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Abstract

We report our experience in implementing UbiCrawler, a scalable distributed web crawler,
using the Java programming language. The main features of UbiCrawler are platform indepen-
dence, linear scalability, graceful degradation in the presence of faults, a very effective assignment
function (based on consistent hashing) for partitioning the domain to crawl, and more in general
the complete decentralization of every task. The necessity of handling very large sets of data has
highlighted some limitation of the Java APIs, which prompted the authors to partially reimplement
them.

1 Introduction

In this paper we present the design and implementation of UbiCrawler, a scalable, fault-tolerant and
fully distributed web crawler, and we evaluate its performance both a priori and a posteriori. The
overall structure of the UbiCrawler design was preliminarily described in [2]1, [5] and [4].

This work is part of a project which aims at gathering large data sets to study the structure of the
web. This goes from statistical analysis of specific web domains [3] to estimates of the distribution
of classical parameters, such as page rank [20] and to the development of techniques to redesign
Arianna, the largest Italian search engine.

Since the first stages of the project, we realized that centralized crawlers are not any longer suffi-
cient to crawl meaningful portions of the web. Indeed, it has been recognized that “as the size of the
web grows, it becomes imperative to parallelize the crawling process, in order to finish downloading
pages in a reasonable amount of time” [9, 1].

Many commercial and research institutions run their web crawlers to gather data about the web.
Even if no code is available, in several cases the basic design has been made public: this is the case,
for instance, of Mercator [18] (the Altavista crawler), of the original Google crawler [6], and of some
crawlers developed within the academic community [23, 24, 22].

Nonetheless, little published work actually investigates the fundamental issues underlying the
parallelization of the different tasks involved in the crawling process. In particular, all approaches we
are aware of employ some kind of centralized manager that decides which URLs are to be visited, and
that stores the URLs which have already been crawled. At best, these components can be replicated
and their work can be partitioned statically.

In contrast, when designing UbiCrawler, we have decided to decentralize every task, with obvious
advantages in terms of scalability and fault tolerance.

Essential features of UbiCrawler are
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• platform independence;

• full distribution of every task (no single point of failure and no centralized coordination at all);

• locally computable URL assignment based on consistent hashing;

• tolerance to failures: permanent as well as transient failures are dealt with gracefully;

• scalability.

As we will outline in Section 2, these characteristics are the byproduct of a well defined design
goal: fault tolerance and full distribution (lack of any centralized control) are assumptions which have
guided our architectural choices. For instance, while there are several reasonable ways to partition
the domain to be crawled if we assume the presence of a central server, it becomes harder to find
an assignment of URLs to different agents which is fully distributed, does not require too much
coordination, and allows us to cope with failures.

In Section 2 we present the overall design of UbiCrawler discussing in particular the requirements
which guided our choices. Section 3 gives a high level description of the software architecture of the
crawler and Section 4 introduces the assignment function used to distribute the URLs to be crawled,
and gives some general results about its properties. The implementation issues faced in developing
UbiCrawler are detailed in Section 5, while Section 6 is devoted to the performance evaluation, both
from an analytical and an empirical point of view. Finally, Section 7 contrasts our results with related
work in the literature.

2 Design Assumptions, Requirements, and Goals

In this section we give a brief presentation of the most important design choices which have guided
the implementation of UbiCrawler. More precisely, we sketch general design goals and requirements,
as well as assumptions on the type of faults that should be tolerated.

Full distribution. In order to achieve significant advantages in terms of programming, deployment,
and debugging, a parallel and distributed crawler should be composed of identically programmed
agents, distinguished by a unique identifier only. This has a fundamental consequence: each task must
be performed in a fully distributed fashion, that is, no central coordinator can exist. Full distribution
is instrumental in obtaining a scalable, easily configurable system that has no single point of failure.

We also do not want to rely on any assumption concerning the location of the agents, and this
implies that latency can become an issue, so that we should minimize communication to reduce it.

Balanced locally computable assignment. The distribution of URLs to agents is an important
problem, crucially related to the efficiency of the distributed crawling process.

We identify the three following goals:

• At any time, each URL should be assigned to a specific agent, which is the only responsible
for it, to avoid undesired data replication.

• For any given URL, the knowledge of its responsible agent should be locally available. In
other words, every agent should have the capability to compute the identifier of the agent
responsible for a URL, without communication. This feature reduces the amount of inter-
agent communication; moreover, if an agent detects a fault while trying to assign a URL to
another agent, it will be able to choose the new responsible without further communication.

• The distribution of URLs should be balanced, that is, each agent should be responsible for
approximately the same number of URLs. In case of heterogeneous agents, the number of
URLs should be proportional to the agent’s available resources (such as memory, hard disk
capacity etc.).

2



Scalability. The number of pages crawled per second and agent should be (almost) independent of
the number of agents. In other words, we expect the throughput to grow linearly with the number of
agents.

