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Much of Richard Borcherds’s brilliant work is
related to the remarkable subject of Monstrous
Moonshine. This started quietly in the 1970s when
A. Ogg noticed a curious coincidence spanning
two apparently unrelated areas of mathematics—
the theory of modular functions and the theory of
finite simple groups.

There are fifteen prime numbers p for which the
normalizer of the congruence subgroup Ip(p) in
SL(2,R) has the “genus-zero property”; that is, the
compactification of the upper half-plane modulo
this normalizer is a Riemann surface of genus
zero, so that the field of modular functions in-
variant under this discrete group is generated by
only one function (a Hauptmodul). The surprise was
that these coincide with the fifteen primes that di-
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vide the order of the “Monster” sporadic finite
simple group M, a group of order about 1054 “dis-
covered” by B. Fischer and R. Griess but not yet
proved to exist at the time. Ogg offered a bottle of
Jack Daniels whiskey for an explanation.

In 1978-79, J. McKay, J. Thompson, J. H. Con-
way, and S. Norton explosively enriched this nu-
merology [CN] and in particular conjectured the ex-
istence of a natural infinite-dimensional Z-graded
representation (let us call it V¥ = @,>_; Vrf) of
the conjectured group M that would have the
following property: For each of the 194 conjugacy
classes in M, choose a representative g € M,
and consider the “graded trace” J4(q)=
Sn=-1(tr gl,,:)q", where q = e2™T Tin the upper
half-plane. Then the McKay-Thompson series Jq4
should be a (specified) Hauptmodul for a suitable
discrete subgroup of SL(2,R) with the genus-zero
property, and, in particular, J; (corresponding to
1 eM) should be the modular function
J(@) =q 1 +196884qg + - - -. This existence was
soon essentially (and nonconstructively) proved by
Thompson, A. O. L. Atkin, P. Fong, and S. Smith,
and the problem was to uncover the deeper story.

Griess [Gr] then proved the existence of the
Monster by constructing it as an automorphism
group of a remarkable new algebra of dimension
196884. Later I. Frenkel, J. Lepowsky, and A. Meur-
man gave a construction, incorporating a vertex op-
erator realization of the Griess algebra, of a “moon-
shine module” V# for M whose McKay-Thompson
series for 1 € M was indeed J(g). Only some, and
far from all, of the McKay-Thompson series for this
structure V% could be computed directly. This
construction was reinterpreted by physicists, dur-
ing the resurgence of string theory in the mid-
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Richard E. Borcherds

1980s, as a “toy model” physical
theory of a 26-dimensional bosonic
string compactified on a 24-dimen-
sional toral “orbifold” associated
with the Leech lattice. Thus the Mon-
ster turned out to be the symmetry
group of an idealized physical the-
ory. The term “vertex operator”
comes from the early days of string
theory, when operators of this type
were used to describe interactions
at a “vertex”. Affine Lie algebras
were constructed via what turned
out to be certain variants of physi-
cal vertex operators.

Then came a penetrating insight of Borcherds:
He introduced his axiomatic notion of “vertex al-
gebra” [B1] and perceived among many other things
that the moonshine module could be endowed
with an M-invariant vertex algebra structure. The
concept of vertex algebra is a mathematically pre-
cise algebraic counterpart of the concept of “chi-
ral algebra” in two-dimensional conformal quan-
tum field theory as formalized by A. Belavin,
A. Polyakov, and A. Zamolodchikov (a physical
theory foundational in string theory and in two-
dimensional statistical mechanics). This funda-
mental notion reflects deep features of the tradi-
tional notions of commutative associative algebra
and at the same time of Lie algebra. A vertex op-
erator algebra structure (a variant of vertex alge-
bra structure) on V! was given in [FLM] and allowed
the possibility of characterizing V¥, by a still-un-
proved conjecture, as the unique vertex operator
algebra satisfying a short list of natural condi-
tions. The Fischer-Griess Monster, then, is the au-
tomorphism group of a (conjecturally) unique new
kind of mathematical object. The nonclassical fla-
vor of the theory of vertex algebras in mathemat-
ics can be thought of as analogous to the non-
classical flavor of string theory in physics.

Borcherds was meanwhile developing his the-
ory of generalized Kac-Moody algebras [B2], now
also called “Borcherds algebras”. Kac-Moody alge-
bras form a very important class of Lie algebras
generalizing the class of finite-dimensional semi-
simple Lie algebras. Outside the fundamental class
of affine Lie algebras, the infinite-dimensional Kac-
Moody algebras have been notoriously difficult to
construct concretely. Borcherds had the insight
to study systematically the phenomenon of “imag-
inary simple roots”, and the resulting algebras en-
compass a wide variety of striking examples whose
root multiplicities Borcherds determined com-
pletely and which he in fact constructed directly
from suitable vertex algebras. He established what
are now called the “Weyl-Kac-Borcherds charac-
ter” and “denominator formulas” for these alge-
bras. Most importantly, he made the fundamental
discovery that for suitable families of examples,
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the root multiplicities are exactly the coefficients
of certain automorphic forms.

