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bution of those forcings to the warming of the
early 20th century. However, these results do
suggest that attempts to extract the response
to solar forcing by correlating estimates of
solar forcing with the observed temperature
record can be misleading. Although some
estimates of solar forcing do correlate with
the observed record, they also correlate well
with our experiment 3.

If the simulated variability and model re-
sponse to radiative forcing are realistic, our
results demonstrate that the combination of
GHG forcing, sulfate aerosols, and internal
variability could have produced the early
20th century warming, although to do so
would take an unusually large realization of
internal variability. A more likely scenario
for interpretation of the observed warming of
the early 20th century might be a smaller (and
therefore more likely) realization of internal
variability coupled with additional external
radiative forcings. Additional experiments with
solar and volcanic forcing, as well as with
improved estimates of the direct and indirect
effects of sulfate aerosols, will help to further
constrain the causes of the early 20th century
warming. Our results demonstrate the funda-
mental need to perform ensembles of climate
simulations in order to better delineate the un-
certainties of climate change simulations asso-
ciated with internal variability of the coupled
ocean-atmosphere system.
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Rapid Extinction of the Moas
(Aves: Dinornithiformes):

Model, Test, and Implications
R. N. Holdaway1* and C. Jacomb2

A Leslie matrix population model supported by carbon-14 dating of early
occupation layers lacking moa remains suggests that human hunting and hab-
itat destruction drove the 11 species of moa to extinction less than 100 years
after Polynesian settlement of New Zealand. The rapid extinction contrasts with
models that envisage several centuries of exploitation.

All 11 species of the large (20 to 250 kg)
flightless birds known as moas (Aves: Dinor-
nithiformes) survived until the arrival of
Polynesian colonists in New Zealand (1).
Abundant remains of moas in early archaeo-
logical sites show that the birds were major
items of diet immediately after colonization
(2–5). Indeed, the presence of moa remains
was formerly used to characterize the earliest
or “Archaic” period of human occupation in
New Zealand [the “Moa-hunter” period (3,
6 )]. Polynesian hunting and habitat destruc-
tion were responsible for the extinction of all
species of moa some time before European
contact began in the late 18th century (1–4,
7 ). Sites from the later, “Classic” Maori pe-
riod lack evidence of moa exploitation. The
Classic period is characterized by earthwork
fortifications (the Maori term for which is pa)
and occupation deposits indicating reliance
on fish, shellfish, and plants for food.

Current interpretations of moa extinction
implicitly or explicitly require a period of
several hundred years of gradual population
attrition by hunting and habitat loss: this is
the orthodox model (2, 3, 5). The moa-hunt-
ing period has been estimated to have lasted
some 600 years, peaking 650 to 700 years
before the present (yr B.P.) and ending about
400 yr B.P. (2, 3). Anderson (2) estimated the
duration of moa hunting from a radiocarbon
chronology of moa hunting sites and from
moa population parameters based on extant
ratites and African bovids. It is difficult to
estimate the time of moa extinction from a
series of dates on moa bones and from moa
hunting sites, because confidence intervals
for calibrated ages are greater than those for
conventional radiocarbon ages (8), and addi-
tional dates could be younger than the pres-
ently perceived limit.

Reassessment of some major archaeolog-
ical sites has suggested that moas were be-
coming scarce by the end of the 14th century
(9, 10). The earliest settlement sites date from
the late 13th century (11), not the 10th or 11th
century as previously thought (5). A later date
for first settlement would imply that moa
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extinction was much more rapid than sug-
gested by the orthodox model. How might a
human population have eliminated complete
populations of large birds within a few de-
cades? To explore the possibility of rapid ex-
tinction by human predation, we applied a stan-
dard Leslie matrix population model (12) to
moas using parameters common to long-lived
birds and the limited data that can be inferred
from fossil evidence (such as clutch size) (13).

The objective was to explore the effects
on the total moa population of low levels of
exploitation concomitant with a small initial
human population, coupled with the habitat
loss induced by those people. For the model
to be conservative and not to underestimate
the time to moa extinction, we used an initial
population of 100 people (14 ). We also se-
lected low to medium human population
growth rates, minimal rates of habitat remov-
al in only two areas of the two main islands of
New Zealand, and the lowest cropping rates
suggested by Anderson (2). We estimated the
total population of moas (all species) at the
time of human settlement, from a regional
analysis of distribution and abundance, to be
158,000 birds, which is about twice the pop-
ulation previously suggested (2). Only con-
sumption of adult moas (.1 year old) was
considered. Consumption of moa eggs, known
to have been considerable (3), was ignored.
At all stages, therefore, we chose population
sizes and parameters that would minimize
losses to the moa population, to ensure that
the model would not underestimate the dura-
tion of the extinction process.