Politeness. A parallel crawler should never try to fetch more than one page at a time from a given
host. Moreover, a suitable delay should be introduced between two subsequent requests to the same
host.

Fault tolerance. A distributed crawler should continue to work under crash faults, that is, when
some agents abruptly die. No behavior can be assumed in the presence of this kind of crash, except
that the faulty agent stops communicating; in particular, one cannot prescribe any action to a crashing
agent, or recover its state afterward2. When an agent crashes, the remaining agents should continue
to satisfy the “Balanced locally computable assignment” requirement: this means, in particular, that
URLs of the crashed agent will have to be redistributed.

This has two important consequences:

• It is not possible to assume that URLs are statically distributed.

• Since the “Balanced locally computable assignment” requirement must be satisfied at any time,
it is not reasonable to rely on a distributed reassignment protocol after a crash. Indeed, during
the reassignment the requirement would be violated.

3 The Software Architecture

UbiCrawler is composed by several agents that autonomously coordinate their behavior in such a way
that each of them scans its share of the web. An agent performs its task by running several threads,
each dedicated to the visit of a single host. More precisely, each thread scans a single host using a
breadth-first visit. We make sure that different threads visit different hosts at the same time, so that
each host is not overloaded by too many requests. The outlinks that are not local to the given host are
dispatched to the right agent, which puts them in the queue of pages to be visited. Thus, the overall
visit of the web is breadth first, but as soon as a new host is met, it is entirely visited (possibly with
bounds on the depth reached or on the overall number of pages), again in a breadth-first fashion.

More sophisticated approaches (which can take into account suitable priorities related to URLs,
such as, for instance, their rank) can be easily implemented. However it is worth noting that several
authors (see, e.g., [19]) have argued that breadth-first visits tends to find high quality pages early on
in the crawl. A deeper discussion about page quality is given in Section 6.

An important advantage of per-host breadth-first visits is that DNS requests are infrequent. Web
crawlers that use a global breadth-first strategy must work around the high latency of DNS servers:
this is usually obtained by buffering requests through a multithreaded cache. Similarly, no caching is
needed for the robots.txt file required by the “Robot Exclusion Standard” [16]; indeed such file
can be downloaded when a host visit begins.

Assignment of hosts to agents takes into account the mass storage resources and bandwidth avail-
able at each agent. This is currently done by means of a single indicator, called capacity, which acts
as a weight used by the assignment function to distribute hosts. Under certain circumstances, each
agent a gets a fraction of hosts proportional to its capacity Ca (see Section 4 for a precise description
of how this works). Note that even if the number of URLs per host varies wildly, the distribution
of URLs among agents tends to even out during large crawls. Besides empirical statistical reasons
for this, there are also other motivations, such as the usage of policies for bounding the maximum
number of pages crawled from a host and the maximum depth of a visit. Such policies are necessary
to avoid (possibly malicious) web traps.

2Note that this is radically different from milder assumptions, as for instance saying that the state of a faulty agent can be
recovered. In the latter case, one can try to “mend” the crawler’s global state by analyzing the state of the crashed agent.
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Finally, an essential component of UbiCrawler is a reliable failure detector [8], that uses timeouts
to detect crashed agents; reliability refers to the fact that a crashed agent will eventually be distrusted
by every active agent (a property that is usually referred to as strong completeness in the theory of
failure detectors). The failure detector is the only synchronous component of UbiCrawler (i.e., the
only component using timings for its functioning); all other components interact in a completely
asynchronous way.

4 The Assignment Function

In this section we describe the assignment function used by UbiCrawler, and we explain why this
function makes it possible to decentralize every task and to achieve our fault-tolerance goals.

Let A be our set of agent identifiers (i.e., potential agent names), and L ⊆ A be the set of alive
agents: we have to assign hosts to agents in L . More precisely, we have to set up a function δ that,
for each nonempty set L of alive agents, and for each host h, delegates the responsibility of fetching
(URLs from) h to the agent δL (h) ∈ L .

The following properties are desirable for an assignment function:

1. Balancing. Each agent should get approximately the same number of hosts; in other words, if
m is the (total) number of hosts, we want that

∣

∣δ−1
L

(a)
∣

∣ ∼ m/|L | for each a ∈ L .

2. Contravariance. The set of hosts assigned to an agent should change in a contravariant manner
with respect to the set of alive agents across a deactivation and reactivation. More precisely, if
L ⊆ L ′ then δ−1

L
(a) ⊇ δ−1

L ′(a); that is to say, if the number of agents grows, the portion of
the web crawled by each agent must shrink. Contravariance has a fundamental consequence: if
a new set of agents is added, no old agent will ever lose an assignment in favor of another old
agent; more precisely, if L ⊆ L ′ and δL ′(h) ∈ L then δL ′(h) = δL (h); this guarantees that
at any time the set of agents can be enlarged with minimal interference with the current host
assignment.

