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Abstract

The paper reports results from experiments designed to determine whether subjects can learn to
play Cournot duopoly strategies and whether their out-of-equilibrium play is consistent with the
predictions of learning models. The experiments include duopolies with constant and with
decreasing marginal costs, and with theoretically stable and unstable equilibria. After a few periods,
subjects do play stable interior equilibria but they do not play stable boundary equilibria nor
unstable interior equilibria. Subjects’ out-of-equilibrium play is inconsistent with the predictions of
the learning models. © 1998 Elsevier Science B.V. All rights reserved

JEL classification: C72; C92; D43; D83

Keywords: Experiments; Learning; Duopoly

1. Introduction

The concept of the Nash equilibrium, which is central to game theory and has also
become central to much of modemn economic theory, depends critically upon each of the
players in a game actually having correct (or nearly correct) expectations about what the
other players will do. Until recently, the question of how the players will come to actually
have correct expectations had generally been addressed in terms of a process of
introspection: If each player’s payoffs, beliefs, and rationality are ‘common knowledge,’
then each will be able to deduce that only Nash equilibrium strategies will be played by
the others. Dissatisfaction with this introspection argument has inspired a number of
recent papers that, instead, address the question of Nash equilibrium expectations in
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terms of a process of learning. In one form or another these recent papers ask whether the
players in a game can learn enough about one another’s play, by playing the game
repeatedly, to form expectations that are mutually self-fulfilling. Thus each of these
papers postulates some kind of learning dynamics and then asks whether the dynamic
process will converge to Nash equilibrium beliefs and/or Nash equilibrium play.

In this paper we report on a series of experiments designed to evaluate some of those
theories of learning in simple Cournot duopolies. In the context of Cournot duopolies and
oligopolies, the question of convergence to Nash equilibrium has a long history, both
theoretical and experimental. Our experiments are designed, however, to use the simple,
familiar Cournot setting to address several questions that are fundamental in
understanding convergence and ‘learning of equilibrium play’ in any normal form game.
Indeed, the simple learning models we investigate apply not just to the Cournot model,
but to very broad classes of normal form games.

It is useful to organize the predictions, or implications, of theories of learning in games
into three kinds of questions that can be answered only by confronting the theory with
empirical evidence:

(1) Do the players (e.g. the subjects in an appropriate experiment) eventually play a
Nash equilibrium? In particular, is the Nash equilibrium a good prediction of what one
will actually observe in a Cournot duopoly? And, further, does the answer to this question
depend upon the market demand function and the firms’ cost functions?

(2) Is it possible to distinguish between two kinds of Nash equilibria — those that
subjects actually do play, and those they do not play — in terms of the equilibria’s
(theoretical) stability properties? In other words, can the stability of equilibrium be used
as a ‘refinement’ that serves as a useful predictive device?

(3) Do learning models provide any useful information about the path of play? Can
they tell us anything, for example, about how long it takes subjects to learn to play a Nash
equilibrium, or about the detailed path that their choices follow over time?

Consider, for example, the simplest Cournot model, in which demand is linear and
each firm has constant marginal costs. The firms’ reaction functions are as depicted in

Firm 1

NE
Firm 2

q

Fig. 1. Type I Duopoly.
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Fig. 1: both reaction functions are linear and are also relatively flat (with respect to their
own axes). Cournot’s original theory held that after a period of adjustment the firms
would choose output levels that are ‘in equilibrium’ (the Nash equilibrium, in modern
terminology) — namely, the pair of quantity choices that lies at the intersection of the
reaction functions. Cournot further justified his equilibrium theory with a simple discrete-
time dynamic theory (now called ‘best-reply’ dynamics) in which each firm always
‘myopically’ chooses the output quantity that, in hindsight, would have maximized its
own profit in the preceding period.

It is easy to see, as Cournot described, that no matter what pair of quantities the firms
choose to begin with, the subsequent pairs of quantities will, under his best-reply theory,
follow a path that converges to the Nash equilibrium. Milgrom and Roberts (1991) have
shown that a very broad class of ‘adaptive learning’ models of the players’ adjustments
over time (including the Cournot best-reply model) all make the same prediction: the two
firms will eventually converge to the Nash equilibrium. Many experimental studies of the
Cournot duopoly model have essentially confirmed that the Nash equilibrium is a
reasonably good prediction of the eventual behavior of subjects under conditions of
incomplete information and constant marginal cost. (Holt, 1995 reviews the experimental
research.)

