

4-Aminobutyrate (GABA): a metabolite and signal with practical significance

Journal:	Botany
Manuscript ID	cjb-2017-0135.R1
Manuscript Type:	Review
Date Submitted by the Author:	16-Sep-2017
Complete List of Authors:	Shelp, Barry; University of Guelph, Plant Agriculture Bown, Alan; Brock University, Biological Sciences Zarei, Adel; University of Guelph
Is the invited manuscript for consideration in a Special Issue? :	N/A
Keyword:	signaling, abiotic and biotic stresses, 4-aminobutyrate, metabolism, plant defense

SCHOLARONE[™] Manuscripts

1	
2	
3	4-Aminobutyrate (GABA): a metabolite and signal with practical significance
4	
5	Barry J Shelp ^{1*} , Alan W Bown ² , and Adel Zarei ¹
6	
7	
8	
9	B.J. Shelp and A. Zarei, Department of Plant Agriculture, University of Guelph, Guelph ON
10	N1G 2W1, Canada. A.W. Bown, Department of Biological Sciences, Brock University, St.
11	Catharines ON L2S 3A1, Canada
12	
13	Corresponding author: Barry J. Shelp, Department of Plant Agriculture, University of Guelph, 50
14	Stone Rd. E., Guelph, ON N1G 2W1, Canada. Tel. 518-824-4120 ext. 53089; Fax: 519-767-
15	0755; E-mail: bshelp@uoguelph.ca.
16	
17	
18	
19	
20	
21	
22	
23	

24	Abstract: We discuss the origin of 4-aminobutyrate (GABA) from glutamate and
25	polyamines, and its subsequent catabolism to succinic semialdehyde and either succinate or 4-
26	hydroxybutyrate. Promiscuous activities of GABA transaminase, glyoxylate/succinic
27	semialdehyde reductases, and aldehyde dehydrogenase 10As appear to be important
28	determinants of cross-talk among metabolic pathways during stress. Imposition of abiotic stress,
29	as well as genetic or chemical disruption of glutamate decarboxylase, GABA transaminase and
30	tricarboxylic acid cycle reactions, results in non-cyclic carbon flux in the tricarboxylic acid
31	cycle, demonstrating that stress-induced GABA metabolism is strongly linked with respiration.
32	Metabolic generation of 4-hydroxybutyrate is probably linked to the stimulation of succinic
33	semialdehyde reductase activity by an increasing NADPH/NADP ⁺ ratio. We discuss the potential
34	signaling role of GABA in various processes, including pollen tube guidance, interaction with
35	fungal, bacterial and invertebrate pests, and stomatal functioning, and argue that further research
36	on short-term responses to stress is required to determine whether or not GABA functions by
37	binding to or regulating activity of GABA receptor molecules. Finally, we describe how
38	emerging information about the metabolic and signaling roles of GABA is being used to improve
39	plant defense against biotic and abiotic stresses, and benefit human health.
40	
41	
42	Key words: abiotic and biotic stresses, 4-aminobutyrate, metabolism, plant defense, signaling
43	
44	
45	
46	Introduction

47	4-Aminobutyrate (GABA) is found in virtually all prokaryotic and eukaryotic organisms. In
48	animals, this non-proteinogenic amino acid functions as an inhibitory neurotransmitter through
49	interactions with specialized receptors and transporters. In plants, the role of GABA is less clear.
50	Early research regarded GABA as a temporary N storage compound, which accumulates in
51	response to cold shock, O ₂ deficiency and mechanical stimulation, and suggested that insects
52	feeding on leaves could induce the accumulation of GABA, which would in turn influence their
53	feeding habits (Wallace et al. 1984). If so, knowledge about GABA could have important
54	implications for crop resistance and tolerance to stress.
55	Over the past three decades or so, several reviews have summarized advances in our
56	knowledge of GABA in plants, including pathways, biochemical regulation, compartmentation,
57	and role(s) (Bown and Shelp 1989, 1997, 2016; Satyanarayan and Nair 1990; Shelp et al. 1999,
58	2006, 2012 <i>a</i> - <i>d</i> , 2017; Kinnersley and Turano 2000; Bouché et al. 2003, 2004; Bown et al. 2006;
59	Fait et al. 2008; Allan et al. 2009; Gilliham and Tyerman 2016). In this paper, we discuss: (i) the
60	accumulation of GABA in response to abiotic and biotic stresses; (ii) the properties of the
61	various genes/proteins responsible for GABA metabolism; (iii) the potential crosstalk between
62	GABA metabolism and other metabolic pathways, with an emphasis on their regulation by
63	altered substrate availability and redox and energy balance during stress; (iv) the potential
64	signaling roles of GABA in various physiological, transcriptional and molecular responses; and
65	(v) how emerging information about GABA is being used to improve plant defense against biotic
66	and abiotic stresses, and benefit human health.
67	

68 Context: GABA accumulates in response to both abiotic and biotic stresses

69 Extensive research has demonstrated that abiotic stresses such as cold, heat, salinity, drought, waterlogging, O₂ deficit, CO₂ enrichment and UV radiation, applied singly or in combination, 70 can lead to GABA accumulation in various plant species, organs/ tissues, cell types and 71 translocation fluids (Table 1). Cytosolic acidification, which reportedly accompanies some 72 abiotic stresses, also increases the GABA level. Furthermore, there have been several reports of 73 GABA accumulation in response to biotic stresses such as fungal and bacterial infections and 74 elicitors, as well as the mechanical stimulation/damage resulting from crawling and feeding 75 insects. 76

77

78 GABA metabolism and interactions with other pathways

79 *GABA Shunt enzymes*

The primary source of GABA appears to be glutamate, which is generated via glutamate 80 decarboxylase or GAD (Fig. 1). This reaction consumes a proton, and therefore may mitigate 81 reductions in cytosolic pH. Most plant GADs, unlike bacterial or animal GADs, possess a C-82 terminal 30-50 amino acid residue calmodulin (CaM)-binding domain, and in vitro activity of 83 recombinant GAD is activated by Ca^{2+}/CaM at neutral pH. However, it is not activated by 84 Ca^{2+}/CaM at the acidic pH optimum for the enzyme (Shelp et al. 2012*a*; Trobacher et al. 2013*b*). 85 Multiple GADs are present in most plant species. For example, there are five GADs in 86 Arabidopsis (Fig. 1), Oryza sativa L. (rice), Solanum lycopersicum L. (tomato) and Zea mays L. 87 (maize), nine GADs in *Glycine max* [L.] Merr. (soybean), six GADs in *Populus trichocarpa* Torr. 88 et Gray (poplar), three GADs in *Malus x domestica* Borkh. (apple) and *Camellia sinensis* (L.) 89 Kuntze (tea), and four GADs in various *Prunus* species (Shelp et al. 2012*a*, *c*; Trobacher et al. 90 91 2013b; Mei et al. 2016; Salvatierra et al. 2016). In silico and empirical analyses suggest that the

92	activities of AtGAD3/5 (Fig. 1), MdGAD2, OsGAD2, Prunus persica GAD3, and CsGAD2/3 are
93	CaM independent, although OsGAD2 and CsGAD2/3 possess a C-terminal autoinhibitory
94	domain. The CaM-binding domain in most GADs therefore provides a causal link between
95	elevated GABA and cytosolic Ca^{2+} levels, both of which occur in response to many stresses (e.g.,
96	Reddy et al. 2011; Shelp et al. 2012a). Several recent publications indicate the involvement of
97	stress-induced transcriptional changes in the control of GAD activity. For example, there is
98	evidence for the induced expression of CaM-dependent AtGAD4 with drought, O2 deficiency,
99	cold or salinity (Shelp et al. 2012 <i>a</i> ; Zarei et al. 2017 <i>b</i>), and the simultaneous activation of CaM-
100	dependent CsGAD1 and induction of CaM-independent CsGAD2 expression with combined
101	hypoxia and mechanical damage (Mei et al. 2016).
102	Recombinant GABA transaminase (GABA-T) converts GABA to succinic semialdehyde
103	(SSA), with the effective utilization of both pyruvate and glyoxylate, thereby generating alanine
104	and glycine, respectively (Fig. 1) (Shelp et al. 2012 <i>a</i> ; Koike et al. 2013; Shimajiri et al. 2013 <i>b</i>).
105	This is in contrast to bacteria and animal GABA-Ts which utilize 2-oxoglutarate (and pyruvate to
106	a lesser extent), thereby resulting in the conservation of glutamate during the conversion of
107	glutamate to SSA (Shelp et al. 2012 <i>a</i>). The activity of plant GABA-T could theoretically be
108	regulated by the availability of pyruvate produced in glycolysis and utilized in alanine
109	production, or the availability of glyoxylate produced in multiple pathways (e.g.,
110	photorespiration and non-photorespiratory serine synthesis, and fatty acid and purine catabolism)
111	and utilized by glyoxylate reductases and hydroxypyruvate reductases (Allan et al., 2009; Shelp
112	et al. 2012 <i>a</i> ; Hoover et al. 2013; Zarei et al. 2017 <i>a</i>). To date, the potential role of the glyoxylate-
113	dependent reaction has not been closely examined (Renault 2013). Notably, there is only a single
114	GABA-T in Arabidopsis, but many other species have multiple GABA-Ts with similar substrate

115 preference. For example, there are two to four GABA-Ts in tomato, rice and canola (Shelp et al. 116 2012a; Shimajiri et al. 2013b; Bao et al. 2015; Faës et al. 2015). There is little evidence for induction of GABA-T expression in response to stress (Shelp et al. 2012c). Indeed, GABA-T 117 activity is probably limiting during stress, which would contribute to the accumulation of GABA 118 (Simpson et al. 2010). 119 Succinic semialdehyde is oxidized to succinate via a recombinant NAD-dependent SSA 120 dehydrogenase (SSADH), which is regulated by NADH and adenylates (Shelp et al. 2012a) (Fig. 121 1). This is significant because redox balance can be modified by numerous stress conditions. 122 There is only a single SSADH in Arabidopsis and tomato. Together these three reactions, from 123 glutamate to GABA, SSA and succinate, are known as the GABA shunt because they bypass two 124 reactions of the tricarboxylic acid cycle (TCAC), 2-oxoglutarate dehydrogenase and succinyl-Co 125 126 ligase (see Respiratory Processes).

127

128 *Respiratory processes*

129 Dark respiration in aerobic organisms involves the glycolytic production of pyruvate, which is converted to acetyl-CoA via pyruvate dehydrogenase for citrate formation and input into the 130 TCAC. The TCAC includes succinyl-CoA ligase, which generates ATP directly, as well as four 131 oxidation reactions, isocitrate dehydrogenase, 2-oxoglutarate dehydrogenase (OGDH), succinate 132 dehydrogenase (SDH) and malate dehydrogenase, which together generate NADH and FADH₂. 133 These reduced co-enzymes fuel ATP synthesis by oxidative phosphorylation. The carbon flux 134 under normoxia in the dark is generally considered to be cyclic, proceeding from citrate to 135 oxaloacetate, with the levels of all the C intermediates, including 2-oxoglutarate, succinate and 136

137	malate, constant (Sweetlove et al. 2010). Thus, succinate can be derived from 2-oxoglutarate in
138	the TCAC, as well as the GABA shunt.
139	Several studies have suggested a direct link between the GABA shunt and the TCAC (Shelp
140	et al. 2012 <i>a</i>). For example, Tuin and Shelp (1994) demonstrated that the metabolism of $[^{14}C]$ -
141	glutamate by excised developing soybean cotyledons in the dark results in the rapid production
142	of [¹⁴ C]-labelled GABA, then succinate and other TCAC organic acids. Subsequently, Tcherkez
143	et al. (2009) used [¹³ C]CO ₂ , [¹³ C]pyruvate or [¹³ C]glucose to demonstrate significant flux
144	through the GABA shunt in illuminated leaves of cocklebur, but little flux between 2-
145	oxoglutarate (or succinate) and fumarate. The cyclic nature of the TCAC was restored during the
146	night. Furthermore, Michaeli et al. (2011) showed that mutants of the mitochondrial GABA
147	permease reduce GABA uptake by mitochondria and increase TCAC activity.
148	Other studies have investigated the impact of metabolic dysfunction on levels of select
149	glycolytic (pyruvate), TCAC (citrate, isocitrate, 2-oxoglutarate, succinate, fumarate, malate) and
150	amino acid (glutamine, glutamate, GABA) metabolites, as well as some associated with
151	fermentation (lactate) and SSA reduction (4-hydroxybutyrate; see GHB Metabolism) (Fig. 2).
152	For example, disruption of NAD-dependent isocitrate dehydrogenase (nad-idh) and OGDH
153	activities (i.e., chemical inhibition of OGDH and anti-sense OGDH), respectively, typically
154	results in the accumulation of isocitrate and 2-oxoglutarate (Lemaitre et al. 2007; Araújo et al.
155	2008, 2012). Significantly, the levels of succinate and GABA and occasionally alanine, also
156	increase. Disruption of succinyl-CoA ligase activity decreases the level of succinate, as well as
157	most other TCAC organic acids, and results in the accumulation of GABA (Studart-Guimarães et
158	al. 2007). Anti-sense inhibition of SDH activity causes the accumulation of succinate without
159	increasing the levels of other TCAC organic acids (Araújo et al. 2011). Disruption of glutamate