Borcherds’s remarkable achievement concern-
ing moonshine followed, in his strikingly original
proof [B3] that all of the McKay-Thompson series
for V¥ do in fact agree with the 194 series written
down by Conway and Norton and in particular sat-
isfy the genus-zero property; that is, the Conway-
Norton conjecture holds for V*. His strategy was
to tensor V¥ with a rank-two vertex algebra to
form a rank-26 vertex algebra on which M acts
canonically, and he drew on a rich variety of ideas,
among them ideas from vertex algebra theory, the
theory of Borcherds algebras (particularly his sin-
gularly interesting “Monster Lie algebra”), string
theory (especially, critical 26-dimensional string
theory and the “no-ghost theorem” of R. C. Brower,
P. Goddard, and C. Thorn), and modular function
theory. He established a twisted denominator for-
mula for the Monster Lie algebra by exploiting the
homology of a suitable subalgebra, and he con-
cluded that the series for V! satisfy the “replica-
tion formulas” of Conway-Norton and thus, as a
result of a verification of initial data, agree with
the Conway-Norton series.

The fact that the root multiplicities of the Mon-
ster Lie algebra are the coefficients of J(g) and the
relation of this fact to the denominator formula are
just the tip of an iceberg: When Borcherds pursued
this idea for a wide range of Borcherds algebras,
he discovered a powerful and unexpected corre-
spondence between certain classical modular func-
tions and meromorphic modular forms associated
with arithmetic subgroups of SO(n,?2). The re-
sulting infinite product expansions led to striking
new results on moduli spaces of certain varieties.
J. Harvey, G. Moore, Borcherds, and others have de-
veloped potentially far-reaching connections with
mirror symmetry and string duality.

Borcherds’s insights have influenced a wide
range of works. For example, the value of having
a conceptual notion of vertex (operator) algebra has
been immense. It becomes possible to formulate
new questions and to address new problems. Here
are some notable examples: the initiation of a pro-
gram to construct (geometric) conformal field the-
ory using vertex operator algebras (I. Frenkel), so-
lution of the problem of constructing “tree-level”
conformal field theory in the sense of G. Segal and
M. Kontsevich (Y.-Z. Huang), a vertex-operator-al-
gebra-theoretic proof of modular transformation
properties of “characters” of modules (Y. Zhu),
and a natural approach to the construction of ver-
tex (operator) algebras and their modules (devel-
oped systematically by H. Li and others).

The deepest mysteries of moonshine are still not
fully resolved. Some notable works in this direc-
tion are Borcherds’s and A. Ryba’s investigation of
moonshine over finite fields and work of C. Dong,
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H. Li, and G. Mason on Norton’s generalized moon-
shine conjectures.

Only part of Borcherds’s important work has
been touched on here. Discussions and treatments
of many facets of his accomplishments and his
ideas can be found in, for example, [FLM], [Ge],
[JLW], [K], and Goddard’s and Borcherds’s talks at
the International Congress [Go], [B4]. These works
include listings of many of Borcherds’s papers.
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William Timothy Gowers has worked in two
areas: Banach space theory and combinatorics.
The main tools he used in his work in Banach
space theory are also combinatorial in nature. I
shall present here four of his main research
achievements.
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1. Counterexamples to the main
open problems on the structure of
infinite-dimensional Banach
spaces.

It has become clear in recent
decades that there is a rich structure
theory for Banach spaces of a high
finite dimension, as exemplified by
the theorem of A. Dvoretzky on the
existence of almost Euclidean sec-
tions. On the other hand, progress
on the structure theory of infinite-
dimensional Banach spaces was
rather slow till recently, and many
natural problems (most of them
going back to Banach and his school
in the 1930s) remained open.

Let me recall some background material. A se-
quence of vectors {x;};, is said to be a (Schauder)
basis of a Banach space X if every x € X has a
unique representation of the form x = > a;x;
with a; scalars. The basis is called unconditional
if for every choice of signs 6 = {6;};2; the series
>, 0ia;x; converges whenever > 2, a;x; does (or
equivalently, the operator

T ( > a,-xi) = > Oiaixi
i-1 i=1

is bounded). In the common separable Banach
spaces it is quite easy to find bases, and it is also
easy to prove that every infinite-dimensional Ba-
nach space has an infinite-dimensional subspace
with a basis. A famous result of P. Enflo is that not
every separable Banach space has a basis (and in
fact does not even have the so-called approxima-
tion property which is implied by the existence of
a basis). As for unconditional bases, it is not hard
to prove that several common spaces (like L1(0, 1)
or C(0, 1)) fail to have unconditional bases. It was
an open problem whether every infinite-dimen-
sional Banach space has an infinite-dimensional
subspace with an unconditional basis. For a long
time it was hoped that every infinite-dimensional
Banach space might even have the stronger prop-
erty of containing a subspace isomorphic to cg or
to ¥p for some 1 <p < oo (in some sense this
could have been viewed as an infinite-dimensional
version of Dvoretzky’s theorem). This hope was put
to rest by B. S. Tsirelson, who constructed a re-
flexive space not containing a subspace isomorphic
to ¢ forany 1 < p < . His construction had the
remarkable feature that the space (or the norm) was
not defined explicitly by some formula (as were all
examples of Banach spaces till then), but rather by
an implicit equation. (All the examples mentioned
below are also constructed by a procedure of this
type.) All this was known by the mid-1970s.