But what if marginal costs are not constant? If they are increasing, the reaction
functions still look qualitatively as they do in Fig. 1 and therefore adaptive learning
models continue to predict convergence to the Nash equilibrium. If marginal costs are
decreasing, but not decreasing too rapidly (as compared with the demand function), the
reaction functions again cross as in Fig. 1, and adaptive learning models again predict
convergence to the Nash equilibrium. But when one or both firms’ marginal costs are
declining too rapidly, the reaction functions cross in the opposite way — firm 2’s function
‘cuts firm 1's from above,’ as in Fig. 2. Now, in addition to the ‘interior’ Nash
equilibrium where the two reaction functions cross, there are also two ‘boundary’ Nash
equilibria, where the reaction functions meet again on the axes. We find it useful to refer

qi

Fig. 2. Type 11 Duopoly
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to the two kinds of duopolies depicted in Figs. 1 and 2 as Type I and Type II duopolies,
respectively.

No analogue of the Milgrom and Roberts result is known for Type II duopolies — there
is no general result describing the behavior of all adaptive learning models in these
duopolies. However, several specific adaptive models, including Cournot’s best-reply
model, the model of Moreno and Walker (1991, 1994) and, if the strategy sets are
discrete, the fictitious play model, all predict that play will not converge to the interior
Nash equilibrium but will converge instead to one of the boundary Nash equilibria (or, for
the Cournot best-reply model, that play may also alternate between output levels of zero
and very high levels, without ever converging). Thus, linear Cournot duopolies constitute
a theoretical example of the kind of regularity called for in questions (1) and (2) : a class
of games in which we can predict, on the basis of the structure of a game and of its
equilibria, whether a given Nash equilibrium can be learned (the stable one) or cannot
(the unstable ones).

The experiments we report here were designed, first of all, to determine whether
behavior indeed converges to the Nash equilibrium in the Type I case (even with
decreasing costs) and whether it converges only to the boundary Nash equilibria in Type
II duopolies, as the Cournot best-reply, fictitious play, and Moreno and Walker learning
models predict (or perhaps whether it sometimes cycles, as in the Cournot best-reply
model). Each model, of course, makes different specific predictions about the path of play
and the rate at which play will converge. '

To the best of our knowledge, no experimental studies have previously been under-
taken of decreasing marginal cost duopolies, of either the Type I or the Type II
variety. For this first set of experiments on the convergence properties of duopolies
with decreasing marginal costs, we of course concentrate on the simplest relevant
environment, duopolies in which the firms’ reaction functions are linear. If the behavior
we observe in this simple environment is not consistent with the theory, we will have a
better chance of understanding why the theory failed than in a more complex
environment. Moreover, if the theory fails in such a simple environment, there is no
reason to expect that it would do better in a more complicated setting. If, however, the
theory is successful, it can then be taken to more complex environments to determine
the boundary between the environments in which it succeeds and those in which
it fails,

In keeping with this experimental paradigm, the results we present will identify both a
class of environments in which the predictions of theory are borne out, and a class of
environments in which behavior is not as predicted by theory. We find that behavior does
converge to interior equilibria that are stable, and that it does not converge to unstable
equilibria. But when marginal costs decrease so steeply that reaction curves cross as in a
Type II duopoly, where the interior equilibrium is unstable, we do not observe
convergence to any equilibrium, not even to the stable boundary equilibria. Thus the Type
I and TI dichotomy is useful for distinguishing between linear duopoly environments in
which behavior is or is not consistent with theory. This leaves one empirical question that
must be investigated with experiments involving non-linear duopolies: is the positive
result, that stable interior equilibria are played, robust to the introduction of non-linear
reaction curves?
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2. Linear Cournot duopolies

The general form of a linear Cournot duopoly (LCD) is as follows. The variables g,
and g, denote the (non-negative) quantities the firms produce and sell; Q denotes the
market quantity (i.e. Q=¢,+q,); and P is the market-clearing price. The market inverse
demand function is P=a—f30Q, where a>0 and >0. The firms’ cost functions are
Ci = ~iq; + 6iq?, where v>0.

