM. The columns represent the internal activation of

the RoBM during learning from epoch 1 to epoch 50. The top row displays the training examples. The

top panel shows an example that has synthetic grid-patterned noise, while the bottom panel shows an

example that has an occlusion by sunglasses. The second and third rows display the inferred faces v

and the structure of the occluder/noise s.

During the first learning epoch, the U matrix was initialized to zero. Therefore, no structure in s is

modeled initially. This is confirmed by the fact that the inferred s are very noisy. As learning proceeds,

we observe the trend that the actual shapes of the occluders are cleanly detected2 and are modeled by

the {s,g} RBM. This demonstrates that we can in fact learn the noise structure in an unsupervised

manner, when given a pretrained face density model.

To isolate the effect of having a model of the noise/occluder, we compare an RoBM model with

hand-tuned parameters with an RoBM model trained on the noisy data. For the hand-tuned RoBM,

we set its biases di such that the sigmoid of di would give the probability of each pixel being corrupted.

Table 3.1 shows the PSNR of denoised Yale faces using an hand-tuned RoBM vs. an learned RoBM. For

random noise, 40% of the pixels were corrupted by random noise with a standard deviation of 0.4. For

block occlusion, 12× 12 blocks were superimposed on a random part of the 32× 32 faces.

2Some speckle will remain since we are viewing random samples from the posterior.
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Figure 3.3: Internal states of the RoBM during learning: columns from left to right represent epochs 1
to 50. The first row is the training data ṽ, the second row is the inferred v, and the third row is the
inferred s. 20 Gibbs iterations were run to sample from the posterior.

RoBMs Parameters hand-tuned learned
Random noise 30.0 ± 0.77 30.4 ± 0.88
Block occlusion 26.7 ± 0.85 28.6 ± 0.82

Table 3.1: Peak Signal to Noise Ratio (PSNR) in dB for denoising on Yale faces for a hand-tuned and
learned RoBM. The numbers are averages over 40 trials ± the standard error of the mean.

For random noise, learning the structure of the noise does not add any value, thus similar results are

expected. However, for block occlusions, structure learning helps denoising dramatically, resulting in an

increase of 2 dB in the average denoised image.

Denoising

We next experimented on the large-scale Toronto Face Database (TFD) (Susskind, 2011). The TFD is

a collection of (mostly) publicly available aligned face images. We used 60,000 training and 2,000 test

24×24 images. All test images are different from the training images by a Euclidean distance of at least

5.0. This eliminates cases where a test image is very similar to a training image, which is a possibility

as the TFD faces were aggregated from a large collection of databases without separation by identity.

We first pretrained a GRBM model with 2,000 hidden nodes using FPCD (Tieleman and Hinton,

2009) on the 60,000 training images for 500 epochs. The RoBM model was initialized exactly as described

in the previous subsection. We then learned the joint model using Algorithm 4. For block noise, we
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trained the RoBM model on data occluded by blocks at random positions. For random noise, we trained

the RoBM model on data corrupted by random noise. After learning, we used 50 Gibbs iterations to

sample from the posterior distribution. The denoised image of the RoBM model is taken to be the

exponentially weighted average of the posterior samples with a weight of 0.9.

In all of our experiments, we compare performance of the RoBM model to the following four baseline

models. Our first denoising algorithm, called RBM, consists of taking the pretrained GRBM model and

initializing it with a noisy data. We run a few alternating Gibbs updates and take the exponentially

weighted average as the denoised output. The second model, called PCA denoising algorithm, projects

a noisy image onto a 75 dimensional subspace. The PCA reconstruction is then taken to be the denoised

image. Our third algorithm performs Wiener filtering using MATLAB’s wiener2 function and a window

size of 5. Our final baseline model finds the closest Euclidean nearest neighbor of the noisy test image

in the training set.

Fig. 3.4 shows the denoising results for one face.

Ground
truth

Partially
occluded

RoBM RBM PCA Wiener
Nearest
Neighbor

Figure 3.4: Difference between various denoising algorithms for block occlusion.

The RoBM model performs significantly better than other methods. Since there is a dark occluder in

the bottom left of the image, nearest neighbor found a different face with a shadow on the bottom left.

While Wiener filtering works well for Gaussian noise, it is not suitable for occlusions. PCA and RBM

are unable to fully restore the occluded area, whereas RoBM is able to properly denoise due to its ability

to gate off the occluded area and use its face prior to infer what is behind the occluder. We present

similar qualitative results for random noise and occlusion in Fig. 3.5. Quantitatively, RoBM performs

better than other models in terms of peak signal to noise ratio of the denoised results. Fig. 3.6(a) shows

the results for both random noise and block occlusion.

We also investigated how sensitive our denoising results are to the hyper-parameter that specifies

how many Gibbs iterations to run during inference. In Fig. 3.6(b), we plot the PSNR vs. the number of

Gibbs iterations for both random noise and occlusion.



Chapter 3. Generative models with structure for vision 36

(a) Random Noise

(b) Block Occlusions

Figure 3.5: Qualitative comparison of various denoising algorithms for random noise and occlusion. The
first row has the original faces and the second row is corrupted with noise. Starting from the third row,
we have denoising results from RoBM, RBM, PCA, Wiener filtering, and Nearest Neighbor, respectively.
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(a) (b) (c) (d) (e) (a) (b) (c) (d) (e)
(a) Quantitative denoising results (b) Denoising quality

Figure 3.6: Left: Methods are (a) RoBM, (b) RBM, (c) PCA, (d) Wiener, (e) Nearest Neighbor. Right:
PSNR versus the number of Gibbs iterations used for sampling from the posterior during inference.

From this plot, we see that 40 to 60 iterations tend to give the best average performance.

Recognition

In this section we test the ability of the RoBM to accurately recognize faces in the presence of noise

and occlusion. We first add synthetic noise and occlusions to the faces in the Yale Face database and

plot classification accuracy as a function of the degree of noise/occlusion. We then test recognition

performance with natural disguises (sunglasses and scarf) from the AR Face Database.

The classifier is a multi-class linear SVM trained on different feature representations of the faces.

Recognition using the RoBM consists of first running 30 Gibbs iterations for denoising followed by

classification using its hidden outputs before the sigmoid nonlinearity (Eq. 2.4). We provide comparisons

to other benchmark models: pixels, LDA (Lu et al., 2003), Eigenfaces (Turk and Pentland, 1991), and the

standard GRBM. For the GRBM model, we first pretrain it and then run a few iterations of alternating

Gibbs updates before classification.

Yale Face Database

As in Sec. 3.1.5, we used 8 images per subject for training and 3 for testing, and trained the RoBM

model as specified in Sec. 3.1.5. During testing, for each noisy image, we ran 30 iterations of Gibbs

sampling to arrive at a clean face. For classification, we feed the h layer activations (before the sigmoid

nonlinearity) into the linear SVM. Fig. 3.7(a) shows that RoBM performs better than other benchmark

models, particularly when the amount of noise increases. The RBM method was run for 5 iterations of

alternating Gibbs starting from the initial noisy image, where 5 iterations were chosen as it gave the best

results on the test set. PCA used 50 eigenfaces and LDA was learned using the code provided by (Lu

et al., 2003). Fig. 3.7(b) displays the recognition accuracy as a function of the percentage of the image

that is blocked.
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(a) Random Noise (b) Block Noise

Figure 3.7: Recognition rates on the Yale Database as a function of the percentage of pixels corrupted
by noise. Random noise with standard deviation of 0.5 was added to the corrupted pixels. Recognition
rates on the Yale Database as a function of the percentage of pixels occluded. Block occlusion was
applied as in Fig. 3.5(b).

Gibbs Iterations 

Initial 1 3 5 7 9 11

Figure 3.8: Intermediate results during RoBM inference. The leftmost images are the test samples.

AR Face Database

Table 3.2 further shows that the RoBM model significantly outperforms all other models on the AR face

recognition task.

The AR database contains faces with real-life disguises using sunglasses and a scarf. We used a

subset of 114 people each with 8 images for a total of 912 training images. For every person, there are

two additional images with sunglasses and two with scarf occlusions, which we used as our test set. We

first cropped and downsized the images to a resolution of 32 × 32 and pretrained a GRBM with 2000

hidden nodes. Initializing the RoBM model with weights from the pretrained GRBM, we learned one

RoBM model on sunglasses and one RoBM model on the scarf images. After learning for 50 epochs,

Fig. 3.8 displays the inferred “clean” face.
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Algorithms Sunglasses Scarf
RoBM 84.5 % 80.7 %
RBM 61.7 % 32.9 %
Eigenfaces 66.9 % 38.6 %
LDA 56.1 % 27.0 %
Pixel 51.3 % 17.5 %

Table 3.2: Recognition results on the AR Face Database.

3.1.6 Shortcomings

The Robust Boltzmann Machine has a couple of shortcomings which we leave to future work. The first

is that the model needs to first be trained on the “clean” faces. It is better to train the entire model

jointly from scratch on clean as well as occluded faces. The second is that the model only assumes one

foreground object and an occluder. This assumption is not correct if there are multiple objects in the

scene occluding each other. This problem can be corrected by introducing one mask latent image per

object and modifying the energy function accordingly.

3.2 Deep Lambertian Neural Networks

In this section, we discuss the second model in the chapter which takes inspiration from computer vision

and combines it to form a more robust deep generative model for modeling faces under illumination

variations. Deep models have achieved excellent recognition accuracy by first learning generatively from

data before using the learned latent variables (features) for discriminative tasks. The advantage of using

this indirect approach for discrimination is that it is possible to learn meaningful latent variables that

achieve strong generalization. In vision, illumination is a major cause of variation. When the light

source direction and intensity changes in a scene, dramatic changes in image intensity occur. This is

detrimental to recognition performance as most algorithms use image intensities as inputs.

The potential problem for using the latent representation of a standard Deep Belief network for

modeling face images under illumination variations can be seen in Figure 3.9. Note that the hidden

representation is more similar for images with similar illumination, not similar for images with the same

identity.

A natural way of attacking this problem is to learn a model where the albedo, surface normals, and

the lighting are explicitly represented as the latent variables. Since the albedo and surface normals are

physical properties of an object, they are features which are invariant with respect to illumination.

Separating the surface normals and the albedo of objects using multiple images obtained under dif-

ferent lighting conditions is known as photometric stereo (Woodham, 1980). Hayakawa (1994) described

a method for photometric stereo using SVD, which estimated the shape and albedo up to a linear trans-

formation. Using integrability constraints, Yuille et al. (1999) proposed a similar method to reduce

the ambiguities to a generalized bas relief ambiguity. A related problem is the estimation of intrinsic

images (Barrow and Tenenbaum, 1978; Gehler et al., 2011). However, in those works, the shading (inner

product of the lighting vector and the surface normal vector) instead of the surface normals is estimated.

In addition, the use of three color channels simplifies that task.

In the domain of face recognition, Belhumeur and Kriegman (1996) showed that the set of images

of an object under varying lighting conditions lie on a polyhedral cone (illumination cone), assuming a
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Figure 3.9: Deep Belief Networks pay more attention to illumination variations rather than identity.
Left: three person under three different lighting variations. Right: hidden layer activation clusters along
the columns (lighting variations).

Lambertian reflectance and a fixed object pose. Recognition algorithms were developed based on the

estimation of the illumination cone (Georghiades et al., 2001; Lee et al., 2005). The main drawback

of these models is that they require multiple images of an object under varying lighting conditions for

estimation. While Zhang and Samaras (2006) and Wang et al. (2009) present algorithms that only use

a single training image, their algorithms require bootstrapping with a 3D morphable face model. For

every generic object class, building a 3D morphable model would be labor intensive.

In this section, we introduce a generative model which (a) incorporates albedo, surface normals,

and the lighting as latent variables; (b) uses multiplicative interaction to approximate the Lambertian

reflectance model; (c) learns from sets of 2D images the distributions over the 3D object shapes; and

(d) is capable of one-shot recognition from a single training example.

The Deep Lambertian Network (DLN) is a hybrid undirected-directed model with Gaussian Re-

stricted Boltzmann Machines (and potentially Deep Belief Networks) modeling the prior over the albedo

and surface normals. Good priors over the albedo and normals are necessary since for inference with

a single image, the number of latent variables is 4 times the number of observed pixels. Estimation

is an ill-posed problem and requires priors to find a unique solution. A density model of the albedo

and the normals also allows for parameter sharing across individual objects that belong to the same

class. The conditional distribution for image generation follows from the Lambertian reflectance model.

Estimating the albedo and surface normals amounts to performing posterior inference in the DLN model

with no requirements on the number of observed images. Inference is efficient as we can use alternating

Gibbs sampling to approximately sample latent variables in the higher layers. The DLN is a permu-

tation invariant model which can learn from any object class and strikes a balance between laborious

approaches in vision (which require 3D scanning (Blanz and Vetter, 1999)) and the generic unsupervised

deep learning approaches.

A popular generative model of objects and faces is the Gaussian Restricted Boltzmann Machines

(GRBMs). See Section 2.1 for a detailed discussion on GRBMs. GRBMs use Eq. 2.21 to generate the

intensity of a particular pixel vi. This generative model is inefficient when dealing with illumination

variations in v. Specifically, the hidden activations needed to generate a bright image of an object are

very different from the activations needed to generate a dark image of the same object.
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Figure 3.10: Diagram of the Lambertian Reflectance model. ` ∈ R3 points to the light source. ~ni ∈ R3

is the surface normal, which is perpendicular to the tangent plane at a point on the surface.

The Lambertian reflectance model is widely used for modeling illumination variations and is a good

approximation for diffuse object surfaces (those without any specular highlights). Under the Lambertian

model, illustrated in Fig. 3.10, the i-th pixel intensity is modelled as vi = ai×max(~nT
i
~̀, 0). The albedo

ai, also known as the reflection coefficient, is the diffuse reflectivity of a surface at pixel i, which is

material dependent but illumination invariant. In contrast to the generative process of the GRBM, the

image of an object under different lighting conditions can be generated without changing the albedo and

the surface normals. Multiplications within hidden variables in the Lambertian model give rise to this

nice property.

3.2.1 The Model

The DLN is a hybrid undirected-directed generative model that combines Deep Belief Networks (DBNs)

with the Lambertian reflectance model. In the DLN, the visible layer consists of image pixel intensities

v ∈ RNv , where Nv is the number of pixels in the image. The first layer hidden variables are the albedo,

surface normals, and a light source vector. Specifically, for every pixel i, there are two corresponding

latent random variables: the albedo ai ∈ R1 and surface normal ni ∈ R3. Over an image, a ∈ RNv is

the image albedo, N is the surface normals matrix of dimension Nv × 3, where ni denotes the i-th row

of N. The light source variable ` ∈ R3 points in the direction of the light source in the scene. We use

GRBMs to model the albedo and surface normals, and a Gaussian prior to model `. It is important to

use GRBMs since we expect the distribution over albedo and surface normals to be multi-modal (see

Fig. 3.13).

Fig. 3.11 shows the architecture of the DLN model: Panel (a) displays a standard network where filled

triangles denote multiplicative gating between pixels and the first hidden layer. Panel (b) demonstrates

the desired latent representations inferred by our model given input v. While we use GRBMs as the

prior models on albedo and surface normals, Deep Belief Network priors can be obtained by stacking

additional binary RBM layers on top of the g and h layers. For clarity of presentation, in this section

we use GRBM priors3.

The DLN combines the elegant properties of the Lambertian model with the GRBMs, resulting in a

deep model capable of learning albedo and surface normal statistics from images in a weakly-supervised

3Extending our model to more flexible DBN priors is trivial.



Chapter 3. Generative models with structure for vision 42

pixel 0 pixel 1 pixel 2 pixel 3

(a) Network diagram of DLN.

g layer h layer

(b) Face images to illustrate the DLN.

Figure 3.11: Graphical model of the Deep Lambertian Network. The yellow weights model the surface
normals while the green weights model the albedo. The arrow in the left figure is the light source
direction vector, pointing towards the light source. Note that the light vector is shared for all pixels in
the image. Best viewed in color.

fashion. The DLN has the following generative process:

p(v,a,N, `) = p(a)p(N)p(`)p(v|a,N, `) (3.12)

p(a) ∼ GRBM(a) (3.13)

p(N) ≈ GRBM(vec(N)) (3.14)

p(`) ∼ N (`|µ`,Λ) (3.15)

p(v|a,N, `) =

Nv∏
i

N (vi|ai(nT
i `);σ

2
vi), (3.16)

where vec(N) denotes the vectorization of matrix N.

The GRBM prior in Eq. 3.14 is only approximate since we enforce the soft constraint that the norm

of ni is equal to 1.0. We achieve this via an extra energy term in Eq. 3.17. Eq. 3.16 represents the

probabilistic version of the Lambertian reflectance model. We have dropped “max” for convenience.

“max” is not critical in our model as maximum likelihood learning regulates the generation process. In

addition, a prior on lighting direction fits well with the psychophysical observations that human percep-

tion of shape relies on the assumption that light originates from above (Kleffner and Ramachandran,

1992).

DLNs can also handle multiple images of the same object under varying lighting conditions. Let P

be the number of images of the same object. We use L ∈ R3×P to represent the lighting matrix with

columns {`p : p = 1, 2, . . . , P}, and V ∈ RNv×P to represent the matrix of corresponding images. The
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DLN energy function is defined as:

EDLN (V,a,N,L,g,h) =
1

2

P∑
p

Nv∑
i

(vip − ai(nT
i `p))

2

σ2
vi

+
1

2

P∑
p

(`p − µl)TΛ(`p − µl) +
η

2

Nv∑
i

(nT
i ni − 1.0)2

+ EGRBM (a,h) + EGRBM (vec(N),g) (3.17)

The first line in the energy function is proportional to log p(v|a,N, `), the multiplicative interaction

term from the Lambertian model. The second line corresponds to the quadratic energy of log p(`) and

the soft norm constraint on ni. This constraint is critical for the correct estimation of the albedo, since

we can interpret the albedo at each pixel as the L2 norm of the pixel surface normal. The third line

contains the two GRBM energies: h ∈ RNh represents the binary hidden variables of the albedo GRBM

and g ∈ RNg represents the hiddens of the surface normal GRBM:

EGRBM (a,h) =
1

2

Nv∑
i

(ai − bi)2

σ2
ai

−
Nh∑
j

cjhj −
Nv,Nh∑
i,j

Wijaihj (3.18)

EGRBM (vec(N),g) =
1

2

Nv,3∑
i,m=1

n2im
σ2
nim

−
Nv,3∑
i,m=1

dimnim
σ2
nim

−
Ng∑
k

ekgk −
Nv,3,Ng∑
i,m=1,k

Uimknimgk (3.19)

3.2.2 Inference

Given images of the same object under one or more lighting conditions, we want to infer the posterior dis-

tribution over the latent variables (including albedo, surface normals and light source): p(a,N,L,g,h|V).

With GRBMs modeling the albedo a and surface normals N, the posterior is complicated with no closed

form solution. However, we can resort to Gibbs sampling using 4 sets of conditional distributions:

• Conditional 1: p(g,h|a,N,L,V)

• Conditional 2: p(a|N,L,h,V)

• Conditional 3: p(L|N,a,V)

• Conditional 4: p(N|a,L,g,V)

Conditional 1 is easy to compute as it factorizes over g, and h: p(g,h|a,N,L,v) = p(h|a)p(g|N).

Since Gaussian RBMs model the albedo a and the surface normals N, the two factorized conditional

distributions have the same form as Eq. 2.20.
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Conditional 2 factorizes into a product of Gaussian distributions over Nv pixel-specific albedo vari-

ables:

p(a|N,L,h,V) =

Nv∏
i

p(ai|N,L,h,V) ∼

Nv∏
i

N
(
ai

∣∣∣σ2
ai

∑
p sipvip + φhi σ

2
vi

σ2
ai

∑
p s

2
ip + σ2

vi

;
σ2
aiσ

2
vi

σ2
ai

∑
p s

2
ip + σ2

vi

)
,

where sip = nT
i `p is the illumination shading at pixel i and φhi = bi + σ2

ai

∑
jWijhj is the top-down

influence of the albedo GRBM.

This conditional distribution has a very intuitive interpretation. When a light source has zero

strength, (`p = 0 → sip = 0), then p(ai|ni, `p,h, vi) has mean at φhi , which is purely the top-down

activation.

Conditional 3 factorizes into a product distribution over P separate light variables: p(L|N,a,V) =∏P
p=1 p(`p|N,a,vp), where p(`p|N,a,vp) is defined by a quadratic energy function:

E(`p|N,a,v) =
1

2
`Tp

(
Λ +

∑
i

mim
T
i

σ2
vi

)
`p

−
(
µT
l Λ +

∑
i

vipmi

σ2
vi

)T
`p.