Note that satisfying partially the above requirement is not difficult: for instance, a typical ap-
proach used in non-fault-tolerant distributed crawlers is to compute a modulo-based hash function
of the host name. This has very good balancing properties (each agent gets approximately the same
number of hosts), and certainly can be computed locally by each agent knowing just the set of alive
agents.

However, what happens when an agent crashes? The assignment function can be computed again,
giving however a different result for almost all hosts. The size of the sets of hosts assigned to each
agent would grow or shrink contravariantly, but the content of those sets would change in a completely
chaotic way. As a consequence, after a crash most pages will be stored by an agent that should not
have fetched them, and they could mistakenly be re-fetched several times3.

Clearly, if a central coordinator is available or if the agents can engage a kind of “resynchroniza-
tion phase” they could gather other information and use other mechanisms to redistribute the hosts
to crawl. However, we would have just shifted the fault-tolerance problem to the resynchronization
phase—faults in the latter would be fatal.

4.1 Background

Although it is not completely obvious, it is not difficult to show that contravariance implies that
each possible host induces a total order (i.e., a permutation) on A ; more precisely, a contravariant
assignment is equivalent to a function that assigns an element of SA (the symmetric group over A ,
i.e., the set of all permutations elements of A , or equivalently, the set of all total orderings of elements

3For the same reason, a modulo-based hash function would make it difficult to increase the number of agents during a
crawl.
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of A ) to each host: then, δL (h) is computed by taking, in the permutation associated to h, the first
agent that belongs to the set L .

A simple technique to obtain a balanced, contravariant assignment function consists in trying
to generate such permutations, for instance, using some bits extracted from a host name to seed a
(pseudo)random generator, and then permuting randomly the set of possible agents. This solution has
the big disadvantage of running in time and space proportional to the set of possible agents (which
one wants to keep as large as feasible). Thus, we need a more sophisticated approach.

4.2 Consistent Hashing

Recently, a new hashing technique called consistent hashing [14, 15] has been proposed for the
implementation of a system of distributed web caches (a different approach to the same problem can
be found in [10]). The idea of consistent hashing is very simple, yet profound.

As we noted, for a typical hash function, adding a bucket (i.e., a new place in the hash table) is
a catastrophic event. In consistent hashing, instead, each bucket is replicated a fixed number κ of
times, and each copy (we shall call it a replica) is mapped randomly on the unit circle. When we
want to hash a key, we compute in some way from the key a point in the unit circle, and find its
nearest replica: the corresponding bucket is our hash. The reader is referred to [14] for a detailed
report on the powerful features of consistent hashing, which in particular give us balancing for free.
Contravariance is also easily verified.

In our case, buckets are agents, and keys are hosts. We must be very careful, however, if we want
the contravariance (2) to hold, because mapping randomly the replicas to the unit circle each time an
agent is started will not work; indeed, δ would depend not only on L , but also on the choice of the
replicas. Thus, all agents should compute the same set of replicas corresponding to a given agent, so
that, once a host is turned into a point of the unit circle, all agents will agree on who is responsible
for that host.

4.3 Identifier–Seeded Consistent Hashing

A method to fix the set of replicas associated to an agent and try to maintain the good randomness
properties of consistent hashing is to derive the set of replicas from a very good random number
generator seeded with the agent identifier: we call this approach identifier-seeded consistent hashing.
We have opted for the Mersenne Twister [17], a fast random generator with an extremely long cycle
that passes very strong statistical tests.

However this solution imposes further constraints: since replicas cannot overlap, any discretiza-
tion of the unit circle will incur in the Birthday paradox—even with a very large number of points,
the probability that two replicas overlap will become non-negligible. Indeed, when a new agent is
started, its identifier is used to generate the replicas for the agent. However, if during this process we
generate a replica that is already assigned to some other agent, we must force the new agent to choose
another identifier.

This solution might be a source of problems if an agent goes down for a while and discovers
a conflict when it is restarted. Nonetheless, some standard probability arguments show that with a
64-bit representation for the elements of the unit circle there is room for 104 agents with a conflict
probability of 10−12.

We remark that a theoretical analysis of the balancing produced by identifier-seeded consistent
hashing is most difficult, if not impossible (unless, of course, one uses the working assumption that
replicas behave as if they were randomly distributed). Thus, we report experimental data: in Figure 1
we can see that once a substantial number of hosts have been crawled, the deviation from perfect
balancing is less than 6% for small as well as for large sets of agents when κ = 100, that is, we use
100 replicas per bucket (thin lines); if κ = 200, the deviation decreases to 4.5% (thick lines).

We have implemented consistent hashing as follows: the unit interval can be mapped on the
whole set of representable integers, and then replicas can be kept in a balanced tree whose keys are
integers. This allows us to hash a host in logarithmic time (in the number of alive agents). By keeping
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Figure 1: Experimental data on identifier-seeded consistent hashing. Deviation from perfect balancing is less
than 6% with 100 replicas (thin lines), and less than 4.5% with 200 replicas (thick lines).

the leaves of the tree in a doubly linked chain we can also easily implement the search for the next
nearest replica.