The players’ reaction functions are ¢, = a; —byq, and ¢; = as — baq, where
a; = (a —7)/2(8+ 6) and b; = B/2(B + §;). (We only consider parameter values that
satisfy a—v;>0 and 8+6,>0, for i=1, 2; therefore each firm’s reaction function is always
downward-sloping.) There is an interior Nash equilibrium at g} = (a; — bia2)/(1 — biby)
and g5 = (a2 — baa1)/(1 — byb,).

It is easy to show that an LCD is of Type I if b,b,<1 and of Type II if b)b,>1. It is also
easy to see (and is well known) that according to the Cournot best-reply discrete-time
dynamic model the firms’ choices in a Type I duopoly converge to the unique Nash
equilibrium, and in a Type II duopoly they converge to one of the two boundary Nash
equilibria if the firms’ beginning choices lie in either the region to the upper left of the
interior Nash equilibrium in Fig. 2 or the region to the lower right, and that the choices
cycle between the points O and M if the beginning quantities lie in either the lower left or
upper right regions.

A useful way to describe the Cournot best-reply dynamic is to say that each firm
forecasts the quantity its rival will choose in the current period, and that then the firm
chooses as its own quantity the output level that will maximize its own profit if its rival’s
quantity turns out to be as forecasted. And, of course, the quantity each firm forecasts for
its rival in the Cournot best-reply model is the quantity the rival was observed to have
chosen in the preceding period.

Moreno and Walker (1994) describe an alternative dynamic model in which each firm
behaves as in the Cournot best-reply model except that the firm’s forecast of its rival’s
choice is the average (the sample mean) of all the quantities the rival has chosen in the
past. It is not hard to show (see, e.g. Moreno and Walker, 1991) that if the two firms
behave in this way, then in Type I duopolies their quantity choices will converge to the
(unique) Nash equilibrium, and in Type II duopolies the firms’ choices will converge to
one of the two boundary Nash equilibria. In other words, while the paths will differ in the
two models, both the Cournot best-reply model and the Moreno and Walker model make
the same predictions about which Nash equilibrium will be ‘learned’ by the firms in each
type of duopoly.

Other learning models of an adaptive character have the same convergence properties
as the Moreno and Walker model. We will describe one such model, the model of
fictitious play, in Section 3.

3. Experimental LCDs and discrete strategy sets

The experiments were designed around three different types of LCDs: Type I LCDs in
which each firm has constant marginal cost; Type I LCDs with decreasing marginal cost
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for each firm; and Type II LCDs with decreasing marginal cost for each firm. For
experimental implementation, each duopoly has discrete strategy sets: each firm can
choose any non-negative infeger output quantity.!

The move from continuous to discrete strategy spaces changes the models. The Moreno
and Walker model, for example, is defined for continuous strategy spaces; with discrete
strategy spaces, a firm cannot generally best-respond to a forecast consisting of the
sample mean of its observations because the sample mean will not typically be an integer.
We redefine the Moreno and Walker model’s forecasts to consist of the sample mean,
rounded to the nearest integer. The Moreno and Walker results on convergence do not
apply to this discrete model. We address this issue via the numerical simulation described
in Section 5.

On the other side of the ledger, the move to discrete strategy spaces makes the
theoretical results on fictitious play available to us. In the fictitious play model, each
firm’s forecast of its rival’s output is in the form of a probability distribution, in effect a
mixed strategy. (Indeed, the model was first introduced by Brown (1951) as a procedure
for computing mixed strategy equilibria, not as a learning model.) The firm forecasts that
its rival will choose its quantities with probabilities corresponding to the frequencies with
which the rival has been observed to choose in the past.

For Type I duopolies, a theorem of Milgrom and Roberts ensures that, if firms
behave according to the fictitious play model, then their choices will always converge
to the Nash equilibrium. There are nevertheless two considerations that lead us to
undertake numerical simulation for the fictitious play model, just as with the Moreno
and Walker model. First, for purposes of experimental design — the choice of param-
eter values to use in creating the experimental duopolies and the number of decision
periods to allow — it is important that we know how long the model that predicts
convergence will take. Second, there are no general theoretical results about the
convergence behavior of the fictitious play model in Type II duopolies. Finally, we
need numerical solutions for all the models in order to be able to test their convergence
path predictions.

