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Abstract: We discuss the origin of 4-aminobutyrate (GABA) from glutamate and 24 

polyamines, and its subsequent catabolism to succinic semialdehyde and either succinate or 4-25 

hydroxybutyrate. Promiscuous activities of GABA transaminase, glyoxylate/succinic 26 

semialdehyde reductases, and aldehyde dehydrogenase 10As appear to be important 27 

determinants of cross-talk among metabolic pathways during stress. Imposition of abiotic stress, 28 

as well as genetic or chemical disruption of glutamate decarboxylase, GABA transaminase and 29 

tricarboxylic acid cycle reactions, results in non-cyclic carbon flux in the tricarboxylic acid 30 

cycle, demonstrating that stress-induced GABA metabolism is strongly linked with respiration. 31 

Metabolic generation of 4-hydroxybutyrate is probably linked to the stimulation of succinic 32 

semialdehyde reductase activity by an increasing NADPH/NADP+ ratio. We discuss the potential 33 

signaling role of GABA in various processes, including pollen tube guidance, interaction with 34 

fungal, bacterial and invertebrate pests, and stomatal functioning, and argue that further research 35 

on short-term responses to stress is required to determine whether or not GABA functions by 36 

binding to or regulating activity of GABA receptor molecules. Finally, we describe how 37 

emerging information about the metabolic and signaling roles of GABA is being used to improve 38 

plant defense against biotic and abiotic stresses, and benefit human health.  39 

 40 

 41 

Key words: abiotic and biotic stresses, 4-aminobutyrate, metabolism, plant defense, signaling 42 

 43 

 44 

 45 

Introduction 46 
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4-Aminobutyrate (GABA) is found in virtually all prokaryotic and eukaryotic organisms. In 47 

animals, this non-proteinogenic amino acid functions as an inhibitory neurotransmitter through 48 

interactions with specialized receptors and transporters. In plants, the role of GABA is less clear. 49 

Early research regarded GABA as a temporary N storage compound, which accumulates in 50 

response to cold shock, O2 deficiency and mechanical stimulation, and suggested that insects 51 

feeding on leaves could induce the accumulation of GABA, which would in turn influence their 52 

feeding habits (Wallace et al. 1984). If so, knowledge about GABA could have important 53 

implications for crop resistance and tolerance to stress.  54 

Over the past three decades or so, several reviews have summarized advances in our 55 

knowledge of GABA in plants, including pathways, biochemical regulation, compartmentation, 56 

and role(s) (Bown and Shelp 1989, 1997, 2016; Satyanarayan and Nair 1990; Shelp et al. 1999, 57 

2006, 2012a-d, 2017; Kinnersley and Turano 2000; Bouché et al. 2003, 2004; Bown et al. 2006; 58 

Fait et al. 2008; Allan et al. 2009; Gilliham and Tyerman 2016). In this paper, we discuss: (i) the 59 

accumulation of GABA in response to abiotic and biotic stresses; (ii) the properties of the 60 

various genes/proteins responsible for GABA metabolism; (iii) the potential crosstalk between 61 

GABA metabolism and other metabolic pathways, with an emphasis on their regulation by 62 

altered substrate availability and redox and energy balance during stress; (iv) the potential 63 

signaling roles of GABA in various physiological, transcriptional and molecular responses; and 64 

(v) how emerging information about GABA is being used to improve plant defense against biotic 65 

and abiotic stresses, and benefit human health.  66 

 67 

Context: GABA accumulates in response to both abiotic and biotic stresses 68 
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Extensive research has demonstrated that abiotic stresses such as cold, heat, salinity, drought, 69 

waterlogging, O2 deficit, CO2 enrichment and UV radiation, applied singly or in combination, 70 

can lead to GABA accumulation in various plant species, organs/ tissues, cell types and 71 

translocation fluids (Table 1). Cytosolic acidification, which reportedly accompanies some 72 

abiotic stresses, also increases the GABA level. Furthermore, there have been several reports of 73 

GABA accumulation in response to biotic stresses such as fungal and bacterial infections and 74 

elicitors, as well as the mechanical stimulation/damage resulting from crawling and feeding 75 

insects.  76 

 77 

GABA metabolism and interactions with other pathways 78 

GABA Shunt enzymes 79 

The primary source of GABA appears to be glutamate, which is generated via glutamate 80 

decarboxylase or GAD (Fig. 1). This reaction consumes a proton, and therefore may mitigate 81 

reductions in cytosolic pH. Most plant GADs, unlike bacterial or animal GADs, possess a C-82 

terminal 30-50 amino acid residue calmodulin (CaM)-binding domain, and in vitro activity of 83 

recombinant GAD is activated by Ca2+/CaM at neutral pH.  However, it is not activated by 84 

Ca2+/CaM at the acidic pH optimum for the enzyme (Shelp et al. 2012a; Trobacher et al. 2013b). 85 

Multiple GADs are present in most plant species. For example, there are five GADs in 86 

Arabidopsis (Fig. 1), Oryza sativa L. (rice), Solanum lycopersicum L. (tomato) and Zea mays L. 87 

(maize), nine GADs in Glycine max [L.] Merr. (soybean), six GADs in Populus trichocarpa Torr. 88 

et Gray (poplar), three GADs in Malus x domestica Borkh. (apple) and Camellia sinensis (L.) 89 

Kuntze (tea), and four GADs in various Prunus species (Shelp et al. 2012a, c; Trobacher et al. 90 

2013b; Mei et al. 2016; Salvatierra et al. 2016). In silico and empirical analyses suggest that the 91 
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activities of AtGAD3/5 (Fig. 1), MdGAD2, OsGAD2, Prunus persica GAD3, and CsGAD2/3 are 92 

CaM independent, although OsGAD2 and CsGAD2/3 possess a C-terminal autoinhibitory 93 

domain. The CaM-binding domain in most GADs therefore provides a causal link between 94 

elevated GABA and cytosolic Ca2+ levels, both of which occur in response to many stresses (e.g., 95 

Reddy et al. 2011; Shelp et al. 2012a). Several recent publications indicate the involvement of 96 

stress-induced transcriptional changes in the control of GAD activity. For example, there is 97 

evidence for the induced expression of CaM-dependent AtGAD4 with drought, O2 deficiency, 98 

cold or salinity (Shelp et al. 2012a; Zarei et al. 2017b), and the simultaneous activation of CaM-99 

dependent CsGAD1 and induction of CaM-independent CsGAD2 expression with combined 100 

hypoxia and mechanical damage (Mei et al. 2016).  101 

Recombinant GABA transaminase (GABA-T) converts GABA to succinic semialdehyde 102 