The recent development was started by a paper
of T. Schlumprecht, who modified Tsirelson’s ex-
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ample and produced a space that is “arbitrarily dis-
tortable” (I do not define this notion, since it will
not be needed in the sequel). Using Schlumprecht’s
result, Gowers and B. Maurey [7] constructed a
separable Banach space Y that does not have any
infinite-dimensional subspace with an uncondi-
tional basis. In fact, this space Y turned out to have
a stronger property: If Z is any subspace of Y, then
any bounded linear projection P on Z is trivial (i.e.,
either dimPZ < o or dimZ/PZ < ). If a space
Z has an unconditional basis {z;};2;, then there
are many nontrivial bounded projections on Z
(for any subset M of the integers

Py ( Z a,-zi) = Z a;zj
i=1 ieM

is abounded linear projection). A space Y with such
a property was called in [7] hereditarily indecom-
posable (H.1.). Before [7] it was a well-known prob-
lem whether there exists at all an infinite-dimen-
sional Banach space X that cannot be represented
as a direct sum X =X; & X» with dimX; =
dim X» = « (i.e., on which there is no nontrivial
bounded linear projection).

H.I. spaces have many additional unexpected
properties. As shown in [7], if Yis an H.I. space and
T is a bounded linear operator from Y into itself,
then T = Aly + S for some scalar A and a strictly
singular S (an operator is called strictly singular
if its restriction to any infinite-dimensional sub-
space is not an isomorphism). Thus every such T
is either a Fredholm operator with index O (if A # 0)
or is strictly singular and thus not Fredholm (if
A = 0). Consequently, an H.I. space is not isomor-
phic to any of its proper subspaces. This solves in
particular the classical “hyperplane problem”,
which asks whether any infinite-dimensional Ba-
nach space is isomorphic to its hyperplanes (it is
trivial that all hyperplanes are mutually isomorphic,
and it is easy to see that the common infinite-di-
mensional spaces are isomorphic to their hyper-
planes). The hyperplane problem was actually first
solved by Gowers [1] before it became clear that
the example in [7] does the same. The example in
[1] does have an unconditional basis and other in-
teresting properties.

It is a relatively easy result due to R. C. James
that a space with an unconditional basis is either
reflexive or it contains a subspace isomorphic to
co or £7. A considerable amount of work was done
on the question of whether every infinite-dimen-
sional Banach space has a subspace that is either
reflexive or cg or ¥;. Several promising positive re-
sults were found on this question. However, Gow-
ers [2] showed that in general the answer is nega-
tive and thus gave a stronger version of the result
in [7] on unconditional bases.

Another well-known open problem in Banach
space theory was the following: Assume that X and
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Y are Banach spaces, and assume that each of
them is isomorphic to a complemented subspace
(i.e., a subspace on which there is a bounded lin-
ear projection) of the other. Must X be isomorphic
to Y? With mild additional assumptions it was
known that the answer is positive (and this has
many applications). Gowers [3] showed, however,
that in general the answer is negative. He pro-
duced a Banach space X so that X is isomorphic
to X& X @ X butnotto X & X.

In [8] Gowers and Maurey develop a general
method for constructing Banach spaces for which
a certain given class of linear maps (say, a shift in
a sequence space) are bounded but so that any
bounded linear operator on the space essentially
belongs to the algebra generated by those given op-
erators. This method has far-reaching implications
and will certainly be of much use in the future. It
is shown in [8] how to derive the results of [1] and
[3] from this general method.

2. The dichotomy theorem.

In [4] Gowers proved a general dichotomy theorem
for Banach spaces which, in particular, says the fol-
lowing: Every infinite-dimensional Banach space
has a subspace that is either an H.I. space (i.e., a
space with very few operators) or a space with an
unconditional basis (i.e., a space with a very rich
structure). The proof is combinatorial, using infi-
nite Ramsey theory. The theory of finite-dimen-
sional Banach spaces mainly uses arguments based
on measure (volume) and probability. These tools
are not naturally available in the infinite-dimen-
sional setting. Ramsey type arguments turn out to
be an important tool in the infinite-dimensional set-
ting, where they can sometimes replace arguments
using measure.