As we already mentioned, an important feature of UbiCrawler is that it can run on heterogeneous
hardware, with different amount of available resources. To this purpose, an agent is associated with
a number of replicas proportional to its capacity, and this guarantees that the assignment function
distributes hosts evenly with respect to the mass storage available at each agent.

Moreover, the number of threads of execution for each agent can be tuned to suit network band-
width or CPU limitations. Note however that an excessive number of threads can lead to contention
on shared data structures, such as the agent’s store, and to excessive CPU load, with corresponding
performance degradation.

5 Implementation issues

As we already mentioned, several key ideas in web crawling have been made public and discussed in
many seminal papers. UbiCrawler builds on this knowledge and uses ideas from previous crawlers,
such as Rabin’s fingerprinting technique [18].

We decided to develop UbiCrawler as a pure 100% Java application. The choice of JavaTM 2
as implementation language is mainly motivated by our need to achieve platform-independence, a
necessity that is especially urgent for a fully distributed P2P-like application. Currently UbiCrawler
consists of about one-hundred twenty Java classes and interfaces organized in fifteen packages, with
about 800 methods and more than 12 000 lines of code.

Of course, Java imposes a certain system overhead, when contrasted with a C/C++ implementa-
tion. Nevertheless, our tests show that the speed of UbiCrawler is limited by network bandwidth, and
not by CPU power. In fact, the performance penalty of Java is much smaller than usually believed; for
instance, the implementors of the CERN Colt package [13] claim a 2.5 linear performance penalty
against hand-crafted assembler. The (realistic) user perception of an intrinsic Java slowness is mainly
due to the bad performance of the Swing window toolkit.

Moreover, Java made it possible to adopt Remote Method Invocation [21], a technology that
enables one to create distributed applications in which the methods of remote Java objects can be
invoked from other Java virtual machines (possibly on different hosts), using object serialization to
implicitly marshal and unmarshal parameters. This freed us from the necessity of implementing
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communication protocols among agents.
The components of each agent interact as semi-independent modules, each running possibly more

than one thread. To bound the amount of information exchanged on the network, each agent is
confined to live in a single machine. Nonetheless, different agents may (and typically do) run on
different machines, and interact using RMI.

The intensive use of Java APIs in a highly distributed and time/space critical project has high-
lighted some limitations and issues that led us to devise new ad-hoc solutions, some of which turned
out to be interesting per se.

Space/time-efficient type-specific collections. The Collection and Map hierarchies in the java.util
package are a basic tool that is most useful in code development. Unfortunately, because of the awk-
ward management of primitive types (to be stored in collection they need to be wrapped in suitable
objects) those hierarchies are not suitable for handling primitive types, a situation that often happens
in practice. If you need a set of integers, you should wrap every single integer into an Integer
object. Apart for space inefficiency, object creation is a highly time-consuming task, and the cre-
ation of many small objects makes garbage collection problematic, a fact that becomes dramatic in a
distributed setting, where responsiveness is critical.

More issues derive from the way collections and maps are implemented in the standard API. For
example, a HashMap is realized using closed addressing, so every entry in the table has an addi-
tional reference, and moreover it caches hash codes; hence, an entry with a pair of int (that should
minimally take 8 bytes) requires the allocation of 3 objects (two Integer objects for wrapping
the two integers, and an entry object), and the entry contains three references (key, value and next
field) and an additional integer field to keep the hash code cached. A HashSet is implemented as a
single-valued HashMap.

Each UbiCrawler agent keeps track of the URLs it has visited: this is obtained via a hash table that
stores 64-bit CRCs (a.k.a. fingerprints) of the URLs. Indeed, this table turns out to be responsible for
most of the memory occupancy. Storing this table using the standard APIs would reduce by a factor
of at least 20 the number crawlable URLs (even worse, the number of objects in memory would make
garbage collections so time consuming to produce timeouts in inter-process communications).

All these considerations led to the development of a package providing alternatives to the sets
and maps defined in java.util. This package, named fastUtil, contains 537 classes that offer
type-specific mappings (such as Int2LongOpenHashMap). They all implement the standard Java
interfaces, but offer also polymorphic methods for easier access and reduced object creation. The
algorithmic techniques used in our implementation are rather different than those of the standard API
(e.g., open addressing, threaded balanced trees with bidirectional iterators, etc.), and provide the kind
of performance and controlled object creations that we needed. These classes have been released
under the GNU Lesser General Public License.

Robust, fast, error-tolerant HTML parsing. Every crawling thread, after fetching a page, needs
to parse it before storing; parsing is required both to extract hyperlinks that are necessary for the
crawling to proceed, and to obtain other relevant information (e.g., the charset used in the page,
in case it differs from the one specified in its headers; the set of words contained in the page, an
information that is needed for indexing, unless one wants to make this analysis off-line with a further
parsing step). The current version of UbiCrawler uses a highly optimized HTML/XHTML parser that
is able to work around most common errors. On a standard PC, performance is about 600 page/s (this
includes URL parsing and word occurrence extraction).