(SSA), with the effective utilization of both pyruvate and glyoxylate, thereby generating alanine 103 

and glycine, respectively (Fig. 1) (Shelp et al. 2012a; Koike et al. 2013; Shimajiri et al. 2013b). 104 

This is in contrast to bacteria and animal GABA-Ts which utilize 2-oxoglutarate (and pyruvate to 105 

a lesser extent), thereby resulting in the conservation of glutamate during the conversion of 106 

glutamate to SSA (Shelp et al. 2012a). The activity of plant GABA-T could theoretically be 107 

regulated by the availability of pyruvate produced in glycolysis and utilized in alanine 108 

production, or the availability of glyoxylate produced in multiple pathways (e.g., 109 

photorespiration and non-photorespiratory serine synthesis, and fatty acid and purine catabolism) 110 

and utilized by glyoxylate reductases and hydroxypyruvate reductases (Allan et al., 2009; Shelp 111 

et al. 2012a; Hoover et al. 2013; Zarei et al. 2017a). To date, the potential role of the glyoxylate-112 

dependent reaction has not been closely examined (Renault 2013). Notably, there is only a single 113 

GABA-T in Arabidopsis, but many other species have multiple GABA-Ts with similar substrate 114 
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preference. For example, there are two to four GABA-Ts in tomato, rice and canola (Shelp et al. 115 

2012a; Shimajiri et al. 2013b; Bao et al. 2015; Faës et al. 2015). There is little evidence for 116 

induction of GABA-T expression in response to stress (Shelp et al. 2012c). Indeed, GABA-T 117 

activity is probably limiting during stress, which would contribute to the accumulation of GABA 118 

(Simpson et al. 2010). 119 

Succinic semialdehyde is oxidized to succinate via a recombinant NAD-dependent SSA 120 

dehydrogenase (SSADH), which is regulated by NADH and adenylates (Shelp et al. 2012a) (Fig. 121 

1). This is significant because redox balance can be modified by numerous stress conditions.  122 

There is only a single SSADH in Arabidopsis and tomato. Together these three reactions, from 123 

glutamate to GABA, SSA and succinate, are known as the GABA shunt because they bypass two 124 

reactions of the tricarboxylic acid cycle (TCAC), 2-oxoglutarate dehydrogenase and succinyl-Co 125 

ligase (see Respiratory Processes). 126 

 127 

Respiratory processes 128 

Dark respiration in aerobic organisms involves the glycolytic production of pyruvate, which 129 

is converted to acetyl-CoA via pyruvate dehydrogenase for citrate formation and input into the 130 

TCAC. The TCAC includes succinyl-CoA ligase, which generates ATP directly, as well as four 131 

oxidation reactions, isocitrate dehydrogenase, 2-oxoglutarate dehydrogenase (OGDH), succinate 132 

dehydrogenase (SDH) and malate dehydrogenase, which together generate NADH and FADH2. 133 

These reduced co-enzymes fuel ATP synthesis by oxidative phosphorylation. The carbon flux 134 

under normoxia in the dark is generally considered to be cyclic, proceeding from citrate to 135 

oxaloacetate, with the levels of all the C intermediates, including  2-oxoglutarate, succinate and 136 
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malate, constant (Sweetlove et al. 2010). Thus, succinate can be derived from 2-oxoglutarate in 137 

the TCAC, as well as the GABA shunt. 138 

Several studies have suggested a direct link between the GABA shunt and the TCAC (Shelp 139 

et al. 2012a). For example, Tuin and Shelp (1994) demonstrated that the metabolism of [14C]-140 

glutamate by excised developing soybean cotyledons in the dark results in the rapid production 141 

of [14C]-labelled GABA, then succinate and other TCAC organic acids. Subsequently, Tcherkez 142 

et al. (2009) used [13C]CO2, [
13C]pyruvate or  [13C]glucose to demonstrate significant flux 143 

through the GABA shunt in illuminated leaves of cocklebur, but little flux between 2-144 

oxoglutarate (or succinate) and fumarate. The cyclic nature of the TCAC was restored during the 145 

night. Furthermore, Michaeli et al. (2011) showed that mutants of the mitochondrial GABA 146 

permease reduce GABA uptake by mitochondria and increase TCAC activity.  147 

Other studies have investigated the impact of metabolic dysfunction on levels of select 148 

glycolytic (pyruvate), TCAC (citrate, isocitrate, 2-oxoglutarate, succinate, fumarate, malate) and 149 

amino acid (glutamine, glutamate, GABA) metabolites, as well as some associated with 150 

fermentation (lactate) and  SSA reduction (4-hydroxybutyrate; see GHB Metabolism) (Fig. 2). 151 

For example, disruption of NAD-dependent isocitrate dehydrogenase (nad-idh) and OGDH 152 

activities (i.e., chemical inhibition of OGDH and anti-sense OGDH), respectively, typically 153 

results in the accumulation of isocitrate and 2-oxoglutarate (Lemaitre et al. 2007; Araújo et al. 154 

2008, 2012). Significantly, the levels of succinate and GABA and occasionally alanine, also 155 

increase. Disruption of succinyl-CoA ligase activity decreases the level of succinate, as well as 156 

most other TCAC organic acids, and results in the accumulation of GABA (Studart-Guimarães et 157 

al. 2007). Anti-sense inhibition of SDH activity causes the accumulation of succinate without 158 

increasing the levels of other TCAC organic acids (Araújo et al. 2011). Disruption of glutamate 159 
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dehydrogenase (i.e., gdh1/2/3) decreases the accumulation of 2-oxoglutarate, as well as malate, 160 

but does not affect succinate even though GABA accumulates (Fontaine et al. 2012). Inhibition 161 

of mitochondrial ATP synthase by RNAi or oligomycin treatment also results in GABA 162 

accumulation, as well the accumulation of alanine, lactate and GHB and pyruvate, but not 163 

succinate (Geisler et al. 2012). Interestingly, GABA accumulation is associated with both 164 

glutamate accumulation and loss in these studies. Anti-sense OGDH for example, displays a 165 

reduction in the formation of this 2-oxoglutarate-derived amino acid, as well as alanine, which is 166 

derived from pyruvate (Araújo et al. 2012). Overall, the interference of TCAC enzymes, 167 

anaplerotic reactions for the TCAC, and ATP synthesis under various conditions is generally 168 

associated with non-cyclic carbon flux in the TCAC, and disruption of TCAC reactions upstream 169 

of SDH typically stimulates the activity of the GABA shunt. 170 

Disruption of the major GAD isoforms in Arabidopsis (i.e., gad1/2) decreases the level of 171 