The dichotomy result makes it clear that H.I.
spaces are of importance in the structure theory
of general Banach spaces (and not just pathologi-
cal counterexamples). The dichotomy result led im-
mediately to the solution (this time in the positive
direction) of the classical “homogeneous space”
problem. A Banach space X is called homogeneous
if it is isomorphic to all its infinite-dimensional sub-
spaces. A short time before the dichotomy result
was proved, R. Komorowski and N. Tomczak-
Jaegermann proved the following result: A Banach
space X of “finite cotype” that does not contain a
subspace isomorphic to £> must have a subspace
without an unconditional basis. By combining this
result with the dichotomy theorem, one deduces
that the only homogeneous Banach space is £». In-
deed, if X is homogeneous it must have “finite co-
type” by known arguments related to the approx-
imation property. Hence, if it is not isomorphic to
¥> (and thus does not contain £»), it must contain
(and thus be) an H.I. space. But H.I. spaces are not
isomorphic to any proper subspace of themselves
and thus are certainly not homogeneous.

VOLUME 46, NUMBER 1



3.Szemerédi’s theorem.

The theorem states the following: If § > 0 and an
integer k are given, then there is an N(k, §) so that
every subset of {1, 2, - - - , n} containing more than
on elements must contain an arithmetic progres-
sion of length k whenever n > N(k, 6). The theo-
rem was proved for k = 3 by K. Roth using tools
from analytic number theory. For k > 3 the theo-
rem was proved first by E. Szemerédi using an ex-
tremely intricate and ingenious combinatorial ar-
gument. Some years later another proof was found
by H. Fiirstenberg using the structure theory of er-
godic measure preserving transformations.

The proof of Roth gave a reasonable estimate
for N(3, 6). The proof of Szemerédi gave an enor-
mous bound for N(k, ). One reason for this is that
Szemerédi used in his proof the (much weaker) Van
der Waerden theorem. This theorem (in its quali-
tative form) states that in any partition of the in-
tegers into two sets one of those sets must con-
tain arbitrarily long arithmetic progressions. The
original proof of this result gave (in its quantita-
tive form) huge upper bounds—what the logicians
call an Ackerman function. A more recent proof of
Van der Waerden'’s theorem, due to S. Shelah, gave
a much improved upper bound which was, how-
ever, still enormous. Fiirstenberg’s proof of Sze-
merédi’s theorem gave no estimate on N(k, §).

By using the basic approach of Roth, Gowers
gave in [6] a proof of Szemerédi’s theorem for
every k. His main tool is a deep theorem of G. A.
Frieman on the structure of sets of integers A so
that the cardinality |A+ A| of the sum set A+ A
is at most C|A| for some constant C. The proof
of Gowers gives an estimate for N(k,d) of the
form i,

Zzlog\6\22

for some constant C. This gives in particular the
first “reasonable” estimate for the constant in Van
der Waerden’s theorem.

The proof of Fiirstenberg led to the creation of
an entire theory and to many generalizations of
Szemerédi’s theorem. It is expected that Gowers’s
proof will have a similar impact but in a somewhat
different direction.

4. Szemerédi’s uniformity lemma.

One of the tools used by Szemerédi in his proof
of the result mentioned above is a result on par-
titioning general graphs into “uniform subsets”,
and it is called Szemerédi’s uniformity lemma.
This lemma found many other important applica-
tions in graph theory. The statement of the lemma
involves three (small) parameters &, §, n and an es-
timate K(¢, 8, n) for the number of sets in the par-
tition. The upper bound found by Szemerédi in the
case £ = =n is a tower of 2’s of height propor-
tional to €6,

In most cases in combinatorics such large esti-
mates are just a consequence of the method of
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proof but do not describe the actual situation.
This is the case, e.g., in Van der Waerden’s theo-
rem mentioned above. Very surprisingly, Gowers
obtained in [5] a lower bound for K(g, ¢, &) which
is also of the form of a tower of 2’s (but of a
smaller height, proportional to log ||). The exis-
tence of such large lower bounds is of great sig-
nificance in combinatorics and in the theory of
complexity of computations.
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The mathematical achievements of Maxim Kont-
sevich have received worldwide recognition. He
has influenced a considerable body of research in
mathematical physics, topology, and algebraic
geometry. What follows is a brief report on some
of his work.

Kontsevich’s most famous paper is probably
“Intersection theory on the moduli spaces of curves
and the matrix Airy function” (Comm. Math. Phys.,
147 (1992), 1-23). It contains a complete proof of
Witten’s conjecture on the generating function of
a family of characteristic numbers defined on the
moduli spaces of curves with marked points. Such
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a generating function appeared in
the context of topological quantum
field theory, and Witten’s identities
reflected a highly speculative con-
jecture that different approaches to
the quantization lead to identical
results.

To state a part of Kontsevich’s
results, we need some notation. Let
Mgy, n be the moduli space of stable
n-pointed curves of genus g. The in-
tersection theory of these spaces is
understood in the sense of orb-
ifolds, or stacks. The algebro-geo-
metric study of the Chow ring of
M0 was initiated by D. Mumford.

Put
Wi == EF(c1(weym)) € H*(Mgn, Q)

where &; : Mg,n — Cj are the structure sections of
the universal curve.

