

Separation of Natural Fibres for Textiles and Composites

Christopher Hurren Centre For Material and Fibre Innovation Deakin University

Bast Fibre

Bast Fibres

Advantages

- Specialty fibre with good moisture adsorption, strength, durability and microbial attack resistance
- High production rates per land area
- Low or no pesticide use during growth
- Renewable resource

Disadvantages

- Fibre separation involves contamination of water system
- Inefficient fibre separation and production processes
- Legislation may restrict the growth of hemp

Crop Details Climate: Cool to hot Growth period: Annual Yields: 2.5-3.5ton/ha dry mass Fibre yield: 25 to 35% original straw weight

Hemp (Cannabis Sativa L.)

Fibre properties Fineness: 18µm (14-35µm) Length: 35mm (20 to 80mm)

Separation techniques

Field retting

Limited to certain climates and limits use of land while retting occurs

Water retting

Provides high volumes of polluted, smelly water and takes two to three weeks to occur

Chemical retting

Energy, chemical and water intensive and provides moderate volumes of effluent

Ultrasonic retting

Requires high liquor ratios to allow ultrasonic penetration

Biological retting

Enzyme is hard to acquire in large volumes

Bast fibre retting systems

Hurren C, Wang X, Denis H, Clark A, Evaluation of Bast Fibre Retting Systems on Hemp. Proceedings of the 82nd Textile Institute World Conference, Cairo (2002).

Fibre ultimate fineness

Hurren C, Lecomte S, Wang X, Determining Residual Gum Content of Bast Fibres. Proceedings of the 83rd Textile Institute World Conference, Shanghai (2004).

Quality analysis

Beltran R, Hurren C, Kaynak A, Wang X, Correlating The Fineness And Residual Gum Content Of Degummed Hemp Fibres. Fibres and Polymers, vol 3, No 4, 129-133 (2002)

Other Publications in this area

- Kafi, A., Hurren, C. and Fox, B. (2008) Influence of Helium Atmospheric Plasma Treatment on Surface and Fracture-mechanical Behaviour of Quickstep[™] Cured Bio-composites, *Proceedings of the 4th International Conference on Advanced Engineered Wood & Hybrid Composites*, p. 1, The University of Maine, USA
- Kafi, A. A., Hurren, C. J. and Fox, B. (2008) Influence of helium atmospheric plasma treatment on surface and fracture-mechanical behaviour of quickstep cured bio-composites, *AEWC 2008 : Proceedings of the 4th International Conference on Advanced Engineered Wood and Hybrid Composites 2008*, AEWC, Bar Harbor, Me.
- Hurren C, Everaert B, Corbett T and Fox B, An Analysis of Natural Fibre Composite Processing Conditions. 2003, Proceedings of the International Symposium of Kenaf Development and Product Show Aug 19-21, Beijing.

Conclusions

Deakin can help provide solutions into bast fibre separation techniques from a decorticated product

Deakin has the laboratory facilities to conduct fibre related research in the natural fibre area

Thank you

Dr Chris Hurren Centre for Material and Fibre Innovation cjhurren@deakin.edu.au