GABA, as well as citrate, fumarate and malate; however, surprisingly succinate increases 172 

(Mekonnen et al. 2016) (Fig. 2). Disruption of GABA-T function (i.e., gaba-t), in combination 173 

with salinity, increases GABA and decreases succinate, as would be expected if the shunt 174 

produces succinate (Renault et al. 2010, 2013). After 1 d of salinity, malate but not citrate 175 

increases, whereas after 3 d of salinity, both 2-oxoglutarate and succinate accumulate, even 176 

though GABA presumably does not contribute directly to the succinate pool in this mutant 177 

(Renault et al. 2010). Cold stress, as well as waterlogging, flooding and hypoxia, which simulate 178 

an O2 deficit, cause the accumulation of both GABA and succinate, and occasionally citrate, 179 

fumarate and malate (Kaplan et al. 2007; Rocha et al. 2010; Komatsu et al. 2011; Antonio et al. 180 

2016) (Fig. 2). Notably, pyruvate as well as lactate and alanine may accumulate, as would be 181 

expected if glycolysis and related fermentation reactions are stimulated. Overall, these findings 182 
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indicate that stress-induced GABA metabolism in plants may be associated with various changes 183 

in cellular redox and energy balance, which could modify the regulation of the TCAC (e.g., 184 

Sweetlove et al. 2010). 185 

Antonio et al. (2016) have used [13C]pyruvate to follow carbon flux through the TCAC, 186 

fermentation, alanine metabolism and the GABA shunt in soybean roots under hypoxic 187 

conditions, and [13C]glutamate and [15N]ammonium to monitor the metabolism of glutamate to 188 

succinate. After 6 h respiratory O2 consumption is reduced by 40%, and glycolysis stimulated, 189 

thereby enhancing the production of ATP and pyruvate. Cytosolic NAD+ is regenerated from 190 

NADH by fermentation reactions such as lactate dehydrogenase-catalysed pyruvate reduction. 191 

The activities of pyruvate dehydrogenase and SDH are restricted, so that the direct flux of 192 

pyruvate into the TCAC is low and the conversion of succinate to fumarate is markedly 193 

decreased. Pyruvate accumulation is reduced via the stimulated formation of alanine via alanine 194 

transaminase and GABA-T. The alanine transaminase reaction produces 2-oxoglutarate, which 195 

can be used by OGDH and succinyl-CoA ligase to produce another ATP. The mitochondrial 196 

NAD+ that is required to oxidize 2-oxoglutarate is apparently produced by the reversal of the 197 

malate dehydrogenase reaction, utilizing oxaloacetate generated via phosphoenolpyruvate 198 

carboxylase or aspartate transaminase activity. These data indicate that hypoxia does not 199 

completely prevent the C flux from SSA to succinate, even though the redox balance is 200 

presumably altered to some degree in response to hypoxia (see Fig. 2). In addition, GABA 201 

probably accumulates, at least in part, in response to the stimulation of GAD activity by bound 202 

Ca2+/CaM or lower cytosolic pH (see GABA Shunt Enzymes). Thus, with hypoxia both GABA 203 

and succinate appear to be temporary storage metabolites, which can readily supply the TCAC 204 

when the stress is mitigated. Malate production is also stimulated, and while malate could 205 

Page 9 of 61

https://mc06.manuscriptcentral.com/botany-pubs

Botany



Draft

10 

 

theoretically be recycled to pyruvate via the malic enzyme, it seems less likely given an 206 

unfavourable redox balance. 207 

 208 

GHB metabolism    209 

Based on earlier studies of bacteria and animals (Valentin 1995; Buckel 2001; Mamelak 210 

2012; Salminen et al. 2015: see references therein), it seems likely that stress-induced GABA 211 

accumulation and an elevated NADH/NAD ratio would be accompanied by an elevated 212 

NADPH/NADP ratio, which could facilitate the operation of an alternative path for SSA 213 

metabolism to 4-hydroxybutyrate (GHB) (Fig. 1). Indeed, evidence has shown that GHB 214 

accumulates with oligomycin inhibition of mitochondrial ATP synthase (Geisler et al. 2012), as 215 

well as cold (Kaplan et al. 2007) (Fig. 2) and various other abiotic stresses, including O2 deficit, 216 

waterlogging, heat, drought and UV (Allan et al. 2003, 2008, 2012; Breitkreuz et al. 2003; Fait et 217 

al. 2005). To date, two GLYR/SSAR (glyoxylate/succinic semialdehyde reductase) genes have 218 

been empirically identified for the irreversible NADPH-dependent reduction of SSA to GHB in 219 

Arabidopsis, apple and rice (Brikis et al. 2017; Zarei et al. 2017a) (Fig. 1). The encoded enzymes 220 

have been designated as GLYRs since the recombinant proteins utilize glyoxylate more 221 

efficiently than SSA. However, single glyr and glyr2 knockout mutants of Arabidopsis 222 

accumulate less GHB with submergence than the wild type, providing convincing evidence for a 223 

role of the GLYRs in SSA reduction in vivo (Allan et al. 2012). Recently, Mekonnen and Ludwig 224 

(2016) used a gaba-t x ssadh double mutant to demonstrate that exogenous GHB can be back-225 

converted to both GABA and succinate, and provided evidence, using a gel-based assay, for the 226 

GHB-dependent conversion of NAD+ to NADH (Fig. 1). Unfortunately, we have not been able to 227 

measure NAD+-dependent GHB dehydrogenase activity in cell-free extracts despite repeated 228 

Page 10 of 61

https://mc06.manuscriptcentral.com/botany-pubs

Botany



Draft

11 

 

attempts over the last decade. Based on bacterial and human studies, GHB could be back-229 

converted to SSA, as well converted to acetyl-CoA or 2,4-dihydroxbutyrate in the forward 230 

direction (Valentin 1995; Buckel 2001; Mamelak 2012; Salminen et al. 2016; see references 231 

therein). For the time being, the importance of these reactions in plants exposed to stress is 232 

uncertain. It is clear, however, that GLYR/SSAR activity may divert some flux from succinate to 233 