Following the notation of Witten, the integrals
of top degree monomials in ¥y, are denoted

a a
(Tay - Ta,) = Jﬁ G )
Mgn

Kontsevich’s Main Lemma gives an infinite family
of identities that allows one to calculate these num-
bers algorithmically and to sum an appropriate gen-
erating function (I omit this part, but the result is
extremely beautiful). The identities have the fol-

lowing structure. Fix (g,n),put d= 3g — 3+n,
and choose nindependent variables I1,...,I,;. Then
(2d; — 1)
> (Ta..-Tay) ]_[ g
d=d,+---+dn i=1 l
Z 2—|Va| 1_[ 2
TGy Autt op I'e)+1"(e)’

Here Gg,n is the set of the isomorphism classes of
triples I' = (1, ¢, f) where:

(i) Tis a connected graph with all vertices v € V¢
of valency 3 and with no tails;

(ii) ¢ is a family of cyclic orders on all F+(v)
where F(v) is the set of flags adjoining v;

(iii) f is a bijection between {1,...,n} and the
set of all cycles of T. A cycleis a cyclically ordered
sequence of edges (without repetitions)
(e1,e2,...,ex) such that for every i, e; and ej+1
have a common vertex v; and the flag (e;, v;) fol-
lows the flag (e;j;1, vi) as specified by c;

(iv) for any edge e € E, {l'(e),I"(e)} = {Ig, I},
where {a,b} C {1,...,n} are the f-labels of the
two cycles to which e belongs.

If Tis embedded into a closed Riemann surface
X that is oriented compatibly with c, the cycles of
T become the boundaries of the oriented con-
nected components of X \ |T| (2-cells). Then f la-
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bels these cells, and {a,b} become the labels of
the cells adjoining e.

To prove this, Kontsevich analyzes the re-
markable cell complex representation of the mod-
uli space and reinterprets complex analytic inte-
grals via combinatorial data. A paradoxical property
of his identity is the cancellation of poles in the
right-hand side, which is not obvious even in the
simplest cases.

The ideas contained in this paper were devel-
oped in many works of physicists; the matrix Airy
function Kontsevich introduced in order to sum the
generating function is an important ingredient of
what are now called Kontsevich’s models.

On the other hand, the experience he acquired
in dealing with the geometry of moduli spaces al-
lowed him to introduce several decisive ideas in
the very active area of quantum cohomology and
the Mirror Conjecture.

The Mirror Conjecture is by now a series of
stunning, interrelated insights in the geometry of
complex manifolds with vanishing canonical class,
which are motivated by a conjectural duality in
quantum string theory. Only some of these in-
sights are formulated as precise mathematical con-
jectures. The first of them was what we call the Mir-
ror Identity: an equality of two formal series, one
of which is a generating function for the number
of rational curves of various degrees on a three-
dimensional quintic, and another is produced from
periods of the mirror dual variety.

Kontsevich’s paper “Enumeration of rational
curves via torus actions” (The Moduli Space of
Curves, R. Dijkgraaf, C. Faber, and G. Van der Geer,
eds., Progress in Mathematics, vol. 129, Birkhauser,
Boston, 1995, pp. 120-139) consists of two parts.
The first part contains the definition and study of
what are now called Kontsevich stable maps. These
are systems (C;X1,...,Xn;f) where C is a projec-
tive curve with only cusps as singularities, x; are
pairwise distinct smooth points on it, and
f: C -V is a map without infinitesimal auto-
morphisms to a smooth projective manifold V.
Such maps with a fixed image B = f«(C) € H2(V)
form a Deligne-Mumford stack Mg,n(v, B). Kont-
sevich’s insight was that such a stack carried a
Chow class that he called a virtual fundamental
class. Using the image of this class as a corre-
spondence between V" and Mg‘n, he defined the
very strong motivic version of Gromov-Witten in-
variants. Some of these invariants are essentially
numbers, among which the numbers of rational
curves of various degrees on a quintic threefold are
contained. The conjecture that an appropriate gen-
erating function for them expresses a variation of
Hodge structure for the dual quintic was the first
case of the Mirror Conjecture.

The second part of Kontsevich’s paper gives
explicit formulas for Gromov-Witten numbers for
complete intersections in (products of) projective
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spaces, in particular for quintics. The structure of
the formulas is similar to the one above (summa-
tion over trees). However, their origin is very dif-
ferent.

One can get recursive formulas for Gromov-
Witten numbers of, say, a projective space by using
degenerations of stable maps of rational curves to
it. However, on for example a quintic, rational
curves tend to be rigid, so that there is nothing to
degenerate. Kontsevich’s idea is to degenerate the
quintic itself, replacing it by a union of five hy-
perplanes. The problem of how to calculate the
weights of individual stable maps to such a sim-
plex is solved by the creative application of Bott’s
residue formula to the stack of stable maps, cor-
responding to the standard torus action on the am-
bient projective space. It so happens that only
very degenerate curves mapping onto the 1-skele-
ton of the simplex contribute. Their combinator-
ial types are marked trees.