160	dehydrogenase (i.e., $gdh1/2/3$) decreases the accumulation of 2-oxoglutarate, as well as malate,
161	but does not affect succinate even though GABA accumulates (Fontaine et al. 2012). Inhibition
162	of mitochondrial ATP synthase by RNAi or oligomycin treatment also results in GABA
163	accumulation, as well the accumulation of alanine, lactate and GHB and pyruvate, but not
164	succinate (Geisler et al. 2012). Interestingly, GABA accumulation is associated with both
165	glutamate accumulation and loss in these studies. Anti-sense OGDH for example, displays a
166	reduction in the formation of this 2-oxoglutarate-derived amino acid, as well as alanine, which is
167	derived from pyruvate (Araújo et al. 2012). Overall, the interference of TCAC enzymes,
168	anaplerotic reactions for the TCAC, and ATP synthesis under various conditions is generally
169	associated with non-cyclic carbon flux in the TCAC, and disruption of TCAC reactions upstream
170	of SDH typically stimulates the activity of the GABA shunt.
171	Disruption of the major GAD isoforms in Arabidopsis (i.e., gad1/2) decreases the level of
172	GABA, as well as citrate, fumarate and malate; however, surprisingly succinate increases
173	(Mekonnen et al. 2016) (Fig. 2). Disruption of GABA-T function (i.e., gaba-t), in combination
174	with salinity, increases GABA and decreases succinate, as would be expected if the shunt
175	produces succinate (Renault et al. 2010, 2013). After 1 d of salinity, malate but not citrate
176	increases, whereas after 3 d of salinity, both 2-oxoglutarate and succinate accumulate, even
177	though GABA presumably does not contribute directly to the succinate pool in this mutant
178	(Renault et al. 2010). Cold stress, as well as waterlogging, flooding and hypoxia, which simulate
179	an O ₂ deficit, cause the accumulation of both GABA and succinate, and occasionally citrate,
180	fumarate and malate (Kaplan et al. 2007; Rocha et al. 2010; Komatsu et al. 2011; Antonio et al.
181	2016) (Fig. 2). Notably, pyruvate as well as lactate and alanine may accumulate, as would be
182	expected if glycolysis and related fermentation reactions are stimulated. Overall, these findings

183	indicate that stress-induced GABA metabolism in plants may be associated with various changes
184	in cellular redox and energy balance, which could modify the regulation of the TCAC (e.g.,
185	Sweetlove et al. 2010).
186	Antonio et al. (2016) have used $[^{13}C]$ pyruvate to follow carbon flux through the TCAC,
187	fermentation, alanine metabolism and the GABA shunt in soybean roots under hypoxic
188	conditions, and [¹³ C]glutamate and [¹⁵ N]ammonium to monitor the metabolism of glutamate to
189	succinate. After 6 h respiratory O ₂ consumption is reduced by 40%, and glycolysis stimulated,
190	thereby enhancing the production of ATP and pyruvate. Cytosolic NAD^+ is regenerated from
191	NADH by fermentation reactions such as lactate dehydrogenase-catalysed pyruvate reduction.
192	The activities of pyruvate dehydrogenase and SDH are restricted, so that the direct flux of
193	pyruvate into the TCAC is low and the conversion of succinate to fumarate is markedly
194	decreased. Pyruvate accumulation is reduced via the stimulated formation of alanine via alanine
195	transaminase and GABA-T. The alanine transaminase reaction produces 2-oxoglutarate, which
196	can be used by OGDH and succinyl-CoA ligase to produce another ATP. The mitochondrial
197	NAD ⁺ that is required to oxidize 2-oxoglutarate is apparently produced by the reversal of the
198	malate dehydrogenase reaction, utilizing oxaloacetate generated via phosphoenolpyruvate
199	carboxylase or aspartate transaminase activity. These data indicate that hypoxia does not
200	completely prevent the C flux from SSA to succinate, even though the redox balance is
201	presumably altered to some degree in response to hypoxia (see Fig. 2). In addition, GABA
202	probably accumulates, at least in part, in response to the stimulation of GAD activity by bound
203	Ca ²⁺ /CaM or lower cytosolic pH (see GABA Shunt Enzymes). Thus, with hypoxia both GABA
204	and succinate appear to be temporary storage metabolites, which can readily supply the TCAC
205	when the stress is mitigated. Malate production is also stimulated, and while malate could

theoretically be recycled to pyruvate via the malic enzyme, it seems less likely given anunfavourable redox balance.

208

209 *GHB metabolism*

Based on earlier studies of bacteria and animals (Valentin 1995; Buckel 2001; Mamelak 210 2012; Salminen et al. 2015: see references therein), it seems likely that stress-induced GABA 211 accumulation and an elevated NADH/NAD ratio would be accompanied by an elevated 212 NADPH/NADP ratio, which could facilitate the operation of an alternative path for SSA 213 metabolism to 4-hydroxybutyrate (GHB) (Fig. 1). Indeed, evidence has shown that GHB 214 accumulates with oligomycin inhibition of mitochondrial ATP synthase (Geisler et al. 2012), as 215 well as cold (Kaplan et al. 2007) (Fig. 2) and various other abiotic stresses, including O₂ deficit, 216 217 waterlogging, heat, drought and UV (Allan et al. 2003, 2008, 2012; Breitkreuz et al. 2003; Fait et al. 2005). To date, two GLYR/SSAR (glyoxylate/succinic semialdehyde reductase) genes have 218 been empirically identified for the irreversible NADPH-dependent reduction of SSA to GHB in 219 220 Arabidopsis, apple and rice (Brikis et al. 2017; Zarei et al. 2017*a*) (Fig. 1). The encoded enzymes have been designated as GLYRs since the recombinant proteins utilize glyoxylate more 221 efficiently than SSA. However, single glyr and glyr2 knockout mutants of Arabidopsis 222 accumulate less GHB with submergence than the wild type, providing convincing evidence for a 223 role of the GLYRs in SSA reduction in vivo (Allan et al. 2012). Recently, Mekonnen and Ludwig 224 (2016) used a gaba-t x ssadh double mutant to demonstrate that exogenous GHB can be back-225 converted to both GABA and succinate, and provided evidence, using a gel-based assay, for the 226 GHB-dependent conversion of NAD⁺ to NADH (Fig. 1). Unfortunately, we have not been able to 227 measure NAD⁺-dependent GHB dehydrogenase activity in cell-free extracts despite repeated 228

229 attempts over the last decade. Based on bacterial and human studies, GHB could be back-230 converted to SSA, as well converted to acetyl-CoA or 2,4-dihydroxbutyrate in the forward direction (Valentin 1995; Buckel 2001; Mamelak 2012; Salminen et al. 2016; see references 231 therein). For the time being, the importance of these reactions in plants exposed to stress is 232 uncertain. It is clear, however, that GLYR/SSAR activity may divert some flux from succinate to 233 GHB during stress, and that this would be accompanied by NADPH oxidation. Indeed, the early 234 growth of a glyr l/2 knockout or knockdown mutant is more susceptible to SSA toxicity in the 235 cold than WT and GLYR1 overexpression lines (Zarei et al. 2017a). These findings are consistent 236 237 with an elevated rate of SSA conversion to GHB with cold, and suggest that GLYR1/2 are part of an adaptive response to stress. 238

239

240 *Polyamine catabolism*

GABA can also be derived from polyamines (Shelp et al. 2012b; Tiburcio et al. 2014). 241 Indeed, the salinity- and anoxia-induced accumulation of GABA is reduced by 25% to 39% by 242 aminoguanidine, a diamine oxidase inhibitor (Xing et al. 2007; Liao et al. 2017). Recent research 243 has demonstrated that one to two recombinant Cu-amine oxidases and two recombinant 244 ALDH10As, respectively, can convert putrescine to 4-aminobutanal and 4-aminobutanal to 245 GABA in Arabidopsis (Fig. 1) and apple fruit (Planas-Portell et al. 2013; Zarei et al. 2015a, 246 2015b, 2016). Interestingly, both ALDH10A8/9 prefer 3-aminopropanal as a substrate over 4-247 aminobutanal, but the root growth of single *ataldh10A8* and *ataldh10A9* knockout mutants is 248 oversensitive to salinity and GABA accumulation in shoots is reduced (Zarei et al. 2015b, 2016). 249 Together, these findings indicate that the pathway from putrescine to GABA plays a role in the 250 251 stress response in dicotyledonous plants and suggest that the carbon flux through this pathway

could be regulated by a combination of O₂ availability and redox balance, particularly in bulky
fruit (Shelp et al. 2012*b*; Zarei et al. 2015*b*; Lum et al. 2016*b*).

254

255 Signaling

Various physiological, transcriptional and molecular responses are elicited by changes in 256 plant or tissue GABA status, which can be induced by fungal/bacterial infections, nutrient 257 limitation, exogenous GABA, plant development, and the use of transgenic/gene knockout 258 strategies (see details and citations in Table 2). While these findings might be useful, caution 259 must be exercised in interpreting studies that use very high concentrations of exogenous GABA 260 (e.g., Kathiresan et al. 1997; Barbosa et al. 2011) and/or damage tissue during treatment 261 application (e.g., Sulieman and Schulze 2010), unless appropriate controls are conducted to 262 263 account for potential osmotic and wounding (see Shelp 2012) effects, respectively. Perhaps the best support for GABA signaling in plants is: (i) the requirement for a GABA 264 gradient to guide the pollen tube through the apoplastic spaces within the pistil to the female 265 266 gametophyte (Palanivelu et al. 2003); (ii) the upregulation of the KLM operon in Agrobacterium by GABA or wounded stems of GAD overexpression (Ox) lines of tobacco, which reduces the 267 quorum-sensing signal and virulence (Chevrot et al. 2006); (iii) the existence of a GABA-268 binding domain on the plasma-membrane, aluminum-activated malate transporter (ALMT) 269 (Ramesh et al. 2015); (iv) the repression of the type III secretion system in *Pseudomonas* by 270 GABA or by tobacco GAD Ox plants, resulting in a reduction of the plant's hypersensitive 271 response (McGraw et al. 2016); and (v) the wounding-induced accumulation of GABA in 272 systemic untreated leaves, which is independent of systemic cytosolic Ca^{2+} accumulation and 273 274 GABA translocation from wounded to systemic leaves (Scholz et al. 2017) (Table 2). Other

275	research has shown that GABA binds the plasma membrane and changes the levels of cytosolic
276	Ca^{2+} (Yu et al. 2006, 2014), findings which could be explained by the effects of GABA on
277	ALMTs. For example, when ALMTs are closed the plasma membrane hyperpolarizes, thereby
278	increasing the inward-directed gradient for Ca ²⁺ influx through either hyperpolarization-activated
279	Ca ²⁺ channels or via non-selective cation channels (Ramesh et al. 2015; Gilliham and Tyerman
280	2016).

Stress-induced plant GABA can probably bind ALMT, thereby negatively regulating malate 281 efflux and conserving malate within the cell (Fig. 3), as suggested previously (Gilliham and 282 Tyerman 2016). A gad1/2 double mutant has reduced GABA levels and tolerance to prolonged 283 drought, symptoms that are reversed by crossing this mutant with a *gaba-t* mutant in order to 284 elevate the GABA level (Mekonnen et al. 2016). Since there are multiple ALMTs in plants, and 285 they encode anion channels (Ramesh et al. 2015), it has been suggested that GABA accumulation 286 and ALMT are involved in the regulation of stomatal closure by stimulating solute loss and 287 288 consequent loss of turgor (Mekonnen et al. 2016; also see Bown and Shelp 2016). Notably, the high expression of *TaALMT1* in wheat correlates with elevated GABA accumulation, which is 289 reduced by treatment with aluminum (Ramesh et al. 2016). This has not been explained to date 290 291 and may be relevant in terms of factors that alter endogenous GABA. Recent research has indicated that up-regulation of AtGAD4 expression in Arabidopsis plantlets subjected to short-292 293 term salinity stress is associated with inducible co-expression of ALMT2 and calmodulin-like 37, 294 as well as the transcription factors WRKY28, WRKY30, WRKY40, MYB2, MYB15 and MYB108, suggesting the involvement of anion transport, protein activation and gene regulation in GABA 295 296 accumulation (Zarei et al. 2017b). Further research should focus on short-term responses to

stress in order to determine whether or not GABA functions as a signal molecule by binding toor regulating the activity of GABA receptor molecules.

299

300 The emerging functions of GABA in metabolism and signaling have practical significance

301 *Defense against bacteria and invertebrate pests*

Several studies have suggested that GABA mediates interactions between plants and other 302 organisms such as fungi, bacteria and invertebrate pests (see Bown et al. 2006 and Shelp et al. 303 2006), and consequently defense against such species could be improved by genetic engineering 304 305 elevated levels of GABA in plants. For example, constitutive GAD Ox lines of tobacco are more resistant to Agrobacterium and Pseudomonas infection (Chevrot et al. 2006; McGraw et al. 306 2016) (Table 2). Furthermore, constitutive GAD Ox or gaba-t lines are more resistant to larvae 307 308 of the oblique-banded leafroller (Ramputh and Bown 1996; Scholz et al. 2015), the northern root-knot nematode (McLean et al. 2003), the tobacco budworm (MacGregor et al. 2003) and 309 Spodoptera (Scholz et al. 2015, 2017) (Tables 2 and 3). These latter findings suggest that 310 wounding due to infestation or herbivory by invertebrate pests disrupts cell structure and 311 stimulates GAD activity and GABA accumulation with the release of hydrogen ions from the 312 vacuole to the cytosol (Bown et al. 2006). They do not establish whether GABA functions by 313 regulating GABA-sensitive neuromuscular junctions or by some other mechanism (Bown and 314 Shelp 2016). 315

316

317 *Exogenous GABA alleviates stress-induced losses in quality*

318 While it is clear that GAD Ox can enhance the endogenous level of GABA, no one has yet 319 studied the response of such plants to abiotic stress. However, there are several reports on the

320	impact of exogenous GABA on the plant response to abiotic stress. These have focused on peach
321	fruit, banana peel, tomato seedlings and cut flowers exposed to chilling stress (Shang et al. 2011;
322	Yang et al. 2011; Malekzadeh et al. 2014; Wang et al. 2014b; Aghdam et al. 2015, Aghdam et al.
323	2016 <i>a</i> - <i>c</i>), as well as melon seedlings subjected to hypoxic or saline conditions (Wang 2014 <i>b</i> ; Hu
324	et al. 2015), rice seedlings grown at elevated temperatures (Nayyar et al. 2014), and barley
325	seedlings treated with aluminum (Song et al. 2010). Overall, the application of exogenous GABA
326	appears to alleviate the stress-induced losses in quality such as the incidence of chilling injury
327	and various characteristics associated with membrane deterioration (Fig. 4). This is accompanied
328	by changes in the status of key metabolites such as GABA, proline, and some polyamines, as
329	well as improvements in energy and anti-oxidant systems. Further research is required to
330	establish whether the positive impact of exogenous GABA on the response to abiotic stress is
331	due to its role as a metabolite or signal.