Hence the conditional distribution over `p is a multivariate Gaussian of the form:

p(`p|N,a,v) ∼ N (`p|Λ̃
−1(

µT
l Λ +

∑
i

vipmi

σ2
vi

)
; Λ̃
−1

),

where Λ̃ = Λ +
∑
i
mim

T
i

σ2
vi

, and mi = aini.

Conditional 4 can be decomposed into a product of distributions over the surface normals of each

pixel:

p(N|L,a,g,V) =
∏
i

p(ni|L,g, ai,vi)

Since in our model we have the soft norm constraint on ni ( η
2

∑Nv
i (nT

i ni − 1.0)2), there is no simple

closed form for p(ni|L,g, ai,vi). We use the Hamiltonian Monte Carlo (HMC) algorithm for sampling.

HMC (Duane et al., 1987; Neal, 2010) is an auxiliary variable MCMC method which combines

Hamiltonian dynamics with the Metropolis algorithm to sample continuous random variables. In order

to use HMC, we must have a differentiable energy function over the variables. In this case, the energy

of conditional 4 takes form:

E(ni) =
1

2
ni

T

(∑
p(ai`p)(ai`p)

T

σ2
vi

+ Di

)
ni

−
(
ai
∑
p vip`p

σ2
vi

+ φgi
T
Di

)
ni +

η

2
(ni

Tni − 1)2,

where φgi is the top-down mean of ni from the g-layer, and Di = diag(σ−2ni1 , σ
−2
ni2 , σ

−2
ni3) is the 3 × 3

diagonal matrix.
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We note that there is a linear ambiguity when we estimate the normals and lighting direction.

In Eq. 3.16, nT
i `p = nT

i RR−1`p. This means that we can only estimate ni and `p up to a linear

transformation. Fortunately, while R is unknown, it is constant across {vi}Pi=1 due to the learned priors

over N, a and `. Therefore, recognition and image relighting tasks (Sec. 3.2.4) are not affected.

3.2.3 Learning

Learning is accomplished using a variant of the EM algorithm. In the E-step, MCMC samples are

drawn from the approximate posterior distribution (Neal and Hinton, 1998). We first sample from the

conditional distributions in Sec. 3.2.2 to approximate the posterior p(a,N,L,h,g|V; θold). We then

optimize the joint log-likelihood function w.r.t. the model parameters. Specifically,

4θ = −α
∫
p(a,N,L,h,g|V; θold)

∂

∂θ

{
E(V,a,N,L,h,g; θ)

}
(3.20)

where α is the learning rate. We approximate the integral using:

1

N

N∑
i

∂

∂θ

{
E(V,a(i),N(i),L(i),h(i),g(i); θ)

}
,

where the samples {a(i),N(i),L(i),h(i),g(i)} are approximately drawn from the posterior distribution

p(a,N,L,h,g|V; θold) in the E-step. Maximum likelihood learning of GRBMs (and DBNs) is intractable.

We therefore turn to Contrastive Divergence (CD) (Hinton, 2002) to compute an approximate gradient

during learning. The complete training algorithm for the DLN in presented in Alg. 5.

Rather than starting with randomly initialized weights, we can achieve better convergence by first

training the albedo GRBM on a separate face database. We can then transfer the learned weights before

learning the complete DLN.

3.2.4 Experiments

We experiment with the Yale B and the Extended Yale B face databases. Combined, the two databases

contain 64 frontal images of 38 different subjects. 45 images for each subject are further divided into

4 subsets of increasing illumination variations. Fig. 3.12 shows samples from the Yale B and Extended

Yale B database.

For each subject, we used approximately 45 frontal images for our experiments4. We separated

28 subjects from the Extended Yale B database for training and held-out all 10 subjects from the

original Yale B database for testing5. The preprocessing step involved downsizing the face images to

the resolution of 24 × 24. Using equations of Sec. 3.2.2, we can infer one albedo image and one set of

surface normals from each of the 28 subjects. These 28 training albedo and surface normal samples are

insufficient for multilayer generative models with millions of parameters. Therefore, we leverage a large

set of the face images from the Toronto Face Database (TFD) (Susskind, 2011). The TFD is a collection

of 100,000 face images from a variety of other datasets. To create more training data for the surface

normals, we randomly translated all 28 sets of them by ±2 pixels.

4A few of the images are corrupted.
5We used the cropped images provided by the Yale B Extended database website: http://goo.gl/LKwtX.
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Algorithm 5 Learning Deep Lambertian Networks

1: Pretrain the {a, h} albedo GRBM with faces images and initialize {W,b, c} of the DLN with the
GRBM’s parameters.

2: Initialize other weights ∼ N (0, 0.012), σ2 ← 1.0.
repeat

//Approximate E-step:
for n = 1 to #training subjects do

3: Given Vn, sample p(a,N,L,h,g|Vn; θold) using the conditionals defined in Sec. 3.2.2, obtaining
samples of {a(i),N(i),L(i)}.

end for

//Approximate M-step:
4: Treating {a(i)} as training data, CD is used to learn the weights of the albedo GRBM.
5: Treating {N(i)} as training data, CD is used to learn the weights of the surface normal GRBM.
6: Maximum likelihood estimations of the parameters σ2

vi , µ`, and Λ are computed.
until convergence

S1

S2

S3

S4

Figure 3.12: Examples from the Yale B Extended face database. Each row contains samples from an
illumination subset.

The DLN used 2 layer DBNs (instead of single layer GRBMs) to model the priors over a and N.

The albedo DBN had 800 h1 nodes and 200 h2 nodes. The normals DBN had 1000 g1 nodes and 100 g2

nodes. To see what the DLN’s prior on the albedo looks like, we show samples generated by the albedo

DBN in Fig. 3.13. Learning the multi-modal albedo prior is made possible by the use of unsupervised

TFD data.

3.2.5 Inference

After learning, we investigated the inference process in the DLN. Although the DLN can use multiple

images of the same object during inference, it is important to investigate how well it performs with a

single test image. We are also interested in the number of iterations that sampling would take to find

the posterior modes.

In our first experiment, we presented the model with a single Yale B face image from a held-out

test subject, as shown in Fig. 3.14. The light source illuminates the subject from the bottom right,

causing a significant shadow across the top left of the subject’s face. Since the albedo captures a
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Figure 3.13: Random samples after 50,000 Gibbs iterations of the Deep Belief Network modeling the
learned albedo prior.

V 1 2 3 4 5 10 30 50

Figure 3.14: Left: A single input test image. Right: Intermediate samples of estimated albedo during
alternating Gibbs sampling: iterations 1 to 50. The albedo was initialized with the visible biases.

lighting invariant representation of the face, correct posterior distribution should automatically perform

illumination normalization. Using the algorithm described in Sec. 3.2.2, we clamp the visible nodes to

the test face image and sample from the 4 conditionals in an alternating fashion. HMC was used to

sample from N. In total, we perform 50 iterations of alternating Gibbs sampling. During each iteration,

the N variables are sampled using HMC with 20 leap-frog iterations and 10 HMC steps. The step size

was set to 0.01 with a mass of 2.0. The acceptance rate was around 0.7.

We plot the intermediate samples of the inferred albedo a from iterations 1 to 50 in Fig. 3.14. Note

that the Gibbs chain quickly jumps (at iteration 5) into the correct mode. Good results are obtained

due to the knowledge transfer of the albedo and surface normals learned from other subjects. We next

randomly selected single test images from the 10 Yale B test subjects. Using exactly the same sampling

algorithm, Fig. 3.15(a) shows the inferred albedos. The left column displays the test image, while the

right column contains the estimated albedo. We also found that using two test images per subject

improves performance. Specifically, we sampled from p(a,N|V ∈ RNv×2) instead of p(a,N|v ∈ RNv ).

The results are displayed in Fig. 3.15(b).

3.2.6 Relighting

The task of face relighting is useful to demonstrate strong generalization capabilities of the model. The

goal is to generate face images of a particular person under never-before seen lighting conditions. Realistic

images can only be generated if the albedo and surface normals of that particular person were correctly

inferred. We first sample the lighting variable ` from its Gaussian prior defined by {µ,Λ}. Conditioned

on the inferred a and N (see Fig. 3.15(b)), we use Eq. 3.16 to draw samples of v. Fig. 3.15(c) shows

relighted face images of held-out test subjects.

3.2.7 Recognition

We next test the performance of DLN at the task of face recognition. For the 10 test subjects of Yale

B, only image(s) from subset 1 (with 7 images) are used for training. Images from subsets 2-4 are used

for testing. In order to use DLN for recognition, we first infer the albedo (ai) and surface normals
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(a) One test im-
age.

(b) Two test images. (c) Face Relighting.

Figure 3.15: Left: Inference results when using only a single test image. The 1st column contains the
test images and the 2nd column contains the albedos. Middle: Results improve slightly when using
an additional test image with a different illumination. Right: Using the estimated albedo and surface
normals, we show synthesized images under novel lighting conditions.

(ni) conditioned on the provided training image(s) of test subjects. For every subject, a 3 dimensional

linear subspace is spanned by the inferred albedo and surface normals. In particular, we consider the

matrix M of dimensions Nv × 3, with the i-th row set to mi = aini. The columns of M span the 3

dimensional linear subspace. Test images of the test subjects are compared to all 10 subspaces and are

labeled according to the label of its nearest subspace.

Fig. 3.16 plots the recognition errors as a function of number of training images used. DBN results

are obtained by training a 2 layer DBN directly on the training images, and a linear SVM was trained

on the top-most hidden activations of the DBN. That standard DBN can not handle lighting variations

very accurately. Another approach, called Normalized Correlation, first normalizes images to unit norm.

For each test image, its cosine similarity to all training images is computed. The test image takes on the

label of the closest training image. Normalized Correlation performs significantly better than Nearest

Neighbor due to its normalization, which removes some of the lighting variations. Finally, the SVD

method finds a 3 dimensional linear subspace (with the largest singular values) spanned by the training

images of each of the test subjects. A test image is assigned to the closest subspace.

We note that for the important task of one-shot recognition, DLN significantly outperforms many

other methods. In the computer vision literature, (Zhang and Samaras, 2006; Wang et al., 2009) report

lower error rates on the Yale B dataset. However, their algorithms make use of pre-existing 3D morphable

models, whereas the DLN learns the 3D information automatically from 2D images.

3.2.8 Generic Objects

The DLN is applicable not only on face images but also images of generic objects. We used 50 objects

from the Amsterdam Library of Images (ALOI) database (Geusebroek et al., 2005). For every object,

15 images of varying lighting were divided into 10 for training and 5 for testing. Using the provided

masks for each object, images are cropped and rescaled to the resolution of 48 × 48. We used a DLN
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Figure 3.16: Recognition results on the Yale B face database. NN: nearest neighbor. DBN: Deep Belief
Network. Correlation: normalized cross correlation. SVD: singular value decomposition. DLN: Deep
Lambertian Network.

Figure 3.17: Inference conditioned on test objects, using 50 Gibbs iterations. Top: Images of objects
under new illumination. Bottom: Inferred albedo. It is interesting how the model can estimate the
albedo of the dark side of the cup.

with Nh = 1000 and Ng = 1500. A 500 h2 layer and 500 g2 layer were also added. After training, we

performed posterior inference using one of the held-out image. Fig. 3.17 shows results. The top row

contains test images and the bottom row displays the inferred albedo images after 50 alternating Gibbs

iterations.

3.2.9 Shortcomings

There are several short comings with the model. With respect to modeling, cast shadows and specular

reflections will not be handled accurately by the Deep Lambertian Network. In addition, we only assume

one light source in this work. Multiple light sources can be handled in a straight forward way, but the

number of light sources are needed. A possible extension is to use the Phong reflection model instead of

the Lambertian reflection model. Another failure case is when the the training images are not aligned

properly. This is due to the fact that the albedo and surface normals are sensitive to the underlying

object position.
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3.3 Conclusions and Future Work

In this chapter, we have looked at two weaknesses of RBM-based generative models: robustness to

corruptions and illumination variations. For both cases, we have added higher-order multiplicative

interactions to the original model in order to address these concerns. We first described the novel

Robust Boltzmann Machine which allows Boltzmann Machines to be robust to noise and occlusions. By

first training on noise-free images followed by unsupervised learning on noisy images, our model can

learn the structure of the noise which allows it to perform much better on face denoising and recognition

tasks. We then introduced a generative model with meaningful latent variables and multiplicative

interactions simulating the Lambertian Reflectance model. We have shown that by learning priors on

these illumination-invariant variables directly from data, we can improve on one-shot recognition tasks

as well as generate images under novel illuminations.

For future work, we can follow along the same lines of thought and seek to explicitly add additional

variations of natural images and objects in the real world. Geometric transformation such as viewpoint

changes is a possibility. In this case, a full 3D model would need to be represented by the latent variables

of the generative model. A first question that must be addressed is what kind of 3D representation should

we employ? Possible candidates include point clouds, surface meshes, or voxel grids.



Chapter 4

Density learning with structure

Unsupervised learning of generative models is important for revealing structure in the data and for

discovering features that can be used for subsequent discriminative learning. It is also useful for creating

a good prior that can be used for tasks such as image denoising and inpainting or tracking animate

motion. While the most popular deep learning models have focused on the discriminative performance

of deep learning models, the basic task of learning the probability density of the data using latent variable

generative models is still very important. In this chapter we propose two ways to improve density models

with a ideas from deep learning.

Section 4.1 discusses how a multilayer mixture of factor analyzers (MFA) can be learned using the

stacking technique similar to how Deep Belief Nets are formed out of Restricted Boltzmann Machines.

An efficient way to learn deep density models that have many layers of latent variables is to learn one

layer at a time using a model that has only one layer of latent variables. After learning each layer, samples

from the posterior distributions for that layer are used as training data for learning the next layer. This

approach is commonly used with Restricted Boltzmann Machines, which are undirected graphical models

with a single hidden layer, but it can also be used with Mixtures of Factor Analysers (MFAs) which are

directed graphical models. In this section, we present a greedy layer-wise learning algorithm for Deep

Mixtures of Factor Analysers (DMFAs). Even though a DMFA can be converted to an equivalent shallow

MFA by multiplying together the factor loading matrices at different levels, learning and inference are

much more efficient in a DMFA and the sharing of each lower-level factor loading matrix by many

different higher level MFAs prevents overfitting. We demonstrate empirically that DMFAs learn better

density models than both MFAs and two types of Restricted Boltzmann Machine on a wide variety of

datasets.

Section 4.2 proposes a new model and learning algorithm for learning conditional distributions. Mul-

tilayer perceptrons (MLPs) or neural networks are popular models used for nonlinear regression and

classification tasks. As regressors, MLPs model the conditional distribution of the predictor variables

Y given the input variables X. However, this predictive distribution is assumed to be unimodal (e.g.

Gaussian). For tasks involving structured prediction, the conditional distribution should be multi-modal,

resulting in one-to-many mappings. By using stochastic hidden variables rather than deterministic ones,

Sigmoid Belief Nets (SBNs) can induce a rich multimodal distribution in the output space. However,

previously proposed learning algorithms for SBNs are not efficient and unsuitable for modeling real-

valued data. In this section, we propose a stochastic feedforward network with hidden layers composed

51
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of both deterministic and stochastic variables. A new Generalized EM training procedure using impor-

tance sampling allows us to efficiently learn complicated conditional distributions. Our model achieves

superior performance on synthetic and facial expressions datasets compared to conditional Restricted

Boltzmann Machines and Mixture Density Networks. In addition, the latent features of our model

improves classification and can learn to generate colorful textures of objects.

4.1 Deep Mixture of Factor Analyzers

A recent latent variable density model based on Markov Random Fields is the Gaussian Restricted

Boltzmann Machine (GRBM) (Hinton and Salakhutdinov, 2006). A GRBM can be viewed as a mixture

of diagonal Gaussians with the number of components exponential in the number of hidden variables,

but with a lot of parameter sharing between the exponentially many Gaussians. See Section 2.1.2 for

a full discussion on GRBMs. In Hinton et al. (2006), it was shown that a trained RBM model can be

improved by using a second RBM to create a model of the “aggregated posterior” (Eq. 4.9) of the first

RBM, where the aggregated posterior is the equally weighted average of the posterior distributions over

the hidden units of the first RBM for each training case. The second RBM is then used to replace the

prior over the hidden units of the first RBM that is implicitly defined by the weights and biases of the

first RBM. With mild assumptions on how training is performed at the higher layer, it was proven that

a variational lower bound on the log-likelihood is guaranteed to improve. The second level RBM can

do a better job of modeling the first RBM’s aggregated posterior than the first level RBM because its

parameters are not also being used to model the conditional distribution of the data given the states of

the units in the first hidden layer.

A rival model for real-valued high-dimensional data is the Mixture of Factor Analyzers (MFA) (Ghahra-

mani and Hinton, 1996). MFAs simultaneously perform clustering and dimensionality reduction of the

data by making locally linear assumptions (Verbeek, 2006). Unlike RBMs, MFAs are directed graphical

models where a multivariate standard normal prior is specified for the latent factors for all components.

Learning typically uses the EM algorithm to maximize the data log-likelihood. Each FA in the mixture

has an isotropic Gaussian prior over its factors and a Gaussian posterior for each training case, but

when the posterior is aggregated over many training cases it will typically be non-Gaussian. We can,

therefore, improve a variational lower bound on the log probability of the training data by replacing the

prior of each FA by a separate, second-level MFA that learns to model the aggregated posterior of that

FA better than it is modeled by an isotropic Gaussian. Empirically, the average test log-likelihood also

increases for models of both low and high-dimensional data.

While it is true that a two layer MFA can be collapsed back into a standard one layer MFA, learning

the two models is nevertheless quite different due to the sharing of factor loadings among the second

layer components of the Deep MFA. Parameter sharing helps to reduce overfitting and greatly reduces

the computational cost of learning. The EM algorithm also benefits from an easier objective function

due to the greedy layer-wise learning, so it is less likely to get stuck in poor local optima.

In related works, multilayer factor analysis was also part of the model in (Chen et al., 2011). However,

that work mainly focused on learning convolutional features with non-parametric Bayesian priors on the

parameters. By using max-pooling and decimation of the first layer factors, their model was designed to

learn discriminative features, rather than a top-down generative model of pixel values.
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4.1.1 Mixture of Factor Analysers

The basic building blocks of Deep Mixture of Factor Analysers are Factor Analysers. Factor analysis was

first introduced in psychology as a latent variable model to find the “underlying factor” behind covariates.

The latent variables are called factors and are of lower dimension than the covariates. Factor analyzers

are linear models as the factor loadings span a linear subspace within the vector space of the covariates.

To deal with non-linear data distributions, Mixtures of Factor Analyzers (MFA) (Ghahramani and

Hinton, 1996) can be used. MFAs approximate nonlinear manifolds by making local linear assumptions.

Let x ∈ RD denote the D-dimensional data, {z ∈ Rd : d ≤ D} denote the d-dimensional latent

variable, and c ∈ {1, . . . , C} denote the component indicator variable of C total components. The MFA

is a directed generative model, defined as follows:

p(c) = πc,

C∑
c=1

πc = 1, (4.1)

p(z|c) = p(z) = N (z; 0, I), (4.2)

p(x|z, c) = N (x; Wcz + µc,Ψc), (4.3)

where I is the d× d identity matrix. The parameters of the c-th component include a mixing proportion

πc, a factor loading matrix Wc ∈ RD×d, mean µc, and a diagonal matrix Ψc ∈ RD×D, which represents

the independent noise variances for each of the variables.

By integrating out the latent variable z, a MFA model becomes a mixture of Gaussians with con-

strained covariance:

p(x|c) =

∫
z

p(x|z, c)p(z|c)dz = N (x;µc,Γc) (4.4)

Γc = WcW
T
c + Ψc

p(x) =

C∑
c=1

πc N (x;µc,Γc). (4.5)

Inference

For inference, we are interested in the posterior:

p(z, c|x) = p(z|x, c)p(c|x) (4.6)

The posterior over the components can be found using Bayes rule:

p(c|x) =
p(x|c)p(c)∑C
γ=1 p(x|γ)p(γ)

(4.7)

Given component c, the posterior over the latent factors is also a multivariate Gaussian:

p(z|x, c) = N (z; mc,V
−1
c ), (4.8)
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Figure 4.1: Left: Hypothetical distribution of the latent factors of a single component. In this case the
aggregated posterior is not Gaussian distributed. Middle: Illustration of our model for 2D data with
each ellipse representing a Gaussian component. The first layer MFA has two components colored blue
(c = 1) and red (c = 2). Their mixing proportions are given by πc. For the blue component, we further
learn a second layer MFA with three components. For the red component, we learn a separate second
layer MFA with two components. We also introduce the second layer component indicator variable
kc = 1, . . . ,Kc, where Kc is the total number of the second layer components associated with the first
layer component c. Kc is specific to the first layer component and need not be same for all c. In our
example, K1 = 3 and K2 = 2. Right: Graphical model of a DMFA. Best viewed in color.

where

Vc = I + WT
c Ψ−1c Wc,

mc = V−1c WT
c Ψ−1c (x− µc).