GHB during stress, and that this would be accompanied by NADPH oxidation. Indeed, the early 234 

growth of a glyr1/2 knockout or knockdown mutant is more susceptible to SSA toxicity in the 235 

cold than WT and GLYR1 overexpression lines (Zarei et al. 2017a). These findings are consistent 236 

with an elevated rate of SSA conversion to GHB with cold, and suggest that GLYR1/2 are part of 237 

an adaptive response to stress. 238 

 239 

 Polyamine catabolism 240 

GABA can also be derived from polyamines (Shelp et al. 2012b; Tiburcio et al. 2014).  241 

Indeed, the salinity- and anoxia-induced accumulation of GABA is reduced by 25% to 39% by  242 

aminoguanidine, a diamine oxidase inhibitor (Xing et al. 2007; Liao et al. 2017). Recent research 243 

has demonstrated that one to two recombinant Cu-amine oxidases and two recombinant 244 

ALDH10As, respectively, can convert putrescine to 4-aminobutanal and 4-aminobutanal to 245 

GABA in Arabidopsis (Fig. 1) and apple fruit (Planas-Portell et al. 2013; Zarei et al. 2015a, 246 

2015b, 2016). Interestingly, both ALDH10A8/9 prefer 3-aminopropanal as a substrate over 4-247 

aminobutanal,  but the root growth of single ataldh10A8 and ataldh10A9 knockout mutants is 248 

oversensitive to salinity and GABA accumulation in shoots is reduced (Zarei et al. 2015b, 2016). 249 

Together, these findings indicate that the pathway from putrescine to GABA plays a role in the 250 

stress response in dicotyledonous plants and suggest that the carbon flux through this pathway 251 
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could be regulated by a combination of O2 availability and redox balance, particularly in bulky 252 

fruit (Shelp et al. 2012b; Zarei et al. 2015b; Lum et al. 2016b).  253 

 254 

Signaling 255 

Various physiological, transcriptional and molecular responses are elicited by changes in 256 

plant or tissue GABA status, which can be induced by fungal/bacterial infections, nutrient 257 

limitation, exogenous GABA, plant development, and the use of transgenic/gene knockout 258 

strategies (see details and citations in Table 2). While these findings might be useful, caution 259 

must be exercised in interpreting studies that use very high concentrations of exogenous GABA 260 

(e.g., Kathiresan et al. 1997; Barbosa et al. 2011) and/or damage tissue during treatment 261 

application (e.g., Sulieman and Schulze 2010), unless appropriate controls are conducted to 262 

account for potential osmotic and wounding (see Shelp 2012) effects, respectively. 263 

Perhaps the best support for GABA signaling in plants is: (i) the requirement for a GABA 264 

gradient to guide the pollen tube through the apoplastic spaces within the pistil to the female 265 

gametophyte (Palanivelu et al. 2003); (ii) the upregulation of  the KLM operon in Agrobacterium 266 

by GABA or wounded stems of GAD overexpression (Ox) lines of tobacco, which reduces the 267 

quorum-sensing signal and virulence (Chevrot et al. 2006); (iii) the existence of a GABA-268 

binding domain on the plasma-membrane, aluminum-activated malate transporter (ALMT) 269 

(Ramesh et al. 2015); (iv) the repression of the type III secretion system in Pseudomonas by 270 

GABA or  by tobacco GAD Ox plants, resulting in a reduction of the plant`s hypersensitive 271 

response (McGraw et al. 2016); and (v) the wounding-induced accumulation of GABA in 272 

systemic untreated leaves, which is independent of systemic cytosolic  Ca2+ accumulation and 273 

GABA translocation from wounded to systemic leaves (Scholz et al. 2017) (Table 2). Other 274 
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research has shown that GABA binds the plasma membrane and changes the levels of cytosolic 275 

Ca2+ (Yu et al. 2006, 2014), findings which could be explained by the effects of GABA on 276 

ALMTs. For example, when ALMTs are closed the plasma membrane hyperpolarizes, thereby 277 

increasing the inward-directed gradient for Ca2+ influx through either hyperpolarization-activated 278 

Ca2+ channels or via non-selective cation channels (Ramesh et al. 2015; Gilliham and Tyerman 279 

2016).  280 

Stress-induced plant GABA can probably bind ALMT, thereby negatively regulating malate 281 

efflux and conserving malate within the cell (Fig. 3), as suggested previously (Gilliham and 282 

Tyerman 2016). A gad1/2 double mutant has reduced GABA levels and tolerance to prolonged 283 

drought, symptoms that are reversed by crossing this mutant with a gaba-t mutant in order to 284 

elevate the GABA level (Mekonnen et al. 2016). Since there are multiple ALMTs in plants, and 285 

they encode anion channels (Ramesh et al. 2015), it has been suggested that GABA accumulation 286 

and ALMT are involved in the regulation of stomatal closure by stimulating solute loss and 287 

consequent loss of turgor (Mekonnen et al. 2016; also see Bown and Shelp 2016). Notably, the 288 

high expression of TaALMT1 in wheat correlates with elevated GABA accumulation, which is 289 

reduced by treatment with aluminum (Ramesh et al. 2016). This has not been explained to date 290 

and may be relevant in terms of factors that alter endogenous GABA. Recent research has 291 

indicated that up-regulation of AtGAD4 expression in Arabidopsis plantlets subjected to short-292 

term salinity stress is associated with inducible co-expression of ALMT2 and calmodulin-like 37, 293 

as well as the transcription factors WRKY28, WRKY30, WRKY40, MYB2, MYB15 and MYB108, 294 

suggesting the involvement of anion transport, protein activation and gene regulation in GABA 295 

accumulation (Zarei et al. 2017b). Further research should focus on short-term responses to 296 
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stress in order to determine whether or not GABA functions as a signal molecule by binding to 297 

or regulating the activity of GABA receptor molecules. 298 

 299 

The emerging functions of GABA in metabolism and signaling have practical significance     300 

Defense against bacteria and invertebrate pests 301 

Several studies have suggested that GABA mediates interactions between plants and other 302 

organisms such as fungi, bacteria and invertebrate pests (see Bown et al. 2006 and Shelp et al. 303 

2006), and consequently defense against such species could be improved by genetic engineering  304 

elevated levels of GABA in plants. For example, constitutive GAD Ox lines of tobacco are more 305 

resistant to Agrobacterium and Pseudomonas infection (Chevrot et al. 2006; McGraw et al. 306 