Kontsevich thus exhibited a precise formula for
the left-hand side of the conjectural Mirror Iden-
tity (counting curves). It is worth stressing that he
has supplied the first ever algebro-geometric def-
inition of this function: all previous work on the
Mirror Conjecture dealt with a vague “physical” no-
tion of it. Kontsevich stopped short of proving
this case of the Mirror Conjecture, which he re-
duced to an explicit identity. A. Givental completed
the proof, introducing new ideas: in particular,
the technique of equivariant cohomology.

In the paper “Vassiliev’s knot invariants” (Adv.
in Soviet Math. 16 (1993), 137-150), Kontsevich in-
vented a generalization of Gauss’s integral for-
mula for linking numbers, thereby supplying si-
multaneously all of Vassiliev’s invariants of knots.
A parametrized knot is a map K : S! — R3. The
space R3 will be represented as C, x R;. Put

ZK)=1+ > @mi)y™

m=1

Here P runs over the set of “good pairings” (z; is
paired with z;); we omit the definition of “good”
and of the sign; Dpis the so-called chord diagram
naturally associated with K and P, so that the
whole series is a formal linear combination of
chord diagrams. Now denote by oo the trivial knot
embedded as this figure (without self-intersec-
tion), and put

~ Z(K)

Z(K) = Z(o0)c/2”

where c is the number of critical points of K (in-
vertibility of the denominator can be easily
checked). This is the Kontsevich invariant of K. It
does not change under arbitrary deformations of
K, and it contains all invariants of finite order.
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In a recent preprint, “Formal quantization of
Poisson manifolds”, Kontsevich solved a long-
standing problem showing that any Poisson man-
ifold admits a formal quantization. In the flat case
he produced an explicit quantization introducing
a beautiful new class of integrals. This work has
great potential.

The Work of
Curtis T. McMullen

John Milnor

Curt McMullen has made important contribu-
tions to the study of Kleinian groups, hyperbolic
3-manifolds, and holomorphic dynamics. Indeed,
following the lead of Dennis Sulli-
van, he clearly regards these three
areas as different facets of one uni-
fied branch of mathematics. Fol-
lowing are descriptions of a few se-
lected topics. I hope that these will
illustrate the variety and depth of
his work. However, by all means the
reader should look at the original
papers, since he is a master expos-
itor. See especially his two books
and his Berlin lecture [Mc10].
Solving the Quintic
His first work was on Smale’s the-
ory of purely iterative algorithms.
By definition, these are numerical al-

gorithms which can be carried out Curtis T. McMullen

by iterating a single rational func-

tion, without allowing any “if - .-, then - --
branching. In [Mc1] he showed that the roots of a
polynomial of degree n can be computed by a gen-
erally convergent, purely iterative algorithm if and
only if n < 3. With Peter Doyle [DMc| he showed
that these roots can be computed by a tower of fi-
nitely many such algorithms if and only if n < 5.

A Fat Julia Set

The Julia set J of a rational map f from the Rie-
mann sphere C=Ccu {0} to itself can be de-
scribed roughly as the compact set consisting of
all points z € C such that the iterates of f, re-
stricted to any neighborhood of z, behave chaot-
ically. It is not known whether such a Julia set can
have positive area without being the entire Riemann
sphere. However, McMullen [Mc2] produced very
simple examples for the more general question, in
which we replace the rational map by a transcen-
dental function, such as the map z — sin(z) of

»
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Figure 1. (A different and more
complicated example was given
in [EL].)
The Kra Conjecture
To any Riemann surface X one
can associate the Banach space
Q(X) consisting of all holo-
morphic quadratic differentials
® = p(z)dz® for which the
norm ||®|| =[ |¢| dz dz is finite.
Any covering map f : X — Yin-
duces a push-forward operation
fx :Q(X) — Q(Y), where the
image differential at a point y
Figure 1. The Julia set for is obtained by summing over
z ~ sin(z), shown in black, the points of f~!(y). This op-
has positive areabutno eration can never increase
interior points. norms, ||fx(®)| < [|®]. In the
N special case of the universal cov-
ering f:Y — Y of a hyperbolic surface of finite
area, Irwin Kra conjectured in 1972 that there is
always some definite amount of cancellation be-
tween the different preimages of a point of Y, so
that ||f«]l is strictly less than 1. This was proved
by McMullen [Mc3, Mc5]. In fact, McMullen con-
sidered a completely arbitrary covering map
f: X —Y, showing that ||fx|l <1 if and only if
this covering is nonamenable.
Cusps in the Boundary of Teichmiiller Space
Next, a problem in Kleinian groups. In 1970 Lip-
man Bers compactified the Teichmiiller space of

! | | |
Figure 2 (courtesy of David Wright). Dense cusps in the
boundary of Teichmiiller space for a punctured torus, using the
Maskit embedding. Teichmiiller space is the region underneath
this boundary curve.