332

333 *Enhancing endogenous GABA and health benefits*

334 GABA is known for its various medicinal properties, such as a reduction in anxiety, depression and insomnia, and for its anti-cancer and antihypertensive activities (Okada 2000; Adham et al. 335 2006). For the last two decades, there has been considerable interest, particularly in Korea, China 336 and Japan, in producing foods with enriched GABA levels (Diana et al. 2014; Cho & Lim 2016). 337 The first main strategy for attaining this outcome in plants is the use of various cultural or abiotic 338 (e.g., hypoxia, heat) stress conditions to enhance GAD activity during the germination of 339 rice/wheat/soybean/fava bean seeds (Matsuyma et al. 2009; Youn et al. 2011; Morrison et al. 340 2013; Yang et al. 2013; Zhang et al. 2014; also see Cho and Lim 2016), or the preparation of 341 342 dried immature soybean fruits (Takahashi et al. 2013) and fermented green tea (Tsushida et al.

1987; Abe et al. 1995; Sawai et al. 2001; Allan et al 2003). GABA levels that are two to 50 times 343 control levels have been reported (Table 4). Some of these treatments can modify the nutritional, 344 organoleptic and functional properties of plants, so there is interest in inducing GABA 345 accumulation in plant-derived foodstuffs using non-thermal technologies such as high-pressure 346 processing (for review see Poojary et al. 2017). The second main strategy involves genetic 347 engineering of GAD Ox and/or GABA-T down-regulation, resulting in GABA levels in rice seed 348 and tomato fruit which are five to 349 times the levels in the wild-type (Akama et al. 2009; 349 Shimarjiri et al. 2013*a*; Nonaka et al. 2017; Takayama et al. 2015, 2017) (Table 4). Some of 350 351 these GABA-enriched plant foodstuffs have been successfully screened for positive outcomes using spontaneously hypertensive or salt-sensitive rats (Abe et al. 1995; Akama at al. 2009; 352 Yoshimura et al. 2011), providing proof-of-concept for the benefits of plant foodstuffs enriched 353 354 in GABA.

355

356 Concluding remarks

Much has been learned about the metabolism and functions of GABA over the past three 357 decades. It is now clear that GABA accumulates in plants in response to both abiotic and biotic 358 stresses. With the identification of many genes responsible for GABA metabolism in various 359 species, including Arabidopsis, it has become possible to generate recombinant proteins for 360 biochemical characterization. These studies have shown that the activity of many plant GADs, 361 unlike bacterial and animal GADs, is activated by bound Ca²⁺/CaM, thereby linking GABA 362 accumulation to Ca influx resulting from external stimuli. They have also shown that plant 363 GABA-Ts utilize pyruvate and glyoxylate as amino acceptors, rather than 2-oxoglutarate as in 364 365 bacterial and animal GABA-Ts. These data suggest links between plant GABA metabolism and

366	glycolysis, alanine metabolism and photorespiration. Metabolomic and labeling studies, often in
367	combination with mutants, have demonstrated that GABA metabolism does interact with several
368	other pathways during exposure to abiotic stress, including glycolysis, the TCAC and
369	mitochondrial electron transport chain, as well as alanine, GHB and polyamine metabolism.
370	Notably, GLYR prefers glyoxylate as a substrate over SSA, and ALDH10A prefers 3-
371	aminopropanal over 4-aminobutanal. Nevertheless, the use of mutants and transgenic plants
372	confirms that these enzyme activities are physiologically relevant in GABA metabolism during
373	stress, likely due to changing substrate levels and/or redox/energy balance. Therefore, the
374	promiscuous activities of GABA-T, GLYR and ALDH10A appear to be important determinants
375	of cross-talk among metabolic pathways during stress. Overall, these findings suggest that
376	GABA metabolism is an adaptive mechanism for maintaining respiration during and/or
377	following stress, and that the actual diversion of carbon flux from succinate to GHB production
378	depends upon the redox/energy balance. The fate of GHB remains uncertain.
379	Changes in plant or tissue GABA status have been associated with physiological,
380	transcriptional and molecular responses within plants, but many studies are complicated by the
381	use of high concentrations of exogenous GABA, tissue wounding during treatment application,
382	and the inability to distinguish between primary and secondary responses. Nevertheless, strong
383	support exists for a signaling role of plant GABA in pollen tube guidance, interaction of plants
384	with fungal, bacterial and invertebrate pests, anion transport and stomatal functioning. Do these
385	result merely from metabolic adjustments as a consequence of GABA accumulation or from
386	GABA binding to a receptor forming a complex that initiates a signalling cascade? If the
387	function of GABA is solely related to its ability to bind to a receptor, it is possible that multiple
388	binding sites are involved.

389 Our knowledge of GABA metabolism and signaling suggests that there are opportunities for genetically engineering stress-resistant/tolerant plants and plants with enhanced health benefits. 390 If the major role of GABA in plants is as a signaling molecule the regulation of GABA levels 391 within the immediate vicinity of binding sites will be required. Thus the regulation of GABA 392 transport (see Shelp and Zarei 2017), as well as metabolism, would be an important component 393 of the signaling process. 394 395 **Conflict of interest** 396 The authors declare that there is no conflict of interest regarding the publication of this 397 paper. 398 399 **Author contributions** 400 This paper is based on the Gold Medal lecture given by B.J.S at the 2016 meeting of the 401 402 Canadian Society of Plant Biologists in Kingston, Ontario. A.W.B. and A.Z. contributed significantly to the research presented at that conference and in particular to the preparation of 403 404 the present manuscript. All authors read and approved the final manuscript. 405 406 Acknowledgements We apologize to colleagues whose original work was not cited here because of space limitations. 407 B.J.S. wishes to acknowledge financial support from the Natural Sciences and Engineering 408 409 Research Council (NSERC) of Canada, Agriculture and Agri-Food Canada, and the Ontario Ministry of Agriculture, Food and Rural Affairs for research on GABA. 410 411

Page 19 of 61

Botany

412	References
413	Abe, Y., Umemura, S., Sugimoto, K., Hirawa, N., Kato, Y., Yokoyama, N., Yokoyama, T.,
414	Iwai, J., and Ishii, M. 1995. Effect of green tea rich in γ -aminobutyric acid on blood pressure
415	of Dahl salt-sensitive rats. Amer. J. Hypertension 8(1): 74–70.
416	Adham M. Abdou, A.M., Higashiguchi, S., Horie, K., Kim, M., Hatta, H., and Yokogoshi, H.
417	2006. Relaxation and immunity enhancement effects of γ-aminobutyric acid (GABA)
418	administration in humans. BioFactors 26(3): 201–208. doi.10.1002/biof.5520260305.
419	Aghdam, M.S., Naderi, R., Jannatizadeh, A., Sarcheshmeh, M.A.A., and Babalar, M. 2016a.
420	Enhancement of postharvest chilling tolerance of anthurium cut flowers by γ -aminobutyric
421	acid (GABA) treatments. Sci. Hortic. 198: 52-60. doi.org/10.1016/j.scienta.2015.11.019.
422	Aghdam, M.S., Naderi, R., Jannatizadeh, A., Sarcheshmeh, M.A.A., and Babalar, M. 2015.
423	Amelioration of postharvest chilling injury in anthurium cut flowers by γ -aminobutyric acid
424	(GABA) treatments. Postharv. Biol. Technol. 110: 70–76.
425	doi.org/10.1016/j.postharvbio.2015.06.020.
426	Aghdam, M.S., Naderi, R., Jannatizadeh, B., Babalar, M., Sarcheshmeh, M.A.A., and Faradonbe,
427	M.Z. 2016b. Impact of exogenous GABA treatments on endogenous GABA metabolism in
428	anthurium cut flowers in response to postharvest chilling temperature. Plant Physiol.
429	Biochem. 106: 11-15. doi.org/10.1016/j.plaphy.2016.04.045.
430	Aghdam, M.S., Razavi, F., and Karamneghad, F. 2016c. Maintaining the postharvest nutritional
431	quality of peach fruits by γ-aminobutyric acid. Iranian J. Plant Physiol. 5(4): 1457–1463.
432	Akama, K., Kanetou, J., Shimosaki , S., Kawakami, K., Tsuchikura, S., and Takaiwa, F. 2009.
433	Seed-specific expression of truncated OsGAD2 produces GABA-enriched rice grains that

19 https://mc06.manuscriptcentral.com/botany-pubs

influence a decrease in blood pressure in spontaneously hypertensive rats. Transgenic Res.

18: 865-876. doi:10.1007/s11248-009-9272-1.

436	Akçay, N., Bor, M., Karabudak, T., Özdemir F., and Türkan, İ. 2012. Contribution of gamma
437	aminobutyric acid (GABA) to salt stress responses of Nicotiana sylvestris CMSII mutant and
438	wild type plants. J. Plant Physiol. 169(5): 452–458. doi.10.1016/j.jplph.2011.11.006.
439	Allan, W.L., Breitkreuz, K.E., Waller, J.C., Simpson, J.P., Hoover, G.J., Rochon, A., Wolyn,
440	W.J., Rentsch, R., Snedden, W.A., and Shelp, B.J. 2012. Detoxification of succinate
441	semialdehyde in Arabidopsis glyoxylate reductase and NAD kinase mutants subjected to
442	submergence stress. Botany 90(1): 51–61. doi.10.1139/b11-083.
443	Allan, W.L., Clark, S.M., Hoover, G.J., and Shelp, B.J. 2009. Role of plant glyoxylate reductases
444	during stress: a hypothesis. Biochem. J. 423(1): 15–22. doi.org/10.1042/BJ20090826.
445	Allan, W.L., Peiris, C., Bown, A.W., and Shelp, B.J. 2003. Gamma-hyroxybutyrate accumulates
446	in green tea and soybean sprouts in response to oxygen deficiency. Can. J. Plant Sci. 83(4):
447	951–953. doi.10.4141/P03-085.
448	Allan, W.L., Simpson, J.P., Clark, S.M., and Shelp B.J. 2008. γ -Hydroxybutyrate accumulation
449	in Arabidopsis and tobacco plants is a general response to abiotic stress: putative regulation
450	by redox balance and glyoxylate reductase isoforms. J. Exp. Bot. 59(9): 2555–2564.
451	doi.org/10.1093/jxb/ern122.
452	Al-Quraan, N.A., Sartawe, F.A., and Qaryouti, M.M. 2013. Characterization of γ -aminobutyric
453	acid metabolism and oxidative damage in wheat (Triticum aestivum L.) seedlings unders salt
454	and osmotic stress. J. Plant Physiol. 170(11): 1003-1009.
455	doi.org/10.1016/j.jplph.2013.02.010.

456	António, C., Päpke, C., Rocha, M., Diab, H., Limami, A.M., Obata, T., Fernie, A.R., and van
457	Dongen, J. 2016. Regulation of primary metabolism in response to low oxygen availability
458	as revealed by carbon and nitrogen isotope redistribution. Plant Physiol. 170(1): 43–56.
459	doi:10.1104/pp.15.00266.
460	Araújo, W.L., Nunes-Nesi A., Osnorio S., Usadel B., Fuentes, D., Nagy, R., Balbo, I., Lehmann,
461	M., Studart-Witkowski, C., Tohge, T., Martinoa, E., Jordana, X., DaMatta, F.M., and Fernie,
462	A.R. 2011. Antisense inhibition of the iron-sulphur subunit of succinate dehydrogenase
463	enhances photosynthesis and growth in tomato via an organic acid-mediated effect on
464	stomatal aperture. Plant Cell 23(2): 600-627. doi:10.1105/tpc.110.081224.
465	Araújo, W.L., Nunes-Nesi, A., Trenkamp, S., Bunik, V.I., and Fernie, A.R. 2008. Inhibition of 2-
466	oxoglutarate dehydrogenase in potato tuber suggests the enzyme is limiting for respiration
467	and confirms its importance in nitrogen assimilation. Plant Physiol. 148(4): 1782–1796.
468	doi:10.1104/pp.108.126219.
469	Araújo, W.L., Tohge, T., Osorio, S., Lohse, M., Balbo, I., Krahnert, I., Sienkiewicz-Porzucek,
470	A., Usadel, B., Nunes-Nesi, A.N., and Fernie, A.R. 2012. Antisense inhibition of the 2-
471	oxoglutarate dehydrogenase complex in tomato demonstrates its importance for plant
472	respiration and during leaf senescence and fruit maturation. Plant Cell 24(6): 2328–2351.
473	doi:10.1105/tpc.112.099002.
474	Aurisano, N., Bertani, A., and Regianni, R. 1995. Anaerobic accumulation of 4-aminobutyrate in
475	rice seedlings: causes and significance. Phytochemistry 38(5): 1147–1150.
476	Bao H., Chen X., Lv S., Jiang P., Feng J., Fan P., Nie, L., and Li, Y. 2015. Virus-induced gene
477	silencing reveals control of reactive oxygen species accumulation and salt tolerance in

478	tomato by γ -aminobutyric acid metabolic pathway. Plant Cell Environ. 38(3): 600–613. doi.
479	10.1111/pce.12419.
480	Barbosa, J.M., Singh, N.K., Cherry, J.H., and Locy, R.D. 2011. Nitrate uptake and utilization is
481	modulated by exogenous γ -aminobutyric acid in <i>Arabidopsis thaliana</i> seedlings. Plant
482	Physiol. Biochem. 48(6): 443–450. doi:10.1016/j.plaphy.2010.01.020.
483	Bartyzel, I., Pelczar, K., and Paskowski, A. 2003/4. Functioning of the γ-aminobutyrate pathway
484	in wheat seedlings affected by osmotic stress. Biol. Plant. 47(2): 221–225.
485	Beuvé, N., Rispail, N., Laine, P., Cliquet, JB., Ourry, A., and Le Deunff, E. 2004. Putative role
486	of γ -aminobutyric acid as a long-distance signal in up-regulation of nitrate uptake in <i>Brassica</i>
487	napus L. Plant Cell Environ. 27(8): 1035–1046. doi. 10.1111/j.1365-3040.2004.01208.x.
488	Bolarin, M.C., Santa-Cruz. A., Cayuela. E., and Perez-Alfocea, F. 1995. Short-term solute
489	changes in leaves and roots of cultivated and wild tomato seedlings under salinity. J. Plant
490	Physiol. 147(3-4): 463–468.
491	Borella, J. 2016. Hypoxia-driven changes in glycolytic and tricarboxylic acid cycle metabolites
492	of two nodulated soybean genotypes. Environ. Exp. Bot. 133: 118-127.
493	doi:org/10.1016/j.envexpbot.2016.10.007
494	Bouché, N., and Fromm, H. 2004. GABA in plants: just a metabolite? Trends Plant Sci. 9(3):
495	110-115. doi:10.1016/j.tplants.2004.01.006.
496	Bouché, N., Lacombe, B., and Fromm, H. 2003. GABA signalling: a conserved and ubiquitous
497	mechanism. Trends Cell Biol. 13(12): 607–610. doi:10.1016/j.tcb.2003.10.001.
498	Bown, A.W., and Shelp, B.J. 1989. The metabolism and physiological roles of 4-aminbutyric
499	acid. Biochemistry (Life Sci. Adv.) 8: 21–25.