String and StringBuffer. The Java string classes are a well-known cause of inefficiency.
In particular, StringBuffer is synchronized, which implies a huge performance hit in a mul-
tithreaded application. Even worse, StringBuffer has equality defined by reference (i.e., two
buffers with the same content are not equal), so even a trivial task such as extracting word occur-
rences and storing them in a data structure poses nontrivial problems. In the end, we rewrote a string
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class lying halfway between String and StringBuffer. The same problems have been reported
by the authors of Mercator [12], who also claim to have rewritten the Java string classes.

6 Performance Evaluation

The goal of this section is to discuss UbiCrawler in the framework of the classification given in [9],
and to analyze its scalability and fault-tolerance features. In particular, we consider the most im-
portant properties identified by [9] (degree of distribution, coordination, partitioning techniques,
coverage, overlap, and communication overhead) and contrast UbiCrawler against them.

Degree of distribution. A parallel crawler can be intra-site, or distributed, that is, its agents can
communicate either through a LAN or through a WAN. UbiCrawler is a distributed crawler which
can run on any kind of network.

Coordination. In the classification of [9], agents can use a different amount of coordination: at one
extreme, all agents crawl the network independently, and one hopes that their overlap will be small
due to a careful choice of the starting URLs; at the other extreme, a central coordinator divides the
network either statically (i.e., before the agents actually start) or dynamically (i.e., during the crawl).

As for UbiCrawler, the assignment function gives rise to a kind of coordination that does not fit the
models and the options suggested above. Indeed, the coordination is dynamic, but there is no central
authority that handles it. Thus, in a sense, all agents run independently, but they are at the same time
tightly and distributedly coordinated. We call this feature distributed dynamic coordination.

Partitioning techniques. The web can be partitioned in several ways; in particular, the partition
can be obtained from URL-based hash, host-based hash or hierarchically, using, for instance, Internet
domains. Currently, UbiCrawler uses a host-based hash; note that since [9] does not consider consis-
tent hashing, some of the arguments about the shortcomings of hashing functions are no longer true
for UbiCrawler.

Coverage. It is defined as c
u , where c is the number of actually crawled pages, and u the number of

pages the crawler as a whole had to visit.
If no faults occur, UbiCrawler achieves coverage 1, which is optimal. Otherwise, it is in principle

possible that some URLs that were stored locally by a crashed agent will not be crawled. However,
if these URLs are reached along other paths after the crash, they will clearly be fetched by the new
agent responsible for them.

Overlap. It is defined as n−u
u , where n is the total number of pages crawled by alive agents and

u the number of unique pages; note that u < n can happen if the same page has been erroneously
fetched several times.

Even in the presence of crash faults, UbiCrawler achieves overlap 0, which is optimal. However,
if we consider transient faults, where an agent may be temporarily unavailable, we cannot guarantee
the absence of duplications. In particular, we cannot prevent other agents from fetching a URL that a
temporarily unavailable agent already stores, because we cannot foresee whether the fault is transient
or not (unless, of course, we accept a potentially incomplete coverage).

Nevertheless, note that after a transient fault UbiCrawler autonomously tries to converge to a state
with overlap 0 (see Section 6.1.1). This property is usually known as self-stabilization, a technique
for protocol design introduced by Dijkstra [11].
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Communication overhead. It is defined as e
n , where e is the number of URLs exchanged by the

agents during the crawl and n is the number of crawled pages.
Assuming that every page contains λ links to other sites (on average), we have that n crawled

pages will give rise to λn URLs that must be potentially communicated to other agents4. Due to the
balancing property of the assignment function, at most

λn

∑

a 6=ā Ca
∑

a Ca
< λn

messages will be sent across the network, where a ranges in the set of alive agents, and ā is the
agent that fetched the page (recall that Ca is the capacity of agent a). By the definition of [9], our
communication overhead is thus less than λ. It is an interesting feature that the number of messages
is independent of the number of agents, and depends only on the number of crawled pages and on λ.
In other words, a large number of agents will generate more network traffic, but this is due to the fact
that they are fetching more pages, and not to a design bottleneck.

Quality. It is a complex measure of ‘importance” or “relevance” of crawled pages as determined
by suitable ranking techniques; an important challenge is to build a crawler that tends to collect
high-quality pages during the early stages of the crawling process.

As we already mentioned, currently UbiCrawler uses a parallel per-host breadth-first visit, without
dealing with ranking and quality-of-page issues. This is because our immediate goal is to focus on
scalability of the crawler itself and on the analysis of some portions of the web, as opposed to building
a search engine. Nonetheless, since a breadth-first single-process visit tends to visit high-quality
pages first [19], it is natural to ask whether our strategy works well or not.5

To be more precise, UbiCrawler has a limit on the depth of any host visit. Once the limit is
reached, the visit terminates. In particular, this means that by setting the limit to 0, UbiCrawler
performs a pure breadth-first visit, whereas by setting the limit to higher values, the visit resembles
more and more a depth-first one.