Maximum likelihood learning of a MFA model is straightforward using the EM algorithm. During the

E-step, Eqs. 4.7, 4.8 are used to compute the posterior over the latent variables given the current setting

of the model parameters. During the M-step, the expected complete-data log-likelihood is maximized

with respect to the model parameters θ = {πc,Wc,µc,Ψc}Cc=1:

Ep(z,c|x;θold)[log p(x, z, c; θ)]

4.1.2 Deep Mixtures of Factor Analysers

After MFA training reaches convergence, the model can be improved by increasing the number C of

mixture components or the dimensionality d of the latent factors per component. This amounts to

adjusting the conditional distributions p(x|z, c). However, as we demonstrate in our experimental results,

this approach quickly leads to overfitting, particularly when modeling high-dimensional data.

An alternative is to replace the standard multivariate normal prior on the latent factors: p(z|c) =

N (0, I). The “aggregated posterior” is the empirical average over the data of the posteriors over the

factors: 1
N

∑N
n=1

∑C
c=1 p(zn, c|xn) and a component-specific aggregated posterior is:

1

N

N∑
n=1

p(zn, cn = c|xn) (4.9)

If each factor analyser in the mixture was a perfect model of the data assigned to it, the component-

specific aggregated posterior would be distributed according to an isotropic Gaussian, but in practice, it
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is non-Gaussian. Figure 4.1 (left panel) shows a component-specific aggregated posterior (with d = 2),

which is highly non-Gaussian. In this case, we wish to replace a simple standard normal prior by a more

powerful MFA prior:

p(z|c) = MFA(θ(2)c ) (4.10)

Here, θ(2)c emphasizes that the new MFA’s parameters are at the second layer and are specific to com-

ponent c of the first layer MFA.

More concretely, the variational lower bound on the log-likelihood of the model given data x is:

L(x;θ) =

C∑
c=1

∫
z

q(z, c|x;θ) log p(x, z, c;θ)dz +H(q)

=

C∑
c=1

∫
z

q(z, c|x;θ)
{

log p(x|z, c;θ) (4.11)

+ log p(z|c) + log πc

}
dz +H(q),

where H(·) is the entropy of the posterior distribution q and θ represent the first layer MFA parameters.

The DMFA formulation seeks to find a better prior log p(z|c) (using Eq. 4.10), while holding the first

layer parameters fixed. Initially, when q(z, c|x;θ) ≡ p(z, c|x;θ), the bound is tight. Therefore, any

increase in the bound will lead to an increase in the true likelihood of the model. Maximizing the bound

of Eq. 4.11 with respect to θ(2) is equivalent to maximizing:

C∑
c=1

∫
z

q(z, c|x;θ) log p(z|c;θ(2)) (4.12)

averaged over the training data vectors. This is equivalent to fitting component-specific second-layer

MFAs with vectors drawn from q(z, c|x;θ) as data. The same scheme can be extended to training

third-layer MFAs. With proper initialization, we are guaranteed to improve the lower bound on the

log-likelihood, but the log-likelihood itself can fall (Hinton et al., 2006).

Fig. 4.1 (middle panel) shows a schematic representation of our model. Using π
(2)
kc

to denote the

second layer mixing proportion of component kc, we have:

∀ c :

Kc∑
kc=1

π
(2)
kc

= 1 (4.13)

A DMFA replaces the old MFA prior pMFA(z, c) = p(c)p(z|c) with a better prior:

pDMFA(z, c) = p(c)p(kc|c)p(z|kc) (4.14)

Therefore, when sampling from a DMFA, we first sample c using πc, followed by sampling the second

layer component kc using π
(2)
kc

. Finally, we can sample z using the Gaussian of component kc, as in

Eq. 5.2.

A simpler, but completely equivalent DMFA formulation is to enumerate over all possible second layer

components kc. We use a new component indicator variable s = 1, . . . , S to denote a specific second

layer component, where S =
∑C
c=1Kc. The mixing proportions are defined as π

(2)
s = p(c(s))p(kc(s)|c(s)),

where c(s) and kc(s) denotes the first and second layer components c and kc to which s corresponds.
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For example c(2) = 1 and c(5) = 2. We note that the size of S is exponential in the number of DMFA

layers. The generative process of this formulation is very intuitive and we shall use it throughout the

remaining sections.

Fig. 4.1 (right panel) shows the graphical model for a 2 layer DMFA. Specifically,

p(s) = π(2)
s (4.15)

p(z(2)|s) = N (z(2); 0, I) (4.16)

p(z(1)|z(2), s) = N
(
z(1); W(2)

s z(2) + µ(2)
s ,Ψ(2)

s

)
(4.17)

c← c(s), (deterministic) (4.18)

p(x|z(1), c) = N
(
x; W(1)

c z(1) + µ(1)
c ,Ψ(1)

c

)
(4.19)

Eq. 4.18 is fully deterministic as every s belongs to one and only one c. z(1) ∈ Rd(1) , z(2) ∈ Rd(2) ,
W

(1)
c ∈ RD×d(1) , W

(2)
s ∈ Rd(1)×d(2) , µ(1)

c ∈ Rd(1) , and µ
(2)
s ∈ Rd(2) . Finally, Ψ(1)

c and Ψ(2)
s are d(1)× d(1)

and d(2) × d(2) diagonal matrices of the first and second layers respectively.

DMFA has an equivalent shallow form, which is obtained by integrating out the latent factors. If we

integrate out the first layer factors z(1), we obtain:

p(x|z(2), s) = N
(
x; W(1)

c (W(2)
s z(2) + µ(2)

s ) + µ(1)
c ,

Ψ(1)
c + W(1)

c Ψ(2)
s W(1)

c

T
) (4.20)

By further integrating out z(2):

p(x|s) = N (x; W(1)
c µ(2)

s + µ(1)
c , (4.21)

Ψc + W(1)
c (Ψ(2)

s + W(2)
s W(2)

s

T
)W(1)

c

T
)

From Eq. 4.20, we can see that a DMFA can be reduced to a standard MFA where z(2) are the factors

and s indicates the mixture component. This “collapsed” MFA is regularized due to its parameter

sharing. In particular, the means of the components s with the same first layer component c all must lie

on a hyperplane spanned by W
(1)
c . The covariance of these components all share the same outer product

factorization (W
(1)
c W

(1)
c

T
) but with different “core matrices” (Ψ

(2)
s + W

(2)
s W

(2)
s

T
).

Assuming that the number of the second layer components are equal, i.e. ∀c : Kc = K, a standard

shallow MFA with S = C × K mixture components and d(1) factors per component would require

O(DKd(1)C) parameters. A DMFA with two layers, on the other hand, would require O(Dd(1)C +

d(1)d(2)CK) = O((D + d(2)K)d(1)C) parameters. Note that a DMFA requires a much smaller number

of effective parameters than an equivalent shallow MFA, since d(2) << D. As we shall see in Sec. 4.1.6,

this sharing of parameters is critical for preventing overfitting.

4.1.3 Inference

Exact inference in a collapsed DMFA model is of order O(CK) since the data likelihood must be

computed for each mixture component. We can incur a lower cost by using an approximate inference,

which is O(C +K). First, we compute the posterior p(z(1), c|x) = p(z(1)|x, c)p(c|x) using Eq. 4.7. This

posterior is exact if we had a standard normal prior over z(1), but it is an approximation of the exact
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Algorithm 6 Learning DMFAs

Given data: X = {x1,x2, . . . ,xN}.
//Layer 1 training
Train 1st layer MFA on X with C components and d factors using EM → MFA1.

//Layer 2 training
Create dataset Yc for each of the C components.
Yc ← ∅
for i = 1 to N do

for c = 1 to C do
compute p(c|xi) and p(z(1)|xi, c), Eqs. 4.7 & 4.8.

end for
Find ĉ = arg maxc p(c|xi).
Sample z

(1)
i from N (z(1); mĉ,V

−1
ĉ ).

Add z
(1)
i to dataset Yĉ: Yĉ = Yĉ ∪ {z(1)i }.

end for

d(2) and Kc: # of 2nd layer factors and components.
for c = 1 to C do

Train a separate 2nd layer MFA on Yc with d(2) factors and Kc components using EM→ MFA2{c}.
end for

posterior of the DMFA model. The entropy of the posterior p(c|x) is likely to be very low in high

dimensional spaces. We therefore make a point estimate by selecting the component c with maximum

posterior probability:

ĉ = arg max
c

p(c)p(c|x) (4.22)

p(z(1)|x) =
∑
c

p(z(1)|x, c)p(c|x)dc

≈ p(z(1)|x, ĉ) (4.23)

For the second layer, we treat ĉ and z(1) as data, and compute the posterior distribution p(z(2), s|z(1), ĉ)
in a similar fashion.

4.1.4 Learning

A DMFA can be trained efficiently using a greedy layer-wise algorithm. The first layer MFA is trained

in a standard way. We then use Eq. 4.23 to infer the component ĉ and the factors associated with

that component for each training case {xn}. We then freeze the first layer parameters and treat the

sampled first layer factor values for every component
{
{z(1)n }c

}
as training data for the second layer

MFAs. Algorithm 6 details this layer-wise training algorithm. After greedy learning, “backfitting” by

collapsing a DMFA and running additional EM steps is also possible. However, more care is needed to

prevent overfitting.

4.1.5 Experiments

We demonstrate the advantages of learning DMFAs on both low dimensional and high dimensional

datasets, including face images, natural image patches, and speech acoustic data.
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Toronto Face Database (TFD): The Toronto Face Database is a collection of aligned faces from a

variety of (mostly) publicly available face image databases (Susskind, 2011). From the original resolution

of 108 × 108, we downsampled to resolutions of 48 × 48 or 24 × 24. We then randomly selected 30,000

images for training, 10,000 for validation, and 10,000 for testing.

CIFAR-10: The CIFAR-10 dataset (Krizhevsky, 2009) consists of 60,000 32× 32×3 color images of 10

object classes. There are 50,000 training images and 10,000 test images. Out of 50,000 training images,

10,000 were set aside for validation.

TIMIT Speech: TIMIT is a corpus of phonemically and lexically transcribed speech of American

English speakers of different sexes and dialects1. The corpus contains a 462-speaker training set, a 50-

speaker validation set, and a 24-speaker core test set. For our purposes, we extracted data vectors every

10-ms from the continuous speech data. Each frame analyzes a 25-ms Hamming window using a set of

filter banks based on the Fast Fourier Transform. Concatenating 11 frames, we obtain 1353 dimensional

input vectors. We randomly selected 30,000 vectors for training, 10,000 for validation, and 10,000 for

testing.

Berkeley Natural Images: The Berkeley segmentation database (Martin et al., 2001) contain 300

images from natural scenes. We randomly extracted 2 million 8 × 8 image patches for training, 50,000

patches for validation, and 50,000 for testing.

UCI: We used 4 datasets from the UCI repository (Murphy and Aha, 1995). These are low dimensional

datasets and have relatively few training examples. These were the only UCI datasets we tried.

For all image datasets, the DC component of each image was removed: x ← x − mean(x). This

removes the huge illumination variations across data samples. No other preprocessing steps were used.

For the TIMIT and UCI datasets, we normalize input vectors to zero mean and scale the entire input by

a single number to make the average standard deviation be one. For evaluating the log probabilities of

DMFAs, we always first collapsed it to a shallow MFA in order to obtain the exact data log-likelihood.

4.1.6 Overfitting

We first trained a 20 component MFA on 24 × 24 faces until convergence2, which took 33 iterations.

The number of factors was set to half of the input dimensionality, d(1) = D/2 = 288. Fig. 4.2 shows

the corresponding training and validation log-likelihoods3. We next stacked a second MFA layer with

five second layer components (Kc = 5) for each of the first layer components and d(2) = 50 second layer

factors. The DMFA (MFA2) model improved as learning continued for an additional 20 iterations (see

red and blue lines in Fig. 4.2). As a comparison, immediately after we initially formed the two-layer MFA,

we collapsed it into its equivalent shallow representation and performed additional training (magenta

and black lines in Fig. 4.2). Observe that the shallow MFA starts overfitting due to its extra capacity

(5 times more parameters). MFA2, on the other hand, shows improvements on both the training and

validation data. We note that training a shallow MFA with 100 components from random initialization

is significantly worse (see Table. 4.1).

To give a sense of the computation costs, training the first layer MFA took 1600 seconds on a multi-

core Xeon machine. The second layer MFA training took an additional 580 seconds.

1
www.ldc.upen.edu/Catalog/CatalogEntry.jsp?catalogId=LDC93S1

2Convergence is achieved when the log-likelihood changed by less than 0.01% from the previous EM iteration.
3Similar results were obtained for different numbers of components and factors.
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Figure 4.2: DMFA improves over MFA. Overfitting occurs during further training of a shallow MFA
with increased capacity. Best viewed in color.

4.1.7 Qualitative Results

We next demonstrate qualitative improvements of the samples from a DMFA over a standard MFA

model. As the baseline, we first trained a MFA model on 30,000 24 × 24 face images from the TFD,

with 288 factors and 100 components. We then trained a DMFA with 20 first layer components and 5

second layer components for each of the 20 first layer components. The DMFA has the same number of

parameters as the baseline MFA. The two-layer MFA (MFA2) performs better compared to the standard

MFA by around 20 nats on the test set. Fig 4.3 further shows samples from the two models. Qualitatively,

the DMFA appears to generate better samples compared to the shallow MFA model.

4.1.8 High Dimensional Data

Next, we explore the benefits of DMFAs on the high dimensional CIFAR and TIMIT datasets. We first

trained a MFA model with the number of factors equal to half of the input dimensionality. The number

of mixture components was set to 20. For MFA2, 5 components with 50 latent factors were used. For

the 3rd layer MFA (MFA3) 3 factors with 30 latent factors were used.

Table 4.1 shows the average training and test log-likelihood. In addition, we provide results for

two types of RBM models that are commonly used when modeling high-dimensional real-valued data,

including image patches and speech. The SSU model is a type of RBM with Gaussian visible and stepped

sigmoid hidden units (Nair and Hinton, 2010). By using rectified linear activations, SSU can be viewed

as a mixture of linear models with the number of components exponential in the number of hidden

variables. A simpler Gaussian RBM (GRBM) model uses Gaussian visible and binary hidden units. It

can also be viewed as a mixture of diagonal Gaussians with exponential number of components. For

both the GRBM and SSU, we used Fast Persistent Contrastive Divergence (Tieleman and Hinton, 2009)

for learning and AIS (Salakhutdinov and Murray, 2008) to estimate their log-partition functions (See

Section 2.1.2). The AIS estimators have standard errors of around 5 nats, which are too small to affect

the conclusions we can draw from Table 4.1.

The number of parameters for the GRBMs and SSU are matched to the MFA model, which means
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Training

MFA Samples

DMFA Samples

Figure 4.3: Top: training images. Middle: samples from MFA. Bottom: samples from DMFA. The
red box highlights the worst looking samples of the two models while the green box highlights a very
realistic looking generated sample.

Dataset GRBM SSU MFA MFA-2 MFA-3 Shallow1 Shallow2 Diff-2 Diff-3

TFD-24 766 859 1312 1368 1380 1325 1506 57.1 ± 0.1 12± 0.2
758 841 1185 1202 1207 1184 1039 18.7 ± 0.2 4.1 ± 0.08

TFD-24-Rot 843 950 1412 1469 1477 1428 1505 56.9 ± 0.1 8.5 ± 0.13
822 929 1283 1305 1306 1284 1125 21.6 ± 0.2 1.4 ± 0.04

TFD-48 2426 3675 6020 6141 6151 6036 6461 119.2 ± 0.4 11.7 ± 0.1
2413 3557 5159 5242 5250 5161 4299 85.3 ± 0.5 5.6 ± 0.1

CIFAR: 2725 2818 4486 4573 4583 4565 4214 86.8 ± 0.4 10.6 ± 0.2
2365 2494 3587 3621 3622 3592 2873 33.2 ± 0.4 0.5 ± 0.06

TIMIT: 1244 1316 2662 2802 2804 2707 3219 133.5 ± 0.2 1.4 ± 0.05
1175 1268 2298 2450 2451 2305 1169 147.2 ± 0.5 0.4 ± 0.07

Table 4.1: Model performance on various high dimensional datasets (nats). TFD-24-Rot is generated by
randomly rotating 24×24 face images in the range of ±45 deg. Diff-2 and Diff-3 are the gains from going
from 1 to 2 layers and from 2 to 3 layers, respectively. For all datasets, Diff-2 and Diff-3 are statistically
significant at p = 0.01.

that approximately 6,000 hidden nodes are used. Increasing the number of hidden units did not result

in any significant improvements of GRBM and SSU models. Hyperparameters are selected using the

validation set. After MFA learning converged, a MFA2 model is initialized. The means of the MFA-2

components were slightly perturbed from zero so as to break symmetry. Shallow1 results were obtained

by collapsing these newly initialized MFA2 models and further training using EM with early stopping.

Shallow2 results were obtained by starting at random initialization (with multiple restarts) with the

equivalent number of parameters as the corresponding Shallow1 models. We note the significant gains

by DMFAs for the TIMIT and TFD-48 datasets.

Fig. 4.4 displays gains of 2 and 3 layer MFA as we vary the number of the first layer mixture

components. It is interesting to observe that MFA and DMFA significantly outperformed various RBM

models. This result suggests that it may be possible to improve many of the existing deep networks for

modeling real-valued data that use GRBMs for the first hidden layer, though better density models do

not necessarily learn features that are better for discrimination.
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(a) Training Data (b) Test Data

Figure 4.4: Improvements of DMFA over standard MFA on 24× 24 face images vs. the number of first
layer components. Gains are observed across different numbers of first layer components. Surprisingly,
while the dataset contains thousands of different people, more than 10 mixture components results in
overfitting. Best viewed in color.

Dataset dim. size Gaussian Cop. MCDN MFA MFA-2 DMFA gain
Parkinsons 15 5875 -11.65 -3.48 -0.63 -0.33 0.296 ± 0.024
Ionosphere 32 351 -41.10 -27.45 -20.10 -18.53 1.565 ± 0.252
Wine(red) 11 1599 -13.72 -11.25 -10.22 -10.07 0.143 ± 0.015
Wine(white) 11 4898 -13.76 -12.11 -11.02 -10.89 0.121 ± 0.036

Table 4.2: Test set predictive log-likelihood on 4 UCI datasets (nats). Reported results are from 10-fold
cross validation on each dataset. MFA results are from our experiments. Other results are from Silva
et al. (2011).

4.1.9 Low Dimensional Data

DMFAs can also be used with low dimensional data. Following Silva et al. (2011), we used 4 continuous

datasets from the UCI repository. We removed the discrete variables from all datasets. For the Parkin-

sons dataset, one variable from any pair whose Pearson correlation coefficient is greater than 0.98 was

also removed (for details see Silva et al. (2011)). Table 4.2 reports the averaged test results using 10-fold

cross validation. Compared to the recently introduced Copula Networks, MFAs give much better test

predictive performance. Adding a second layer produced significant gains in model performance. The

improvements from adding a second layer on all datasets were statistically significant using the paired

t-test at p = 0.01.

4.1.10 Natural Images

One important application of generative models is in the task of image restoration which can be formu-

lated as a MAP estimation problem. As confirmed by Zoran and Weiss (2011), a better prior almost

certainly leads to a better signal to noise ratio of the restored image. In addition, Zoran and Weiss (2011)

have shown that combining a mixture of Gaussians model trained on 8 × 8 patches of natural images

with a patch-based denoising algorithm, allowed them to achieve state-of-the-art results. Following their

work, we trained a two-layer MFA on 8 × 8 patches from the Berkeley database. Two million training
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PIX PCA ICA GMM MFA MFA-2
78.3 114.2 115.9 167.2∗ 166.5 169.3

Table 4.3: Average test log-likelihood (in nats) of various models learned on 50,000 8 × 8 test patches.
PIX: independent pixels. PCA: Principle Component Analysis. ICA: Independent Component Anal-
ysis. GMM: Mixture of Gaussians with 200 components. MFA Mixture of Factor Analysers with 200
components. MFA-2 Two layer DMFA. MFA and MFA-2 results are from our experiments, other num-
bers are taken from Zoran and Weiss (2011). GMM’s 167.2∗ is different from the previously reported
164.5 due to the random extraction of test patches. 167.2 was obtained by evaluating the downloaded
model of Zoran and Weiss (2011) on our own test patches.

and 50,000 test patches were extracted from the 200 training and 100 test images, respectively. Table 4.3

shows results. Note that the DMFA improves upon the current state-of-the-art GMMs model of Zoran

and Weiss (2011) by about 2 nats, while substantially outperforming other commonly used models in-

cluding PCA and ICA. Finally, we trained a shallow equivalent to MFA-2 (5 times more parameters than

MFA) from random initialization and achieved only 164.9 nats, thereby demonstrating that DMFAs are

necessary in order to achieve the extra gain.

