Svoboda | Graniru | BBC Russia | Golosameriki | Facebook
Skip to main content
Advanced magnetic resonance imaging (MRI) techniques hold the promise to capture upper motor neuron loss and extramotor brain changes in amyotrophic lateral sclerosis (ALS) and as such deliver biomarkers relevant to diagnosis, prognosis... more
Advanced magnetic resonance imaging (MRI) techniques hold the promise to capture upper motor neuron loss and extramotor brain changes in amyotrophic lateral sclerosis (ALS) and as such deliver biomarkers relevant to diagnosis, prognosis and monitoring disease progression. However, a correlation between imaging parameters and clinical metrics has thus far been inconsistent across studies. We discuss the contributing factors to this clinical-imaging correlation gap as well as its implications for future research.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of upper and lower motor neurons. Although the etiology remains unclear, disturbances in calcium homoeostasis and protein folding are... more
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of upper and lower motor neurons. Although the etiology remains unclear, disturbances in calcium homoeostasis and protein folding are essential features of neurodegeneration in this disorder. Here, we review recent research findings on the interaction between endoplasmic reticulum (ER) and mitochondria, and its effect on calcium signaling and oxidative stress. We further provide insights into studies, providing evidence that structures of the ER mitochondria calcium cycle serve as a promising targets for therapeutic approaches for treatment of ALS.
The endoplasmic reticulum (ER) is a multifunctional organelle involved in protein synthesis, processing and folding, in intracellular transport and calcium signalling. ER stress can be triggered by depletion of ER calcium content and the... more
The endoplasmic reticulum (ER) is a multifunctional organelle involved in protein synthesis, processing and folding, in intracellular transport and calcium signalling. ER stress can be triggered by depletion of ER calcium content and the accumulation of un- and mis-folded proteins, and relays stress signals to the ER mitochondria calcium cycle (ERMCC) and to the nucleus and protein translation machinery. The ensuing unfolded protein response (UPR) helps to cope with ER stress. Total protein synthesis is inhibited to keep protein load low, while the synthesis of ER chaperones, which assist protein folding, is induced. If cell integrity cannot be restored, signal cascades mediating cell death are activated. This review focuses on the role of ER stress and the UPR in the pathology of amyotrophic lateral sclerosis (ALS). The triggers for ER stress are as yet unclear, but induction of UPR sensor proteins, up-regulation of chaperones and induction of cell death proteins have been described in human post mortem ALS tissue and in mutant superoxide dismutase-1 (SOD1) expressing models of ALS. TDP-43 and VAPB seem to be involved in UPR signalling as well. Recent reports raise hope that UPR sensor proteins become effective therapeutic targets in the treatment of ALS.
Advanced neuroimaging applications to patients suffering from ALS and other motor neuron disorders (MND) have a high potential in terms of understanding the pathophysiology and visualizing the in vivo pathoanatomy of the diseases. In this... more
Advanced neuroimaging applications to patients suffering from ALS and other motor neuron disorders (MND) have a high potential in terms of understanding the pathophysiology and visualizing the in vivo pathoanatomy of the diseases. In this context, particularly observer-independent computerized analyses of magnetic resonance imaging (MRI) data are of special interest since they overcome shortcomings of region-of-interest-based techniques. For three-dimensional structural T1-weighted MRI of the whole brain, voxel-based morphometry (VBM) has proven the most valuable approach to analyse regional volume alterations of the grey or white matter at group level. For the analysis of the white matter integrity with respect to tissue diffusivity and white matter connectivity including fibre tracking algorithms, diffusion tensor imaging (DTI) which can also be performed on a whole brain-basis is of the highest potential to date. Both VBM and DTI have been applied to various MND, in particular ALS, in multiple studies over recent years and have substantially broadened our knowledge about their in vivo pathoanatomy and mechanisms of neurodegeneration. Especially both the degree of damage to motor areas and the involvement of non-motor areas are of interest to be subjected to quantitative assessment, in order to establish quantitative surrogate markers for disease progression usable in clinical trials. Here, the technical state-of-the-art and the results of VBM and DTI studies in MND as the current state are reviewed, and future perspectives for further neuroimaging applications are highlighted.
Amyotrophic lateral sclerosis is a multisystemic neurodegenerative disease in which degenerative processes are not exclusively restricted to the upper and lower motor neurons. Herein, imaging and neuropathological evidence for involvement... more
Amyotrophic lateral sclerosis is a multisystemic neurodegenerative disease in which degenerative processes are not exclusively restricted to the upper and lower motor neurons. Herein, imaging and neuropathological evidence for involvement of the cerebellum, which to date is not thought to be involved in ALS, is reviewed. Evidence for involvement of the cerebellum in ALS comes from several neuropathological studies. Especially ubiquitinated forms of TDP-43 and ubiquitinated p62-positive inclusions were frequently observed. The widely used transgenic SOD1-G93A ALS mice model showed prominent cerebellar immunostaining of pERK and alterations of tau expression. Studies using advanced MRI techniques demonstrated that several cerebral areas, including the cerebellum, were recruited in order to compensate for functional motor decline. Functional MRI, voxel based morphometry, and diffusion-tensor imaging showed these cerebellar alterations as being of functional and structural nature.
Pioglitazone, an oral anti-diabetic that stimulates the PPAR-gamma transcription factor, increased survival of mice with amyotrophic lateral sclerosis (ALS). We performed a phase II, double blind, multicentre, placebo controlled trial of... more
Pioglitazone, an oral anti-diabetic that stimulates the PPAR-gamma transcription factor, increased survival of mice with amyotrophic lateral sclerosis (ALS). We performed a phase II, double blind, multicentre, placebo controlled trial of pioglitazone in ALS patients under riluzole. 219 patients were randomly assigned to receive 45 mg/day of pioglitazone or placebo (one: one allocation ratio). The primary endpoint was survival. Secondary endpoints included incidence of non-invasive ventilation and tracheotomy, and slopes of ALS-FRS, slow vital capacity, and quality of life as assessed using EUROQoL EQ-5D. The study was conducted under a two-stage group sequential test, allowing to stop for futility or superiority after interim analysis. Shortly after interim analysis, 30 patients under pioglitazone and 24 patients under placebo had died. The trial was stopped for futility; the hazard ratio for primary endpoint was 1.21 (95% CI: 0.71-2.07, p = 0.48). Secondary endpoints were not modif...