2016) (Table 2). Furthermore, constitutive GAD Ox or gaba-t lines are more resistant to larvae 307 

of the oblique-banded leafroller (Ramputh and Bown 1996; Scholz et al. 2015), the northern 308 

root-knot nematode (McLean et al. 2003), the tobacco budworm (MacGregor et al. 2003) and 309 

Spodoptera (Scholz et al. 2015, 2017) (Tables 2 and 3). These latter findings suggest that 310 

wounding due to infestation or herbivory by invertebrate pests disrupts cell structure and 311 

stimulates GAD activity and GABA accumulation with the release of hydrogen ions from the 312 

vacuole to the cytosol (Bown et al. 2006). They do not establish whether GABA functions by 313 

regulating GABA-sensitive neuromuscular junctions or by some other mechanism (Bown and 314 

Shelp 2016).   315 

 316 

Exogenous GABA alleviates stress-induced losses in quality 317 

While it is clear that GAD Ox can enhance the endogenous level of GABA, no one has yet 318 

studied the response of such plants to abiotic stress. However, there are several reports on the 319 
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impact of exogenous GABA on the plant response to abiotic stress. These have focused on peach 320 

fruit, banana peel, tomato seedlings and cut flowers exposed to chilling stress (Shang et al. 2011; 321 

Yang et al. 2011; Malekzadeh et al. 2014; Wang et al. 2014b; Aghdam et al. 2015, Aghdam et al. 322 

2016a-c), as well as melon seedlings subjected to hypoxic or saline conditions (Wang 2014b; Hu 323 

et al. 2015), rice seedlings grown at elevated temperatures (Nayyar et al. 2014), and barley 324 

seedlings treated with aluminum (Song et al. 2010). Overall, the application of exogenous GABA 325 

appears to alleviate the stress-induced losses in quality such as the incidence of chilling injury 326 

and various characteristics associated with membrane deterioration (Fig. 4). This is accompanied 327 

by changes in the status of key metabolites such as GABA, proline, and some polyamines, as 328 

well as improvements in energy and anti-oxidant systems. Further research is required to 329 

establish whether the positive impact of exogenous GABA on the response to abiotic stress is 330 

due to its role as a metabolite or signal. 331 

 332 

Enhancing endogenous GABA and health benefits   333 

GABA is known for its various medicinal properties, such as a reduction in anxiety, depression 334 

and insomnia, and for its anti-cancer and antihypertensive activities (Okada 2000;Adham et al. 335 

2006). For the last two decades, there has been considerable interest, particularly in Korea, China 336 

and Japan, in producing foods with enriched GABA levels (Diana et al. 2014; Cho & Lim 2016). 337 

The first main strategy for attaining this outcome in plants is the use of various cultural or abiotic 338 

(e.g., hypoxia, heat) stress conditions to enhance GAD activity during the germination of 339 

rice/wheat/soybean/fava bean seeds (Matsuyma et al. 2009; Youn et al. 2011; Morrison et al. 340 

2013; Yang et al. 2013; Zhang et al. 2014; also see Cho and Lim 2016), or the preparation of 341 

dried immature soybean fruits (Takahashi et al. 2013) and fermented green tea (Tsushida et al. 342 
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1987; Abe et al. 1995; Sawai et al. 2001; Allan et al 2003). GABA levels that are two to 50 times 343 

control levels have been reported (Table 4). Some of these treatments can modify the nutritional, 344 

organoleptic and functional properties of plants, so there is interest in inducing GABA 345 

accumulation in plant-derived foodstuffs using non-thermal technologies such as high-pressure 346 

processing (for review see Poojary et al. 2017). The second main strategy involves  genetic 347 

engineering of GAD Ox and/or GABA-T down-regulation, resulting in GABA levels in rice seed 348 

and tomato fruit which are five to 349 times the levels in the wild-type (Akama et al. 2009; 349 

Shimarjiri et al. 2013a; Nonaka et al. 2017; Takayama et al. 2015, 2017) ( Table 4).  Some of 350 

these GABA-enriched plant foodstuffs have been successfully screened for positive outcomes 351 

using spontaneously hypertensive or salt-sensitive rats (Abe et al. 1995; Akama at al. 2009; 352 

Yoshimura et al. 2011), providing proof-of-concept for the benefits of plant foodstuffs enriched 353 

in GABA. 354 

 355 

Concluding remarks 356 

Much has been learned about the metabolism and functions of GABA over the past three 357 

decades. It is now clear that GABA accumulates in plants in response to both abiotic and biotic 358 

stresses. With the identification of many genes responsible for GABA metabolism in various 359 

species, including Arabidopsis, it has become possible to generate recombinant proteins for 360 

biochemical characterization. These studies have shown that the activity of many plant GADs, 361 

unlike bacterial and animal GADs, is activated by bound Ca2+/CaM, thereby linking GABA 362 

accumulation to Ca influx resulting from external stimuli. They have also shown that plant 363 

GABA-Ts utilize pyruvate and glyoxylate as amino acceptors, rather than 2-oxoglutarate as in 364 

bacterial and animal GABA-Ts. These data suggest links between plant GABA metabolism and 365 
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glycolysis, alanine metabolism and photorespiration. Metabolomic and labeling studies, often in 366 

combination with mutants, have demonstrated that GABA metabolism does interact with several 367 

other pathways during exposure to abiotic stress, including glycolysis, the TCAC and 368 

mitochondrial electron transport chain, as well as alanine, GHB and polyamine metabolism. 369 

Notably, GLYR prefers glyoxylate as a substrate over SSA, and ALDH10A prefers 3-370 

aminopropanal over 4-aminobutanal. Nevertheless, the use of mutants and transgenic plants 371 

confirms that these enzyme activities are physiologically relevant in GABA metabolism during 372 

stress, likely due to changing substrate levels and/or redox/energy balance. Therefore, the 373 

promiscuous activities of GABA-T, GLYR and ALDH10A appear to be important determinants 374 

of cross-talk among metabolic pathways during stress. Overall, these findings suggest that 375 

GABA metabolism is an adaptive mechanism for maintaining respiration during and/or 376 

following stress, and that the actual diversion of carbon flux from succinate to GHB production 377 

depends upon the redox/energy balance. The fate of GHB remains uncertain. 378 

Changes in plant or tissue GABA status have been associated with physiological, 379 

transcriptional and molecular responses within plants, but many studies are complicated by the 380 

use of high concentrations of exogenous GABA, tissue wounding during treatment application, 381 

and the inability to distinguish between primary and secondary responses. Nevertheless, strong 382 

support exists for a signaling role of plant GABA in pollen tube guidance, interaction of plants 383 

with fungal, bacterial and invertebrate pests, anion transport and stomatal functioning. Do these 384 

result merely from metabolic adjustments as a consequence of GABA accumulation or from 385 