4.1.11 Allocating more components to more popular Factor Analysers

Until now, we have given every higher level MFA the same number of components to model the aggregated

posterior of its lower level Factor Analyser (∀c : Kc = K). While simple to implement, this is not

optimal. An alternative is to use more second layer components for the first layer components with

bigger mixing proportions. We tested this hypothesis by first training a MFA model on 48 × 48 TFD

faces, which achieved an average test log-likelihood of 5159 nats. For the two-layer MFA, instead of

assigning 5 components to each of the first layer components, we let Kc ∝ πc, with min(Kc) = 2

and
∑C
c Kc = 5 × C. With all other learning hyper-parameters held constant, the resulting DMFA

achieved 5246 nats on the test set. Compared to 5242 nats of our previous model (c.f. Table 4.1), the

new method accounted for a gain of 4 nats. As another alternative, a measure of Gaussianity of the

aggregated posterior could be used to determine Kc.

4.2 Learning Stochastic Feedforward Neural Networks

In the second section of the chapter, we propose a model and a learning algorithm for modeling multi-

modal conditional distributions. This algorithm simply sprinkles in some stochastic hidden nodes to the

standard feedforward neural network. The stochastic nodes give the model the ability to be multimodal.

Multilayer perceptrons (MLPs) are general purpose function approximators. The outputs of a MLP

can be interpreted as the sufficient statistics of a member of the exponential family (conditioned on the

input X), thereby inducing a distribution over the output space Y . Since the nonlinear activations are

all deterministic, MLPs model the conditional distribution p(Y |X) with a unimodal assumption (e.g. an

isotropic Gaussian)4.

For many structured prediction problems, we are interested in a conditional distribution p(Y |X) that

4For example, in a MLP with one input, one output and one hidden layer: p(y|x) ∼ N (y|µy , σ2
y), µy = σ

(
W2σ(W1x)

)
,

σ(a) = 1/(1+exp(−a)) is the sigmoid function. Note that the Mixture of Density Network is an exception to the unimodal
assumption (Bishop, 1994).
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is multimodal and may have complicated structure5. One way to model the multi-modality is to make

the hidden variables stochastic. Conditioned on a particular input X, different hidden configurations

lead to different Y . Sigmoid Belief Nets (SBNs) (Neal, 1990, 1992) are models capable of satisfying the

multi-modality requirement. With binary input, hidden, and output variables, they can be viewed as

directed graphical models where the sigmoid function is used to compute the degrees of “belief” of a child

variable given the parent nodes. Inference in such models is generally intractable. The original paper by

Neal (Neal, 1992) proposed a Gibbs sampler which cycles through the hidden nodes one at a time. This is

problematic as Gibbs sampling can be very slow when learning large models or fitting moderately-sized

datasets. In addition, slow mixing of the Gibbs chain would typically lead to a biased estimation of

gradients during learning. A variational learning algorithm based on the mean-field approximation was

proposed in Saul et al. (1996) to improve the learning of SBNs. A drawback of the variational approach

is that, similar to Gibbs, it has to cycle through the hidden nodes one at a time. Moreover, beside the

standard mean-field variational parameters, additional parameters must be introduced to lower-bound

an intractable term that shows up in the expected free energy, making the lower-bound looser. Gaussian

fields are used in Barber and Sollich (1999) for inference by making Gaussian approximations to units’

input, but there is no longer a lower bound on the likelihood.

Here, we introduce the Stochastic Feedforward Neural Network (SFNN) for modeling conditional dis-

tributions p(y|x) over continuous real-valued Y output space. Unlike SBNs, to better model continuous

data, SFNNs have hidden layers with both stochastic and deterministic units. The left panel of Fig. 4.5

shows a diagram of SFNNs with multiple hidden layers. Given an input vector x, different states of the

stochastic units can generate different modes in Y . For learning, we present a novel Monte Carlo variant

of the Generalized Expectation Maximization algorithm. Importance sampling is used for the E-step for

inference, while error backpropagation is used by the M-step to improve a variational lower bound on

the data log-likelihood. SFNNs have several attractive properties, including:

• We can draw samples from the exact model distribution without resorting to MCMC.

• Stochastic units form a distributed code to represent an exponential number of mixture components

in output space.

• As a directed model, learning does not need to deal with a global partition function.

• A Combination of stochastic and deterministic hidden units can be jointly trained using the back-

propagation algorithm, as in standard feed-forward neural networks.

The two main alternative models are Conditional Gaussian Restricted Boltzmann Machines (C-

GRBMs) (Taylor et al., 2006) and Mixture Density Networks (MDNs) (Bishop, 1994). Note that Gaus-

sian Processes (Rasmussen and Williams, 2006) and Gaussian Random Fields (Rue and Held, 2005) are

unimodal and therefore incapable of modeling a multimodal Y . Conditional Random Fields (Lafferty,

2001) are widely used in NLP and vision, but often assume Y to be discrete rather than continuous.

C-GRBMs are popular models used for human motion modeling (Taylor et al., 2006), structured predic-

tion (Mnih et al., 2011), and as a higher-order potential in image segmentation (Li et al., 2013). While

C-GRBMs have the advantage of exact inference, they are energy based models that define different

partition functions for different input X. Learning also requires Gibbs sampling which is prone to poor

mixing. MDNs use a mixture of Gaussians to represent the output Y . The components’ means, mixing

proportions, and the output variances are all predicted by a MLP conditioned on X. As with SFNNs,

5An equivalent problem is learning one-to-many functions from X 7→ Y .
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Figure 4.5: Stochastic Feedforward Neural Networks. Left: Network diagram. Red nodes are stochastic and
binary, while the rest of the hiddens are deterministic sigmoid nodes. Right: motivation as to why multimodal
outputs are needed. Given the top half of the face x, the mouth in y can be different, leading to different
expressions.

the backpropagation algorithm can be used to train MDNs efficiently. However, the number of mixture

components in the output Y space must be pre-specified and the number of parameters is linear in the

number of mixture components. In contrast, with Nh stochastic hidden nodes, a SFNN can use its

distributed representation to model up to 2Nh mixture components in the output Y .

4.2.1 Stochastic Feedforward Neural Networks

SFNNs contain binary stochastic hidden variables h ∈ {0, 1}Nh , where Nh is the number of hidden

nodes. For clarity of presentation, we construct a SFNN from a one-hidden-layer MLP by replacing

the sigmoid nodes with stochastic binary ones. Note that other types stochastic units can also be used.

The conditional distribution of interest, p(y|x), is obtained by marginalizing out the latent stochastic

hidden variables: p(y|x) =
∑

h p(y,h|x). SFNNs are directed graphical models where the generative

process starts from x, flows through h, and then generates output y. Thus, we can factorize the joint

distribution as: p(y,h|x) = p(y|h)p(h|x). To model real-valued y, we have p(y|h) = N (y|W2h + b2, σ
2
y)

and p(h|x) = σ(W1x + b1), where b is the bias. Since h ∈ {0, 1}Nh is a vector of Bernoulli random

variables, p(y|x) has potentially 2Nh different modes6, one for every possible binary configurations of

h. The fact that h can take on different states in a SFNN is the reason why we can learn one-to-many

mappings, which would be impossible with standard MLPs.

The modeling flexibility of SFNN comes with computational costs. Since we have a mixture model

with potentially 2Nh components conditioned on any x, p(y|x) does not have a closed-form expression.

We can use Monte Carlo approximation with M samples for its estimation:

p(y|x) ' 1

M

M∑
m=1

p(y|h(m)), h(m) ∼ p(h|x). (4.24)

This estimator is unbiased and has relatively low variance. This is because the accuracy of the estimator

does not depend on the dimensionality of h and that p(h|x) is factorial, meaning that we can draw

samples from the exact distribution.

If y is discrete, it is sufficient for all of the hiddens to be discrete. However, using only discrete hiddens

is suboptimal when modeling real-valued output Y . This is due to the fact that while y is continuous,

6In practice, due to weight sharing, we will not be able to have close to that many modes for a large Nh.
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there are only a finite number of discrete hidden states, each one (e.g. h′) leads to a component which

is a Gaussian: p(y|h′) = N (y|µ(h′), σ2
y). The mean of a Gaussian component is a function of the hidden

state: µ(h′) = WT
2 h′ + b2. When x varies, only the probability of choosing a specific hidden state h′

changes via p(h′|x), not µ(h′). However, if we allow µ(h′) to be a deterministic function of x as well,

we can learn a smoother p(y|x), even when it is desirable to learn small residual variances σ2
y. This can

be accomplished by allowing for both stochastic and deterministic units in a single SFNN hidden layer,

allowing the mean µ(h′,x) to have contributions from two components, one from the hidden state h′,

and another one from defining a deterministic mapping from x. As we demonstrate in our experimental

results, this is crucial for learning good density models of the real-valued Y .

In SFNNs with only one hidden layer, p(h|x) is a factorial Bernoulli distribution. If p(h|x) has low

entropy, only a few discrete h states out of the 2Nh total states would have any significant probability

mass. We can increase the entropy over the stochastic hidden variables by adding a second hidden layer.

The second hidden layer takes the stochastic and any deterministic hidden nodes of the first layer as its

input. This leads to our proposed SFNN model, shown in Fig. 4.5.

In our SFNNs, we assume a conditional diagonal Gaussian distribution for the output Y : log p(y|h,x) ∝
− 1

2

∑
i log σ2

i − 1
2

∑
i (yi − µ(h,x))2/σ2

i . We note that we can also use any other parameterized distri-

bution (e.g. Student’s t) for the output variables. This is a win compared to the Boltzmann Machine

family of models, which require the output distribution to be from the exponential family.

4.2.2 Learning

We present a Monte Carlo variant of the Generalized EM algorithm (Neal and Hinton, 1998) for learn-

ing SFNNs. Specifically, importance sampling is used during the E-step to approximate the posterior

p(h|y,x), while the Backprop algorithm is used during the M-step to calculate the derivatives of the

parameters of both the stochastic and deterministic nodes. Gradient ascent using the derivatives will

guarantee that the variational lower bound of the model log-likelihood will be improved. The drawback

of our learning algorithm is the requirement of sampling the stochastic nodes M times for every weight

update. However, as we will show in the experimental results, 20 samples is sufficient for learning good

SFNNs.

The requirement of sampling is typical for models capable of structured learning. As a comparison,

energy based models, such as conditional Restricted Boltzmann Machines, require MCMC sampling per

weight update to estimate the gradient of the log-partition function. These MCMC samples do not

converge to the true distribution, resulting in a biased estimate of the gradient.

For clarity, we provide the following derivations for SFNNs with one hidden layer containing only

stochastic nodes7. For any approximating distribution q(h), we can write down the following variational

lower-bound on the data log-likelihood:

log p(y|x) = log
∑
h

p(y,h|x) =
∑
h

p(h|y,x) log
p(y,h|x)

p(h|y,x)
≥
∑
h

q(h) log
p(y,h|x; θ)

q(h)
, (4.25)

where q(h) can be any arbitrary distribution. For the tightest lower-bound, q(h) need to be the exact

posterior p(h|y,x). While the posterior p(h|y,x) is hard to compute, the “conditional prior” p(h|x) is

easy (corresponds to a simple feedforward pass). We can therefore set q(h) , p(h|x). However, this

7It is straightforward to extend the model to multiple and hybid hidden layered SFNNs.
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would be a very bad approximation as learning proceeds, since the learning of the likelihood p(y|h,x)

will increase the KL divergence between the conditional prior and the posterior. Instead, it is critical to

use importance sampling with the conditional prior as the proposal distribution.

Let Q be the expected complete data log-likelihood, which is a lower bound on the log-likelihood

that we wish to maximize:

Q(θ, θold) =
∑
h

p(h|y,x; θold)

p(h|x; θold)
p(h|x; θold) log p(y,h|x; θ) ' 1

M

M∑
m=1

w(m) log p(y,h(m)|x; θ), (4.26)

where h(m) ∼ p(h|x; θold) and w(m) is the importance weight of the m-th sample from the proposal

distribution p(h|x; θold). Using Bayes Theorem, we have

w(m) =
p(h(m)|y,x; θold)

p(h(m)|x; θold)
=
p(y|h(m),x; θold)

p(y|x; θold)
' p(y|h(m); θold)

1
M

∑M
m=1 p(y|h(m); θold)

. (4.27)

Eq. 4.24 is used to approximate p(y|x; θold). For convenience, we define the partial objective of the m-th

sample as Q(m) , w(m)
(

log p(y|h(m); θ) + log p(h(m)|x; θ)
)
. We can then approximate our objective

function Q(θ, θold) with M samples from the proposal: Q(θ, θold) ' 1
M

∑M
m=1Q

(m)(θ, θold). For our

generalized M-step, we seek to perform gradient ascent on Q:

∂Q

∂θ
' 1

M

M∑
m=1

∂Q(m)(θ, θold)

∂θ
=

1

M

M∑
m=1

w(m) ∂

∂θ

{
log p(y|h(m); θ) + log p(h(m)|x; θ)

}
. (4.28)

The gradient term ∂
∂θ

{
·
}

is computed using error backpropagation of two sub-terms. The first

part, ∂
∂θ

{
log p(y|h(m); θ)

}
, treats y as the targets and h(m) as the input data, while the second part,

∂
∂θ

{
log p(h(m)|x; θ)

}
, treats h(m) as the targets and x as the input data. In SFNNs with a mixture of

deterministic and stochastic units, backprop will additionally propagate error information from the first

part to the second part.

The full gradient is a weighted summation of the M partial derivatives, where the weighting comes

from how well a particular state h(m) can generate the data y. This is intuitively appealing, since

learning adjusts both the “preferred” states’ abilities to generate the data (first part in the braces), as

well as increase their probability of being picked conditioning on x (second part in the braces). The

detailed EM learning algorithm for SFNNs is listed in Algorithm 7.

4.2.3 Cooperation during learning

We note that for importance sampling to work well in general, a key requirement is that the proposal

distribution is not small where the true distribution has significant mass. However, things are slightly

different when using importance sampling during learning. Our proposal distribution p(h|x) and the

posterior p(h|y,x) are not fixed but rather governed by the model parameters. Learning adapts these

distributions in a synergistic and cooperative fashion.

Let us hypothesize that at a particular learning iteration, the conditional prior p(h|x) is small in

certain regions where p(h|y,x) is large, which is undesirable for importance sampling. The E-step will

draw M samples and weight them according to Eq. 4.27. While all samples h(m) will have very low

log-likelihood due to the bad conditional prior, there will be a certain preferred state ĥ with the largest
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Algorithm 7 EM learning algorithm

Given training D dimensional data pairs: {x(n),y(n)}, n = 1 . . . N . Hidden layers h1&h4 are deterministic,
h2&h3 are hybrid. θ = {W 1,2,3,4,5, bias, σ2

y}
repeat

//Approximate E-step:
1 Compute p(h2|x(n)) = Bernoulli

(
σ(W 2σ(W 1x(n)))

)
2 h2

determ ← p(h2
determ|x(n))

for m = 1 to M (importance samples) do
3 Sample: h2

stoch ∼ p(h2
stoch|x(n)).

let h2 be the concatenation of h2
stoch and h2

determ.
4 p(h3|x(n)) = Bernoulli

(
σ(W 3h2)

)
5 h3

determ ← p(h3
determ|x(n))

6 Sample: h3
stoch ∼ p(h3

stoch|x(n))
let h3 be the concatenation of h3

stoch and h3
determ.

7 Compute p(y|x(n)) = N
(
σ(W 5σ(W 4h3));σ2

y

)
end for

8 Compute w(m) for all m, using Eq. 4.24.

//M-step:
4θ ← 0
for m = 1 to M do

9 Compute ∂Q(m)(θ,θold)
∂θ

by Backprop.

10 4θ = 4θ + ∂Q(m)/∂θ
end for

11 θnew = θold + α
M
4θ, //α is the learning rate.

until convergence

weight. Learning using Eq. 4.28 will accomplish two things: (1) it will adjust the generative weights to

allow preferred states to better generate the observed y; (2) it will make the conditional prior better

by making it more likely to predict ĥ given x. Since the generative weights are shared, the fact that

ĥ generates y accurately will probably reduce the likelihood of y under another state h̃. The updated

conditional prior tends to be a better proposal distribution for the updated model. The cooperative

interaction between the conditional prior and posterior during learning provides some robustness to the

importance sampler.

Figure 4.6: KL divergence and log-likelihoods. Best viewed in color.

Empirically, we can see this effect as learning progress on Dataset A of Sec. 4.2.5 in Fig. 4.6. The
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(a) Dataset A (b) Dataset B (c) Dataset C

Figure 4.7: Three synthetic datasets of 1-dimensional one-to-many mappings. For any given x, multiple modes

in y exist. Blue stars are the training data, red pluses are exact samples from SFNNs. Best viewed in color.

plot shows the model log-likelihood given the training data as learning progresses until 3000 weight

updates. 30 importance samples are used during learning with 2 hidden layers of 5 stochastic nodes.

We chose 5 nodes because it is small enough that the true log-likelihood can be computed using brute-

force integration. As learning progresses, the Monte Carlo approximation is very close to the true

log-likelihood using only 30 samples. As expected, the KL from the posterior and prior diverges as

the generative weights better model the multiple modes around x = 0.5. We also compared the KL

divergence between our empirical weighted importance sampled distribution and true posterior, which

converges toward zero. This demonstrate that the prior distribution has learned to not be small in

regions of large posterior. In other words, this shows that the E-step in the learning of SFNNs is close

to exact for this dataset and model.

4.2.4 Experiments

We first demonstrate the effectiveness of SFNN on synthetic one dimensional one-to-many mapping

data. We then use SFNNs to model face images with varying facial expressions and emotions. SFNNs

outperform other competing density models by a large margin. We also demonstrate the usefulness of

latent features learned by SFNNs for expression classification. Finally, we train SFNNs on a dataset

with in-depth head rotations, a database with colored objects, and a image segmentation database. By

drawing samples from these trained SFNNs, we obtain qualitative results and insights into the modeling

capacity of SFNNs. We provide computation times for learning in Section 4.2.8.

4.2.5 Synthetic datasets

As a proof of concept, we used three one dimensional one-to-many mapping datasets, shown in Fig. 4.7.

Our goal is to model p(y|x). Dataset A was used by Bishop (1994) to evaluate the performance of the

Mixture Density Networks (MDNs). Dataset B has a large number of tight modes conditioned on any

given x, which is useful for testing a model’s ability to learn many modes and a small residual variance.

Dataset C is used for testing whether a model can learn modes that are far apart from each other.

We randomly split the data into a training, validation, and a test set. We report the average test

set log-probability averaged over 5 folds for different models in Table 4.4. The method called ‘Gaussian’

is a 2D Gaussian estimated on (x, y) jointly, and we report log p(y|x) which can be obtained easily

in closed-form. For Conditional Gaussian Restricted Boltzmann Machine (C-GRBM) we used 25-step
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Gaussian MDN C-GRBM SBN SFNN
A 0.078±0.02 1.05±0.02 0.57±0.01 0.79±0.03 1.04±0.03
B -2.40±0.07 -1.58±0.11 -2.14±0.04 -1.33±0.10 -0.98±0.06
C 0.37±0.07 2.03±0.05 1.36±0.05 1.74±0.08 2.21±0.16

Table 4.4: Average test log-probability density on synthetic 1D datasets.

Contrastive Divergence (Hinton, 2002) (CD-25) to estimate the gradient of the log partition function.

We used Annealed Importance Sampling (Neal, 2001; Salakhutdinov and Murray, 2008) with 50,000

intermediate temperatures to estimate the partition function. SBN is a Sigmoid Belief Net with three

hidden stochastic binary layers between the input and the output layer. It is trained in the same way

as SFNN, but there are no deterministic units. Finally, SFNN has four hidden layers with the inner

two being hybrid stochastic/deterministic layers (See Fig. 4.5). We used 30 importance samples to

approximate the posterior during the E-step. All other hyper-parameters for all of the models were

chosen to maximize the validation performance.

Table 4.4 reveals that SFNNs consistently outperform all other methods. Fig. 4.7 further shows

samples drawn from SFNNs as red ‘pluses’. Note that SFNNs can learn small residual variances to

accurately model Dataset B. Comparing SBNs to SFNNs, it is clear that having deterministic hidden

nodes is a big win for modeling continuous y.