500	Bown, A.W., and Shelp, B.J. 1997. The metabolism and functions of gamma-aminobutyric acid.
501	Plant Physiol. 115(1) , 1–5. doi:10.1104/pp.115.1.1.

502 Bown, A.W., and Shelp, B.J. 2016. Plant GABA: Not just a metabolite. Trends Plant Sci. 21(10):

503 811–813. doi.org/10.1016/j.tplants.2016.08.001.

- Bown, A.W., and Zhang, G. 2000. Mechanical stimulation, 4-aminobutyric acid (GABA)
- synthesis, and growth inhibition in soybean hypocotyl tissue. Can. J. Bot. 78(1): 119–123.
 doi.10.1139/b99-169.
- 507 Bown, A.W., Hall, D.E., and MacGregor, K.B. 2002, Insect footsteps on leaves stimulate the
- accumulation of 4-aminobutyrate and can be visualized through increased chlorophyll
- fluorescence and superoxide production. Plant Physiol. **129(4)**: 1430–1434.
- 510 doi:10.1104/pp.006114.
- 511 Bown, A.W., MacGregor, K.B., and Shelp, B.J. 2006. Gamma-aminobutyrate: defense against
- 512 invertebrate pests? Trends Plant Sci. **11(9):** 424–427. doi:10.1016/j.tplants.2006.07.002.
- 513 Breitkreuz, K.E., Allan, W.L., Van Cauwenberghe, O.R., Jakobs, C., Talibi, D., André, B., and
- 514 Shelp, B.J. 2003. A novel γ -hydroxybutyrate dehydrogenase. Identification and expression of
- an Arabidopsis cDNA and potential role under oxygen deficiency. J. Biol. Chem. 278(42):
- 516 41552–41556. doi:10.1074/jbc.M305717200.
- 517 Brikis, C.J., Zarei, A., Trobacher, C.P., DeEll, J.R., Akama, K., Mullen, R.T., Bozzo, G.G., and
- 518 Shelp, B.J. 2017. Ancient plant glyoxylate/succinic semialdehyde reductases: GLYR1s are
- 519 cytosolic, whereas GLYR2s are localized to both mitochondria and plastids. Front. Plant Sci.
- **8:** 601. doi.10.3389/fpls.2017.00601
- 521 Buckel, W. 2001. Unusual enzymes involved in five pathways of glutamate fermentation. Appl.
- 522 Microbiol. Biotechnol. **57(3)**: 263–273. doi.10.1007/s002530100773.

523 Carroll, A.D., Fox, G.G., Laurie, S., Phillips, R., Ratcliffe, R.G., and Stewart, G.R. 1994.

- 524 Ammonium assimilation and the role of γ -aminobutyric acid in pH homeostasis in carrot cell 525 suspensions. Plant Physiol. **106(2):** 513–520. doi:10.1104/pp.106.2.513.
- 526 Chevrot, R., Rosen, R., Haudecoeur, E., Cirou, A., Shelp, B.J., Ron, E., and Faure, D. 2006.
- 527 GABA controls the levels of quorum sensing signal in *Agrobacterium tumefaciens*. Proc.
- 528 Natl. Acad. Sci. USA **103(19)**: 7460–7464. doi:10.1073/pnas.0600313103.
- 529 Chiu, G.Z., Shelp, B.J., Bowley, S.R., DeEll, J.R., and Bozzo, G.G. 2015. Controlled
- atmosphere-injury in 'Honeycrisp' apples is associated with γ -aminobutyrate accumulation.
- 531 Can. J. Plant Sci. **95(5):** 879–886. doi.10.4141/cjps-2015-061.
- 532 Cho, D.-H., and Lim, S.-T. 2016. Germinated brown rice and its bio-functional compounds.

533 Food Chem. 196: 259–271. dx.doi.org/10.1016/j.foodchem.2015.09.025.

- 534 Cholewa, E., Chloewinski, A.J., Shelp, B.J., Snedden, W.A., and Bown, A.W. 1997. Cold-shock-
- stimulated γ -aminobutyric acid synthesis is mediated by an increase in cytosolic Ca²⁺, not by

536 an increase in cytosolic H⁺. Can. J. Bot. **75(3)**: 375–382. doi.10.1139/b97-040.

- 537 Clark, S.M., Di Leo. R., Dhanoa. P.K., Van Cauwenberghe. O.R., Mullen. R.T., and Shelp, B.J.
- 538 2009. Biochemical characterization, mitochondrial localization, expression, and potential
- 539 functions for an Arabidopsis gamma-aminobutyrate transaminase that utilizes both pyruvate
- and glyoxylate. J. Exp. Bot. **60(6)**: 1743–1757. doi.org/10.1093/jxb/erp044.
- 541 Crawford, L.A., Bown, A.W., Breitkreuz, K.E., and Guinel, F.C. 1994. The synthesis of γ-
- aminobutyric acid in response to treatments reducing cytosolic pH. Plant Physiol. **104(3)**:
- 543 865–871. doi:10.1104/pp.104.3.865.
- 544 Deeken, R., Engelmann, J.C., Efetova, M., Czirjak, T., Müller T., Kaiser, W.M., Tietz, O.,
- 545 Krischke, M., Mueller, M.J., Palme, K., Dandekar, T., and Hedrich, R. 2006. An integrated

546	view of gene expression and solute profiles of Arabidopsis tumors: a genome-wide
547	approach. Plant Cell 18(12): 3617-3634. doi:10.1105/tpc.106.044743.
548	Deewatthanawong, R., and Watkins, C.B. 2010. Accumulation of γ-aminobutyric acid in apple,
549	strawberry and tomato fruit in response to postharvest treatments. Acta Hortic. 877: 947-
550	952. doi.10.17660/ActaHortic.2010.877.127.
551	Deewatthanawong, R., Nock, J.F., and Watkins C.B. 2010a. γ-Aminobutyric acid (GABA)
552	accumulation in four strawberry cultivars in response to elevated CO ₂ storage. Postharv.
553	Biol. Technol. 57(2): 92–96. doi.10.1016/j.postharvbio.2010.03.003.
554	Deewatthanawong, R., Rowell, R., and Watkins, C.B. 2010b. γ-Aminobutyric acid (GABA)
555	metabolism in CO ₂ -treated tomatoes. Postharv. Biol. Technol. 57(2): 97–105.
556	doi.10.1016/j.postharvbio.2010.03.007.
557	Deyman, K.L., Brikis, C.J., Bozzo, G.G., and Shelp, B.J. 2014a. Impact of 1-
558	methylcyclopropene and controlled atmosphere storage on polyamine and γ -aminobutyrate
559	levels in 'Empire' apple fruit. Front. Plant Sci. 5: 144. doi.org/10.3389/fpls.2014.00144.
560	Deyman, K.L., Chiu, G., Liu, J., Brikis, C.J., Trobacher, C.P., DeEll, J.R., Shelp, B.J., and
561	Bozzo, G.G. 2014b. Effects of elevated CO ₂ and 1-methylcyclopropene on storage-related
562	disorders of Ontario-grown 'Empire' apples. Can. J. Plant Sci. 94(5): 857-865.
563	doi.10.4141/cjps-2014-040.
564	Diana, M., Quílez, J., and Rafecas, M. 2014. Gamma-aminobutyric acid as a bioactive compound
565	in food: a review. J. Funct. Foods. 10: 407-420. doi.org/10.1016/j.jff.2014.07.004.
566	Dimlioğlu, G., Daş, Z.A., Bor, M., Özdemir, F., and Türkan, İ. 2015. The impact of GABA in
567	harpin-elicited biotic stress responses in Nicotiana tabaccum. J. Plant Physiol. 188: 51–57.

568 doi.org/10.1016/j.jplph.2015.08.005.

569	Ding, J., Yang, T., Feng, H., Dong, M., Slavin, M., Xiong, S., and Zhao, S. 2016. Enhancing
570	contents of γ -aminobutyric acid (GABA) and other micronutrients in dehulled rice during
571	germination under normoxic and hypoxic conditions. J. Agric. Food Chem. 64: 1094–1102.
572	doi: 10.1021/acs.jafc.5b04859.
573	Faës, P., Niogret, MF., Montes, E., Le Cahérec, F., Bouchereau, A., and Deleu, C. 2015.
574	Transcriptional profiling of genes encoding GABA-transaminases in Brassica napus reveals
575	their regulation by water deficit. Env. Exp. Bot. 116: 20–31.
576	doi.org/10.1016/j.envexpbot.2015.03.005.
577	Fait, A., Fromm, H., Walter, D., Galili, G., and Fernie, A.R. 2008. Highway or byway: the
578	metabolic role of the GABA shunt in plants. Trends Plant Sci. 13(1): 14–19. doi:
579	10.1016/j.tplants.2007.10.005.
580	Fait, A., Yellin, A., and Fromm, H. 2005. GABA shunt deficiencies and accumulation of reactive
581	oxygen intermediates: insight from Arabidopsis mutants. FEBS Lett. 579: 415–420.
582	Fontaine, JX., Tercé-Laforgue, T., Armengaud P., Clément, G., Renou, JP., Pelletier, S.,
583	Catterou, M., Azzopardi, M., Gibon, Y., Lea, P.J., and Hirel, B. 2012. Characterization of a
584	NADH-dependent glutamate dehydrogenase mutant of Arabidopsis demonstrates the key role
585	of this enzyme in root carbon and nitrogen metabolism. Plant Cell 24(10): 4044–4065.
586	doi:10.1105/tpc.112.103689.
587	Forlani, G., Bertazzini, M., and Giberti, S. 2014. Differential accumulation of γ -aminobutyric
588	acid in elicited cells f two rice cultivars showing contrasting sensitivity to the blast pathogen.
589	Plant Biol. 16(6): 1127–1132. doi.10.1111/plb.12165.
590	Geisler, D.A., Päpke, C., Obata, T., Nunes-Nesi, A., Matthes, A., Schneitz, K., Maximova, E.,
591	Araújo, W.L., Fernie, A.R., and Persson, S. 2012. Downregulation of the δ-subunit reduces

592	mitochondrial ATP synthase levels, alters respiration, and restricts growth and gametophyte
593	development in Arabidopsis. Plant Cell 24(7): 2792–2811. doi:10.1105/tpc.112.09942.
594	Gilliham, M., and Tyerman, S.D. 2016. Linking metabolism to membrane signaling: the GABA-
595	malate connection. Trends Plant Sci. 21(4): 295–301. doi.org/10.1016/j.tplants.2015.11.011.
596	Girousse, C., Bournoville, R., and Bonnemain, JL. 1996. Water deficit-induced changes in
597	concentrations of proline and some other amino acids in the phloem sap of alfalfa. Plant
598	Physiol. 111(1): 109–113. doi:10.1104/pp.111.1.109.
599	Hall, D.E., MacGregor, K.B., Nijsse, J., and Bown, A.W. 2004. Footsteps from insect larvae
600	damage leaf surfaces and initiate rapid responses. Eur. J. Plant Pathol. 110(4): 441-447.
601	Hansen, M.E., Sørensen, H., and Cantwell, M. 2001. Changes in acetaldehyde, ethanol and
602	amino acid concentrations in broccoli florets during air and controlled atmosphere storage.
603	Postharv. Biol. Technol. 22(3): 227–237.
604	Hoover, G.J., Jørgensen, R, Rochon, A., Bajwa, V.S., Merrill, A.R., and Shelp B.J. 2013.
605	Identification of catalytically important amino acid residues for enzymatic reduction of
606	glyoxylate in plants. Biochim. Biophys. Acta 1834(12): 2663–2371.
607	doi.org/10.1016/j.bbapap.2013.09.013.
608	Hu, X., Xu, Z., Xu. W., Li, J., Zhao, N., and Zhou, Y. 2015. Application of γ-aminobutyric acid
609	demonstrates a protective role of polyamine and GABA metabolism in muskmelon seedlings
610	under Ca(NO ₃) ₂ stress. Plant Physiol. Biochem. 92: 1-10.
611	doi.org/10.1016/j.plaphy.2015.04.006
612	Kaplan, F., Kopka, J., Sung, D.Y., Zhao, W., Popp, M., Porat, M., and Guy, C.L. 2007.
613	Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an

- 614 intricate relationship of cold-regulated gene expression with modifications in metabolite
- 615 content. Plant J. **50(6)**: 967–981. doi: 10.1111/j.1365-313X.2007.03100.x.
- 616 Kathiresan, A., Tung, P., Chinnappa, C.C., and Reid, D.M. 1997. γ-Aminobutyric acid stimulates
- ethylene biosynthesis in sunflower. Plant Physiol. **115(1)**: 129–135.
- 618 doi:10.1104/pp.115.1.129.
- 619 Kato-Noguchi, H., and Ohashi, C. 2006. Effects of anoxia on amino acids in rice coleoptiles.
- 620 Plant Prod. Sci. 9(4): 383–387.
- 621 Kim, N.H., Kim, B.S., and Hwang B.K. 2013. Pepper arginine decarboxylase is required for
- polyamine and γ-aminobutyric acid signaling in cell death and defense response. Plant
- 623 Physiol. 162(4): 2067–2083. doi:10.1104/pp.113.217372.
- Kinnersley, A.M., and Turano, F.J. 2000. Gamma aminobutyric acid (GABA) and plant response
 to stress. Crit. Rev. Plant Sci. 19: 479–509. doi.org/10.1080/07352680091139277.
- 626 Koike, S., Matsukura, C., Takayama, M., Asamizu, E., and Ezura, H. 2013. Suppression of γ-
- aminobutyric acid (GABA) transaminases induces prominent GABA accumulation,
- dwarfism and infertility in the tomato (*Solanum lycopersicum* L.). Plant Cell Physiol. **54(5)**:
- 629 793–807. doi.org/10.1093/pcp/pct035.
- 630 Komatsu, S., Yamamoto, A., Nakamura, T., Nouri, M.-Z., Nanjo, Y., Nishizawa, K., and
- Furukawa, K. 2011. Comprehensive analysis of mitochondria in roots and hypocotyls of
- 632 soybean under flooding stress using proteomics and metabolomics techniques. J. Prot. Res.
- 633 **10(9):** 3993–4004. doi.10.1021/pr2001918.
- Lancien, M., and Roberts, M.R. 2006. Regulation of *Arabidopsis thaliana* 14-3-3 gene
- expression. Plant Cell Environ. **29(7):** 1430–1436. doi.10.1111/j.1365-3040.2006.01526.x.