The simulations showed that moas, like
most long-lived birds, were very vulnerable
to any increase in adult mortality. When
subjected to even a low level of human
predation, moas required a disproportionate
(and impossible) increase in recruitment to
maintain their numbers (15). Time to ex-
tinction under all scenarios simulated was
less than 160 years (Fig. 1, A through D).
Even without habitat loss, the most conser-
vative simulation suggested that moas were
effectively extinct within 160 years of hu-
man colonization (Fig. 1A). Hence, the “no
habitat loss” curves were useful in defining an
upper bound for the duration of the exploita-
tion/extinction process. Substantial areas of
habitat were certainly lost early in the settle-
ment period (16 ), together with their moa
populations.

Habitat loss in areas II and V (Fig. 2)
reduced the time to extinction for the whole
fauna by decreasing adult moa survivorship
before the human population had increased
substantially (Fig. 1). Human population
growth rate was more important in deter-
mining the time to extinction than was the
rate of consumption of moas per individual.
Doubling the founding human population
to 200 reduced the time to extinction by

nearly a third under the same model condi-
tions (Fig. 1D). In combination with habitat
loss, this “most likely” scenario resulted in
moa extinction 50 years after colonization
(Fig. 1D). By then, the human population
would have grown to nearly 600, which is
much fewer than is presently thought nec-
essary to seriously affect moa populations
(2, 3).

The effect of the human population being

divided into separate groups in different areas
was also explored. If 50 of an original 200
people settled in area V (the richest zone of
moa distribution), they would have increased
to 148 after 50 years at 2.2% per annum
(p.a.). In that time, in concert with habitat
destruction, they could have eliminated 56,000
adult moas. The time to extinction for the moas
would have varied regionally with their abun-
dance, which in turn depended on the terrain

Fig. 1. Simulated declines in moa popula-
tions (the number of adult females) caused
by human predation, with and without
habitat loss, in areas II and V (Fig. 2). (A)
One female moa per 20 people per week;
human population 100, increasing at 1%
p.a. (B) One female per 10 people per week;
human population 100, increasing at 1%
p.a. (C) One female per 20 people per week;
human population 100, increasing at 2.2%
p.a. (D) One female per 10 people per
week; human population 100, increasing at
2.2% p.a. (solid line); one female per 10
people per week; human population 200,

increasing at 2.2% p.a. (long-dashed line). (E) Orthodox model of moa extinction versus maximum
and minimum times to extinction from the Leslie matrix model. Leslie matrix analyses were done
with RAMAS/Age (12), adapted to simulate “inverse density dependence” (increasing crop rates and
decreasing prey population). Each simulation started with 78,800 adult females of all species
(which is 3% above the population estimate). Survivorship values assumed are as follows (year
class, survivorship): 0, 0.25; 1, 0.74; 2, 0.75; 3, 0.83; 4, 0.93; 5 and over, 0.95) based on the tendency
of K-selected birds to live longer, have smaller clutches, have lower juvenile survival rates (14), and
achieve a stable population given clutch size and assumed longevity. Fecundity rates based on a
clutch size of 1 or 2 eggs (22) and an age of first breeding of 5 years, with full breeding potential
reached in year 12, were as follows (year, chicks raised): 0 to 4, 0; 5, 0.05; 6, 0.10; 7, 0.15; 8, 0.2;
9, 0.25; 10, 0.50; 11, 0.8; 12 and over, 0.95. No immigration or emigration was assumed. The
coefficient of variation (all parameters) is 2%. Predation of eggs and first-year birds was omitted.
Starting values resulted in stable to slightly increasing mean populations (minimum, 57,900;
maximum, 101,000 females after 50 years). Simulations were run in decadal blocks, and adult
survivorship was recalculated after each decade and applied to a starting population of the mean
end population (100 simulations for each mean) for the preceding decade. Adult survivorship was
reduced from the initial value for the decade by the sum of the percentage loss to cropping (based
on the annual crop required by the number of people at the start of each decade) and to habitat
loss (23).
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and the carrying capacity of the dominant veg-
etation. Times to extinction in areas with low
moa numbers would have been so short that
sequential occupation of sites in different re-
gions could have occurred within the range of
uncertainty in calibrating radiocarbon dates and
hence be difficult to detect. In comparison to
the orthodox model, both the longest and the