4.2.6 Modeling Facial Expression

Conditioned on a subject’s face with neutral expression, the distribution of all possible emotions or

expressions of this particular individual is multimodal in pixel space. We learn SFNNs to model facial

expressions in the Toronto Face Database (Susskind, 2011). The Toronto Face Database consists of 4000

images of 900 individuals with 7 different expressions. Of the 900 subjects, there are 124 with 10 or

more images per subject, which we used as our data. We randomly selected 100 subjects with 1385 total

images for training, while 24 subjects with a total of 344 images were selected as the test set.

For each subject, we take the average of their face images as x (mean face), and learn to model this

subject’s varying expressions y. Both x and y are grayscale and downsampled to a resolution of 48×48.

We trained a SFNN with 4 hidden layers of size 128 on these facial expression images. The second and

third “hybrid” hidden layers contained 32 stochastic binary and 96 deterministic hidden nodes, while

the first and the fourth hidden layers consisted of only deterministic sigmoids. We refer to this model

as SFNN2. We also tested the same model but with only one hybrid hidden layer, that we call SFNN1.

We used mini-batches of size 100 and and 30 importance samples for the E-step. A total of 2500 weight

updates were performed. Weights were randomly initialized with standard deviation of 0.1, and the

residual variance σ2
y was initialized to the variance of y.

For comparisons with other models, we trained a Mixture of Factor Analyzers (MFA) (Ghahramani

and Hinton, 1996), Mixture Density Networks (MDN), and Conditional Gaussian Restricted Boltzmann

Machines (C-GRBM) on this task. For the Mixture of Factor Analyzers model, we trained a mixture

with 100 components, one for each training individual. Given a new test face xtest, we first find the

training x̂ which is closest in Euclidean distance. We then take the parameters of the x̂’s FA component,

while replacing the FA’s mean with xtest. Mixture Density Networks are trained using code provided by

the NETLAB package (Nabney, 2002). The number of Gaussian mixture components and the number of
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MFA MDN C-GRBM SFNN1 SFNN2
Nats 1406±52 1321±16 1146±113 1488±18 1534±27
Time 10 secs. 6 mins. 158 mins. 112 secs. 113 secs.

Table 4.5: Average test log-probability and total training time on facial expression images. Note that
for continuous data, these are probability densities and can be positive.

(a) Conditional Gaussian RBM.

(b) MFA.

(c) SFNN.

Figure 4.8: Samples generated from various models. SFNN samples are superior since they capture
various expressions while preserving the identity of the conditioning face.

hidden nodes were selected using a validation set. Optimization is performed using the scaled conjugate

gradient algorithm until convergence. For C-GRBMs, we used CD-25 for training. The optimal number of

hidden units, selected via validation, was 1024. A population sparsity objective on the hidden activations

was also part of the objective (Nair and Hinton, 2009a). The residual diagonal covariance matrix is also

learned. Optimization used stochastic gradient descent with mini-batches of 100 samples each.

Table 4.5 displays the average log-probabilities along with standard errors of the 344 test images. We

also recorded the total training time of each algorithm, although this depends on the number of weight

updates and whether or not GPUs are used. For MFA and MDN, the log-probabilities were computed

exactly. For SFNNs, we used Eq. 4.24 with 1000 samples. We can see that SFNNs substantially

outperform all other models. Having two hybrid hidden layers (SFNN2) improves model performance

over SFNN1, which has only one hybrid hidden layer.

Qualitatively, Fig. 4.8 shows samples drawn from the trained models. The leftmost column shows
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(a) (b)

(c)

Figure 4.9: Plots demonstrate how hyperparameters affect the evaluation and learning of SFNNs.

the mean faces of 3 test subjects, followed by 7 samples from the distribution p(y|x). For C-GRBM,

samples are generated from a Gibbs chain, where each successive image is taken after 1000 steps. For

the other 2 models, displayed samples are exact. MFAs overfit on the training set, generating samples

with significant artifacts. Samples produced by C-GRBMs suffer from poor mixing and get stuck at a

local mode. SFNN samples show that the model was able to capture a combination of mutli-modality

and preserved much of the identity of the test subjects. We also note that SFNN generated faces are

not simple memorization of the training data. This is validated by its superior performance on the test

set in Table 4.5.

We further explored how different hyperparameters (e.g. # of stochastic layers, # of Monte Carlo

samples) can affect the learning and evaluation of SFNNs. We used face images and SFNN2 for these

experiments. First, we wanted to know the number of M in Eq. 4.24 needed to give a reasonable

estimate of the log-probabilities. Fig. 4.9(a) shows the estimates of the log-probability as a function

of the number of samples. We can see that having about 500 samples is reasonable, but more samples

provides a slightly better estimate. The general shape of the plot is similar for all other datasets and

SFNN models. When M is small, we typically underestimate the true log-probabilities. While 500 or

more samples are needed for accurate model evaluation, only 20 or 30 samples are sufficient for learning

good models (as shown in Fig. 4.9(b). This is because while M = 20 gives suboptimal approximation

to the true posterior, learning still improves the variational lower-bound. In fact, we can see that the

difference between using 30 and 200 samples during learning results in only about 20 nats of the final

average test log-probability. In Fig. 4.9(c), we varied the number of binary stochastic hidden variables

in the 2 inner hybrid layers. We did not observe significant improvements beyond more than 32 nodes.

With more hidden nodes, over-fitting can also be a problem.
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Expression Classification

The internal hidden representations learned by SFNNs are also useful for classification of facial expres-

sions. For each {x,y} image pair, there are 7 possible expression types: neutral, angry, happy, sad,

surprised, fearful, and disgusted. As baselines, we used regularized linear softmax classifiers and mul-

tilayer perceptron classifier taking pixels as input. The mean of every pixel across all cases was set

to 0 and standard deviation was set to 1.0. We then append the learned hidden features of SFNNs

and C-GRBMs to the image pixels and re-train the same classifiers. The results are shown in the first

row of Table 4.6. Adding hidden features from the SFNN trained in an unsupervised manner (without

expression labels) improves accuracy for both linear and nonlinear classifiers.

(a) Random noise

(b) Block occlusion

Figure 4.10: Left: Noisy test images y. Pos-
terior inference in SFNN finds Ep(h|x,y)[h].
Right: generated y images from the expected
hidden activations.

Linear C-GRBM SFNN MLP SFNN

+Linear +Linear +MLP

clean 80.0% 81.4% 82.4% 83.2% 83.8 %

10% noise 78.9% 79.7% 80.8% 82.0% 81.7 %

50% noise 72.4% 74.3% 71.8% 79.1% 78.5%

75% noise 52.6% 58.1% 59.8% 71.9% 73.1%

10% occl. 76.2% 79.5% 80.1% 80.3% 81.5%

50% occl. 54.1% 59.9% 62.5% 58.5% 63.4%

75% occl. 28.2% 33.9% 37.5% 33.2% 39.2%

Table 4.6: Recognition accuracy over 5 folds.
Bold numbers indicate that the difference in ac-
curacy is statistically significant than the com-
petitor models, for both linear and nonlinear
classifiers.

SFNNs are also useful when dealing with noise. As a generative model of y, it is somewhat robust

to noisy and occluded pixels. For example, the left panels of Fig. 4.10, show corrupted test images y.

Using the importance sampler described in Sec. 4.2.2, we can compute the expected values of the binary

stochastic hidden variables given the corrupted test y images8. In the right panels of Fig. 4.10, we show

the corresponding generated y from the inferred average hidden states. After this denoising process, we

can then feed the denoised y and E[h] to the classifiers. This compares favorably to simply filling in the

missing pixels with the average of that pixel from the training set. Classification accuracies under noise

are also presented in Table 4.6. For example 10% noise means that 10 percent of the pixels of both x and

y are corrupted, selected randomly. 50% occlusion means that a square block with 50% of the original

area is randomly positioned in both x and y. Gains in recognition performance from using SFNN are

particularly pronounced when dealing with large amounts of random noise and occlusions.

4.2.7 Additional Qualitative Experiments

Not only are SFNNs capable of modeling facial expressions of aligned face images, they can also model

complex real-valued conditional distributions. Here, we present some qualitative samples drawn from

8For this task we assume that we have knowledge of which pixels is corrupted.



Chapter 4. Density learning with structure 73

(a) Generated Objects (b) Generated Horses

Figure 4.11: Samples generated from a SFNN after training on object and horse databases. Conditioned
on a given foreground mask, the appearance is multimodal (different color and texture). Best viewed in
color.

SFNNs trained on more complicated distributions. We trained SFNNs to generate colorful images of

common objects from the Amsterdam Library of Objects database (Geusebroek et al., 2005), conditioned

on the foreground masks. This is a database of 1000 everyday objects under various lighting, rotations,

and viewpoints. Every object also comes with a foreground segmentation mask. For every object, we

selected the image under frontal lighting without any rotations, and trained a SFNN conditioned on the

foreground mask. Our goal is to model the appearance (color and texture) of these objects. Of the 1000

objects, there are many objects with similar foreground masks (e.g. round or rectangular). Conditioned

on the test foreground masks, Fig. 4.11(a) shows random samples from the learned SFNN model. We

also tested on the Weizmann segmentation database (Borenstein and Ullman, 2002) of horses, learning

a conditional distribution of horse appearances conditioned on the segmentation mask. The results are

shown in Fig. 4.11(b).

Figure 4.12: Samples from SFNN trained on rotated faces.

We also tested on the UMIST faces database (Graham and Allinson, 1998), which contains in-depth

3D rotation of heads. We trained the same SFNNs as for facial expression on the 16 training subjects,

using 4 subjects for testing. Conditioned on the profile view, we are modeling the distribution of rotations

up to 90 degrees. Fig. 4.12 displays 3 test subjects’ profile view along with seven exact samples drawn

from the model (plotted on the right hand side). This is a particularly difficult task, as the model must

learn to generate face parts, such as eyes and nose.
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4.2.8 Computation Time

Despite having to draw M samples during learning, Fig. 4.9 empirically demonstrated that 20 samples

is often sufficient9. This is in part due to the fact that samples from the conditional prior are exact

and in part due to the cooperation that occurs during learning. Regarding hardware, our experiments

are performed on nVidia GTX580 GPUs. This gives us over 10x speedup over CPUs. For example,

a 4 hidden layer SFNN with 2304 input and output dimensions, 128 stochastic hidden nodes, and 50

samples per E-step, can update its parameters in 0.15 secs on a minibatch of 100 cases.

In Table 4.5, C-GRBM is also trained on the GPU, but is much slower due to its use of a large hidden

layer and 25 CD steps. For example, the C-GRBM requires 1.16 secs per parameter update. MFA and

MDNs are run on CPUs and we can also expect 10x speedup from moving to GPUs.

4.3 Discussion

In this chapter we discussed two novel generative models for improving density learning. The first

model is based on the Mixture of Factor Analyzers, where we have shown that we get a consistent and

substantial performance gain by training a second layer MFA on the aggregated posterior of the first layer

MFAs. We have also shown that as density models, MFAs significantly outperform undirected RBM

models for real-valued data. Higher input dimensionality leads to bigger gains from learning DMFAs.

However, adding a third MFA layer appears to be of little value. A possible extension of our work is to

train a mixture of linear dynamical systems and then to train a higher-level mixture of linear dynamical

systems to model the aggregated posterior of each component of the first level mixture.

The second model is a feedforward neural network with a hybrid of stochastic and deterministic

hidden nodes. We have proposed an efficient learning algorithm that allows us to learn rich multi-

modal conditional distributions, supported by quantitative and qualitative empirical results. The major

drawbacks of SFNNs are that inference is not trivial and M samples are needed for the importance

sampler. While this is sufficiently fast for our experiments we can potentially accelerate inference by

learning a separate recognition network to perform inference in one feedforward pass. These techniques

have previously been used by Hinton et al. (1995); Salakhutdinov and Larochelle (2010) with success.

9We note that this is still M times more expensive than standard backprop.



Chapter 5

A higher-order generative model:

The Tensor Analyzer

Chapter 3 proposed two new models by adding meaningful latent variables which were domain-specific

to vision. However, it is more desirable to have a flexible higher-order latent representation which can

learn meaningful representation without any domain knowledge (such as the way light interacts with

surface normals of objects).

In this chapter we introduce the Tensor Analyzer, which is a multilinear generalization of Factor

Analyzers. Factor Analysis is a statistical method that seeks to explain linear variations in data by

using unobserved latent variables. Due to its additive nature, it is not suitable for modeling data

that is generated by multiple groups of latent factors which interact multiplicatively. We describe an

efficient way of sampling from the posterior distribution over factor values and we demonstrate that

these samples can be used in the EM algorithm for learning interesting mixture models of natural image

patches. Tensor Analyzers can also accurately recognize a face under significant pose and illumination

variations when given only one previous image of that face. We also show that Tensor Analyzers can be

trained in unsupervised, semi-supervised, or fully supervised settings.

Exploratory Factor Analysis is widely used in statistics to identify underlying linear factors. Mixtures

of Factor Analyzers have been used successfully for unsupervised learning (Yang et al., 1999; Verbeek,

2006). Factor Analyzers (FAs) model each observation vector as a weighted linear combination of

the unobserved factor values plus additive uncorrelated noise. For many types of data, this additive

generative process is less suitable than a generative process that also contains multiplicative interactions

between latent factors.

An example of multiplicative interactions is the set of face images under varying illuminations. It is

known that these images of a particular person approximately lie on a 3 dimensional linear subspace,

making a FA with 3 factors a good model (Belhumeur and Kriegman, 1996). The linear subspace (and

thus the factor loadings) will be person-specific due to the way facial structures interact with the light

to create a face image. As a result of this person-specific property, the factor loadings need to be a

function of the person identity when modeling face images of multiple people. Instead of modeling 100

individuals with 100 separate FAs, it is desirable to use person-identity variables to linearly combine

a “basis” (a set of) factor loadings to compactly model all 100 faces, drastically reducing the number

of parameters. This factorial representation, as shown in Fig. 5.1, naturally allows for generalization

75
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Figure 5.1: Illustration of why TA is needed. Three dimensional bases (left) span the pixel space of
specific individuals. In order to properly generalize to a novel test subject, tensor interactions of the
learned training bases are needed to form a new basis for modeling a test subject.

to new people required for one-shot face recognition. Fig. 5.1 provides an illustration and Sec. 5.6.3

provides experimental validations.

To this end, we introduce Tensor Analyzers (TAs), which generalize FAs to the multilinear setting by

introducing a factor loading tensor and multiple groups of latent factors. Utilizing the loading tensor, a

group can change how another group’s factors interact with the observed variables. This allows latent

factor groups in a TA to learn highly interpretable representations. In the faces example, one group

could represent lighting direction while the other could represent the identity.

In the special case of a TA with only one group of factors, its loading tensor reduces to a loading

matrix, and the model is exactly the same as an ordinary FA. In a TA, when conditioned on all but

one group of factors, the model effectively becomes a FA where the factor loadings are a function of the

factor values in the groups we are conditioning on. The posterior distribution of the factor values in a

FA can be computed analytically, so by cycling through each group of factors, efficient alternating Gibbs

sampling is therefore possible in the TA. A TA is a proper density model so the extension to a mixture

of TAs (MTA) is straightforward. When performing inference or learning in a TA, it is easy to make use

of a supervisory signal that specifies the fact that 2 or more different observations are generated from

the same factor values in some of the factor groups. This allows for TAs to seamlessly transition from

an unsupervised density model to a semi and fully supervised model.

5.1 Related Works

Bilinear models with priors on the latent variables have been previously studied in the machine learning,

statistics, and computer vision literatures. In Grimes and Rao (2005), sparsity is induced on the codes

of a bilinear model to learn translational invariant representation from video. However, their model does

not try to maximize log p(x), but instead finds the MAP estimate of the code activations, à la sparse

coding. Culpepper et al. (2011) describe an outer-product factorization of the bilinear model that is

trained as a density model using EM, but expensive Hamiltonian dynamics are required for sampling

from the posterior. In addition, their model only admits an approximate M-step and does not make it

easy to incorporate label information. Wang et al. (2007) proposed a multifactor GPLVM extension for

modeling human motion (henceforth referred to as GPSC). In their model, the parameters are integrated
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out, and factors are kernalized. Optimization is needed to find the latent coordinates. Computationally,

as in GPLVM, GPSC scales cubicly in the size of the training data.

While TAs and the above models take as input i.i.d. data vectors, there exists a plethora of tensor

decomposition (TD) methods when the data comes in the form of N-way tensors (Tucker, 1963; Carroll

and Chang, 1970; Lathauwer and Vandewalle, 2004; Wang and Ahuja, 2003; Sun et al., 2006). The SVD

algorithm was used to learn a bilinear model to separate style and content (Tenenbaum and Freeman,

2000), which we will refer to as the S&C model. Tucker decomposition was applied to a 5-mode array of

face images in Vasilescu and Terzopoulos (2002), finding multilinear bases called TensorFaces. Shashua

and Hazan (2005) enforced non-negative constraints to PARAFAC decomposition. Chu and Ghahramani

(2009) introduced a Bayesian probabilistic version of Tucker decomposition, while Xu et al. (2012)

provided a nonparametric Bayesian extension. The main disadvantages of the tensor decomposition

methods are that data must be arranged in a tensor and that inference given a single new test case is

ill-posed and can be ad hoc1.

In contrast, TAs do not have any of the above deficiencies. Our main contribution is in the introduc-

tion of standard Gaussian priors on each latent group, which allows us to utilize the efficient inference

procedure of Factor Analysis as part of TA’s inference procedure. We also provide the EM algorithm

that allows TAs to learn directly from data vectors in an entirely unsupervised manner. It can also

make use of supervision in the form of equality constraints that specify that one group of factors should

have the same vector of values for a subset of the training cases (Sec. 5.5.3). As an extension to FA,

TA inherits an efficient inference algorithm that is used in each step of alternating Gibbs sampling and

a closed-form M-step during learning. Unlike bilinear models, it can handle multilinear cases with 3 or

more groups of latent factors. It can also be easily extended to a mixture model, provided we are willing

to compute approximate densities, as described in (Sec. 5.5.1). In addition, posterior inference for a

single test case is simple and accurate, as demonstrated by our one-shot face recognition experiments of

Sec. 5.6.3.

5.2 Preliminaries

Following Kolda and Bader (2009), we refer to the number of dimensions of the tensor as its order (also

known as modes). We will use bold lowercase letters to denote vectors (tensors of order one), e.g. x;

bold uppercase letters for matrices (tensors of order two), e.g. W. We use the notation w(i,:) to denote

the i-th row of matrix W. Higher order tensors are denoted by Euler script letters, e.g. a third-order

tensor with dimensions of I, J , and K: T ∈ RI×J×K .

Fibers: Fibers are higher-order generalization of row/column vectors. Elements of a tensor fiber are

found by fixing all but one index. Specifically, t(:,j,k) is the mode-1 fiber of the tensor T. Row and

column vectors are the mode-2 and mode-1 fiber of a 2nd-order tensor, respectively.

Matricization: Matricization is the process of “flattening” a tensor into a matrix, by reordering the

elements of the tensor. It is denoted by T(n), where the mode-n fibers of T are placed in the columns of

the resulting matrix T(n). For example, given T ∈ RI×J×K , T(1) ∈ RI×JK .

n-mode vector product: By multiplying a vector y ∈ RDn with a tensor T ∈ RD1×D2×···×DN along

the mode-n, the n-mode (vector) product is denoted by T ×̄n y. The resulting tensor is of size D1 ×

1E.g., the asymmetric model in (S&C) requires EM learning of a separate model during test time. Probabilistic TD
methods require new test cases to come with labels.



Chapter 5. A higher-order generative model: The Tensor Analyzer 78

· · · ×Dn−1 ×Dn+1 × · · · ×DN .

5.2.1 Factor Analyzers

Let x ∈ RD denote the D-dimensional data, let {z ∈ Rd : d ≤ D} denote d-dimensional latent factors.

FA is defined by a prior and likelihood:

p(z) = N (z; 0, I), p(x|z) = N (x; Λz + µ,Ψ), (5.1)

where I is the d× d identity matrix; Λ ∈ RD×d is the factor loading matrix, µ is the mean. A diagonal

Ψ ∈ RD×D represents the variance of the observation noise. By integrating out the latent variable z, a

FA model becomes a Gaussian with constrained covariance:

p(x) =

∫
z

p(x|z)p(z)dz = N (x;µ,Γ), (5.2)

where Γ = ΛΛT + Ψ. For inference, we are interested in the posterior, which is also a multivariate

Gaussian:

p(z|x) = N (z; m,V−1), (5.3)

where V = I + ΛTΨ−1Λ, and m = V−1ΛTΨ−1(x−µ). Maximum likelihood estimation of the param-

eters is straightforward using the EM algorithm (Rubin and Thayer, 1982). During the E-step, Eq. 5.3

is used to compute the posterior sufficient statistics. During the M-step, the expected complete-data

log-likelihood Ep(z|x;θold)[log p(x, z; θ)] is maximized with respect to the model parameters θ = {Λ,µ,Ψ}.