636	Lang, J., Gonzalez-Mula, A., Taconnat, L., Clement, G., and Faure D. 2016. The plant GABA
637	signaling regulates horizontal transfer of the Agrobacterium tumefaciens virulence plasmid.
638	New Phytol. 210(3): 974–983. doi.10.1111/nph.13813.
639	Lemaitre, T., Urbanczyk-Wochniak, E., Flesch, V., Bismuth, E., Fernie, A.R., and Hodges, M.
640	2007. NAD-dependent isocitrate dehydrogenase mutants of Arabidopsis suggest the enzyme
641	is not limiting for nitrogen assimilation. Plant Physiol. 144(3): 1546–1558.
642	doi:10.1104/pp.107.100677.
643	Liao, J., Wu, X., Xing, Z., Li, Q., Duan, Y., Fang, W., and Zhu, X. 2017. Gamma-aminobutyric
644	acid accumulation in tea (Camellia sinesis L.) through the GABA shunt and polyamine
645	degradation pathways under anoxia. J. Agric. Food Chem. 65: 3013-3018.
646	doi:10.1021/acs.jafc.7b00304.
647	Lum, G.B., Brikis, C.J., Deyman, K.L., Subedi, S., DeEll, J.R., Shelp, B.J., and Bozzo, G.G.
648	2016a. Pre-storage conditioning ameliorates the negative impact of 1-methylcyclopropene on
649	physiological injury and modifies the response of antioxidants and γ -aminobutyrate in
650	'Honeycrisp' apples exposed to controlled-atmosphere conditions. Postharv. Biol. Technol.
651	116: 115–128. doi.org/10.1016/j.postharvbio.2016.01.013.
652	Lum, G.B., Shelp, B.J., DeEll, J.R., and Bozzo, G.G. 2016b. Oxidative metabolism is associated
653	with physiological disorders in fruits stored under multiple environmental stresses. Plant Sci.
654	245: 143–152. doi.org/10.1016/j.plantsci.2016.02.005.
655	Lum, G.B., DeEll, J.R., Hoover, G.J., Subedi, S., Shelp, B.J., and Bozzo, G.G. 2017. 1-
656	Methylcylopropene and controlled atmosphere modulate oxidative stress metabolism and
657	reduce senescence-related disorders in stored pear fruit. Postharv. Biol. Technol.,
658	doi.org/10.1016/j.postharvbio.2017.03.008.

659	Makino, Y., Soga, N., Oshita, S., Kawagoe, Y., and Tanaka, A. 2008. Stimulation of γ -
660	aminobutyric acid production in vine-ripe tomato (Lycopersicon esculentum Mill.) fruits
661	under modified atmospheres. J. Agric. Food Chem. 56(16): 7189–7193.
662	doi.10.1021/jf801516e.
663	MacGregor, K.B., Shelp, B.J., Peiris, S., and Bown, A.W. 2003. Overexpression of glutamate
664	decarboxylase in transgenic tobacco plants deters feeding by phytophagous insect larvae. J.
665	Chem. Ecol. 29(9): 2177–2182.
666	Mae, N., Makino, Y., Oshita, S., Kawagoe, Y., Tanaka, A., Aoki, K., Kurabayashi, A., Akihiro,
667	T., Akama, K., Koike, S., Takayama, M., Matsukura, C., and Ezura, H. 2012. Accumulation
668	mechanism of γ -aminobutyric acid in tomatoes (<i>Solanum lycopersicum</i> L.) under low O ₂
669	with and without CO ₂ . J. Agri. Food Chem. 60(4) : 1013–1019. doi.10.1021/jf2046812.
670	Malekzadeh, P., Khara, J., Heydari, R. 2014. Alleviating effects of exogenous gamma-

- aminobutyric acid on tomato seedlings under chilling stress. Physiol. Mol. Biol. Plants 20(1):
- 672 133–137. doi.10.1007/s12298-013-0203-5.
- 673 Mamelak, M. 2012. Sporadic Alzheimer's disease: the starving brain. J. Alzheimers Dis. 31(3):
- 674 459–474. doi.10.3233/JAD-2012-120370.
- Matsuyama, A., Yoshimura, K., Shimizu, C., Murano, Y., Takeuchi, H., and Ishimoto, M. 2009.
- 676 Characterization of the glutamate decarboxylase mediating γ -aminobutyric acid increase in
- the early germination stage of soybean (*Glycine max* [L.] Merr]. J. Biosci. Bioengin.107(5):
- 678 538-543. doi:10.1016/j.jbiosc.2009.01.012.
- 679 Mayer, R.R., Cherry, J.H., and Rhodes, D. 1990. Effects of heat shock on amino acid metabolism
- of cowpea cells. Plant Physiol. **94(2)**: 796–810. doi:10.1104/pp.94.2.796.

681	Mazzucotelli, E., Tartari, A., Cattivelli, L., and Forlani, G. 2006. Metabolism of γ-aminobutyric
682	acid during cold acclimation and freezing and its relationship to frost tolerance in barley and
683	wheat. J. Exp. Bot. 57(14): 3755-3766. doi.org/10.1093/jxb/erl141.
684	McLean, M.D., Yevtushenko, D.P., Deschene, A., Van Cauwenberghe, O.R., Makhmoudova, A.,
685	Potter, J.W., Bown, A.W., and Shelp B.J. 2003. Overexpression of glutamate decarboxylase
686	in transgenic tobacco plants confers resistance to the northern root-knot nematode. Mol.
687	Breed. 11(4): 277–285.
688	McGraw, S.L., Park, D.H., Jones, R., Bentley, M.A., Rico, A., Ratcliffe, R.G., Kruger, N.J.,
689	Collmer, A., and Preston, G.M. 2016. GABA (y-aminobutyric acid) uptake via the GABA
690	permease GabP represses virulence gene expression in Pseudomonas syringae pv. tomato
691	DC3000. Mol. Plant-Microbe Interact. 29(12): 938-949. doi.org/10.1094/MPMI-08-16-0172-
692	R
693	Mei, X., Chen, Y., Zhang, L., Fu, X., Wei, Q., Grierson, D., Zhou, Y., Huang, Y., Dong, F., and
694	Yang, Z. 2016. Dual mechanisms regulating glutamate decarboxylases and accumulation of
695	gamma-aminobutyric acid in tea (Camellia sinensis) leaves exposed to multiple stresses. Sci.
696	Rep. 6: 23685. doi:10.1038/srep23685.
697	Mekonnen, D.W., and Ludewig, F. 2016. Phenotypic and chemotypic studies using Arabidopsis
698	and yeast reveal that GHB coverts to SSA and induces toxicity. Plant Mol. Biol. 91(4-5):
699	429-440. doi.10.1007/s11103-016-0475-6.
700	Mekonnen, D.W., Flügge, U.I., Ludewig, F. 2016. Gamma-aminobutyric acid depletion affects
701	stomata closure and drought tolerance of Arabidopsis thaliana. Plant Sci. 245: 25–34.
702	doi.org/10.1016/j.plantsci.2016.01.005.

703	Merodio, C., Muñoz, M.T., Del Cura, B., Buitrago, D., and Escribano, M.I. 1998. Effect of high
704	CO_2 on the titres of γ -aminobutyric acid, total polyamines and some pathogenesis related
705	proteins in cherimoya fruit stored at low temperature. J. Exp. Bot. 49(325): 1339–1347.
706	doi.org/10.1093/jxb/49.325.1339.
707	Michaeli, S., Fait, A., Lagor, K., Nunes-Nesi, A., Grillich, N., Yellin, A., Bar, D., Khan, M.,
708	Fernie, A.R., Turano, F.J., and Fromm, H. 2011. A mitochondrial GABA permease connects
709	the GABA shunt and the TCA cycle, and is essential for normal carbon metabolism. Plant J.
710	67(3): 485–498. doi.10.1111/j.1365-313X.2011.04612.x.
711	Mirabella, R., Rauwerda, H., Struys, E.A., Jakobs, C., Triantaphylidès, C., Haring, M.A., and
712	Schuurink, R.C. 2008. The Arabidopsis her1 mutant implicates GABA in E-2-hexanal
713	responsiveness. Plant J. 53(2): 197–213. doi.10.1111/j.1365-313X.2007.03323.x.
714	Mirabella, R., Rauwerda, H., Allmann, S., Scala, A., Spyropoulou, E.A., De Vries, M., Boersma,
715	M.R., Breit, T.M., Haring, M.A., and Schuurink, R.C. 2015. WRKY40 and WRKY6 act
716	downstream of the green leaf volatile <i>E-2</i> -hexanal in Arabidopsis. Plant J. 83(6): 1082–1096.
717	doi.10.1111/tpj.12953.
718	Miyashita, Y., and Good, A.G. 2008. Contribution of the GABA shunt to hypoxia-induced
719	alanine accumulation in roots of Arabidopsis thaliana. Plant Cell Physiol. 49(1): 92–102.
720	doi.org/10.1093.pcp/pcm171.
721	Morrison, M.J., Frégeau-Reid, J.A., and Cober, E.R. 2012. Genotype and environment influence

- gamma aminobutyric acid concentration in short-season soybean. Can. J. Plant Sci. 92(6):
- 723 1093–1100. doi.10.4141/CJPS2011-271.
- 724 Morrison, M.J., Frégeau-Reid, J.A., and Cober, E.R. 2013. Seed protein, soaking duration, and
- soaking temperature effects on gamma aminobutyric acid concentration in short-season
- soybean. Crop Sci. 53(6): 2563–2568. doi.10.2135/cropsci2013.02.0088.

727	Morse, A.N.C., and Morse, D.E. 1984. Recruitment and metamorphosis of Haliotis larvae
728	induced by molecules uniquely available at the surface of crustose red algae. J. Exp. Marine
729	Biol. Ecol. 75(3): 191–215.
730	Morse, D.E., Hooker, N., Duncan, H., and Jensen, L. 1979. y-Aminobutyric acid, a
731	neurotransmitter, induces planktonic abalone larvae to settle and begin metamorphosis.
732	Science 204(4391): 407–410. doi.10.1126/science.204.4391.407.
733	Mustroph, A., Barding, G.A., Kaiser, K.A., Larive, C.K., and Bailey-Serres, J. 2014.
734	Characterization of distinct root and shoot responses to low-oxygen stress in Arabidopsis
735	with a focus on primary C- and N-metabolism. Plant Cell Environ. 37(10): 2366–2380.
736	doi.10.1111/pce.12282.
737	Narsai, R., Howell, K.A., Carroll, A., Ivanova, A., Millar, A.H., and Whelan, J. 2009. Defining
738	core metabolic and transcriptomic responses to oxygen availability in rice embryos and
739	young seedlings. Plant Physiol. 151(1): 306–322. doi:10.1104/pp.109.142026.
740	Nayyar, H., Kaur, R., Kaur, S., and Singh, R. 2014. <i>y</i> -Aminobutyric acid (GABA) imparts partial
741	protection from hear stress injury to rice seedlings by improving turgor and upregulating
742	osmoprotectants and antioxidants. J. Plant Growth Regulat. 33: 408-419. doi.
743	10.1007/s00344-013-9389-6.
744	Nonaka, S., Arai, C., Takayama, M., Matsukura, C., and Ezura, H. 2017. Efficient increase of γ -
745	aminobutyric acid (GABA) content in tomato fruits by targeted mutagenesis. Sci. Rep. 7(1):
746	7057. doi:10.1038/s41598-017-06400-y.
747	Okada, T., Sugishita, T., Murakami, T., Murai, H., Saikusa, T., Horino, T., Onoda, A., Kajimoto,
748	O., Takahashi, R., and Takahashi, T. 2000. Effect of the defatted rice germ enriched with

GABA for sleeplessness, depression, autonomic disorder by oral administration. J. Jpn. Soc.
Food Sci. 47: 596–603. .doi.org/10.1021/jf104239m.