GABA binding to a receptor forming a complex that initiates a signalling cascade?  If the 386 

function of GABA is solely related to its ability to bind to a receptor, it is possible that multiple 387 

binding sites are involved.  388 
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Our knowledge of GABA metabolism and signaling suggests that there are opportunities for 389 

genetically engineering stress-resistant/tolerant plants and plants with enhanced health benefits. 390 

If the major role of GABA in plants is as a signaling molecule the regulation of GABA levels 391 

within the immediate vicinity of binding sites will be required. Thus the regulation of GABA 392 

transport (see Shelp and Zarei 2017), as well as metabolism, would be an important component 393 

of the signaling process. 394 
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Table 1. Abiotic and biotic stresses stimulate GABA accumulation in plants. 986 

 987 

  Stress Species/organ/tissue/cell type/translocation fluid References 

Cold  Glycine max and Arabidopsis thaliana leaves Wallace et al. 1984; Kaplan et al. 2007; Allan et al.  

2008 

 Asparagus sprengeri mesophyll cells Cholewa et al. 1997 

 Hordeum vulgare and Triticum aestivum seedlings Mazzucotelli et al. 2006 

Heat  Vigna unguiculata cell cultures  Mayer et al. 1990 

 A. thaliana  leaves Allan et al. 2008 

Salinity  Solanum lycopersicum roots and leaves Bolarin et al. 1995 

 T. aestivum seedlings Bartyzel et al. 2003/4; Al-Quraan et al. 2013 

 A. thaliana, Nicotiana sylvestris and S. lycopericum 

leaves 

Allan et al. 2008; Renault et al. 2010, 2013; Akçay  

et al. 2012; Bao et al. 2015; Zarei et al. 2016; Zarei et  

al. 2017b 

Drought G. max nodules and xylem sap Serraj et al. 1998 

 Brassica napus leaves Faës et al. 2015 

Waterlogging N. tabaccum and A. thaliana leaves Allan et al. 2008, 2012 

 H. vulgare roots Zhang et al. 2015 

O2 deficit Oryza sativa, A. thaliana, Cucumis melo and Prunus 

persica roots 

Reggiani et al. 1988; Aurisano et al. 1995;  

Miyashita and Good 2008; Mustroph et al. 2014;  

Wang et al. 2014; Salvatierra et al. 2016  

 G. max sprouts and Commelia sinesis,  Tsushida and Murai 1987; Allan et al. 2003; Breitkreuz et 
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Nicotiana tabaccum and Arabidopsis leaves al. 2003; Allan et al. 2008; Mei et al. 2016;;; ; Liao et al. 

2017 

 Medicago sativa and O. sativa seedlings Ricoult et al. 2005; Narsai et al. 2009 

 O. sativa cotyledons Kato-Noguchi and Ohashi 2006 

 Brassica oleracea var. italica florets Hansen et al. 2001 

 G. max roots and nodules Borella et al. 2017 

CO2 enrichment (often in 

combination with cold and 

 O2 deficit) 

Annona cherimola, Malus x domestica and S.  

lycopersicum fruits 

Merodio et al. 1998; Makino et al. 2008; 

Deewatthanawong and Watkins 2010;  

Deewatthanawong et al. 2010a, b; Mae et al. 2012; 

Trobacher et al. 2013a; Deyman et al. 2014a, b, Chiu et al. 

al. 2015; Lum et al. 2016a  

 B. oleracea. var italica florets Hansen et al. 2001  

UV A. thaliana plants Fait et al. 2005 

Cytosolic acidification A. sprengeri mesophyll cells and Daucus carota  

cell suspensions 

Carroll et al. 1994; Crawford et al.(1994  

Mechanical stimulation G. max leaves and hypocotyls   Wallace et al. 1984; Bown and Zhang 2000 

Mechanical damage G. max, N. tabaccum, A. thaliana and Camellia sinesis

leaves 

Ramputh and Bown 1996; Bown et al. 2002; Hall 

et al. 2004; Scholz et al. 2015; Mei et al. 2016 

 M. sativa and S. lycopersicum phloem exudates Girousse et al. 1996; Valle et al. 1998 

Cladosporium fulvum S. lycopsericum cell apoplast Solomon and Oliver 2001, 2002 

Agrobacterium infection A. thaliana tumors Chevrot et al. 2006; Deeken et al. 2006; Lang et al.  

2016 
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Pseudomonas infection A. thaliana plants Park et al. 2010 

Harpin (bacterial elicitor) N. tabaccum leaves Dimlioğlu et al. 2015 

Blast pathogen hydrolysate 

 from cell walls 

O. sativa suspension culture Forlani et al. 2014 

E-2-hexanal (wound- 

induced volatile organic 

compound) 

A. thaliana leaves Mirabella et al. 2008, 2015 

 988 

 989 

 990 

 991 

 992 

 993 

 994 

 995 

 996 

 997 

 998 

 999 
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Table 2. Plant GABA acts a signal 1000 

Plant species Experimental details Physiological, transcriptional or molecular response   References 

Crustose red 

algae 

 

GABA is released from grazed 

algae 

Induces GABA neuronal receptors and triggers 

metamorphosis in red abalone 

Morse and Morse 1979, 

1984; Trapido-Rosenthal 

and Morse 1986 

Helianthus 

annuus 

Seedlings treated with 100 mM 

GABA for 12-16 h 

Increases ethylene production and expression of 

ACC synthase  and ACC oxidase  

Kathiresan et al. 1997 

Arabidopsis 

thaliana 

gaba-t mutant has disrupted 

GABA gradient along pollen tube 

path  

Arrested or misdirected pollen tube growth reduces 

seed yield   

Palanivelu et al. 2003 

 Seedling grown with  10 mM 

GABA for 7 d 

Downregulates expression of 14-3-3 gene family 

members in a Ca2+-, ethylene- and abscisic acid-

dependent manner 

Lancien et al. 2004 

 gaba-t mutant germinated on 10 

mM GABA 

White, bleached phenotype with a shorter life cycle 

than when grown without N   

Clark et al. 2009 

 gaba-t mutant; seedlings treated 

with  1-10 mM GABA for up to 6 

d 

Pollen tube elongation is defective and cell wall-

related genes are downregulated; leaf chlorosis and 

cell elongation is inhibited  

Renault et al. 2011 

 Seedlings treated with up to 200 

mM GABA for up to 15 d 

Root length and nitrate uptake are stimulated by 

GABA at low nitrate, and inhibited at high nitrate; 

increases amount of nitrate reductase protein at low 

nitrate 

Barbosa et al. 2011 
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 gaba-t mutant; seedling treated 

without or with 1.5% (w/v) 

succinate semialdehyde for 1-2 

weeks 

Abnormalities in polarity of the adaxial-abaxial axis 

in leaf primordia; recovered with  succinic 

semialdehyde  

Toyokura et al. 2011 

 gaba-t mutant; mechanical 

wounding or Spodoptera littoralis 

feeding  

Larvae growth is significantly inhibited with 

feeding on local or systemic untreated leaves; 