most likely durations simulated here resulted in
much steeper declines in the moa population
(Fig. 1E). Another important difference is the
impossibility of any prolonged initial phase of
low-level exploitation or of residual survival of
the moa as a resource, which are integral parts
of most versions of the orthodox model (2, 3, 5)
(Fig. 1E).

To test the conflicting models, it was nec-
essary to determine when moa hunting
ceased. Evidence supporting the Leslie ma-
trix model was found in a series of radio-
carbon dates establishing a chronology for
Monck’s Cave (Figs. 2 through 4). The arti-
facts found in the cave and the materials from
which they were made indicate that the site
was transitional between moa-hunter and
Classic sites (17 ). In addition, although it is
in an area where moa hunting had been in-
tensively practiced (and is close to a major
moa-hunter site), Monck’s Cave lacked evi-
dence of moa consumption (17). Hence, dating
the occupation layers could provide a local
terminal date for the moa, assuming that people
were likely to eat moa meat if it was available
within human foraging range of the site.

A series of radiocarbon determinations
(Table 1) from marine shell (Fig. 3) shows
that the site was occupied in the mid-to-late
14th or early 15th centuries inside the cave
and perhaps into the 16th century outside
(Fig. 4). The dates from Monck’s Cave
bridged the time between when people un-
equivocally hunted moas and when they
clearly did not, relying instead on other
foods, and built fortified pa (Fig. 4). The
dates therefore showed that moas were not
available to people in the area from the late
14th century onward. The evidence for hu-
man arrival in the late 13th century (11), and
the evidence presented here for the absence
of moas from the environment in a major
moa-hunting area by the late 14th century,
strongly support the rapid extinction model.
Gradual extinction models are not supported.

Data from major moa-hunting sites such
as Houhora and Tairua in the North Island,
and Wairau Bar, Shag River Mouth, and Pa-
patowai in the South Island (Fig. 2) also
support the short extinction chronology. Very
early sites, such as Wairau Bar, Houhora, and
Papatowai show that moa were hunted from
the earliest settlement phase. At the Shag
River site, 265 km south of Monck’s Cave,
radiocarbon dates suggest a brief (,50 years)
occupation in the middle of the 14th century
(9, 18). Moas represented about 50% of the
food remains in the lower layers but only
about 20% by the end of occupation there.
We conclude that moas had been severely
depleted in the area by this time.

The Leslie matrix model suggests that a
protracted period of moa exploitation was not
possible, given the life history parameters of
the birds, even with the lowest conceivable
numbers of Polynesian colonists. Minimal
cropping rates (2) initiated a sudden precipi-
tate population collapse, because the birds
had little capacity to make good constant
losses of adults. Dates for the earliest sites
and the end of moa hunting imply that the
period of moa-hunting was brief in compari-
son to the duration of Polynesian occupation

Table 1. Radiocarbon dates from occupation levels at Monck’s Cave, Christchurch, New Zealand. All
determinations were made on apatite from marine shell (Austrovenus stutchburyi) by the Waikato
University Radiocarbon Laboratory (Wk). CRA, conventional radiocarbon age in years before the present
(1950), with reference to the Old (Libby) Half-life; the calibrated age is given in calendar years (24).

Provenance CRA Calibrated age d13C
Lab no.
(Wk)

Cave interior
G13 layer 2, lens 1 980 6 40 1s, 1321–1410; 2s, 1300–1434 1.0 6 0.2 6769
G13 layer 2, lens 2 910 6 70 1s, 1351–1458; 2s, 1306–1506 1.6 6 0.2 6770
G14 layer 2, spit 1 900 6 40 1s, 1406–1450; 2s, 1342–1476 1.1 6 0.2 6771
G14 layer 2, spit 2 950 6 45 1s, 1334–1428; 2s, 1308–1451 1.2 6 0.2 6772
G14 layer 2, spit 3 960 6 40 1s, 1332–1420; 2s, 1308–1443 1.2 6 0.2 6773
L14 layer 2 900 6 45 1s, 1403–1452; 2s, 1335–1482 0.6 6 0.2 6779