- 751 Palanivelu, R., Brass, L., Edlund, A.F., and Preuss, D. 2003. Pollen tube growth and guidance is
- regulated by POP2, an Arabidopsis gene that controls GABA levels. Cell **114(1)**: 47–59.
- doi.10.1016/S0092-8674(03)004.
- Park, D.H., Mirabella, R., Bronstein, P.A., Preston, G.M., Haring, M.A., Lim, C.K., Collmer, A.,
- and Schuurink R.C. 2010. Mutations in γ-aminobutyric acid (GABA) transaminase genes in
- plants or *Pseudomonas syringae* reduce bacterial virulence. Plant J. **64(2)**: 318–330. doi.
- 757 10.1111/j.1365-313X.2010.04327.x.
- Planas-Portell, J., Gallart, M., Tiburcio, A. F., and Altabella, T. 2013. Copper-containing amine
 oxidases contribute to terminal polyamine oxidation in peroxisomes and apoplast of
- 760 *Arabidopsis thaliana*. BMC Plant Biology **13(1)**: 109. doi.10.1186/1471-2229-13-109.
- 761 Poojary, M.M., Dellarosa, N., Roohinejad, S., Koubaa, M., Tylewicz, U., Gómez-Galindo, F.,
- 762 Saraiva, J.A., Della Rosa, M., and Barba, F.J. 2017. Comp. Rev. Food Sci. Food Safety
- **16(5):** 895-905. doi: 10.1111/1541-4337.12285.
- Ramesh, S.A., Tyerman, S.D., Xu, B., Bose, J., Kaur, S., Conn, V., Domingos, P., Ullah, S.,
- 765 Wege, S., Shabala, S., Feijó, J.A., Ryan, P.R., and Gilliham, M. 2015. GABA signalling
- modulates plant growth by directly regulating the activity of plant-specific anion transporters.
- 767 Nat. Commun. 6: 7879. doi:10.1038/ncomms8879.
- 768 Ramputh, A., and Bown, A.W. 1996. Rapid gamma-aminobutyric acid synthesis and the
- inhibition of the growth and development of oblique-banded leaf-roller larvae. Plant Physiol.
- **111(4):** 1349–1352. doi:10.1104/pp.111.4.1349.

771	Reddy, A.S.N., Ali, G.S., Celesnik, H., and Day, I.S. 2011. Coping with stresses: Roles of			
772	calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23(6): 2010–2032.			
773	doi:10.1105/tpc.111.084988.			
774	Reggiani, R., Cantu, C.A., Brimballa, I., and Bertani, A. 1988. Accumulation and			
775	interconversion of amino acids in rice roots under anoxia. Plant Cell Physiol. 29: 981–987.			
776	Renault, H. 2013. Fiat lux! Phylogeny and bioinformatics shed light on GABA functions in			
777	plants. Plant Signal. Behav. 8: e24274. doi.org/10.4161/psb.24274.			
778	Renault, H., Roussel, V., El Amrani, A., Arzel, M., Renault, D., Bouchereau, A., and Deleu, C.			
779	2010. The Arabidopsis pop2-1 mutant reveals the involvement of GABA transaminase in			
780	salt stress tolerance. BMC Plant Biol. 10: 20. doi.10.1186/1471-2229-10-20.			
781	Renault, H., El Amrani, A., Palanivelu, R., Updegraff, E.P., Yu, A., Renou, JP., Preuss, D.,			
782	Bouchereau, A., and Deleu, C. 2011. GABA accumulation causes cell elongation defects and			
783	a decrease in expression of genes encoding secreted and cell wall-related proteins in			
784	Arabidopsis thaliana. Plant Cell Physiol. 52(5): 894–908. doi.org/10.1093/pcp/pcr043.			
785	Renault, H., El Amrani, A., Berger, A., Mouille, G., Soubigou-Taconnat, L., Bouchereau, A.,			
786	and Deleu C. 2013. y-Aminobutyric acid transaminase deficiency impairs central carbon			
787	metabolism and leads to cell wall defects during salt stress in Arabidopsis roots. Plant Cell			
788	Environ. 36(5): 1009–1018. doi.10.1111/pce.12080.			
789	Ricoult, C., Cliquet, JB., and Limami, A. 2005. Stimulation of alanine amino transferase			
790	(AlaAT) gene expression and alanine accumulation in embryo axis of the model legume			
791	<i>Medicago truncatula</i> contribute to anoxia stress tolerance. Physiol. Plant. 123(1): 30–39.			
792	doi.10.1111/j.1399-3054.2005.00449.x.			

793	Rocha, M., Licausi, F., Araújo, W.L., Nunes-Nesi, A., Sodek, L., Fernie, A.R., and Van Dongen
794	J.T. 2010. Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase
795	during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiol. 152(3): 1501-
796	1513. doi:10.1104/pp.109.150045.
797	Salminen, A., Jouhten, P., Saraj, T., Haapasalo, A., and Hiltunen, M. 2016. Hypoxia and GABA
798	shunt activation in the pathogenesis of Alzheimer's disease. Neurochemistry Intern. 92: 13-
799	24. doi.org/10.1016/j.neuint.2015.11.005.
800	Salvatierra, A., Piementel, P., Almada, R., and Hinrichsen, P. 2016. Exogenous GABA
801	application transiently improves the tolerance to root hypoxia on a sensitive genotype of
802	Prunus rootstock. Env. Exp. Bot. 125: 52-66. doi.org/10.1016/j.envexpbot.2016.01.009.
803	Satya Narayan, V., and Nair, P.M. 1990. Metabolism, enzymology and possible roles of 4-
804	aminobutyrate in higher plants. Phytochemistry 29(2): 367–375.
805	Sawai, Y., Yamaguchi, Y., Miyama, D., and Yoshitomi, H. 2001. Cycling treatment of anaerobic
806	and aerobic incubation increases the content of γ -aminobutyric acid in tea shoots. Amino
807	Acids 20: 331-334.
808	Scholz, S.S., Reichelt, M., Mekonnen, D.W., Ludewig, F., and Mithöfer, A. 2015. Insect
809	herbivory-elicited GABA accumulation in plants is a wound-induced, direct, systemic, and
810	jasmonate-independent defense response. Front. Plant Sci. 6:1128.
811	doi.org/10.3389/fpls.2015.01128.
812	Scholz, S.S., Malabarba, J., Reichelt, M., Heyer, M., Mekonnen, D.W., Ludewig, F., and
813	Mithöfer, A. 2017. Evidence for GABA-induced systemic accumulation in Arabidopsis upon
814	wounding. Front. Plant Sci. 8: 388. doi: 10.3389/fpls.2017.00388.

- 815 Seifi, H.S., Curvers, K., De Vleesschauwer, D., Delaere, I., Aziz, A., and Höfte, M. 2013.
- 816 Concurrent overactivation of the cytosolic glutamine synthetase and the GABA shunt in the
- 817 ABA-deficient *sitiens* mutant of tomato leads to resistance against *Botrytis cinerea*. New
- 818 Phytol. **199(2):** 490–504. doi.10.1111/nph.12283.
- 819 Serraj, R., Shelp, B.J., and Sinclair, T.R. 1998. Accumulation of γ-aminobutyric acid in
- nodulated soybean in response to drought stress. Physiol. Plant. **102**: 79–86.
- Shang, H., Cao, S., Yang, Z., Cai, Y., and Zheng, Y. 2011. Effect of exogenous γ-aminobutyric
- acid on proline accumulation and chilling injury in peach fruit after long-term cold storage. J.
- Agric. Food. Chem. **59:** 1264–1268. doi.org/10.1021/jf104424z.
- Shelp, B.J. 2012. Does long-distance GABA signaling via phloem really occur? Botany 90(10):
 825 897-900. doi:10.1139/B2012-066.
- 826 Shelp, B.J., and Zarei, A. Subcellular compartmentation of 4-aminobutyrate metabolism in
- Arabidopsis: an update. Plant Signal. Behav. **12(5):** e1322244.
- doi.org/10.1080/15592324.2017.1322244.
- 829 Shelp, B.J., Bown, A.W., and Faure, D. 2006. Extracellular γ-aminobutyrate mediates
- communication between plants and other organisms. Plant Physiol. **142(4)**: 1350–1352.
- doi:10.1104/pp.106.088955.
- 832 Shelp, B.J., Bown, A.W., and McLean, M.D. 1999. Metabolism and functions of gamma-
- aminobutyric acid. Trends Plant Sci. 4(11): 446–452.
- 834 Shelp, B.J., Bozzo, G.G., Trobacher, C.P., Chiu, G., and Bajwa, V.S. 2012a. Strategies and tools
- for studying the metabolism and function of γ -aminobutyrate in plants. I. Pathway structure.
- Botany **90(8):** 651–668. doi.10.1139/b2012-030.

- 837 Shelp, B.J., Bozzo, G.G., Trobacher, C.P., Zarei, A., Deyman, K.L., and Brikis, C.J. 2012b.
- 838 Hypothesis/review: Contribution of putrescine to 4-aminobutyrate (GABA) production in
- response to abiotic stress. Plant Sci. **193-194:** 130–135.
- doi.org/10.1016/j.plantsci.2012.06.001.
- 841 Shelp, B.J., Bozzo, G.G., Zarei, A., Simpson, J.P., Trobacher, C.P., and Allan, W.L. 2012c.
- Strategies and tools for studying the metabolism and function of γ -aminobutyrate in plants.
- 843 II. Integrated analysis. Botany **90(9):** 781–793. doi.10.1139/b2012-041.
- 844 Shelp, B.J., Mullen, R.T., and Waller, J.C. 2012*d*. Compartmentation of GABA metabolism
- raises intriguing questions. Trends Plant Sci. 17(2): 57–59.
- doi.10.1016/j.tplants.2011.12.006.
- 847 Shimajiri, Y., Oonishi, T., Ozaki, K., Kainou, K., and Akama, K. 2013a. Genetic manipulation
- of the γ -aminobutyric acid (GABA) shunt in rice: overexpression of truncated glutamate
- decarboxylase (GAD2) and knockdown of γ -aminobutyric acid transaminase (GABA-T) lead
- to sustained and high levels of GABA accumulation in rice kernels. Plant Biotechnol. J.11:
- 594–604. doi. 10.1111/pbi.12050.
- 852 Shimajiri, Y., Ozaki, K., Kainou, K., and Akama, K. 2013b. Differential subcellular localization,
- enzymatic properties and expression patterns of γ -aminobutyric transaminases (GABA-T) in
- rice (*Oryza sativa*). J. Plant Physiol. **170(2):** 196–201. doi.org/10.1016/j.jplph.2012.09.007.
- Simpson, J.P., Clark, S.M., Portt, A., Allan, W.L., Makhmoudova, A., Rochon, A., and Shelp,
- B.J. 2010. γ -Aminobutyrate transaminase limits the catabolism of γ -aminobutyrate in cold-
- stressed Arabidopsis plants: insights from an overexpression mutant. Botany **88(5)**: 522–527.
- doi.10.1139/B10-020.

859	Solomon, P.S., and Oliver, R.P. 2001. The nitrogen content of the tomato leaf apoplast increases
860	during infection by <i>Cladosporium fulvum</i> . Planta 213(2): 241–249.
861	Solomon, P.S., and Oliver, R.P. 2002. Evidence that γ-aminobutyric acid is a major nitrogen
862	source during <i>Cladosporium fulvum</i> infection of tomato. Planta 214(3): 414–420.
863	doi.10.1007/s004250100632.
864	Song, H., Xu, X., Wang, H., Wang, H., and Tao, Y. 2010. Exogenous γ-aminobutyric acid
865	alleviates oxidative damage caused by aluminum and proton stresses on barley seedlings. J.
866	Sci. Food Agric. 90: 1410–1416. doi.10.1002/jsfa.3951.
867	Studart-Guimarães, C., Fait, A., Nunes-Nesi, A., Carrari, F., Usadel, B., and Fernie, A.R. 2007.
868	Reduced expression of succinyl-coenzyme A ligase can be compensated for by up-regulation
869	of the γ -aminobutyrate shunt in illuminated tomato leaves. Plant Physiol. 145(3): 626–639.
870	doi:10.1104/pp.107.103101.
871	Sulieman, S., and Schulze, J. 2010. Phloem-delivered γ-aminobutyric acid (GABA) is involved
872	in upregulating nodule N_2 fixation efficiency in the model legume <i>Medicago truncatula</i> .
873	Plant Cell Environ. 33(12): 2162–2172. doi.10.1111/j.1365-3040.2010.02214.x.
874	Sweetlove, L.J., Beard, K.F.M., Nunes-Nesi, A., Fernie, A.R., and Ratcliffe, R.G. 2010. Not just
875	a circle: flux models in the plant TCA cycle. Trends Plant Sci. 15(8): 462–470. doi:
876	10.1016/j.tplants.2010.05.006.
877	Takahashi, Y., Sasanuma, T., and Abe, T. 2013. Accumulation of gamma-aminobutyrate
878	(GABA) caused by heat-drying and expression of related genes in immature vegetable
879	soybean (edamame). Breed. Sci. 63: 205–210. Tcherkez, G., Mahé, A., Gauthier, P., Mauve,
880	C., Gout, E., Bligny, R., Cornic, G., and Hodges, M. 2009. In folio respiratory fluxomics
881	revealed by ¹³ C isotopic labeling and H/D isotope effects highlight the non cyclic nature of

882	the tricarboxylic acid "cycle" in illuminated leaves. Plant Physiol. 151(2): 620–630.
883	doi:10.1104/pp.109.142976.
884	Tiburcio, A. F., Altabella, T., Bitrián, M., and Alcázar R. 2014. The roles of polyamines during
885	the lifespan of plants: from development to stress. Planta 240(1):1-18. doi.10.1007/s00425-
886	014-2055-9.
887	Toyokura, K., Watanabe, K., Oiwaka, A., Kusano, M., Tameshige, T., Tatematsu, K.,
888	Matsumoto, N., Tsugeki, R., Saito, K., and Okada K. 2011. Succinic semialdehyde
889	dehydrogenase is involved in the robust patterning of Arabidopsis leaves along the adaxial-
890	abaxial axis. Plant Cell Physiol. 52(8): 1340-1353. doi.org/10.1093/pcp/pcr079.
891	Trapido-Rosenthal, H.G., and Morse, D.E. 1986. Availability of chemosensory receptors is
892	down-regulated by habituation of larvae to a morphogenetic signal. Proc. Natl. Acad. Sci.
893	USA 83(20): 7658–7662.
894	Trobacher, C.P., Clark, S.M., Bozzo, G.G., Mullen, R.T., DeEll, J.R., and Shelp, B.J. 2013a.
895	Catabolism of GABA in apple fruit: Subcellular localization and biochemical
896	characterization of two γ-aminobutyrate transaminases. Postharv. Biology Technol. 75: 106–
897	113. doi.org/10.1016/j.postharvbio.2012.08.005.
898	Trobacher, C.P., Zarei, A., Liu, J., Clark, S.M., Bozzo, G.G., and Shelp, B.J. 2013b. Calmodulin-
899	dependent and calmodulin-independent glutamate decarboxylases in apple fruit. BMC Plant
900	Biol. 13: 144. doi.10.1186/1471-2229-13-144.
901	Tsushida, T., and Murai, T. 1987. Conversion of glutamic acid to gamma-aminobutyric acid in
902	tea leaves under anaerobic conditions. Agric. Biol. Chem. 51: 2865–2871.