GABA accumulation in systemic leaves does not 

depend on GABA translocation or an increase in 

cytosolic Ca2+  

Scholz et al. 2017 

Nicotiana 

tabaccum 

Agrobacterium tumefaciens 

culture treated with 1 mM GABA 

or wounded stems of NtGAD∆C 

Ox plants  

Stimulates expression of attKLM operon and 

decreases level of quorum-sensing signal in 

agrobacterium, which reduces virulence 

Chevrot et al. 2006 

 Detection of binding sites on 

pollen protoplasts 

GABA binds to plasma membrane, triggering an 

increase in cytosolic Ca2+ 

Yu et al. 2006 

 Pseudomonas syringae DC3000 

culture treated with GABA or 

NtGAD∆C Ox plants  

Represses the expression of type III secretion 

system in bacterium, which reduces hypersensitive 

response in plant  

McGraw et al. 2016 

 In vitro germination of pollen 

grains with up to 10 mM GABA 

for 6 h 

Stimulates pollen tube growth, activates Ca2+-

influx, coupled to outward K+ efflux; modulated by 

GAD 

Yu et al. 2014 

Solanum Cladopsporium fulvum infection Induces expression of GABA-T and SSADH in Solomon and Oliver 
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lycopersicum increases apoplastic GABA level 

from 0.8 to 2-3 mM 

fungus 2001, 2002 

 Botrytis cinerea infection or 

treatment with 1-10 mM 

exogenous GABA 

Induces expression of GAD, SSADH and GABA-T 

genes in host, resulting in partial resistance 

Seifi et al. 2013 

Capsicum 

annuum 

Xanthomonas campestris (Xc) 

infection; transient co-expression 

of  ADC1 and Xc effector 

(AvrBsT); ADC1-silenced leaves; 

exogenous GABA 

Modulates hypersensitive cell death and GABA 

levels in pepper host; exogenous GABA inhibits 

avirulent Xc growth; results suggest involvement of 

polyamine-derived GABA in resistance pathway    

Kim et al. 2013 

Brassica 

napus 

Nitrogen deprivation and growth 

cycle induces changes in phloem 

GABA; treatment of plants with 

0.1 mM GABA  

Positive correlation between phloem-GABA and 

nitrate influx; elevates expression of plasma 

membrane-located nitrate transporter and stimulates 

nitrate influx by root system   

Beuvé et al. (2004) 

Medicago 

truncatula  

Artificial feeding of 15 mM 

GABA into phloem  

Downregulates symbiotic nitrogen fixation  Sulieman and  Schulze 

2010 

Triticum 

aestivum 

ALMT proteins possess a GABA 

binding domain, and are activated 

by anions and negatively 

regulated by GABA 

Modulation of ALMT activity alters root growth 

and root tolerance to alkaline pH, acid pH and 

aluminium ions; positive correlation between  

ALMT1 expression and aluminum-sensitive GABA 

accumulation  

Ramesh et al. 2015 

Prunus spp. Hypoxia elevates GABA levels May induce expression of GAD1, GAD2 and GAD4 Salvatierra et al. 2016 
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over 8-d period  

Abbrev: ALMT, aluminum-activated malate transporter; ADC, arginine decarboxylase; GABA-T, GABA transaminase; GAD, 1001 

glutamate decarboxylase; Ox, overexpression  1002 

 1003 

 1004 

 1005 

 1006 

 1007 

 1008 

 1009 

 1010 

 1011 
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 1016 
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Table 3. GABA is a defence mechanism against invertebrate pests 1017 

 1018 

Host plant 

species/diet 

Strategy for elevating GABA in host 

plant/diet 

Biotic agent Impact on biotic agent References 

Synthetic 

diet 

Increase from 1.6 to 2.6 µmol g-1 FM  Choristoneura 

rosaceana 

Rates of growth,  

development and 

survival of larvae are 

reduced  

Ramputh 

and Bown 

1996 

Tobacco Constitutive NtGAD or NtGAD∆C 

Ox; 0.22-3.5 µmol g-1 FM root (180-

2800% WT) and 0.55 µmol g-1 FM 

shoot (250% WT) 

Meloidogyne hapla Nematode egg masses 

are 50-100% fewer 9 

weeks after inoculation  

McLean et 

al. 2003 

Tobacco Constitutive NtGAD or NtGAD∆C 

Ox  

Heliothis virescens Larval feeding is 

reduced by 80-90% in 

preference studies  

MacGregor 

et al. 2003  

 

Arabidopsis gad1/2 x gaba-t triple mutant 

contains 0.6 µmol g-1 FM (5-fold 

WT) 

Spodoptera 

littoralis larvae  

Larval weight is 

reduced by 30% after 7 

d of feeding  

Scholz et al. 

2015 

Synthetic 

diet 

Increase from 0 to 1 µmol g-1 FM Spodoptera 

littoralis 

Larval weight gain is 

reduced by 22 % after 7 

d of feeding 

Scholz et al. 