Cave exterior
K39 layer 2, spit 2 780 6 45 1s, 1464–1531; 2s, 1441–1625 1.3 6 0.2 6778
K39 layer 2, spit 4 830 6 45 1s, 1440–1494; 2s, 1414–1530 0.7 6 0.2 6777
K39 layer 2, spit 6 1000 6 45 1s, 1308–1402; 2s, 1287–1428 0.9 6 0.2 6776
I45 fire scoop 750 6 40 1s, 1487–1558; 2s, 1458–1642 1.4 6 0.2 6774
I45 natural shell lens 2410 6 50 1s, 180–44 B.C.; 2s, 251–14 B.C. 0.9 6 0.2 6775

Fig. 2. Map of New Zealand archaeological
sites with radiocarbon dates that are relevant
to the duration of moa hunting and of habitat
areas used for the estimation of total moa
abundance before human colonization. Area I
(130,000 km2): tall wet forest dominated by
trees of the Podocarpaceae; area II (21,000
km2): drier forest dominated by Podocar-
paceae; area III (53,000 km2): high-altitude
(.800 m) southern beech (Nothofagus) forest;
area IV (12,500 km2): southern South Island
mixed forests and shrublands dominated by
Podocarpaceae; area V (65,000 km2): drier
eastern forest/shrubland/grassland mosaic
with abundant Podocarpaceae; area VI (6,200
km2): montane shrubland, herbfield, bare rock,
and glaciers. The total moa population was
based on current carrying capacities for emus
(Dromaius novaehollandiae) (worst, 2.5 kg
km22; medium, 9.1 kg km22; best, 16.8 kg
km22) (2). Moa species were assumed to oc-
cupy habitat independently, and biomass per
square kilometer was taken as the sum of that
for the dominant species present, using repre-
sentative species body masses of the following
species: Megalapteryx didinus (MEDI), 20 kg;
Anomalopteryx didiformis (ANDI), 40 kg; Eury-
apteryx geranoides (EUGE), 95 kg; E. curtus
(EUCU), 20 kg; Emeus crassus (EMCR), 50 kg; Pachyornis elephantopus (PAEL), 145 kg; P. australis
(PAAU), 120 kg; P. mappini (PAMA), 20 kg; Dinornis struthoides (DIST), 100 kg; D. novaezealandiae
(DINO), 150 kg; and D. giganteus (DIGI), 200 kg. The dominant species in each region were as
follows (species, total birds of all species km22, total birds). Area I: EUCU (North Island only), PAMA
(North Island only), DIST, DINO, and MEDI (South Island only); 0.425; 48,025. Area II: ANDI, DINO,
DIST, PAMA, and DIGI; 1.54; 31,724. Area III: MEDI (South Island), PAAU (South Island), DINO, DIST,
and ANDI; 0.146; 7621. Area IV: DIGI, EUGE, DIST, ANDI, DINO, EMCR, and PAEL; 0.532; 6650. Area
V: PAEL, EUGE, EMCR, DIST, and DIGI; 0.88; 57,625. Area VI: PAAU and MEDI; 0.146; 905. Habitat
destroyed in areas II and V 5 0.9% p.a., with human population increasing at 1.6% p.a.,
respectively, for the first 100 years of human settlement, with a complete loss of moas occupying
the area destroyed each year (that is, no emigration of displaced birds). The actual rate of loss in
both areas is about 3% p.a.; a 50% reduction (16) is taken to have occurred within 100 years of
colonization.
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of New Zealand. The small founding human
population achieved a very high archaeolog-
ical visibility. Because the hunters moved to
new sites shortly after the supply of moas was
exhausted, most sites remained intact. The
high visibility of massive moa bones on the
surface in sites shows that there can have
been no “pre-visibility” occupation phase nor
a period of slow, archaeologically cryptic,
population growth from a small founding hu-
man population. Previous suggestions that
proxy indicators show anthropogenic environ-
mental change well before 1000 A.D. can be
discounted (19). Any occupation of more than 5

years would be visible, both as archaeological
remains and as environmental damage (16).

Rapid extinction implies that the number of
moas preserved in a site could be directly relat-
ed to the moa population in that area. Indeed,
where the population was small enough to be
exterminated in less than 10 to 20 years (as in
most parts of the North Island), a site could
contain most of the moa population alive in that
area when people arrived.

