15-396 Science of teh Interwebs

Preliminaries of Game Theory

Lecture 8 (October 4, 2011)

Payoffs

Strategies for Player 1: $S_1 = \{WiFi, Wired\}$ Strategies for Player 2: $S_2 = \{WiFi, Wired\}$ $S = \{(WiFi, Wired), (WiFi, WiFi), (Wired, WiFi), (Wired, Wired)\}$ We assume that everything a player cares about is summarized in the player's payoff

We also assume that each player knows everything about the game

Prisoner's Dilemma

Best Responses

A strategy s_1^* is a best response by player 1 to a strategy s_2 for player 2 if

 $\pi_1(s_1^*, s_2) \ge \pi_1(s_1, s_2)$

for all strategies $s_1 \in S_1$.

If Suspect 2 does not confess, then confessing is a best response for Suspect 1

Dominant Strategy

A strategy s_1^* is a Dominant Strategy for player 1 if s_1^* is a Best Response to every possible strategy for player 2.

Confessing is a dominant strategy for both Suspects!

I is a dominant strategy for both players

(L,H) will be played

Neither player has a dominant strategy

Nash Equilibrium

A pair of strategies (s_1^*, s_2^*) is in Nash Equilibrium if s_1^* is a Best Response by player 1 to s_2^* , and s_2^* is a Best Response by player 2 to s_1^* .

Coordination Game

Player 2

Nash Equilibria: (L,L), (R,R)

Nash Equilibria: (D,H), (H,D)

Matching Pennies

Player 2

No pure Nash Equilibria Exist!

Randomized Strategies

Player 1 picks H with probability p and Player 2 picks H with probability q

E[Payoff for P1 doing H] = (-1)q + (+1)(1-q) = 1-2qE[Payoff for P1 doing T] = (+1)q + (-1)(1-q) = 2q-1Player 1 will choose H if 1-2q > 2q-1. i.e., if q < 1/2Player 1 will choose T if 1-2q < 2q-1. i.e., if q > 1/2

We say that (p*,q*) is a mixed strategy Nash Equilibrium if p* is a best response by player 1 to q* and q* is a best response by player 2 to p*

(p=2/3,q=3/4) is an equilibrium!

Player 1 is only willing to randomize if the expected payoffs of U and D are equal: q+4(1-q)=2q+(1-q), so q=3/4

But (U,L) gives each player a payoff of 1, whereas (D,R) gives them 2.

Nash Equilibrium not always socially optimal