2015 

Abbrev: FM, fresh mass; GABA-T, GABA transaminase; GAD, glutamate decarboxylase; Ox, overexpression; WT, wild-type 1019 
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Table 4. Abiotic stress, breeding and genetic engineering strategies enrich GABA levels in plant-derived foodstuffs and provide 1020 

hypotensive benefits 1021 

Species/ plant 

part 

Strategy GABA 

enrichment 

Hypotensive effect References 

  -fold   

Rice grain 

 

Soaking, soaking at elevated temperature and 

slightly acidic pH with glutamate in dark, or N2 

and CO2  treatments during germination  

up to 14  Zhang et al. 2014; Cho and 

Lim 2016; Ding et al. 2016 

Seed-specific expression of truncated OsGAD2 30 Spontaneously 

hypertensive rats  

Akama et al. 2009 

Seed-specific expression of truncated OsGAD2 

and mild knockdown of OsGABA-T  

74-349  Shimajiri et al. 2013a 

Wheat grain Sequential hydration and germination, followed 

by N2 treatment and heat drying 

40-57  Youn et al. 2011 

Tomato fruit Genetic variation  10 Spontaneously 

hypertensive rats 

Yoshimura et al. 2011 

 Constitutive overexpression of full-length 

SlGAD3 

up to 5  Takayama et al. 2015 

 Fruit-ripening-specific expression of truncated 

SlGAD3 

up to 18  Takayama et al. 2017 

 Expression of SlGAD2 or SlGAD3 with full or 

partial deletion of autoinhibitory domain  

up to 15  Nonaka et al. 2017 
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Soybean seed Germination or soaking during germination, 

varying temperature and cultivar  

1.5-13  Matsuyama et al. 2009; 

Morrison et al. 2013 

Genetic variation in meal prepared from dry seed  2  Morrison et al. 2012 

Heat drying seeds within immature fruit  5  Takahashi et al. 2013 

Fava bean seed Germination under hypoxia 2-8  Yang et al. 2013 

Green tea  

leaves 

Fermentation under N2   Salt-sensitive  rats Abe et al. 1995   

Fermentation under N2  Several  Tsushida et al. 1987; Sawai 

et al. 2001; Allan et al. 2003  

 1022 

 1023 

 1024 

 1025 

 1026 

 1027 

 1028 

 1029 

 1030 

 1031 

 1032 
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Figure legends 1038 

 1039 

Figure 1. GABA metabolism in Arabidopsis.  1040 

The well-known GABA shunt is shown in blue balloons, and auxiliary pathways involving 4-1041 

hyroxybutyrate and polyamines are shown in red and green, respectively; all enzymes are shown 1042 

in orange. The dashed lines represent reactions or enzymatic paths which have been 1043 

characterized in a preliminary fashion only, if at all, in plants. The dotted lines represent 1044 

reactions that are only found in animal and bacterial systems. Three of the five glutamate 1045 

decarboxylases possess a calmodulin-binding domain. (See text for more explanation.) 1046 

Abbreviations: ABAL, 4-aminobutanal; ALDH, aldehyde dehydrogenase; CaM, calmodulin; 1047 

CuAO, copper amine oxidase; DHBA, dihydroxybutyrate; GABA, 4-aminobutyrate; GAD, 1048 

glutamate decarboxylase; GABA-T, GABA transaminase; GHB, 4-hydroxybutyrate; GHBDH, 1049 

4-hydroxybutyrate dehydrogenase; GLYR, glyoxylate/succinic semialdehyde reductase; SSA, 1050 

succinic semialdehyde; SSADH, succinic semialdehyde dehydrogenase.  1051 

 1052 

Figure 2. Metabolic dysfunction and stress stimulates the GABA shunt & non-cyclic flux in the 1053 

tricarboxylic acid cycle. 1054 

 The heat map represents the relative levels of marker metabolites in plants subjected to 1055 

chemical, knockout and knockdown strategies, and/or abiotic stresses: red, increased; green, 1056 

decreased; yellow, no effect; gray, not determined. Abbreviations: Ala, alanine; as, antisense; Cit, 1057 

citrate; Fum, fumarate; GAB, GABA; gaba-t, GABA transaminase mutant; gad, glutamate 1058 

decarboxylase mutant; gdh, glutamate dehydrogenase mutant; GHB, 4-hydroxybutyrate; Gln, 1059 

glutamine; Glu, glutamate; IC, isocitrate; nad-idh, nad-dependent isocitrate dehydrogenase 1060 
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mutant; Lac; lactate; Mal, malate; mATPS, mitochondrial  ATP synthase; OG, 2-oxoglutarate; 1061 

OGDH, 2-oxoglutarate dehydrogenase; Pyr, puruvate, SCL, RNAi, RNA interference; succinyl-1062 

CoA ligase; SDH, succinate dehydrogenase; Suc, succinate;    1063 

 1064 

Figure 3. GABA regulates ALMT membrane channels across the plasmalemma. 1065 

GABA-stimulated anion efflux is negatively regulated by GABA (dashed arrows with red bar). ? 1066 

represents an unknown transport mechanism. Abbreviations: ALMT, aluminum-activated malate 1067 

transporter; GABA, 4-aminobutyrate; GAD, glutamate decarboxylase; GAT, GABA transporter; 1068 

TCAC, tricarboxylic acid cycle.  1069 

 1070 

Figure 4. Exogenous GABA alleviates stress-induced losses in quality. 1071 

The arrows represent GABA-induced increases or decreases in the levels or status of the 1072 

preceding metabolites or enzyme activities during the positive response to stress. Abbreviations: 1073 

ADC, arginine decarboxylase; AEC. adenylate energy charge; APX, ascorbate peroxidase; CAT, 1074 

catalase; DAO, diamine oxidase; DHAR, dehydroascorbate reductase; GABA, 4-aminobutyrate; 1075 

GAD, glutamate decarboxylase; GABA-T, GABA transaminase; GP, glutathione peroxidase; 1076 

GSH, glutathione; GST, glutathione S-transferase; LOX, lipoxygenase, MDA, malondialdehyde; 1077 

MDHAR, monodehydroascorbate reductase; OAT, ornithine δ-aminotransferase; ODC. ornithine 1078 

decarboxylase; P5CS, ∆1-pyrroline-5-proline carboxylate synthetase; PAO, polyamine oxidase; 1079 

PDH, proline dehydrogenase; PLPD, phospholipase D; put, putrescine; ROS, reactive oxygen 1080 

species; SAMDC, S-adenosylmethionine decarboxylase; SOD, superoxide dismutase; spd, 1081 

spermidine; spm, spermine;  1082 

 1083 
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Figure 1. GABA metabolism in Arabidopsis  
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Figure 2. Metabolic dysfunction and stress stimulates the GABA shunt & non-cyclic flux in the tricarboxylic 
acid cycle.  

 
85x51mm (300 x 300 DPI)  

 

 

Page 59 of 61

https://mc06.manuscriptcentral.com/botany-pubs

Botany



Draft

  

 

 

Figure 3. GABA regulates ALMT membrane channels across the plasmalemma.  
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Figure 4. Exogenous GABA alleviates stress-induced losses in quality.  
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