Long-lived birds are very vulnerable to hu-
man predation of adults (20). Although habitat
destruction by fire (16) increased the effective
predation rate on moas, even minimal levels of

human hunting pressure caused an irreversible
decline in the moa population. Our relatively
simple Leslie matrix simulations agreed closely
with archaeological data on the beginning and
end of moa hunting. The consequences for
understanding the pattern and process of the
peopling of the last major habitable land mass
to be reached by humans are far-reaching.
The elimination of the moa by Polynesians
was the fastest recorded megafaunal extinc-
tion, matched only by the predictions of the
“Blitzkrieg” model for North American late
Pleistocene extinctions (21).
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The Initial Domestication of
Goats (Capra hircus) in the
Zagros Mountains 10,000

Years Ago
Melinda A. Zeder1* and Brian Hesse2

Initial goat domestication is documented in the highlands of western Iran at
10,000 calibrated calendar years ago. Metrical analyses of patterns of sexual
dimorphism in modern wild goat skeletons (Capra hircus aegagrus) allow sex-
specific age curves to be computed for archaeofaunal assemblages. A distinct
shift to selective harvesting of subadult males marks initial human management
and the transition from hunting to herding of the species. Direct accelerator
mass spectrometry radiocarbon dates on skeletal elements provide a tight
temporal context for the transition.

The fertile crescent region of the Near East
was the center of domestication for a re-
markable array of today’s primary agricul-
tural crops and livestock animals. Wheat,
barley, rye, lentils, sheep, goats, and pigs
were all originally brought under human
control in the broad arc that stretches from
the southern Levant through southeastern
Turkey and northern Syria, to the high
Zagros mountain pastures and arid lowland
plains of Iraq and Iran. For more than 50
years researchers have sought to define the
sequence, temporal placement, and social
and environmental context of domestica-
tion (1). Central to addressing this process
is the ability to identify early domesticates
in the archaeological record, and to place
them within a secure temporal context.
Here we describe recent research that uses
a study of modern wild goats (Capra hircus
aegagrus) to develop an unequivocal mark-
er of early goat domestication, which we
apply to assemblages that lie both within
and outside the natural range of wild goats
in the eastern fertile crescent region—a
region long thought to be the initial heart-
land of goat domestication (2).

Two markers have been used to identify
domestication in goats. It has been pro-
posed that changes in skeletal morphology,
particularly population-wide reduction in
body size, quickly follow human controlled
breeding (3, 4 ). Uncertainty over the pace
and causal connection between body size
reduction and human control limits the util-
ity of this marker, however, as does diffi-
culty in distinguishing between human-in-

duced changes and those resulting from
other biological or environmental factors
(5). Alternatively, changes in age and sex
profiles that resulted from controlled breed-
ing and selective harvesting of young males
have been proposed as providing a better
early marker of domestication (6 ). Difficul-
ty in distinguishing between various selec-
tive hunting strategies and those that reflect
deliberate herd management and domesti-
cation has been the main perceived limita-
tion of this demographic profiling approach
(4 ). Until now a key obstacle has been an
inability to construct the separate male and
female age profiles necessary to detect the
distinctive sex-specific harvest patterns of
managed herds.

Recent metrical analysis of a skeletal
collection of 37 modern wild goats, curated
by the Field Museum of Natural History,
from different habitats in Iran and Iraq
provides an empirical basis for assessing
the utility of these different markers of
early goat domestication (7 ). In all mea-
surements taken on nine different postcra-
nial skeletal elements, sex was the single
most significant factor influencing size
(Fig. 1). Even the unfused bones of young
males older than 1 year were absolutely
larger than the fully fused bones of older,
adult females. Environment also influenced
body size, with a clear pattern of size re-
duction from the cooler, wetter regions in
northern Iran and northwestern Iraq (Fig.
1A) to the arid, hotter, and sparser pastures
of southern Iran (Fig. 1C). While the avail-
able sample of domesticated goats (C. h.
hircus) from the region was too small to
draw firm conclusions, domestic status
does not appear to be a major factor influ-
encing size in this modern sample, espe-
cially in female goats (Fig. 1, A and B).

This modern reference class of goat
skeletons provides a baseline of compari-
son for analysis of goat bone assemblages
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