5.3 Tensor Analyzers

TA replaces FA’s factor loading Λ ∈ RD×d with a factor “loading” tensor T ∈ RD×d1×···×dJ . In addition,

a TA has J groups of factors: {z1, z2, . . . , zJ}: j = 1, . . . , J , zj ∈ Rdj . The key property of TAs is that

the interactions between a particular factor group and the data is modified by the factor values in other

groups. Given {z2, . . . , zJ}, Λnew, which is the factor loading matrix between z1 and x, is given by:

Λnew = (((T ×̄2 z2) ×̄3 z3)×̄ · · · ) ×̄J zJ).

We will use the notation TA{D, d1, d2, . . . , dJ} to denote the aforementioned TA. By using a (J + 1)-

order tensor T, a TA can model multiplicative interactions among its latent factors {z1, z2, . . . , zJ}. In

contrast, FAs do not model multiplicative interactions involving terms such as zizj : i 6= j.

Each group of factors has a standard Normal prior:

p(zj) = N (zj |0, I), j = 1, 2, . . . , J. (5.4)

For clarity of presentation, we assume J = 3 for the following equations. The likelihood p(x|z1, z2, z3)

is:

N (x|m +

3∑
j

Wjzj + T(1)(z3 ⊗ z2 ⊗ z1),Ψ), (5.5)

where x ∈ RD, m, and Ψ are same as in FA. Wj ∈ RD×dj are the “biases” factor loadings, T(1) ∈
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Figure 5.2: Diagram of TA’s (J = 2) generative process. Λnew = T ×̄2 z2 gives a new factor loading
matrix for z1. Λnewz1 , T(1)(z2 ⊗ z1) determines the mean of p(x|z1, z2).

RD×(d1d2d3) is the matricization of the tensor T, and “⊗” is the Kronecker product operator. Multi-

plicative interactions are due to the term: z3⊗ z2⊗ z1, which is a vector with dimensionality of d1d2d3.

We note that

T(1)(z3 ⊗ z2 ⊗ z1) =
∑
i,j,k

t(:,i,j,k)z1(i)z2(j)z3(k),

where z1(i) is the i-th element of vector z1, and t is the mode-1 fiber of T. T(1)(z3 ⊗ z2 ⊗ z1) is also

equivalent to Λnewz1.

For clarity, we can concatenate the factors and loading matrices: let y ∈ Rd1+d2+d3+1 , [z1; z2; z3; 1];

W ∈ RD×(d1+d2+d3+1) , [W1,W2,W3,m]; and u ∈ Rd1d2d3 = z3 ⊗ z2 ⊗ z1. The joint log-likelihood of

the TA is:

log p(x, z1, z2, z3) =

3∑
j=1

(
− dj

2
log(2π)− 1

2
zTj zj

)
− D

2
log(2π)− 1

2
log |Ψ| − 1

2
(x− e)TΨ−1(x− e),

where e = Wy+T(1)u. The last term of the above equation indicates that the TA models contain higher-

order interactions (outer products of all factors). In comparison, FAs have only 2nd-order interactions

among their latent factors. Fig. 5.2 displays a visual diagram of the TA’s generative process.

Conditioned on any two of the three groups of factors, e.g. z2 and z3, the log-likelihood of x and z1

becomes:

log p(x, z1|z2, z3) = −1

2

(
(d1 +D) log(2π) + zT1 z1

+ log |Ψ|+ (x− e)TΨ−1(x− e)
)
. (5.6)

Here, e can be re-written as (m+W2z2+W3z3)+(W1+T ×̄3 z3 ×̄2 z2)z1. We can see that conditioned
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on z2 and z3, we have a FA with parameters (c.f. Eq. 5.1):

µ = m + W2z2 + W3z3,

Λ = W1 + T ×̄3 z3 ×̄2 z2. (5.7)

The marginal probability density function is a Gaussian: p(x|z2, z3) = N (x|µ,ΛΛT + Ψ).

5.4 Inference

Higher order interaction in the TA means that inference is more complicated, since the joint posterior

p(z1, z2, . . . , z3|x) has no closed-form solution. We resort to alternating Gibbs sampling by cycling

through p(z1|x, z2, z3); p(z2|x, z1, z3); p(z3|x, z1, z2).

Conditioned on two groups of factors, the posterior of the third is simple as the model reduces to a

FA:

p(z1|x, z2, z3) = N (z1|V−1ΛTΨ−1(x− µ),V−1), (5.8)

where V = I + ΛTΨ−1Λ. µ, Λ are defined by Eq. 5.7.

Although inference involves a matrix inverse, it only has cost of O(d3), where d << D, is the

dimension of a latent factor group. d can be small since the data is assumed to be explained by a low

dimensional manifold. We provide detailed timing evaluations in Sec. 5.6.5. It is important to note that

the ability to perform alternating Gibbs sampling is critical to the efficiently performing inference. If we

had to resort to Gibbs sampling of each latent factor variables separately or use Hybrid Monte Carlo,

convergence would be too slow for learning on large data (Sec. 5.6.2).

5.5 Learning

Maximum likelihood learning of a TA is similar to FA and is straightforward using a stochastic variant

of the EM algorithm (Levine and Casella, 2001). During the E-step, MCMC samples are drawn from

the posterior distribution using alternating Gibbs sampling. In the M-step, the samples are used to

approximate the sufficient statistics involving u and y, followed by closed-form updates of the model

parameters, θ = {W,T(1),Ψ}.

The objective function Q of the EM algorithm is the expected complete log-likelihood, taken over
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the posterior distribution of the latent factors, and summed over N training cases:

Q = E
[

log

N∏
i

(2π)−D/2|Ψ|−1/2 exp{−1

2
(xi − ei)

TΨ−1(xi − ei)}
]

(5.9)

= const− N

2
log |Ψ| −

N∑
i

E
[1

2
xT
i Ψ−1xi − xT

i Ψ−1ei +
1

2
eT
i Ψ−1ei

]
(5.10)

= const− N

2
log |Ψ| −

N∑
i

E
[1

2
xT
i Ψ−1xi − xT

i Ψ−1Wyi − xT
i Ψ−1T(1)ui

+ yT
i WTΨ−1T(1)ui +

1

2
yT
i WTΨ−1Wyi +

1

2
uT
i TT

(1)Ψ
−1T(1)ui

]
(5.11)

= const− N

2
log |Ψ| −

N∑
i

(1

2
xT
i Ψ−1xi − xT

i Ψ−1WE[yi]− xT
i Ψ−1T(1)E[ui]

+ E[uT
i TT

(1)Ψ
−1Wyi] +

1

2
E[yT

i WTΨ−1Wyi] +
1

2
E[uT

i TT
(1)Ψ

−1T(1)ui]
)

(5.12)

The closed-form M-step update equations and the solutions for setting ∂Q
∂θ = 0 are given below:

∂Q

∂W
= −

N∑
i

(
−Ψ−1xiE[yi]

T + Ψ−1T(1)E[uiy
T
i ] + Ψ−1WE[yiy

T
i ]
)

= 0 (5.13)

W =
( N∑

i

xiE[yT
i ]−T(1)

N∑
i

E[uiy
T
i ]
)( N∑

i

E[yiy
T
i ]
)−1

(5.14)

∂Q

∂T(1)
= −

N∑
i

(
−Ψ−1xiE[uT

i ] + Ψ−1WE[yiu
T
i ] +

1

2
Ψ−1T(1)(2)E[uiu

T
i ]
)

= 0 (5.15)

T(1) =
( N∑

i

xiE[uT
i ]−W

N∑
i

E[yiu
T
i ]
)( N∑

i

E[uiu
T
i ]
)−1

(5.16)

∂Q

∂Ψ−1
=
N

2
Ψ−

N∑
i

(1

2
xix

T
i −WE[yi]x

T
i −T(1)E[ui]x

T
i + T(1)E[uiy

T
i ]WT

+
1

2
WE[yiy

T
i ]WT +

1

2
T(1)E[uuT]TT

(1)

)
= 0 (5.17)

Ψ =
1

N
diag

{
N∑
i

(
xix

T
i − 2T(1)

(
E[ui]x

T
i − E[uiy

T
i ]WT − 1

2
E[uuT]TT

(1)

)
− 2W

(
E[yi]x

T
i −

1

2
E[yiy

T
i ]WT))}

(5.18)

During learning, we have found that the Gibbs sampler mixes very fast and that a relatively small

number of steps (20 to 100) are needed to achieve good performance. It is important to stress that

Gibbs sampling is efficient in TAs because the posterior for each group is exact when conditioned on all

other groups. It also mixes quickly because even though the variables of the posterior are dependent,

the posterior itself is likely to be unimodal: an image of the face is explained by 1 lighting code and
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Algorithm 8 EM Learning for TA

1: Given training data with N samples: X ∈ RD×N
2: Initialize θ: {W,T(1)} ∼ N (0, .012), Ψ← 10 ∗ std(X).

repeat
//Approximate E-step:
for n = 1 to N do

3: Sample {z(n)1 , z
(n)
2 , z

(n)
3 } from p(z1, z2, z3|x(n)) using Eq. 5.8, and alternating between

z1, z2,& z3.
end for

//M-step:

4: Concatenate samples {z(n)1 , z
(n)
2 , z

(n)
3 } into {yn,un}

5: Approximate posterior expectations using samples: E[yn] ' yn, E[unyn
T] ' unynT, etc.

6: Update {W,T(1),Ψ} using Eqs. 5.14, 5.16, and 5.18.
until convergence

1 subject code (See Sec. 5.6.3). We show trace plots of the latent variables to demonstrate the fast

convergence property.

Posterior inference in a TA using alternating Gibbs sampling is efficient. We present trace plots of the

6 random latent factors of two TAs in Fig. 5.3. Left panel is from a TA learned on 2D synthetic datasets

of Sec. 5.6.1, while the right panel is from a TA modeling high dimensional face images under illumination

variations. The plots demonstrate that samples mix very quickly in around 20 Gibbs iterations.

We also looked at how posterior inference converges in a 200 component MTA trained on 8 x 8

natural image patches. The results are in Fig. 5.4.

5.5.1 Likelihood Computation

For model comparison, we are interested in evaluating the data log-likelihood log p(x|θ). As noted in

Sec. 5.3, a TA with J groups of factors reduces to a FA when conditioned on J − 1 factor groups.

Utilizing the fact that log p(x|θ) can be easily computed (Eq. 5.2), a Monte Carlo estimation of data

log-likelihood in TA can be performed by sampling from the prior of the J − 1 groups of factors. For

example, in a model TA{D, d1, d2}, J = 2:

log p(x) = log

∫
z2

p(x|z2)p(z2)dz2

' log
1

K

K∑
k=1

p(x|z(k)2 ), z
(k)
2 ∼ N (0, I). (5.19)

This simple estimator is asymptotically unbiased but has high variance unless the dimensionality of z2,

or d2, is very small. Since z1 can be analytically integrated out, the Monte Carlo technique can be

accurate when only one factor group has large dimensionality.

5.5.2 Annealed Importance Sampling for TA

For large dj , however, simple Monte Carlo estimation is very inefficient, giving an estimator with large

variance. In this situation, Annealed Importance Sampling (Neal, 2001) is needed.
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Figure 5.3: left: MCMC trace plot for TA learning on synthetic data. right:MCMC trace plot for TA
learning on high dimensional face images.

We can treat the problem of estimating log p(x) as calculating the partition function of the unnor-

malized posterior distribution p∗(z|x) , p(x, z), where p∗(·) denotes an unnormalized distribution. The

basic Importance Sampling gives:

p(x) =

∫
z

dz p(x, z) (5.20)

p(x) =

∫
z

dz
p∗(z|x)

q(z)
q(z) (5.21)

p(x) =
Zp
1
' 1

M

M∑
i

w(i), w(i) =
p∗(z(i)|x)

q(z(i))
, z(i) ∼ q(z) (5.22)

Annealed Importance Sampling specifies a set of intermediate distributions, where β varies from 0.0 to

1.0.

pβ(z) ∝ q(z)1−βp∗(z|x)β (5.23)

For TAs, the log of the tractable base distribution q(z) is:

log q({z1, z2, . . . , zJ}) =

J∑
j=1

(
− dj

2
log(2π)− 1

2
zTj zj

)
, (5.24)

which is simply the prior distribution over the latent factors.

Since we are using the prior as the base distribution and the unnormalized posterior distribution is

the distribution of interest, we can write the intermediate distribution as:

pβ({zj}) ∝ q({zj})1−βp(x, {zj})β = p({zj})pβ(x|{zj}) (5.25)
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Figure 5.4: Gibbs sampling quickly converges around 20 iterations. 9 components were randomly picked
from a MTA with 200 components trained on natural image patches. For each component, we randomly
selected 6 latent factors (one for every color).

Therefore,

log pβ({zj}) =

J∑
j

(
− dj

2
log(2π)− 1

2
zT
j zj
)

− βD

2
log(2π)− β

2
log |Ψ| − β

2
(x− e)TΨ−1(x− e) + C(β) (5.26)

To ensure that pβ({zj}) sums to 1.0, we find that:

C(β) =
β

2
log |Ψ|+ βD

2
log(2π)− 1

2
log |βΨ| − D

2
log(2π) (5.27)

Therefore,

log pβ({zj}) =
J∑
j

(
− dj

2
log(2π)− 1

2
zT
j zj
)
− D

2
log(2π)− 1

2
log |βΨ| − 1

2
(x− e)T(βΨ−1)(x− e) (5.28)

For AIS, we also need a MCMC operator which leaves pβ({z1, z2, . . . , zJ}) invariant. We use a Gibbs

sampler, which simply performs alternating Gibbs sampling of the TA’s posterior where the original

diagonal noise Ψ is modified to be βΨ. We denote this operator as Tβ(z′ ← z).

In Fig. 5.5 (left), We present the AIS algorithm. For clarity, we use Zk to denote the set of all latent
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Algorithm 9 AIS for TA

let k = 1, 2, . . . ,K, βk=1 = 0, βk=K = 1.
for i = 1 to M do

Draw Z2 from q(Z)

w(i) =
pβ2 (Z2)

pβ1 (Z2)

for k = 2 to K − 1 do
Sample Zk+1 from Tβk(Z ′ ← Zk)

w(i) = w(i) × pβk+1
(Zk+1)

pβk (Zk+1)

end for
end for
p(x) ' 1

M

∑M
i w(i)

Figure 5.5: left: AIS algorithm for TA. right: Experimental validation of AIS on a small model, where
100,000 Monte Carlo samples estimate the “true” log-likelihood.

factors Z = {zj} of the k-th intermediate distribution, k = 1, 2, . . . ,K. M is the number of independent

AIS chains.

On the right panel of Fig. 5.5, we experimented with the variance of the AIS estimator. Using a small

model of TA{2,2,2} trained on a 2D dataset of Fig. 5.6, we ran AIS algorithm with varying number of

intermediate distributions to estimate the average data log-likelihood. M is set to 10 in all experiments.

In the plot, we can see that the variance of the estimator quickly shrinks to less than 0.1 nats as we

use 500 or more intermediate distributions. The dashed line represents the estimated log-likelihood by

sampling from the prior, using 100,000 samples. Since we are sampling from only 2 dimensions, this

Monte Carlo estimator has very low variance and its value is taken to be the true data log-likelihood.

5.5.3 Equality Constraints

An equality constraint indicates that a subset {x(k)}Kk=1 of the training data have the same factor values

for the j-th factor group zj . For example, if group j = 1 represents the identity of a person and group

j = 2 represents lighting directions, an equality constraint on group 1 indicates that all images of the

subset are from the same person, while an equality constraint on group 2 indicates that images of this

subset are from the same lighting conditions.

During learning, the availability of equality constraints will only change the inference step. Assuming

we have constraints for the factor group j = 1, the posterior for zj (Eq. 5.8) will be modified as follows:

p(z1|{x(k)}, {z(k)2 }, {z
(k)
3 }) =

N (z1|Ṽ−1
K∑
k=1

{Λ(k)TΨ−1(x(k) − µ(k))}, Ṽ−1), (5.29)

where Ṽ = I+
∑K
k=1 Λ(k)TΨ−1Λ(k); Λ(k) = W1 +T ×̄3 z

(k)
3 ×̄2 z

(k)
2 ; and µ(k) = m+W2z

(k)
2 +W3z

(k)
3 .
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The M-step is not affected by the presence of equality constraints, so TAs can learn when equality

constraints are provided for arbitrary subsets of the data.

5.5.4 Mixture of Tensor Analyzers

Extending TAs to Mixture of Tensor Analyzers (MTAs) is straightforward, as Sec. 5.5.1 showed how

p(x|c) can be efficiently approximated. Each component c will have its own parameters θc = {Wc,T(1),c,Ψc}.
Posterior distribution over the factors and components can be decomposed as: p({zj}, c|x) = p({zj}|x, c)p(c|x),

where p({zj}|x, c) can be sampled using Eq. 5.8.

MTAs should be used instead of TAs when modeling highly multimodal data with multiplicative

interactions such as multiple types of objects under varying illumination.

For our experiments with MTAs, p(c|x) is approximated with Eq. 5.19 using 1000 samples per mixture

component. For our natural images experiment, it means only 180 ms per mixture component is required,

see Sec. 5.6.2.

5.6 Experiments

5.6.1 Synthetic Data

Data (-2.58 nats) TA (-2.62 nats) FA (-2.85 nats)

(a) Data A

High Kurtosis

Data (-1.97 nats) TA (-2.04 nats) FA (-2.48 nats)

(b) Data B

Figure 5.6: TA vs. FA on 2D synthetic datasets. TAs can better model complex densities.

As a proof of concept, we compared TA to FA on two synthetic datasets (Fig. 5.6 A & B). Data A is

highly structured and is generated using a TA with random parameters. Data B has high kurtosis, with

density concentrated at the origin. For both datasets, we learned using a TA{D = 2, d1 = 2, d2 = 2}
and a FA with the same number of parameters as the TA. The TAs performed model recovery nicely.

The left panel of Fig. 5.6(a) displays training points. The data log-likelihood of the true model is -2.58.

The middle panel plots the samples of a TA, which achieved the log-probability of -2.62 on the training

data. The right panel plots samples drawn from a FA. Likewise in Fig. 5.6(b), TA is a significantly

better model than the FA: −2.04± 0.05 to −2.48± 0.09. We also tested mixtures of TAs vs mixtures of

FA (MFA) on data generated by randomly initialized MFA models. The performance of MTA and MFA

were very similar, demonstrating that (M)TAs can also efficiently emulate (M)FAs when necessary.

5.6.2 Natural Images

Learning a good density model of natural images is useful for image denoising and inpainting. Fol-

lowing Zoran and Weiss (2011), we compared MTAs to MFAs and other models on modeling image

patches. Two million 8× 8 patches were extracted from the training set of the Berkeley Natural Images
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(a) Training Patches

(b) Samples from MTA

(c) Filters of MTA

Independent Pixel ICA GRBM DBN Factored Bilinear
78.3 135.7±1.2 137.8±1.0 144.4±1.1 145.9±2.7

Single FA MFA Deep MFA GMM MTA
130.1±0.6 166.5±1.8 169.3±1.5 167.2 158.2±3.3

(d) Average test log-probability (measured in nats)

Figure 5.7: Natural image patches. (a) Training data. (b) Samples from MTA. (c) Each row contains
filters from a different MTA component. (d) Average test log-probability comparisons. ICA: Independent
Component Analysis. GRBM: Gaussian Restricted Boltzmann Machine (Hinton and Salakhutdinov,
2006). DBN: Deep Belief Nets (Hinton et al., 2006). Factored Bilinear: (Culpepper et al., 2011).

database (Martin et al., 2001) for training, while 50,000 patches from the test set were extracted for

testing. The DC component of each image patch was set to 0 by subtracting the patch mean from every

pixel. For MTAs and MFAs2, we used 200 components and selected the number of latent factors based

on cross validation. For MTAs, 64 factors were used while each component of the MTA is a TA{64, 64,

5}. For the Factorized Bilinear model, we used code from the authors3. Independent Pixel and GMM

results are from Zoran and Weiss (2011), while the Deep MFA result is from Tang et al. (2012d).

After training, Fig. 5.7(b) shows that samples of a MTA closely match the training patches in

Fig. 5.7(a). Each row of Fig. 5.7(c) shows filters (fibers of the tensor) of one of the MTA compo-

nents. Components of MTA specialize to model patches of different spatial frequencies and orientations.

Fig. 5.7(d) lists quantitative evaluations of the different models. Although MTAs achieve good results,

they do not outperform MFAs or GMMs with 200 mixture components4.