Figure 2 shows the cumulative PageRank during a crawl of about 45,000,000 pages of of the
domain .it; We compare (from top to bottom) an ideal omniscient strategy that visits pages of high
PageRank first; then, a breadth-first visit, the actual UbiCrawler visit and a depth-first visit. As the
crawl was performed with a high depth limit (8), the UbiCrawler visit is nearer to the results of the
depth-first visit.

6.1 Fault Tolerance

To the best of our knowledge, no commonly accepted metrics exist for estimating the fault tolerance
of distributed crawlers, since the issue of faults has not been taken into serious consideration up to
now. It is indeed an interesting and open problem to define a set of measures to test the robustness of
parallel crawlers in the presence of faults. Thus, we give an overview of the reaction of UbiCrawler
agents to faults.

UbiCrawler agents can die or become unreachable either expectedly (for instance, for mainte-
nance) or unexpectedly (for instance, because of a network problem). At any time, each agent has its
own view of which agents are alive and reachable, and these views do not necessarily coincide.

Whenever an agent dies abruptly, the failure detector discovers that something bad has happened
(e.g., using timeouts). Thanks to the properties of the assignment function, the fact that different
agents have different views of the set of alive agents does not disturb the crawling process. Suppose,
for instance, that a knows that b is dead, whereas a ′ does not. Because of contravariance, the only

4Note that in principle not all URLs must be necessarily communicated to other agents; one could just rely on the choice
of a good seed to guarantee that no pages will be lost. Nonetheless, in a worst-case scenario, to obtain coverage 1 all URLs
not crawled must be communicated to some other agent.

5Of course, it will be possible to order pages according to a ranking function, using, for instance, backlink information, at
a later stage of this project.
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Figure 2: Cumulative PageRank of crawled pages as a function of the number of crawled URLs.

difference between a and a′ in assignments of host to agents is the set of hosts pertaining to b. Agent
a correctly dispatches these hosts to other agents, and agent a ′ will do the same as soon as it realizes
that b is dead, which will happen, in the worst case, when it tries to dispatch a URL to b. At this
point, b will be believed dead, and the host dispatched correctly. Thus, a and a ′ will never dispatch
hosts to different agents.

Another consequence of this design choice is that agents can be dynamically added during a
crawl, and after a while all pages for which they are responsible will be removed from the stores
of the agents that fetched them before the new agent’s birth. In other words, making UbiCrawler
self-stabilizing by design gives us not only fault tolerance, but also a greater adaptivity to dynamical
configuration changes.

6.1.1 Page Recovery

An interesting feature of contravariant assignment functions is that they allow to guess easily who
could have fetched previously a page for which an agent is responsible in the present configuration.
Indeed, if a is responsible for the host h, then the agent responsible for h before a was started is the
one associated to the next-nearest replica. This allows us to implement a page recovery protocol in a
very simple way. Under certain conditions, the protocol allows to avoid re-fetching several times the
same page even in the presence of faults.

The system is parametrized by an integer t : each time an agent is going to fetch a page of a host
for which it is currently responsible, it first checks whether the next-nearest t agents have already
fetched that page. It is not difficult to prove that this guarantees page recovery as long as no more
than t agents were started since the page was crawled. Note that the number of agents that crashed
is completely irrelevant.

This approach implies that if we want to accept t (possibly transient) faults without generating
overlap (except for the unavoidable cases discussed in Section 6), we have to increase by a linear
factor of t the network traffic, as any fetched page will generate at least t communications. This is
not unreasonable: typically, in a distributed system the number of rounds required to solve a problem
(for instance, consensus) is linearly related to the maximum number of faults.
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Figure 3: Average number of pages crawled per second and thread, that is, work per thread. Graph (a) shows
how work changes when the number of agents changes; the different patterns represent the number of threads
(solid line=1, long dashes=2, short dashes=3, dots=5, dash-dots=8). Graph (b) shows how work changes when
the number of threads changes; the different lines represent a different number of agents (from 2 to 14, higher to
lower).

6.2 Scalability

In a highly scalable system, one should guarantee that the work performed by every thread is constant
as the number of threads changes, i.e., that the system and communication overheads do not reduce
the performance of each thread. The figures given in Section 6 show that the amount of network
communication grows linearly with the number of downloaded pages, a fact which implies that the
performance of each UbiCrawler thread is essentially independent of the number of agents. We have
measured how the average number of pages stored per second and thread changes when the number
of agents, or the number of threads per agent, changes. For example, Figure 3 plots the resulting data
for the African domain (these data were gathered during the crawl used for [3]).