Figure 3. A quadratic map f, its iterate f°3, and its
renormalization R3(f). The right-hand box is obtained from the
small box in the middle by magnifying and rotating 180°.
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complex structures on a hyperbolic Riemann sur-
face of finite area by adding an ideal boundary con-
sisting of algebraic limits of associated Kleinian
groups. He conjectured that the “cusps”, corre-
sponding to ideal limits in which some simple
closed curve has been pinched to a point, are every-
where dense in this boundary. (Compare Figure 2.)
This was proved by McMullen [Mc4] in 1991, using
a careful estimate for the change in the associated
group representation 1r1(S) — PSL>(C) as some
simple closed curve in the surface S shrinks to a
point.

Thurston Geometrization
The still unproved Thurston Geometrization Con-
jecture asserts that every compact 3-manifold can
be cut up along spheres and tori into pieces, each
of which admits a simple geometric structure.
Here eight possible geometries must be allowed.
For six of these eight geometries, the problem is
now well understood, but difficulties remain in the
hyperbolic case, while the spherical case, includ-
ing the classical Poincaré conjecture, is still in-
tractable. For references, compare [Mi2].
Thurston outlined proofs that a 3-manifold ad-
mits a hyperbolic structure in two important spe-
cial cases. First suppose that M is a Haken mani-
fold, that is, suppose that Mis S2-irreducible and
can be built up inductively from 3-balls by gluing
together submanifolds of the boundary, taking
care that no essential simple closed curve in this
submanifold bounds a disk in the manifold.
Thurston showed that M can be given a hyper-
bolic structure if and only if every Z & Z in its
fundamental group comes from a boundary torus.
McMullen [Mc6] used his work on the Kra conjec-
ture to give a new and explicitly worked out proof
of this theorem. (The details are quite compli-
cated.) The second case handled by Thurston con-
cerned 3-manifolds which fiber over the circle.
Again, McMullen gave a new proof, which will be
discussed below.

Renormalization

Let f be a smooth even map from the closed in-
terval I =[-1,1] into itself with a nondegenerate
critical point at the origin and with no other crit-
ical points. We will say that f is renormalizable if
there is an integer n > 2 so that the n-fold iterate
g = f°" maps the subinterval {x; |x| < |g(0)|} into
itself with only one nondegenerate critical point.
If we rescale by setting f(x) = g(xx)/x where
o = g(0), then f will be a new map from the interval
I into itself satisfying the original hypothesis. This
f is called the renormalization Ry(f). In 1978
Mitchell Feigenbaum, and independently Pierre
Coullet and Charles Tresser, considered the spe-
cial case n = 2 and studied maps f which are infi-
nitely renormalizable, so that we can form a se-
quence of iterated renormalizations
f, Rof, R;Zf, ..., each mapping I to itself with
one critical point. They observed empirically that
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this sequence of maps always seems to converge
to a fixed smooth limit map. Their ideas, motivated
by renormalization ideas from statistical mechanics
and by attempts to understand the onset of tur-
bulence in fluid mechanics, now occupy a central
role in one-dimensional dynamics, since the infi-
nitely renormalizable maps are the most difficult
ones to understand.

This construction was extended to the complex
case by Douady and Hubbard, using the idea of a
quadratic-like map, that is, a proper holomorphic
map f: U — V of degree two, where U and V are
simply connected open sets in C and U is a com-
pact subset of V. This has led to important work
by mathematicians such as Dennis Sullivan, Curt
McMullen, and Mikhail Lyubich. Most subsequent
progress in understanding the real case has been
based on complex methods. (One exception is
Martens [Ma].) McMullen’s book [Mc7] provided
the first careful presentation of the foundations
of renormalization. As one example, he was the first
to notice the possibility of an aberrant form of
“crossed renormalization” in the complex case
which does not fit into the usual pattern. He used
his work on renormalization to obtain partial re-
sults on the generic hyperbolicity conjecture for
real quadratic maps, that is, the conjecture that
every such map can be approximated by one with
an attracting periodic orbit. For example, he showed
that every component of the interior of the Man-
delbrot set which meets the real axis is hyperbolic.
The full conjecture was later proved by Lyubich [L1]
and by Graczyk and Swiatek [GS].

McMullen’s second book [Mc8] developed renor-
malization theory further and tied it up with
Mostow rigidity and also with Thurston geometriza-
tion. (See also [Mc10].) He introduced the concept
of a “deep point” in a fractal subset X c C. By de-
finition, p is deep if there are positive constants
€ and c so that the distance from an arbitrary
point g to X is at most c|p — g|!*€. Taking p = 0
for convenience, we can understand this concept
by zooming in on the origin so as to magnify the
set X by some large constant A. Replacing X by
the magnified copy AX, we can replace the constant
c by c/A¢€, which tends to zero as A — . In other
words, these magnified images will fill out the
complex plane more and more densely, with gaps
which become smaller and smaller as A becomes
large. (Compare [Mil].)