We also compared the performance of MFAs vs. MTAs when the number of mixture components

is smaller. Fig. 5.8 shows the average log-likelihoods on the test set. Due to the fact that MTAs can

model higher-order interaction, they are able to outperform MFAs with 50 or less mixture components.

However, as the number of components increases, the advantage of MTAs disappears.

2MFA code (Verbeek, 2006) is downloaded from http://lear.inrialpes.fr/∼verbeek/software.php
3https://github.com/jackculpepper/dir-linear.
4The gap (less than 10 nats) in performance can be attributed to the fact that the E-step in MTA is not exact and

requires sampling, while MFA has a closed-form posterior. Sampling introduces noise which adversely affects the M-step
updates.
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Figure 5.8: Performance of MTA vs. MFA with different numbers of mixture components.

5.6.3 Face Recognition with equality constraints

In a one-shot learning setting, classifiers must be trained from only one example per class. For face

recognition, only one example per test subject is used for training. We use the Yale B database and

its Extended version (Lee et al., 2005). The database contains 38 subjects under 45 different lighting

conditions. We use 28 subjects for training and test on the 10 subjects from the original Yale B database.

The images are first downsampled to 24× 24, and we used a TA{576, 80, 4}, which contains 2 groups of

factors.

The learned TA allows for strong generalization to new people under new lighting conditions. It

achieves an average test log-probability of 836± 7 on the images of the 10 held-out subjects. As a

comparison, the best MFA model achieved only 791± 10. The number of components and factors of the

MFA are selected using grid search. The gain of 45 nats demonstrates a significant win for the TA.

Qualitatively, to see how well the TA is able to factor out identity from lighting, we first sample from

the posterior distribution conditioned on a single test image using step 3 of Alg. 8. We then fix a factor

group’s sampled values and sample the factors of the other group using its Normal prior. Results are

shown in Fig. 5.9. A row in panel (b) shows the same person under different sampled lighting conditions.

A row in panel (c) shows sampled people, but under the same lighting condition. We emphasize that

only a single test image from novel subjects is used for inference (panel (a)).

The one-shot recognition task consists of using a single image of each of the 10 test subjects for

training during the testing phase. The rest of the images of the test subjects are then classified into 1

of 10 classes. Labels indicating lighting directions of the test images can be optionally provided. TAs

can operate with or without the labels, while tensor decomposition methods require these labels. We

first use the 28 training subjects to learn the parameters for the TA{576,80,4} in the training phase.

Equality constraints specifying which images have the same identity or lighting type are used during

training. During the testing phase, a single image for each of the 10 test subjects is used to compute
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(a) Test (b) Fixing Identity (c) Fixing Lighting

Tasks Human NN XCORR SVM FA DLN CP NTF Tucker pTucker S&C GPSC TA

One-shot recognition
9.3 51.1 33.6 35.5 19.6 19

N/A N/A N/A N/A 24.0 N/A
6.4

Using lighting labels 18.3 20.4 37.3 23.6 21.7 14.5
(d) Recognition Error in %

Figure 5.9: Tensor Analyzer is able to simultaneously decompose a test image into separate identity and
lighting factors. (a) 4 test images with frontal, left, right and top light sources. (b) Random samples
with identity factor fixed to the inferred values from the test faces in (a). (c) Random samples with
lighting factor fixed to the inferred values. (d) Comparison to other methods. Tensor decomposition
methods require additional labels of lighting direction during the test phase.

the mean of the posterior p(zidentity, zlight|x), using 200 Gibbs steps. For each one of the 10 sampled

zidentity, TA{576,80,4} is transformed into a person-specific FA using Eqs. 5.6, 5.7. The resulting 10

FAs define the class-conditionals of a generative classifier, which we use to classify test images of the 10

test subjects.

We compared TA to standard classifiers and tensor decomposition methods. Human error is the

average of testing several human subjects on the same one-shot recognition task. NN is the nearest

neighbour classifier, and XCORR represents the normalized Cross Correlation. Multiclass linear SVM

from the LIBLINEAR package (Fan et al., 2008) is used, where the hyperparameter C was chosen using

validation. The Factor Analyzers method requires the transfer of the factor loadings from the training

phase. We first learned 28 FAs, one for each training subject. During the testing phase, each one of the

10 training images of the test subject is matched with the FA which gives it the largest likelihood. A

new FA is created, centered at the training image. The rest of the parameters are transferred from the

matched FA. In essence, the transferred loadings model the lighting variations of the training subjects

(1 of 28), which is most similar to the test phase training image. After the creation of these 10 new FAs,

classification is same as in the TA method.

We also compared TA to various Tensor Decomposition methods, including CP: CANDECOMP /

PARAFAC (Carroll and Chang, 1970); NTF: Nonnegative Tensor Factorization (Shashua and Hazan,

2005); Tucker (Tucker, 1963); and Probabilistic Tucker decomposition (Chu and Ghahramani, 2009).

For CP, Tucker, and NTF, we used the N-way toolbox (Bro, 1998). For the S&C bilinear method,

we implemented the exact algorithm as stated in Sec. 3.2 of Tenenbaum and Freeman (2000). The

style and content codes are adapted for new test images during one-shot learning. For GPSC, the code

provided by the authors was used. In all experiments, hyper-parameters were selected by cross-validation.

Recognition errors are shown in Fig. 5.9(d). Observe that the TA not only outperforms these methods

by a significant margin, but it even achieves better than human performance.
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5.6.4 Learning with incomplete equality constraints

We now demonstrate the advantage of the TA in a semi-supervised setting on the UMIST face database (Gra-

ham and Allinson, 1998). It contains 20 subjects with 20 to 40 training images per subject. The variation

consists of in-depth head rotations. We compared the TA to S&C model and NN on the one-shot face

recognition task. Out of the 20 subjects, 15 were used for training and 5 for testing. The split was

randomized over 10 different trials. The images are downsampled to the resolution of 24 × 24. We

experimented with equality constraints, using 3, 4, or 5 images per training subject. During the training

phase, a TA{576,3,5} model was trained using 30 EM iterations. The algorithms for classification are

exactly the same as in Sec. 5.6.3. Fig. 5.10 plots recognition errors as a function of the number of

Figure 5.10: UMIST Recognition errors.

images per subject used during the training phase. For the case where 5 images per training subject are

available, TA achieves significantly lower errors at 12.4% compared to 24.9% for S&C. If we add an equal

number of images without equality constraints during training, the error is further reduced to 10.9%.

5.6.5 Computation Time

Our experiments used Matlab on a standard multicore workstation, we report the computation time

required for inference and learning. MTA on face images in Sec. 5.6.3: inference per image per Gibbs

update takes 14 ms (milliseconds), while learning took a total of 587 secs. MFA learning took around 108

secs. In practice, matrix inversion is not very expensive in our model. For the face recognition model

TA{576,80,4}, while having the same number of parameters as a FA with 320 latent factors (which

requires inverting 320x320 matrix), only require inversion of 80x80 and 4x4 matrices, which takes 0.4

ms. MTA on natural images: inference per image per Gibbs update takes 47 ms, while the entire learning

algorithm took 33 hours. In comparison, inference per image in Mixture of Factor Analyzers (MFA)

takes 18 ms, while learning took 9.5 hours.



Chapter 5. A higher-order generative model: The Tensor Analyzer 91

5.7 Shortcomings

Tensor Analyzers are excellent for face recognition under heavy illumination variations. However, one

disadvantage of the model is that it requires labels in order to learn to accurately separate the factors of

variation. In addition, while the model works well when the input data contains multilinear variations,

it is not natural for modeling non-linear variations. Examples of non-linear variations include in-depth

rotations of an object or articulated human pose variations.

5.8 Conclusions

We have introduced a new density model which extends Factor Analysis to modeling multilinear inter-

actions. Using efficient alternating sampling and the EM algorithm, we have shown that (M)TAs can

learn more complex densities and separate factors of variation, leading to the learning of simple concepts.

Moreover, at the important task of one-shot face recognition, TAs outperform a variety of other models.

Tensor Analyzers assume that the data is generated from a multilinear interaction of the hidden

factors. While this assumption holds true for faces under varying illumination conditions, other forms

of variations do not necessarily follow these interactions. In particular, 2D transformations such as

translations and rotations are not multilinear in pixel intensity space. While we can still use Tensor

Analyzers to model these multi-nonlinear interactions, it is not a good model and the priors of the

latent codes will not be anywhere close to Gaussian. The ideal way to approach this problem is to first

transform the input data from pixel space to some higher-level feature space, where style and content

variations with respect to these features are close to multilinear. In this scenario, a deep network first

transforms the pixels into a more salient feature space. Tensor Analyzers would then be used to model

the multilinear interaction in feature space.



Chapter 6

Learning generative models with

visual attention

Attention has long been proposed by psychologists to be important for efficiently dealing with the massive

amounts of sensory stimulus in the neocortex. In this chapter, inspired by the attention models in visual

neuroscience and the need for object-centered data for generative models, we propose a deep-learning

based generative framework using attention. The attentional mechanism propagates signals from the

region of interest in a scene to an aligned canonical representation for generative modeling. By ignoring

scene background clutter, the generative model can concentrate its resources on the object of interest.

A convolutional neural net is employed to provide good initializations during posterior inference which

uses Hamiltonian Monte Carlo. Upon learning images of faces, our model can robustly attend to the

face region of novel test subjects. More importantly, our model can learn generative models of new faces

from a novel dataset of large images where the face locations are not known.

Existing generative models can synthesize realistic looking digits, faces and (to a lesser degree)

objects. However, the training data for these models are often cropped to be low-resolution (64 pixels

by 64 pixels or less). There are two main reasons for doing this. The first is to reduce the dimensionality

of the input so that the parameters of the model is greatly reduced. Note that for models such as the

de-convolutional neural nets this might not be such a big problem. The second reason is that by choosing

to focus on a specific object, the manifold of variation is much easier to model. For example, it is much

easier to model cropped faces rather than the entire head, which includes the neck and hair. Some papers

have tried to model the big picture or full sized in-the-wild images by using tiled convolutions. However,

due to the complexity of the objects and backgrounds, learning generative model of the entire scene has

achieved limited success. Nevertheless, for recognition tasks we may not need to model the entire scene.

This is because the object of interest typically only occupies a small region within the image. In this

chapter, we propose a model where attention is used to route pertinent stimuli within the large image

for generative modeling.

6.1 Motivation

Building rich generative models that are capable of extracting useful, high-level latent representations

from high-dimensional sensory input lies at the core of solving many AI-related tasks, including object

92
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recognition, speech perception and language understanding. These models capture underlying structure

in data by defining flexible probability distributions over high-dimensional data as part of a complex,

partially observed system. Some of the successful generative models that are able to discover meaningful

high-level latent representations include the Boltzmann Machine family of models: Restricted Boltz-

mann Machines, Deep Belief Nets (Hinton et al., 2006), and Deep Boltzmann Machines (Salakhutdinov

and Hinton, 2009). Mixture models, such as Mixtures of Factor Analyzers (Ghahramani and Hinton,

1996) and Mixtures of Gaussians, have also been used for modeling natural image patches (Zoran and

Weiss, 2011). Energy-based models have also been proposed for learning a sparse and over-complete

representation of the data (Teh et al., 2003). More recently, denoising auto-encoders have been proposed

as a way to model the transition operator that has the same invariant distribution as the data generating

distribution (Bengio et al., 2013).

Generative models have an advantage over discriminative models when parts of the images are oc-

cluded or missing. Occlusions are very common in realistic settings and have been largely ignored in

recent literature on deep learning. In addition, prior knowledge can be easily incorporated in generative

models in the form of structured latent variables, such as lighting and deformable parts. However, the

enormous amount of content in high-resolution images makes generative learning difficult (Lee et al.,

2009; Ranzato et al., 2011). Therefore, generative models have found most success in learning to model

small patches of natural images and objects: Zoran and Weiss (2011) learned a mixture of Gaussians

model over 8×8 image patches; Salakhutdinov and Hinton (2009) used 64×64 centered and uncluttered

stereo images of toy objects on a clear background; Tang et al. (2012a) used 24× 24 images of centered

and cropped faces. The fact that these models require curated training data limits their applicability to

completely unlabeled data, which is virtually unlimited.

In this chapter, we propose a framework to infer the region of interest in a big image for generative

modeling. This will allow us to learn a generative model of faces on a very large dataset of (unlabeled)

images containing faces. Our framework is able to dynamically route the relevant information to the

generative model and can ignore the background clutter. The need to dynamically and selectively

route information is also present in the biological brain. A plethora of evidence points to the presence

of attention in the visual cortex (Posner and Gilbert, 1999; Buffalo et al., 2010). Recently, in visual

neuroscience, attention has been shown to exist not only in extrastriate areas, but also all the way down

to V1 (Kanwisher and Wojciulik, 2000).

Hinton (1981) first proposed a way to dynamically route the stimulus to a canonical object-based

frame of reference. To recognize familiar object in an unusual orientation, a canonical frame of refer-

ence can be imposed on the object, leading to a viewpoint-independent description. Retina-based units

represent object parts in any orientation, position and size. Dynamic routing by mapping units acti-

vates object-based units leading to recognition. This form of routing is viewed as a form of attention

in neuroscience. A computational model was proposed by Anderson and Van Essen (Anderson and

Essen, 1987) and then extended by Olshausen et al. (1993). Dynamic routing has been hypothesized as

providing a way for achieving shift and size invariance in the visual cortex (Wiskott, 2004; Chikkerur

et al., 2010). Tsotsos et al. (1995) proposed a model combining search and attention called the Selective

Tuning model. Larochelle and Hinton (2010) proposed a way of using third-order Boltzmann Machines

to combine information gathered from many foveal glimpses. Their model chooses where to look next

to find locations that are most informative of the object class. Reichert et al. (2011) proposed a hier-

archical model to show that certain aspects of covert object-based attention can be modeled by Deep
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Olshausen et al. 93 Our model

2d similarity
transformation

Figure 6.1: Left: The Shifter Circuit, a well-known neuroscience model for visual attention (Olshausen
et al., 1993); Right: The proposed model uses 2D similarity transformations from geometry and a
Gaussian DBN to model canonical face images. Associative memory corresponds to the DBN, object-
centered frame correspond to the visible layer and the attentional mechanism is modeled by 2D similarity
transformations.

Boltzmann Machines. Several other related models attempt to learn where to look for objects (Alexe

et al., 2012; Ranzato, 2014) and for video based tracking (Denil et al., 2012). Inspired by Hinton (1981)

and Olshausen et al. (1993), we use 2D similarity transformations to implement the scaling, rotation,

and shift operation required for routing. Our main motivation is to enable the learning of generative

models in big images where the location of the object of interest is unknown a-priori. Frey and Jojic

(1999) proposed a similar framework for learning a mixture of Gaussians from images and videos by

estimating spatial transformations. However, their framework represents transformations by a set of

discrete matrices, which limits (due to computation costs) their model to only a relative coarse set of

translations, scales and rotations.

6.2 The Model

Let I be a high resolution image of a scene, e.g. a 256 × 256 image. We want to use attention to

propagate regions of interest from I up to a canonical representation. For example, in order to learn a

model of faces, the canonical representation could be a 24× 24 aligned and cropped frontal face image.

Let v ∈ RD represent this low resolution canonical image. In this work, we focus on a Deep Belief

Network1 to model v.

This is illustrated in the diagrams of Fig. 6.1. The left panel displays the model of Olshausen et al.

(1993), whereas the right panel shows a graphical diagram of our proposed generative model with an

attentional mechanism. Here, h1 and h2 represent the latent hidden variables of the DBN model, and

4x,4y,4θ,4s (position, rotation, and scale) are the parameters of the 2D similarity transformation.

The 2D similarity transformation is used to rotate, scale, and translate the canonical image v onto

the canvas that we denote by I. Let p = [x y]T be a pixel coordinate (e.g. [0, 0] or [0, 1]) of the canonical

image v. Let {p} be the set of all coordinates of v. For example, if v is 24 × 24, then {p} ranges

1Other generative models can also be used with our attention framework.
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from [0, 0] to [23, 23]. Let the “gaze” variables u ∈ R4 ≡ [4x,4y,4θ,4s] be the parameter of the

Similarity transformation. In order to simplify derivations and to make transformations be linear w.r.t.

the transformation parameters, we can equivalently redefine u = [a, b, 4x, 4y], where a = s sin(θ)− 1

and b = s cos(θ) (see Szeliski (2011) for details). We further define a function w := w(p,u)→ p′ as the

transformation function to warp points p to p′:

p′ ,
[ x′
y′

]
=
[ 1 + a −b

b 1 + a

][ x
y

]
+
[ 4x
4y

]
. (6.1)

We use the notation I({p}) to denote the bilinear interpolation of I at coordinates {p} with anti-aliasing.

Let x(u) be the extracted low-resolution image at warped locations p′:

x(u) , I(w({p},u)). (6.2)

Intuitively, x(u) is a patch extracted from I according to the shift, rotation and scale parameters of u,

as shown in Fig. 6.1, right panel. It is this patch of data that we seek to model generatively. Note

that the dimensionality of x(u) is equal to the cardinality of {p}, where {p} denotes the set of pixel

coordinates of the canonical image v. Unlike standard generative learning tasks, the data x(u) is not

static but changes with the latent variables u. Given v and u, we model the top-down generative process

over2 x with a Gaussian distribution having a diagonal covariance matrix σ2I:

p(x|v,u, I) ∝ exp

(
− 1

2

∑
i

(xi(u)− vi)2

σ2
i

)
. (6.3)

The fact that we do not seek to model the rest of the regions/pixels of I is by design. By using a cropped

2D similarity transformation to mimic attention, we can discard the complex background of the scene

and let the generative model focus on the object of interest. The proposed generative model takes the

following form:

p(x,v,u|I) = p(x|v,u, I)p(v)p(u), (6.4)

where for p(u) we use a flat prior that is constant for all u, and p(v) is defined by a 2-layer Gaussian

Deep Belief Network. The conditional p(x|v,u, I) is given by a Gaussian distribution as in Eq. 6.3. To

simplify the inference procedure, p(x|v,u, I) and the GDBN model of v, p(v), will share the same noise

parameters σi.

6.3 Inference

While the generative equations in the last section are straightforward and intuitive, inference in these

models is typically intractable due to the complicated energy landscape of the posterior. During inference,

we wish to compute the distribution over the gaze variables u and canonical object v given the big

image I. Unlike in standard RBMs and DBNs, there are no simplifying factorial assumptions about the

conditional distribution of the latent variable u. Having a 2D similarity transformation is reminiscent of

third-order Boltzmann machines with u performing top-down multiplicative gating of the connections

2We will often omit dependence of x on u for clarity of presentation.
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between v and I. It is well known that inference in these higher-order models is rather complicated.

One way to perform inference in our model is to resort to Gibbs sampling by computing the set of

alternating conditional posteriors: The conditional distribution over the canonical image v takes the

following form:

p(v|u,h1, I) = N
(µ+ x(u)

2
;σ2

)
, (6.5)

where µi = bi + σ2
i

∑
jWijh

1
j is the top-down influence of the DBN. Note that if we know the gaze

variable u and the first layer of hidden variables h1, then v is simply defined by a Gaussian distribution,

where the mean is given by the average of the top-down influence and bottom-up information from

x. The conditional distributions over h1 and h2 given v are given by the standard DBN inference

equations (Hinton et al., 2006). The conditional posterior over the gaze variables u is given by:

p(u|x,v) =
p(x|u,v)p(u)

p(x|v)
,

log p(u|x,v) ∝ log p(x|u,v) + log p(u) =
1

2

∑
i

(xi(u)− vi)2

σ2
i

+ const. (6.6)

Using Bayes’ rule, the unnormalized log probability of p(u|x,v) is defined in Eq. 6.6. We stress that this

equation is atypical in that the random variable of interest u actually affects the conditioning variable x

(see Eq. 6.2) We can explore the gaze variables using Hamiltonian Monte Carlo (HMC) algorithm (Duane

et al., 1987; Neal, 2010). Intuitively, conditioned on the canonical object v that our model has in “mind”,

HMC searches over the entire image I to find a region x with a good match to v.

If the goal is only to find the MAP estimate of p(u|x,v), then we may want to use second-order

methods for optimizing u. This would be equivalent to the Lucas-Kanade framework in computer

vision, developed for image alignment (Baker and Matthews, 2002). However, HMC has the advantage

of being a proper MCMC sampler that satisfies detailed balance and fits nicely with our probabilistic

framework.