903	Tuin, L.G., and Shelp, B.J. 1994. In situ [¹⁴ C]glutamate metabolism by developing soybean			
904	cotyledons I. Metabolic routes. J. Plant Physiol. 143(1): 1-7. doi.org/10.1016/S0176-			
905	1617(11)82019-4.			
906	Valentin, H.E., Zwingmann, G., Schonebaum, A., and Steinbuchel A. 1995. Metabolic pathway			
907	for biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) from 4-hydroxybutyrate			
908	by Alcaligenes eutrophus. Eur. J. Biochem. 227(1-2): 43-60. doi.10.1111/j.1432-			
909	1033.1995.tb20358.x.			
910	Valle, E.M., Boggio, S.B., and Heldt, H.W. 1998. Free amino acid composition of phloem sap			
911	and growing fruit of Lycopersicon esculentum. Plant Cell Physiol. 39(4): 458–461.			
912	doi.org/10.1093/oxfordjournals.pcp.a029391.			
913	Wallace, W., Secor, J., and Schrader, L.E. 1984. Rapid accumulation of γ-aminobutyric acid and			
914	alanine in soybean leaves in response to an abrupt transfer to lower temperature, darkness, or			
915	mechanical manipulation. Plant Physiol. 75(1): 170–175. doi:10.1104/pp.75.1.170.			
916	Wang, C., Fan, L., Gao, H., Wu, H., Li, J., and Lv, G. 2014a. Polyamine biosynthesis and			
917	degradation are modulated by exogenous gamma-aminobutyric acid in root-zone hypoxia-			
918	stressed melon roots. Plant Physiol. Biochem. 82: 17–26.			
919	http://dx.doi.org/10.1016/j.plaphy.2014.04.018			
920	Wang, C., Luo, Z., Huang, Z., Yang, K., Gao, S., and Du, R. 2014b. Effect of exogenous γ -			
921	aminobutyric acid on chilling injury and antioxidant capacity in banana peel. Sci. Hortic.			
922	168: 132-137. doi.org/10.1016/j.scienta.2014.01.022.			
923	Xing, S.G., Jun, Y.B., Hau, Z.W., and Liang, L.Y. 2007. Higher accumulation of γ-aminobutyric			
924	acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine			
	41			
	https://mc06.manuscriptcentral.com/botany-pubs			

- 925 *max* (L.) Merr. roots, Plant Physiol. Biochem. **45**: 560–566.
- 926 doi:10.1016/j.plaphy.2007.05.007.
- 927 Yang, A., Cao, S., Yang, Z., Cai, Y., and Zheng, Y. 2011. γ-Aminobutyric acid treatment
- reduces chilling injury and activates the defence response of peach fruit. Food Chem. **129**:
- 929 1619–1622. doi:10.1016/j.foodchem.2011.06.018.
- 930 Yang, R., Guo, Q., and Gu, Z. 2013. GABA shunt and polyamine degradation pathway on γ-
- aminobutyric acid accumulation in germinating fava bean (*Vicia faba* L.) under hypoxia.
- 932 Food Chem. 136: 152–159. doi.org/10.1016/j.foodchem.2012.08.008.
- 933 Yoshimura, M., Toyoshi, T., Sano, A., Izumi, T., Fujii, T., Konishi, T., Inai, S., Matskura, C.,
- 934 Fukuda, N., Ezura, H., and Obata, A. 2010. Effect of a γ-aminobutyric acid rich tomato
- cultivar 'DG03-9' in spontaneously hypertensive rats. J. Agric. Food Chem. 58: 615–619.
 doi.10.1021/jf903008t.
- 937 Youn, Y.-S., Park, J.-K., Jang, H.D., and Rhee, Y.W. 2011. Sequential hydration with anaerobic
- and heat treatment increases GABA (γ -aminobutyric acid) content in wheat. Food Chem.
- 939 129: 1631-1635. doi:10.1016/j.foodchem.2011.06.020.
- 940 Yu, G.H., Liang, J.G., He, Z.K., and Sun, M.X. 2006. Quantum dot-mediated detection of γ-
- aminobutyric acid binding sites on the surface of living pollen protoplasts in tobacco. Chem.
- 942 Biol. Interact. **13:** 723–731.
- Yu, G.H., Zou, J., Feng, J., Peng, J., Peng, X.-B., Wu, J.Y., Palanivelu, R., and Sun M.X. 2014.
- 944 Exogenous γ -aminobutyric acid (GABA) affects pollen tube growth via modulating putative
- 945 Ca^{2+} -permeable membrane channels and is coupled to negative regulation on glutamate
- 946 decarboxylase. J. Exp. Bot. **65(12)**: 3235–3248. doi.org/10/1093/jxb/eru171.

947	Zarei, A., Brikis, C.J., Bajwa, V.S., Chiu, G.Z., Simpson, J.P., DeEll, J.R., Bozzo, G.G., and
948	Shelp, B.J. 2017a. Plant glyoxylate/succinic semialdehyde reductases: comparative
949	biochemical properties, function during chilling stress, and subcellular localization.
950	Front. Plant Sci. 8: 1399. doi: 10.3389/fpls.2017.01399.
951	Zarei, A., Chiu, G.Z., Yu, G., Trobacher, C.P., and Shelp B.J. 2017b. Salinity-regulated
952	expression of genes involved in GABA metabolism and signaling. Botany 95: 621-627.
953	doi.10.1139/cjb-2016-0304.
954	Zarei, A., Trobacher, C.P., Cooke, A.R., Meyers, A.J., Hall, J.C., and Shelp B.J. 2015a. Apple
955	fruit copper amine oxidase isoforms: peroxisomal MdAO1 prefers diamines as substrates,
956	whereas extracellular MdAO2 exclusively utilizes monoamines. Plant Cell Physiol. 56(1):
957	137–147. doi.org/10.1093/pcp/pcu155.
958	Zarei, A., Trobacher, C. P., and Shelp, B. J. 2015b. NAD ⁺ -aminoaldehyde dehydrogenase
959	candidates for 4-aminobutyrate (GABA) and β -alanine production during terminal oxidation
960	of polyamines in apple fruit. FEBS Lett. 589(19 PtB): 2695–2700.
961	doi.10.1016/j.febslet.2015.08.005.
962	Zarei, A., Trobacher, C.P., and Shelp, B.J. 2016. Arabidopsis aldehyde dehydrogenase 10 family
963	members confer salt tolerance through putrescine-derived 4-aminobutyrate (GABA)
964	production. Sci. Rep. 6: 35115. doi:10.1038/srep35115.
965	Zhang, Q., Xiang, J., Zhang, L., Zhu, X., Evers, J., van der Werf, W., and Duan, L. 2014.
966	Optimizing soaking and germination conditions to improve gamma-aminobutyric acid
967	content in japonica and indica germinated brown rice. J. Funct. Foods 10: 283-291.
968	doi.org/10.1016/j.jff.2014.06.009.

969	Zhang, X., Shabala, S., Koutoulis, A., Shabala, L., Johnson, P., Hayes, D., Nichols, D.S., and
970	Zhou, M. 2015. Waterlogging tolerance in barley is associated with faster aerenchyma
971	formation in adventitious roots. Plant Soil 394(1-2): 355–372. doi.10.1007/s11104-015-
972	2536-г.
973	
974	
975	
976	
977	
978	
979	
980	
981	
982	
983	
984	
985	

986 **Table 1.** Abiotic and biotic stresses stimulate GABA accumulation in plants.

987

Stress	Species/organ/tissue/cell type/translocation fluid	References
Cold	Glycine max and Arabidopsis thaliana leaves	Wallace et al. 1984; Kaplan et al. 2007; Allan et al.
		2008
	Asparagus sprengeri mesophyll cells	Cholewa et al. 1997
	Hordeum vulgare and Triticum aestivum seedlings	Mazzucotelli et al. 2006
Heat	Vigna unguiculata cell cultures	Mayer et al. 1990
	A. thaliana leaves	Allan et al. 2008
Salinity	Solanum lycopersicum roots and leaves	Bolarin et al. 1995
	T. aestivum seedlings	Bartyzel et al. 2003/4; Al-Quraan et al. 2013
	A. thaliana, Nicotiana sylvestris and S. lycopericum	Allan et al. 2008; Renault et al. 2010, 2013; Akçay
	leaves	et al. 2012; Bao et al. 2015; Zarei et al. 2016; Zarei et
		al. 2017 <i>b</i>
Drought	G. max nodules and xylem sap	Serraj et al. 1998
	Brassica napus leaves	Faës et al. 2015
Waterlogging	N. tabaccum and A. thaliana leaves	Allan et al. 2008, 2012
	<i>H. vulgare</i> roots	Zhang et al. 2015
O ₂ deficit	Oryza sativa, A. thaliana, Cucumis melo and Prunus	Reggiani et al. 1988; Aurisano et al. 1995;
	persica roots	Miyashita and Good 2008; Mustroph et al. 2014;
		Wang et al. 2014; Salvatierra et al. 2016
	G. max sprouts and Commelia sinesis,	Tsushida and Murai 1987; Allan et al. 2003; Breitkreuz (

https://mc06.manuscriptcentral.com/botany-pubs

	Nicotiana tabaccum and Arabidopsis leaves	al. 2003; Allan et al. 2008; Mei et al. 2016;;; ; Liao et al.
		2017
	Medicago sativa and O. sativa seedlings	Ricoult et al. 2005; Narsai et al. 2009
	O. sativa cotyledons	Kato-Noguchi and Ohashi 2006
	Brassica oleracea var. italica florets	Hansen et al. 2001
	G. max roots and nodules	Borella et al. 2017
CO ₂ enrichment (often in	Annona cherimola, Malus x domestica and S.	Merodio et al. 1998; Makino et al. 2008;
combination with cold and	lycopersicum fruits	Deewatthanawong and Watkins 2010;
O ₂ deficit)		Deewatthanawong et al. 2010 <i>a</i> , b; Mae et al. 2012;
		Trobacher et al. 2013 <i>a</i> ; Deyman et al. 2014 <i>a</i> , <i>b</i> , Chiu et
		al. 2015; Lum et al. 2016 <i>a</i>
	<i>B. oleracea</i> . var <i>italica</i> florets	Hansen et al. 2001
UV	A. thaliana plants	Fait et al. 2005
Cytosolic acidification	A. sprengeri mesophyll cells and Daucus carota	Carroll et al. 1994; Crawford et al.(1994
	cell suspensions	
Mechanical stimulation	G. max leaves and hypocotyls	Wallace et al. 1984; Bown and Zhang 2000
Mechanical damage	G. max, N. tabaccum, A. thaliana and Camellia sinesi	Ramputh and Bown 1996; Bown et al. 2002; Hall
	leaves	et al. 2004; Scholz et al. 2015; Mei et al. 2016
	M. sativa and S. lycopersicum phloem exudates	Girousse et al. 1996; Valle et al. 1998
Cladosporium fulvum	S. lycopsericum cell apoplast	Solomon and Oliver 2001, 2002
Agrobacterium infection	A. thaliana tumors	Chevrot et al. 2006; Deeken et al. 2006; Lang et al.
		2016

https://mc06.manuscriptcentral.com/botany-pubs

Pseudomonas infection	A. thaliana plants	Park et al. 2010
Harpin (bacterial elicitor)	N. tabaccum leaves	Dimlioğlu et al. 2015
Blast pathogen hydrolysate	O. sativa suspension culture	Forlani et al. 2014
from cell walls		
E-2-hexanal (wound-	A. thaliana leaves	Mirabella et al. 2008, 2015
induced volatile organic		
compound)		
988		
989		
990		
991		
992		
993		
994		
995		
996		
997		
998		
999		