Now consider a hyperbolic 3-manifold which
may have infinite volume. The convex core of such
amanifold M can be described as the smallest ge-
odesically convex subset which is a strong defor-
mation retract of M. Assuming both upper and
lower bounds for the injectivity radius at points
of the convex core, McMullen’s inflexibility theo-
rem asserts that two such manifolds M and M’
which are “pseudo-isometric” must actually be re-
lated by a diffeomorphism which becomes expo-
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nentially close to an
isometry as we pene-
trate deeper into the
convex core. Closely
related is the state-
ment that actions of
™ (M) and 11 (M) on
the 2-sphere at infinity
for hyperbolic 3-space
are quasiconformally
conjugate and that
this quasiconformal
conjugacy is actually
conformal at every
deep point of the limit
set for this action.

As an application,
McMullen gave a new
proof of the second

Figure 4. The critical point (at the center
of symmetry) is a deep point of the Julia
set for the Feigenbaum infinitely
renormalizable map z — 1 — az?, where
a=1.401155189 - - -. This Julia set has

Thurston geometriza- "0 Interior points.

tion theorem. To any

surface diffeomor-
phism 9 :S — S we
can associate the map-
ping torus T, thatis,
the quotient of S xR
under the Z action
which is generated by |
(x,t) ~ (Yx), t +1). If
S has genus two or
more and 1 is
pseudo-Anosov, then
Thurston showed that
Ty, is a hyperbolic 3-
manifold. McMullen
proved this by using
his inflexibility result

to construct a hyper-
bolic structure on
S X R which is invari-
ant under the given 7
action.

Next he applied
these ideas to renor-
malization. One basic result is a rigidity theorem
for bi-infinite “towers” of renormalizations. We
can think of such a tower as a bi-infinite sequence
(---,9-1,90,q1,q2, - - -) of quadratic-like maps
q;j : Uj — Vj,where each gj1 is arenormalization
Rn,;(g;). He showed that if the renormalization pe-
riods n; are bounded and if the annuli V; \ U;
have modulus bounded away from zero, then the
entire tower is uniquely determined up to a suit-
able isomorphism relation by its quasiconformal
conjugacy class.

Consider an infinitely renormalizable real qua-
dratic map f with periodic combinatorics. Using the
complex theory, McMullen showed that the suc-
cessive renormalizations converge exponentially
fast to a map which is periodic under renormal-
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Figure 5. Filled Julia set associated
with the golden mean Siegel disk, with
rotation number p =1/
(1+1/A+1/(Q+---)).TheSiegel disk is
the large region to the lower left.
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ization. Closely related is the statement that the
critical point is a deep point for the Julia set of f.
(Figure 4.)

Now consider a quadratic map f(z)=2z<+c
which has a Siegel disk of rotation number p. That
is, choose the constant c¢ so that the derivative of
f at one of its two fixed points is equal to e2™P,
where p € R \ Q satisfies a suitable Diophantine
condition. McMullen used similar ideas in [Mc9] to
show that this Siegel disk is “self-similar” about the
critical point O (the central point in Figure 5) if the
continued fraction expansion of p is periodic. In
fact, his argument can be used to show that the
entire Julia set J of f is asymptotically self-similar
in the following sense: There is a scale factor A with
[A| > 1 so that the magnified images A"J con-
verge to a well-defined limit set j= 2\7 cC as
n — oo, using the Hausdorff topology for compact
subsets of the Riemann sphere. (In this particular
example, A =1.8166 - - - is real.) The correspond-
ing limit for the boundary of the Siegel disk is a
quasicircle contained in J, while the correspond-
ing limit for the filled Julia set K(f) (the union of
bounded orbits for f) is the entire sphere C.

There has been very significant subsequent
work in renormalization, based in part on Mc-
Mullen’s ideas. Compare the discussion in [Me].
Note in particular [L2], which implies that the
boundary of the Mandelbrot set is asymptotically
self-similar about the Feigenbaum point, and [L3],
which proves existence of a full horseshoe struc-
ture for the real renormalization operator and
uses it, together with work of Martens and Now-
icki, to prove that every real quadratic map out-
side a set of measure zero has either a periodic at-
tractor or an absolutely continuous asymptotic
measure.
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About the Cover

Curt McMullen has shown that a quadratic Siegel disk
is asymptotically self-similar about its critical point
whenever the continued fraction expansion for its ro-
tation number is periodic. (Compare the discussion on
this page.) The cover figure (a color version of Figure 5)
illustrates this result by showing part of the filled Julia
set (the union of bounded orbits) for the quadratic poly-
nomial map f(z) = z2 - (0.3905 - - - +i - 0.5867 - - - ), which
has a Siegel disk with rotation number equal to the golden
mean p = (/5 - 1)/2. The critical point lies at the center
of this picture, while the Siegel disk is the large region
to the lower left with emphasized boundary. Under f,
this disk maps homeomorphically onto itself with ro-
tation number p, and the symmetric region to the upper
right folds onto it. If we expand this figure repeatedly by
afixed scale factor of 1.8166 - - -, keeping the center point
fixed, then the expanded images will converge to a well
defined limiting shape.

—John Milnor
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