The HMC algorithm first specifies the Hamiltonian over the position variables u and auxiliary

momentum variables r: H(u, r) = U(u) + K(r), where the potential function is defined by U(u) =
1
2

∑
i
(xi(u)−vi)2

σ2
i

and the kinetic energy function is given by K(r) = 1
2

∑
i r

2
i . The dynamics of the

system is defined by:

∂u

∂t
= r,

∂r

∂t
= −∂H

∂u
(6.7)

∂H
∂u

=
(x(u)− v)

σ2

∂x(u)

∂u
, (6.8)

∂x

∂u
=

∂x

∂w({p},u)

∂w({p},u)

∂u
=
∑
i

∂xi
∂w(pi,u)

∂w(pi,u)

∂u
. (6.9)

Observe that Eq. 6.9 decomposes into sums over single coordinate positions pi = [x y]T. Let us

denote p′i = w(pi,u) to be the coordinate pi warped by u. For the first term on the RHS of Eq. 6.9,
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∂xi
∂w(pi,u)

= ∇I(p′i), (dimension 1 by 2 ) (6.10)

where ∇I(p′i) denotes the sampling of the gradient images of I at the warped location pi. For the

second term on the RHS of Eq. 6.9, we note that we can re-write Eq. 6.1 as:

[ x′
y′

]
=
[ x −y 1 0

y x 0 1

][ a

b

4x
4y

]
+
[ x
y

]
, (6.11)

giving us

∂w(pi,u)

∂u
=
[ x −y 1 0

y x 0 1

]
. (6.12)

HMC simulates the discretized system by performing leap-frog updates of u and r using Eq. 6.7.

Additional hyperparameters that need to be specified include the step size ε, number of leap-frog steps,

and the mass of the variables (see Neal (2010) for details).

6.3.1 Approximate Inference

(a)

Average

A

B

(b)

Figure 6.2: (a) HMC can easily get
stuck at local optima. (b) Importance
of modeling p(u|v, I). Best in color.

HMC essentially performs gradient descent with momentum,

therefore it is prone to getting stuck at local optimums. This

is especially a problem for our task of finding the best transfor-

mation parameters. While the posterior over u should be uni-

modal near the optimum, many local minima exist away from the

global optimum. For example, in Fig. 6.2(a), the big image I is

enclosed by the blue box, and the canonical image v is enclosed

by the green box. The current setting of u aligns together the

wrong eyes. However, it is hard to move the green box to the

left due to the local optima created by the dark intensities of the

eye. Resampling the momentum variable every iteration in HMC

does not help significantly because we are modeling real-valued

images using a Gaussian distribution as the residual, leading to

quadratic costs in the difference between x(u) and v (see Eq. 6.6).

This makes the energy barriers between modes extremely high.

To alleviate this problem we need to find good initializations

of u. We use a Convolutional Network (ConvNet) to perform

efficient approximate inference, resulting in good initial guesses.

Specifically, given v, u and I, we predict the change in u that

will lead to the maximum log p(u|x,v). In other words, instead

of using the gradient field for updating u, we learn a ConvNet

to output a better vector field in the space of u. We used a

fairly standard ConvNet architecture and the standard stochastic

gradient descent learning procedure.
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Figure 6.3: A visual diagram of the convolutional net used for approximate inference.

We note that standard feedforward face detectors seek to

model p(u|I), while completely ignoring the canonical face v. In contrast, here we take v into ac-

count as well. The ConvNet is used to initialize u for the HMC algorithm. This is important in a proper

generative model because conditioning on v is appealing when multiple faces are present in the scene.

Fig. 6.2(b) is a hypothesized Euclidean space of v, where the black manifold represents canonical faces

and the blue manifold represents cropped faces x(u). The blue manifold has a low intrinsic dimension-

ality of 4, spanned by u. At A and B, the blue comes close to black manifold. This means that there

are at least two modes in the posterior over u. By conditioning on v, we can narrow the posterior to a

single mode, depending on whom we want to focus our attention. We demonstrate this exact capability

in Sec. 6.5.3.

Fig. 6.4 demonstrates the iterative process of how approximate inference works in our model. Specif-

ically, based on u, the ConvNet takes a window patch around x(u) (72× 72) and v (24× 24) as input,

and predicts the output [4x,4y,4θ,4s]. In step 2, u is updated accordingly, followed by step 3 of

alternating Gibbs updates of v and h, as discussed in Sec. 6.3. The process is repeated.

The training of ConvNet for approximate inference is standard and did not involve any special

’tricks’. We used SGD with minibatch size of 128 samples. We used a standard ConvNet architecture

with convolution C layers followed by max-pooling S layers. The ConvNet takes as input x and v to

predict change in u so as to maximize log p(u|x,v). In order to better predict change of u, x as well as

a bigger border around x are used as the input to the ConvNet. Therefore, x has resolution 72× 72 and

v has resolution of 24× 24.

To handle two different inputs with different resolutions, two different “streams” are used in this

ConvNet architecture. One stream will process x and another one v. These two streams will be
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combined multiplicatively after subsampling the x stream by a factor of 3. The rest of the ConvNet

is same as the standard classification ConvNets, except that we use mean squared error as our cost

function. See Fig. 6.3 for a diagram of the Convolutional Neural Network architecture used.

layer type latent variables filter size # weights

0 input x maps:3 72x72 - -
1 input v maps:3 24x24 - -
2 Conv of layer 0 maps:16 66x66 7x7 2352
3 Pooling maps:16 22x22 3x3 -
4 Conv of layer 1 maps:16 22x22 5x5 1200
5 Combine layers 3,4 maps:16 22x22 - -
6 Fully connected 1024 - 7.9M
7 Fully connected 4 - 4K

Table 6.1: Model architectures of the convolutional neural network used during approximate inference.

Table 6.1 details the exact model architecture used. In layer 5, the two streams have the same

number of hidden maps and hidden topography. We combine these two multiplicatively by multiplying

their activations element-wise. This creates a third-order flavor and is more powerful for the task of

determining where to shift attention to next.

6.4 Learning

While inference in our framework localizes objects of interest and is akin to object detection, it is not

the main objective. Our motivation is not to compete with state-of-the-art object detectors but rather

propose a probabilistic generative framework capable of generative modeling of objects which are at

unknown locations in big images. This is because labels are expensive to obtain and are often not

available for images in an unconstrained environment.

To learn generatively without labels we propose a simple Monte Carlo based Expectation-Maximization

algorithm. This algorithm is an unbiased estimator of the maximum likelihood objective. During the

E-step, we use the Gibbs sampling algorithm developed in Sec. 6.3 to draw samples from the posterior

over the latent gaze variables u, the canonical variables v, and the hidden variables h1, h2 of a Gaussian

DBN model. During the M-step, we can update the weights of the Gaussian DBN by using the posterior

samples as its training data. In addition, we can update the parameters of the ConvNet that performs

approximate inference. Due to the fact that the first E-step requires a good inference algorithm, we

need to pretrain the ConvNet using labeled gaze data as part of a bootstrap process. Obtaining training

data for this initial phase is not a problem as we can jitter/rotate/scale to create data. In Sec. 6.5.2,

we demonstrate the ability to learn a good generative model of face images from the CMU Multi-PIE

dataset.

6.5 Experiments

We used two face datasets in our experiments. The first dataset is a frontal face dataset, called the

Caltech Faces from 1999, collected by Markus Weber. In this dataset, there are 450 faces of 27 unique

individuals under different lighting conditions, expressions, and backgrounds. We downsampled the
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ConvNet ConvNet

Step 1 Step 2 Step 3 Step 4

1 Gibbs step

Figure 6.4: Inference process: u in step 1 is randomly initialized. The average v and the extracted
x(u) form the input to a ConvNet for approximate inference, giving a new u. The new u is used to
sample p(v|I,u,h). In step 3, one step of Gibbs sampling of the GDBN is performed. Step 4 repeats
the approximate inference using the updated v and x(u).

Inference steps

1 2 3 4 5 6
HMC

V

X

Figure 6.5: Example of an inference step. v is 24 × 24, x is 72 × 72. Approximate inference quickly
finds a good initialization for u, while HMC provides further adjustments. Intermediate inference steps
on the right are subsampled from 10 actual iterations.

images from their native 896 by 692 by a factor of 2. The dataset also contains manually labeled eyes and

mouth coordinates, which will serve as the gaze labels. We also used the CMU Multi-PIE dataset (Gross

et al., 2010), which contains 337 subjects, captured under 15 viewpoints and 19 illumination conditions

in four recording sessions for a total of more than 750,000 images. We demonstrate our model’s ability

to perform approximate inference, to learn without labels, and to perform identity-based attention given

an image with two people.

6.5.1 Approximate inference

We first investigate the critical inference algorithm of p(u|v, I) on the Caltech Faces dataset. We run

4 steps of approximate inference detailed in Sec. 6.3.1 and diagrammed in Fig. 6.4, followed by three

iterations of 20 leap-frog steps of HMC. Since we do not initially know the correct v, we initialize v to

be the average face across all subjects.

Fig. 6.5 shows the image of v and x during inference for a test subject. The initial gaze box is

colored yellow on the left. Subsequent gaze updates progress from yellow to blue. Once ConvNet-based

approximate inference gives a good initialization, starting from step 5, five iterations of 20 leap-frog

steps of HMC are used to sample from the the posterior.

Fig. 6.6 shows the quantitative results of Intersection over Union (IOU) of the ground truth face box

and the inferred face box. The results show that inference is very robust to initialization and requires only
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Figure 6.6: (a) Accuracy as a function of gaze initialization (pixel offset). Blue curve is the percentage
success of at least 50% IOU. Red curve is the average IOU. (b) Accuracy as a function of the number of
approximate inference steps when initializing 50 pixels away. (c) Accuracy improvements of HMC as a
function of gaze initializations.

a few steps of approximate inference to converge. HMC clearly improves model performance, resulting

in an IOU increase of about 5% for localization. This is impressive given that none of the test subjects

were part of the training and the background is different from backgrounds in the training set.

Our method OpenCV NCC template

IOU > 0.5 97% 97% 93% 78%

# evaluations O(c) O(whs) O(whs) O(whs)

Table 6.2: Face localization accuracy. w: image width; h: image height; s: image scales; c: number of
inference steps used.

We also compared our inference algorithm to the template matching on the task of face detection.

We took the first 5 subjects as test subjects and the rest as training. We can localize with 97% accuracy

(IOU > 0.5) using our inference algorithm3. In comparison, using Haar Cascades, which is a form

of AdaBoost4, a standard face detection system from OpenCV 2.4.9 obtains the same 97% accuracy.

Normalized Cross Correlation (Lewis, 1995) obtained 93% accuracy, while Euclidean distance template

matching achieved an accuracy of only 78%. However, note that our algorithm looks at a constant

number of windows while the other baselines are all based on scanning windows.

6.5.2 Generative learning without labels

The main advantage of our model is that it can learn on large images of faces without localization label

information (no manual cropping required). To demonstrate, we used both the Caltech and the CMU

faces datasets. For the CMU faces, a subset of 2526 frontal faces with ground truth labels are used. We

split the Caltech dataset into a training and a validation set. For the CMU faces, we first took 10%

of the images as training cases for the ConvNet for approximate inference. This is needed due to the

completely different backgrounds of the Caltech and CMU datasets. The remaining 90% of the CMU

faces are split into a training and validation set. We first trained a GDBN with 1024 h1 and 256 h2

hidden units on the Caltech training set. We also trained a ConvNet for approximate inference using

3u is randomly initialized at ± 30 pixels, scale range from 0.5 to 1.5.
4OpenCV detection uses pretrained model from haarcascade frontalface default.xml, scaleFactor=1.1, minNeighbors=3

and minSize=30.
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(a) DBN trained on Caltech (b) DBN updated with Multi-PIE

Figure 6.7: Left: Samples from a 2-layer DBN trained on Caltech. Right: samples from an updated
DBN after training on CMU Multi-PIE without labels. Samples highlighted in green are similar to faces
from CMU.

the Caltech training set and 10% of the CMU training images.

nats No CMU training CMU w/o labels CMU w/ labels

Caltech Train 617±0.4 627±0.5 569±0.6

Caltech Valid 512±1.1 503±1.8 494±1.7

CMU Train 96±0.8 499±0.1 594±0.5

CMU Valid 85±0.5 387±0.3 503±0.7

log Ẑ 454.6 687.8 694.2

Table 6.3: Variational lower-bound estimates on the log-density of the Gaussian DBNs (higher is better).

Table 6.3 shows the estimates of the variational lower-bounds on the average log-density (higher is

better) that the GDBN models assign to the ground-truth cropped face images from the training/test

sets under different scenarios. In the left column, the model is only trained on Caltech faces. Thus it

gives very low probabilities to the CMU faces. Indeed, GDBNs achieve a variational lower-bound of only

85 nats per test image. In the middle column, we use our approximate inference to estimate the location

of the CMU training faces and further trained the GDBN on the newly localized faces. This gives a

dramatic increase of the model performance on the CMU Validation set5, achieving a lower-bound of

387 nats per test image. The right column gives the best possible results if we can train with the CMU

manual localization labels. In this case, GDBNs achieve a lower-bound of 503 nats. We used Annealed

Importance Sampling (AIS) to estimate the partition function for the top-layer RBM.

Fig. 6.7(a) further shows samples drawn from the Caltech trained DBN, whereas Fig. 6.7(b) shows

samples after training with the CMU dataset using estimated u. Observe that samples in Fig. 6.7(b)

show a more diverse set of faces. We trained GDBNs using a greedy, layer-wise algorithm of Hinton

et al. (2006). For the top layer we use Fast Persistent Contrastive Divergence (Tieleman and Hinton,

2009), which substantially improved generative performance of GDBNs.

6.5.3 Inference with ambiguity

Our attentional mechanism can also be useful when multiple objects/faces are present in the scene.

Indeed, the posterior p(u|x,v) is conditioned on v, which means that where to attend is a function of

5We note that we still made use of labels coming from the 10% of CMU Multi-PIE training set in order to pretrain our
ConvNet. ”w/o labels” here means that no labels for the CMU Train/Valid images are given.
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Figure 6.8: Left: Conditioned on different v will result in a different 4u. Note that the initial u is
exactly the same for two trials. Right: Additional examples. The only difference between the top and
bottom panels is the conditioned v. Best viewed in color.

the canonical object v the model has in “mind” (see Fig. 6.2(b)). To explore this, we first synthetically

generate a dataset by concatenating together two faces from the Caltech dataset. We then train approx-

imate inference ConvNet as in Sec. 6.3.1 and test on the held-out subjects. Indeed, as predicted, Fig. 6.8

shows that depending on which canonical image is conditioned, the same exact gaze initialization leads

to two very different gaze shifts. Note that this phenomenon is observed across different scales and

location of the initial gaze. For example, in the bottom right panel of Fig. 6.8, the initialized yellow box

is mostly on the female’s face to the left, but because the conditioned canonical face v is set to that of

the male, attention is shifted to the right as the result.

6.6 Conclusion

Generative models are very useful for learning meaningful latent representation and can be trained with-

out any labeled data. However, current methods can only learn good generative models on canonical

views of objects, not big complicated background images. In this chapter, we have proposed a prob-

abilistic graphical model framework for learning generative models using attention. Attention lets the

generative model focus on “important” areas of the big image and dedicate the resources of generative

models to those locations. Our probabilistic framework combines inspirations from computational neu-

roscience with deep learning based generative models. Experiments on face modeling have shown that

ConvNet based approximate inference combined with HMC sampling is sufficient to explore the compli-

cated posterior distribution. More importantly, we can generatively learn objects of interest from novel

big images. Future work will include experimenting with faces as well as other objects in a large scene.

Currently the ConvNet approximate inference is trained in a supervised manner, but reinforcement

learning could also be used instead.
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Conclusion

Deep generative models are an interesting and important research topic in machine learning. Using deep

generative models, we can leverage massive amounts of unlabeled data, learn latent variables and codes

which are useful for different tasks, and learn probability density distributions of the input data.

This dissertation focused on improving many deep generative models by incorporating more structure

and domain-specific knowledge into the latent layers. We demonstrated the improved ability of the new

models to deal with occlusion, be more robust to noise, and be able to handle lighting variations.

Although we introduced a priori knowledge into these models, we have taken great care in trying to

balance between using too much laborious hand engineering on the one hand and learning everything

from scratch on the other. We summarize the main contributions from each chapter of this thesis in the

section below.

Vision models

Chapter 3 featured two models, the Robust Boltzmann Machine and the Deep Lambertian Network.

Both models are designed for vision applications. The Robust Boltzmann Machine incorporated two

additional random variables per pixel. Multiplicative gating and an additional hidden layer modeling

the structure of the occluder allows for better handling of noise and occlusion. The Deep Lambertian

Network uses the Lambertian image formation model from computer vision to better model illumination

variations of faces due to the position and intensity variations of the light source. In the Deep Lambertian

Network framework, having generative priors over the albedo and surface normals allows for inference

with only one test image, greatly improving one-shot recognition performance.

Density models

Chapter 4 details novel ways to improve density learning models. We first propose the Deep Mixture of

Factor Analyzers, which consistently outperforms the standard Mixture of Factor Analyzers. Following

the same principle of stacking RBMs to improve the variational lower bound of the data log-likelihood,

Deep Mixture of Factor Analyzers perform better than all other models on continuous data of objects,

face, and natural image patches. The second model proposed is a model for conditional density learning.

Derived from a standard neural network, the Stochastic Feedforward Neural Network contains both

104



Chapter 7. Conclusion 105

deterministic units as well as stochastic units. An Importance sampling algorithm in conjunction with

EM learning is proposed and empirically shown to work well in learning the multi-modality of conditional

distributions.

Tensor model

Chapter 5 proposes a new model named the Tensor Analyzer. A multilinear extension of Factor Anal-

ysis, the Tensor Analyzer contains multiple groups of latent factors which can interact with each other

multiplicatively to generate the data. A particular useful application is in the separation of style and

content, where style often interacts multiplicatively with content to generate an image. Unlike other

tensor decomposition methods, in our model, the parameters, rather than the data, is a tensor. An

efficient way of sampling from the posterior distribution over factors is described and we demonstrate

that these samples can be used in the EM algorithm for learning interesting mixture models of natural

image patches. Tensor Analyzers can also accurately recognize a face under significant pose and illumi-

nation variations when given only one previous image of that face. Interestingly, Tensor Analyzers can

be trained in unsupervised, semi-supervised, or fully supervised settings.

Attention model

Chapter 6 details a probabilistic generative framework for the generative modeling of smaller objects

of interest within high-resolution images. Inspiration from computational neuroscience and geometry

resulted in a framework capable of being invariant to 2D Similarity transformations. The framework

uses a deep generative model to model the canonical view of objects. Efficient posterior inference is

enabled by a feedforward approximate inference Convolution Neural Network. Most importantly, the

framework allows us to generatively learn objects of interest from novel high-resolution images. This

model is increasingly important as we move from generative learning of small cropped images to large

unconstrained real-life images.

Future work

The models presented in this thesis are only the start of the development of many more deep generative

variants. For vision, the next step is to combine the Robust Boltzmann Machine, the Deep Lambertian

Network and attention into a single model. One possible way of combining these models into a single

framework is via stacking. The attention model will be the first hidden module operating on images.

This is followed by multiplicative gating from the Robust Boltzmann Machine. We can then handle

illumination variations using the Lambertian reflectance operations from the Deep Lambertian Network.

The new model should be able to handle spatial transformations, noise and occlusions, and lighting

variations. The main question is whether or not inference in the new model can be made computationally

efficient.

For stochastic feedforward neural networks, one interesting avenue to explore is in recurrent neural

networks (RNNs). Most of the previous work on RNNs propose stochastic output units but deterministic

recurrent hidden nodes. However, the hidden nodes of an RNN can also be stochastic. Having stochastic

hidden nodes can give the model more flexibility. For example, for an RNN trained to output a sequence
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of words to describe an image, there are usually several different possible descriptions, or paraphrases.

Sampling a stochastic hidden layer at the first time step would allow the RNN to decide how to describe

the image at the first time step. Without the stochastic hidden nodes, the RNN only decides what to

say next based on the sampling of the output at the previous time steps.

Tensor analyzers are good at disentangling factors of variation if the variation is multilinear. This

works very well for face image pixels under lighting illumination but would not work as well for in-depth

rotations and deformations, since in-depth rotations and deformations are highly nonlinear in pixel space.

Therefore, Tensor Analyzers should operate at a higher feature representation space, and not at the low

level pixel space. One possible future direction is the joint training of a deep network to learn features

that are good for the Tensor Analyzer. In essence, we want to learn a transformation of the data from

pixel space to a feature space where the variations would be multilinear.

Finally, we can take the idea of introducing domain-specific knowledge to discriminatively trained

deep networks. There is no apparent reason why adding multiplicative interactions to a Convolutional

Neural Network would not improve its generalization. For example, latent feature maps with specific

meaning could be concatenated to the standard feature maps. Additional custom operators on these

added feature maps could leverage domain knowledge by using multiplications. Computation would not

increase significantly but we might obtain better generalization due to better regularization.
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