Table 2. Plant GABA acts a signal

Plant species	Experimental details	Physiological, transcriptional or molecular response	References
Crustose red	GABA is released from grazed	Induces GABA neuronal receptors and triggers	Morse and Morse 1979,
algae	algae	metamorphosis in red abalone	1984; Trapido-Rosenthal
			and Morse 1986
Helianthus	Seedlings treated with 100 mM	Increases ethylene production and expression of	Kathiresan et al. 1997
annuus	GABA for 12-16 h	ACC synthase and ACC oxidase	
Arabidopsis	gaba-t mutant has disrupted	Arrested or misdirected pollen tube growth reduces	Palanivelu et al. 2003
thaliana	GABA gradient along pollen tube	seed yield	
	path		
	Seedling grown with 10 mM	Downregulates expression of 14-3-3 gene family	Lancien et al. 2004
	GABA for 7 d	members in a Ca ²⁺ -, ethylene- and abscisic acid-	
		dependent manner	
	gaba-t mutant germinated on 10	White, bleached phenotype with a shorter life cycle	Clark et al. 2009
	mM GABA	than when grown without N	
	gaba-t mutant; seedlings treated	Pollen tube elongation is defective and cell wall-	Renault et al. 2011
	with 1-10 mM GABA for up to 6	related genes are downregulated; leaf chlorosis and	
	d	cell elongation is inhibited	
	Seedlings treated with up to 200	Root length and nitrate uptake are stimulated by	Barbosa et al. 2011
	mM GABA for up to 15 d	GABA at low nitrate, and inhibited at high nitrate;	
		increases amount of nitrate reductase protein at low	
		nitrate	

https://mc06.manuscriptcentral.com/botany-pubs

	gaba-t mutant; seedling treated	Abnormalities in polarity of the adaxial-abaxial axis	Toyokura et al. 2011
	without or with 1.5% (w/v)	in leaf primordia; recovered with succinic	
	succinate semialdehyde for 1-2	semialdehyde	
	weeks		
	gaba-t mutant; mechanical	Larvae growth is significantly inhibited with	Scholz et al. 2017
	wounding or Spodoptera littoralis	feeding on local or systemic untreated leaves;	
	feeding	GABA accumulation in systemic leaves does not	
		depend on GABA translocation or an increase in	
		cytosolic Ca ²⁺	
Nicotiana	Agrobacterium tumefaciens	Stimulates expression of attKLM operon and	Chevrot et al. 2006
tabaccum	culture treated with 1 mM GABA	decreases level of quorum-sensing signal in	
	or wounded stems of $NtGAD\Delta C$	agrobacterium, which reduces virulence	
	Ox plants		
	Detection of binding sites on	GABA binds to plasma membrane, triggering an	Yu et al. 2006
	pollen protoplasts	increase in cytosolic Ca ²⁺	
	Pseudomonas syringae DC3000	Represses the expression of type III secretion	McGraw et al. 2016
	culture treated with GABA or	system in bacterium, which reduces hypersensitive	
	<i>NtGAD^{<i>A</i>}<i>C</i> Ox plants</i>	response in plant	
	In vitro germination of pollen	Stimulates pollen tube growth, activates Ca ²⁺ -	Yu et al. 2014
	grains with up to 10 mM GABA	influx, coupled to outward K+ efflux; modulated by	
	for 6 h	GAD	
Solanum	Cladopsporium fulvum infection	Induces expression of GABA-T and SSADH in	Solomon and Oliver

https://mc06.manuscriptcentral.com/botany-pubs

lycopersicum	increases apoplastic GABA level	fungus	2001, 2002
	from 0.8 to 2-3 mM		
	Botrytis cinerea infection or	Induces expression of GAD, SSADH and GABA-T	Seifi et al. 2013
	treatment with 1-10 mM	genes in host, resulting in partial resistance	
	exogenous GABA		
Capsicum	Xanthomonas campestris (Xc)	Modulates hypersensitive cell death and GABA	Kim et al. 2013
annuum	infection; transient co-expression	levels in pepper host; exogenous GABA inhibits	
	of ADC1 and Xc effector	avirulent Xc growth; results suggest involvement of	
	(AvrBsT); ADC1-silenced leaves;	polyamine-derived GABA in resistance pathway	
	exogenous GABA		
Brassica	Nitrogen deprivation and growth	Positive correlation between phloem-GABA and	Beuvé et al. (2004)
napus	cycle induces changes in phloem	nitrate influx; elevates expression of plasma	
	GABA; treatment of plants with	membrane-located nitrate transporter and stimulates	
	0.1 mM GABA	nitrate influx by root system	
Medicago	Artificial feeding of 15 mM	Downregulates symbiotic nitrogen fixation	Sulieman and Schulze
truncatula	GABA into phloem		2010
Triticum	ALMT proteins possess a GABA	Modulation of ALMT activity alters root growth	Ramesh et al. 2015
aestivum	binding domain, and are activated	and root tolerance to alkaline pH, acid pH and	
	by anions and negatively	aluminium ions; positive correlation between	
	regulated by GABA	ALMT1 expression and aluminum-sensitive GABA	
		accumulation	
Prunus spp.	Hypoxia elevates GABA levels	May induce expression of GAD1, GAD2 and GAD4	Salvatierra et al. 2016

	over 8-d period
1001	Abbrev: ALMT, aluminum-activated malate transporter; ADC, arginine decarboxylase; GABA-T, GABA transaminase; GAD,
1002	glutamate decarboxylase; Ox, overexpression
1003	
1004	
1005	
1006	
1007	
1008	
1009	
1010	
1011	
1012	
1013	
1014	
1015	
1016	

1017 **Table 3.** GABA is a defence mechanism against invertebrate pests

1018

Host plant	Strategy for elevating GABA in host	Biotic agent	Impact on biotic agent	References
species/diet	plant/diet			
Synthetic	Increase from 1.6 to 2.6 μ mol g ⁻¹ FM	Choristoneura	Rates of growth,	Ramputh
diet		rosaceana	development and	and Bown
			survival of larvae are	1996
			reduced	
Tobacco	Constitutive $NtGAD$ or $NtGAD\Delta C$	Meloidogyne hapla	Nematode egg masses	McLean et
	Ox; 0.22-3.5 µmol g ⁻¹ FM root (180-		are 50-100% fewer 9	al. 2003
	2800% WT) and 0.55 $\mu mol~g^{-1}~FM$		weeks after inoculation	
	shoot (250% WT)			
Tobacco	Constitutive NtGAD or NtGAD∆C	Heliothis virescens	Larval feeding is	MacGregor
	Ox		reduced by 80-90% in	et al. 2003
			preference studies	
Arabidopsis	gad1/2 x gaba-t triple mutant	Spodoptera	Larval weight is	Scholz et al.
	contains 0.6 µmol g ⁻¹ FM (5-fold	littoralis larvae	reduced by 30% after 7	2015
	WT)		d of feeding	
Synthetic	Increase from 0 to 1 µmol g ⁻¹ FM	Spodoptera	Larval weight gain is	Scholz et al.
diet		littoralis	reduced by 22 % after 7	2015
			d of feeding	

1019 Abbrev: FM, fresh mass; GABA-T, GABA transaminase; GAD, glutamate decarboxylase; Ox, overexpression; WT, wild-type

https://mc06.manuscriptcentral.com/botany-pubs

Table 4. Abiotic stress, breeding and genetic engineering strategies enrich GABA levels in plant-derived foodstuffs and provide
 hypotensive benefits

Species/ plant	Strategy	GABA	Hypotensive effect	References
part		enrichment		
		-fold		
Rice grain	Soaking, soaking at elevated temperature and	up to 14		Zhang et al. 2014; Cho and
	slightly acidic pH with glutamate in dark, or N_2			Lim 2016; Ding et al. 2016
	and CO ₂ treatments during germination			
	Seed-specific expression of truncated OsGAD2	30	Spontaneously	Akama et al. 2009
			hypertensive rats	
	Seed-specific expression of truncated OsGAD2	74-349		Shimajiri et al. 2013a
	and mild knockdown of OsGABA-T			
Wheat grain	Sequential hydration and germination, followed	40-57		Youn et al. 2011
	by N ₂ treatment and heat drying			
Tomato fruit	Genetic variation	10	Spontaneously	Yoshimura et al. 2011
			hypertensive rats	
	Constitutive overexpression of full-length	up to 5		Takayama et al. 2015
	SlGAD3			
	Fruit-ripening-specific expression of truncated	up to 18		Takayama et al. 2017
	SlGAD3			
	Expression of SIGAD2 or SIGAD3 with full or	up to 15		Nonaka et al. 2017
	partial deletion of autoinhibitory domain			

https://mc06.manuscriptcentral.com/botany-pubs

Soybean seed	d Germination or soaking during germination,			Matsuyama et al. 2009;				
	varying temperature and cultivar			Morrison et al. 2013				
	Genetic variation in meal prepared from dry seed	2		Morrison et al. 2012				
	Heat drying seeds within immature fruit	5		Takahashi et al. 2013				
Fava bean seed	Germination under hypoxia	2-8		Yang et al. 2013				
Green tea	Fermentation under N ₂		Salt-sensitive rats	Abe et al. 1995				
leaves	Fermentation under N ₂	Several		Tsushida et al. 1987; Sawai				
				et al. 2001; Allan et al. 2003				

1026	

1038 Figure legends

1039

- 1040 **Figure 1.** GABA metabolism in Arabidopsis.
- 1041 The well-known GABA shunt is shown in blue balloons, and auxiliary pathways involving 4-
- 1042 hyroxybutyrate and polyamines are shown in red and green, respectively; all enzymes are shown
- 1043 in orange. The dashed lines represent reactions or enzymatic paths which have been
- 1044 characterized in a preliminary fashion only, if at all, in plants. The dotted lines represent
- 1045 reactions that are only found in animal and bacterial systems. Three of the five glutamate
- 1046 decarboxylases possess a calmodulin-binding domain. (See text for more explanation.)
- 1047 Abbreviations: ABAL, 4-aminobutanal; ALDH, aldehyde dehydrogenase; CaM, calmodulin;
- 1048 CuAO, copper amine oxidase; DHBA, dihydroxybutyrate; GABA, 4-aminobutyrate; GAD,
- 1049 glutamate decarboxylase; GABA-T, GABA transaminase; GHB, 4-hydroxybutyrate; GHBDH,
- 1050 4-hydroxybutyrate dehydrogenase; GLYR, glyoxylate/succinic semialdehyde reductase; SSA,
- 1051 succinic semialdehyde; SSADH, succinic semialdehyde dehydrogenase.

- Figure 2. Metabolic dysfunction and stress stimulates the GABA shunt & non-cyclic flux in the
 tricarboxylic acid cycle.
- 1055 The heat map represents the relative levels of marker metabolites in plants subjected to
- 1056 chemical, knockout and knockdown strategies, and/or abiotic stresses: red, increased; green,
- 1057 decreased; yellow, no effect; gray, not determined. Abbreviations: Ala, alanine; as, antisense; Cit,
- 1058 citrate; Fum, fumarate; GAB, GABA; gaba-t, GABA transaminase mutant; gad, glutamate
- 1059 decarboxylase mutant; *gdh*, glutamate dehydrogenase mutant; GHB, 4-hydroxybutyrate; Gln,
- 1060 glutamine; Glu, glutamate; IC, isocitrate; *nad-idh*, nad-dependent isocitrate dehydrogenase

1061	mutant; Lac; lactate; Mal, malate; mATPS, mitochondrial ATP synthase; OG, 2-oxoglutarate;
1062	OGDH, 2-oxoglutarate dehydrogenase; Pyr, puruvate, SCL, RNAi, RNA interference; succinyl-
1063	CoA ligase; SDH, succinate dehydrogenase; Suc, succinate;
1064	
1065	Figure 3. GABA regulates ALMT membrane channels across the plasmalemma.
1066	GABA-stimulated anion efflux is negatively regulated by GABA (dashed arrows with red bar). ?
1067	represents an unknown transport mechanism. Abbreviations: ALMT, aluminum-activated malate
1068	transporter; GABA, 4-aminobutyrate; GAD, glutamate decarboxylase; GAT, GABA transporter;
1069	TCAC, tricarboxylic acid cycle.
1070	
1071	Figure 4. Exogenous GABA alleviates stress-induced losses in quality.
1072	The arrows represent GABA-induced increases or decreases in the levels or status of the
1073	preceding metabolites or enzyme activities during the positive response to stress. Abbreviations:
1074	ADC, arginine decarboxylase; AEC. adenylate energy charge; APX, ascorbate peroxidase; CAT,
1075	catalase; DAO, diamine oxidase; DHAR, dehydroascorbate reductase; GABA, 4-aminobutyrate;
1076	GAD, glutamate decarboxylase; GABA-T, GABA transaminase; GP, glutathione peroxidase;
1077	GSH, glutathione; GST, glutathione S-transferase; LOX, lipoxygenase, MDA, malondialdehyde;
1078	MDHAR, monodehydroascorbate reductase; OAT, ornithine δ -aminotransferase; ODC. ornithine
1079	decarboxylase; P5CS, Δ^1 -pyrroline-5-proline carboxylate synthetase; PAO, polyamine oxidase;
1080	PDH, proline dehydrogenase; PLPD, phospholipase D; put, putrescine; ROS, reactive oxygen
1081	species; SAMDC, S-adenosylmethionine decarboxylase; SOD, superoxide dismutase; spd,
1082	spermidine; spm, spermine;
1083	

Figure 1. GABA metabolism in Arabidopsis

56x54mm (300 x 300 DPI)

Tissue/Conditions	Strategy/abiotic stress	Relative metabolite level												
		Lac	GHB	Pyr	Cit	IC	OG	Suc	Fum	Mal	Gln	Glu	Ala	GAB
Illuminated Arabidopsis leaves ¹	nad-idhii													
	nad-idhiv													
Potato tuber discs ²	Phosphonate inhibition of OGDH								_					
Illminated tomato leaves ³	asOGDH14													
	asOGDH36													
	asOGDH37													
Illminated tomato leaves ⁴	asSCL													
Illuminated tomato leaves ⁵	asSDH14													
	asSDH43													
		_		_	_							_		
Arabidopsis roots ⁶	gdh1/2/3										1	1		
7					_							_		
Arabidopsis plantlets'	RNAi mATPS				_									_
	Oligomycin inhibition of mATPS													
Illuminated Arabidonsis shoots ⁸	aad1/2													
Arabidopsis roots ⁹	gaba t 1 d colinity												<u> </u>	
Arabidopsis roots	gubu-t, 1 d salinity		_											
Arabidopsis roots	gaba-t , 4d salinity													
Illuminated Arabidopsis plants ¹¹	Cold acclimation													
Lotus iaponica, roots ¹²	Waterlogging													
Sovbean roots ¹³	Flooding													
Soybean root nieces ¹⁴	Hypoxia								1					
soyucan root pieces	Пурола								1. Sec. 1.					

Figure 2. Metabolic dysfunction and stress stimulates the GABA shunt & non-cyclic flux in the tricarboxylic acid cycle.

Figure 3. GABA regulates ALMT membrane channels across the plasmalemma.

44x40mm (300 x 300 DPI)

Figure 4. Exogenous GABA alleviates stress-induced losses in quality.

52x32mm (300 x 300 DPI)