Graph (a) shows how work per thread changes when the number of agents increases. In a perfectly
scalable system, all lines should be horizontal (which would mean that by increasing the number of
agents we could arbitrarily accelerate the crawling process). There is a slight drop in the second part
of the first graph, that becomes significant with eight threads. The drop in work, however, is in this
case an artifact of the test, caused by our current limitations in terms of hardware resources: to run
experiments using more than seven agents, we had to start two agents per machine, and the existence
of so many active processes unbearably raised the CPU load, and led to hard disk thrashing. We have
decided to include anyway the data because they show almost constant work for a smaller number of
threads and for less than eight agents.

Graph (b) shows how work per thread changes when the number of threads per agent increases.
In this case, data contention, CPU load and disk thrashing become serious issues, and thus the work
performed by each single thread reduces. The drop in work, however, is strongly dependent on the
hardware architecture and, again, the reader should take with a grain of salt the lower lines, which
manifest the artifact already seen in graph (a).

Just to make these graphs into actual figures, note that a system with sixteen agents, each running
four threads, can fetch about 4 500 000 pages a day, and we expect these figures to scale almost
linearly with the number of agents, if sufficient network bandwidth is available.

The tests above have been run using a network simulation that essentially provided infinite band-
width. When network latency is involved, the number of threads can be raised to much higher figures,
as thread contention is greatly reduced (and replaced by waiting for the network to provide data). In
real crawls, using 50 or more threads, UbiCrawler can download more than 10 000 000 pages per day
using five 1GHz PCs (at this point our link was saturated, so we could not try to increase parallelism).
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Again, this includes the precomputation of the list of word occurrences of each page.

7 Related works

Although, as mentioned in the introduction, most details about the design and implementation issues
of commercial crawlers are not public, there are some highly performant, scalable crawling sys-
tems whose structure has been described and discussed by the authors; among them, two distributed
crawlers that might be compared to UbiCrawler are Mercator [18], used by AltaVista, the spider
discussed in [22], and the crawler presented in [23].

Mercator is a high-performance web crawler whose components are loosely coupled; indeed, they
can be distributed across several computing units. However, there is a central element, the frontier,
which keeps track of all the URLs that have been crawled up to now and that filters new requests.

In the original description of Mercator this component was unique and centralized. Recently, the
authors have added the possibility of structuring a crawler as a hive: hosts are statically partitioned
among a finite number of drones (with independent crawling and analysis components). However,
this does not address the main problem, that is, that all the information about the set of URLs that
have been crawled is centralized in the frontier component of each drone. Indeed, Mercator uses a
very ingenious mix of Rabin fingerprinting and compressed hash tables to access these sets efficiently.
On the contrary, UbiCrawler spreads dynamically and evenly among all agents this information.

On the other hand, Mercator has a much more complete content handling, providing several
protocol modules (Gopher, ftp, etc.) and, more importantly, a content-seen module that filters URLs
with the same content as URLs that have already been crawled (it should be noted, however, that the
authors do not explain how to implement a cross-drone content-seen module).

The spider discussed in [22] is developed using C++ and Python, and the various components
interact using socket connections for small message exchanges, and NFS (Network File System) for
large messages.

The downloading components communicate with two central components, called crawl manager
and crawl application. The crawl application is responsible for parsing downloaded pages, com-
pressing and storing them; the application is also in charge of deciding the visit policy. The crawl
application communicates the URL to be crawled to the manager, that then dispatches the URLs to
the downloaders; the manager takes care of issues such as robot-exclusion, speed-rate control, DNS
resolution etc.

The described architecture cannot be scaled to an arbitrary number of downloaders, though: the
presence of a centralized parser and dispatcher are a bottleneck. The authors solve this problem
by partitioning the set of URLs statically into k classes, and then using k crawl applications, each
responsible for the URLs in one of the classes: the technique adopted here is similar to that of the
Internet Archive crawler [7]. The downloaders, thus, communicate each page to the application
responsible for that URL. The number of crawl manager used can be reduced by connecting more
applications to the same manager. It is worth mentioning that, since the assignment of URLs to
applications is fixed statically, the number and structure of crawl applications cannot be changed
during runtime (even though one may change the set of downloaders).

The set of visited URLs, maintained by each crawl application, is kept partly in the main memory
(using a balanced tree) and partly on disk. Polite crawling is implemented using a domain-based
throttling technique that scrambles the URLs in random order; of course, we do not need such tech-
nique, because no thread is allowed to issue requests to a host that is currently being visited by another
thread.

A notable exception to the previous cases is described in [23], where the authors propose solutions
for a completely dynamic distribution of URLs by means of a two-stage URL-distribution process:
first of all URLs are mapped to a large array containing agent identifiers; then, the agent obtained
from the array has responsibility for the URL. The entries of the array, indeed, act much like replicas
in consistent hashing.
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However, there are two major drawbacks: first of all, the authors do not explain how to manage
births or deaths of more than one agent. The technique of array renumbering given in the paper
is not guaranteed to give a balanced assignment after a few renumbering; moreover, there is no
guarantee that if the same agent dies for a short time and then gets alive again it will get the same
URL assignment (i.e., contravariance), which is one of the main features of consistent hashing.

8 Conclusions

We have presented UbiCrawler, a fully distributed, scalable and fault-tolerant web crawler. We be-
lieve that UbiCrawler introduces new ideas in parallel crawling, in particular the use of consistent
hashing as a mean to completely decentralize the coordination logic, graceful degradation in the
presence of faults, and linear scalability.

The development of UbiCrawler highlighted also some weaknesses of the Java API, which we
have been able to overcome by using, when necessary, better algorithms.

UbiCrawler is an ongoing project, and our current goal is to test the crawler on larger and larger
portions of the Web.

References

[1] Arvind Arasu, Junghoo Cho, Hector Garcia-Molina, Andreas Paepcke, and Sriram Raghavan.
Searching the web. ACM Transactions on Internet Technology, 1(1):2–43, 2001.

[2] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. Trovatore: Towards a
highly scalable distributed web crawler. In Poster Proc. of Tenth International World Wide Web
Conference, pages 140–141, Hong Kong, China, 2001. Winner of the Best Poster Award.

[3] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. Structural properties
of the African web. In Poster Proc. of Eleventh International World Wide Web Conference,
Honolulu, USA, 2002.

[4] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. Ubicrawler: A scalable
fully distributed web crawler. In Proc. AusWeb02. The Eighth Australian World Wide Web
Conference, 2002.

[5] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. Ubicrawler: Scalability
and fault-tolerance issues. In Poster Proc. of Eleventh International World Wide Web Confer-
ence, Honolulu, USA, 2002.

[6] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web search engine.
Computer Networks, 30(1/7):107–117, 1998.

[7] M. Burner. Crawling towards eternity: Building an archive of the world wide web. Web Tech-
niques, 2(5), 1997.

[8] Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, 1996.

[9] Junghoo Cho and Hector Garcia-Molina. Parallel crawlers. In Proc. of the 11th International
World–Wide Web Conference, 2002.

[10] Robert Devine. Design and implementation of DDH: A distributed dynamic hashing algorithm.
In David B. Lomet, editor, Proc. Foundations of Data Organization and Algorithms, 4th In-
ternational Conference, FODO’93, volume 730 of Lecture Notes in Computer Science, pages
101–114, Chicago, Illinois, USA, 1993. Springer–Verlag.

13



[11] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of
the ACM, 17(11):643–644, 1974.

[12] Allan Heydon and Marc Najork. Performance limitations of the Java core libraries. Concur-
rency: Practice and Experience, 12(6):363–373, May 2000.

[13] Wolfgang Hoschek. The Colt distribution. http://tilde-hoschek.home.cern.ch/~hoschek/colt/.

[14] David Karger, Eric Lehman, Tom Leighton, Matthew Levine, Daniel Lewin, and Rina Pani-
grahy. Consistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the World Wide Web. In Proc. of the 29th Annual ACM Symposium on Theory of
Computing, pages 654–663, El Paso, Texas, 1997.

[15] David Karger, Tom Leighton, Danny Lewin, and Alex Sherman. Web caching with consistent
hashing. In Proc. of 8th International World–Wide Web Conference, Toronto, Canada, 1999.

[16] Martijn Koster. The Robot Exclusion Standard. http://www.robotstxt.org/.

[17] M. Matsumoto and T. Nishimura. Mersenne twister: A 623–dimensionally equidistributed
uniform pseudo–random number generator. ACMTMCS: ACM Transactions on Modeling and
Computer Simulation, 8:3–30, 1998.

[18] Marc Najork and Allan Heydon. High-performance web crawling. In J. Abello, P. Pardalos,
and M. Resende, editors, Handbook of Massive Data Sets. Kluwer Academic Publishers, Inc.,
2001.

[19] Marc Najork and Janet L. Wiener. Breadth-first search crawling yields high-quality pages. In
Proc. of 10th International World Wide Web Conference, Hong Kong, China, 2001.

[20] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. Technical report, Stanford Digital Library Technologies
Project, Stanford University, Stanford, CA, USA, 1998.

[21] JavaTM remote method invocation (RMI). http://java.sun.com/products/jdk/rmi/.

[22] Vladislav Shkapenyuk and Torsten Suel. Design and implementation of a high-performance
distributed web crawler. In IEEE International Conference on Data Engineering (ICDE), 2002.

[23] Hongfei Yan, Jianyong Wang, Xiaoming Li, and Lin Guo. Architectural design and evaluation
of an efficient Web-crawling system. The Journal of Systems and Software, 60(3):185–193,
2002.

[24] Demetrios Zeinalipour-Yazti and Marios Dikaiakos. Design and implementation of a distributed
crawler and filtering processor. In Proc. of NGITS 2002, volume 2382 of Lecture Notes in
Computer Science, pages 58–74, 2002.

14