4. Random matching of subjects

The central question we are investigating is whether participants in a strategic situation
might learn to play one of a game’s Nash equilibria by playing the game repeatedly.
The learning models we are considering all assume that in a repetitive situation of
this kind the players will behave purely ‘reactively,’ or myopically. The models
assume that players will not employ strategies designed to influence the future play
of the other players, such as strategies that lead to reputation building or to punishment
of recalcitrant opponents, and that a player also will not take account of the fact that

S

! The discreteness introduces a conflict between uniqueness of the interior Nash equilibrium, on one hand, and,
on the other, very small opportunity costs of choosing quantities near the Nash equilibrium levels. See the
discussion in Section 6.



J.C. Cox, M. Walker/J. of Economic Behavior & Org. 36 (1998) 141-161 147

he can, by his own actions, affect the information he (or his opponents) will have
available at future plays. ...

In designing experiments based on these ‘reactive’ theories, one must devise strategic
situations in which subjects will indeed be likely to behave reactively. On the other
hand, the games we are studying are duopolies, that is, two-player games, a domain
in which it is natural to expect a more ‘strategic’ kind of behavior. In order to make
such repeated-game behavior unlikely, our experimental design randomly matches
subjects into pairs, with a new configuration of matches generated in every period.
The matching protocols are structured in such a way that each subject is matched only
rarely against any other particular subject. A subject does not know at which periods
he has previously played against (or will in the future play against) her current opponent.
As explained in Section 6, different random matching protocols were used in the two
sets of experiments.

It might be argued that the attempt to induce reactive behavior is misdirected, that it is
unrealistic to expect players in a ‘real’ duopoly to eschew repeated-game behavior. But
we study duopolies not because we are interested only in duopolies, but because we are
also interested in games with enough players that reactive behavior is plausible, or even
likely. We concentrate here on two-player games only for theoretical and experimental
tractability, just as we study market behavior in Edgeworth-box economies in order to
understand market behavior when there are actually many participants.

5. Simulations

Since our duopolies are discrete and the subjects are randomly matched in each period,
existing results for the dynamic models we wish to analyze do not directly apply. We have
not attempted to work out general theoretical properties of all discrete duopolies with
randomly matched players. Instead, for the specific duopolies in our experimental design,
we have performed numerical simulations of the dynamic models we want to investigate.
As we expected, the discrete duopolies with random matching performed qualitatively the
same in simulations as theory tells us that duopolies will perform when player matchings
are held constant across time, assuming players play according to the Cournot best-reply,
fictitious play, or Moreno and Walker model. We provide a brief description of these
simulation results.

In both constant and decreasing marginal cost Type I duopolies, play always converges,
in both the Moreno and Walker and fictitious play models, to the set of choices consistent
with Nash equilibrium. Unless the players’ initial expectations are quite skewed, the
convergence is rapid: most players never change their choices after about the first 10
periods, and none after about the first 15 periods.

In decreasing marginal cost Type II duopolies, play always converges, in both the
Moreno and Walker and fictitious play models, to one of the two boundary Nash
equilibria, which one depending upon play at the first period. Most players never
change their choices after about the first 10 periods, but it sometimes requires up to
50 or 60 periods before every one of the 20 players has reached her Nash equilibrium
choice.
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6. Experimental design

Eight experiments were conducted, each with 20 subjects participating in a sequence of
several market periods, each subject playing the role of a firm in a Cournot duopoly. In
each experiment, the 20 subjects were divided into two groups, consisting of 10 Type A
subjects, all with the same cost function, and 10 Type B subjects, all with the same cost
function, but different from the Type A cost function. In each market period there were 10
duopoly markets, each market containing one of the Type A subjects and one of the Type
B subjects. In all but one of the experiments there were 30 market periods and the
subjects were randomly rematched into new pairings in each period. In the remaining
experiment, subjects were randomly matched in the first market period and those pairs
remained fixed during that experiment’s 37 periods. The subjects were not told, in any of
the experiments, how many market periods there would be. Each subject was informed of
his own cost function, which remained the same throughout the experiment, and of the
fact that all subjects of his type had the same cost function. Subjects were not informed of
the cost function of the other type of subject; they were told simply that the cost function
of the other type could either be the same or different from their own type’s cost function.
In all the experiments, the Type A and Type B cost functions did, in fact, differ from one
another. Information about a subject’s own cost function was presented on screen in the
form of equations and graphs of marginal costs, with an accompanying written
explanation. - , L

The demand side of the market was implemented by having the computer buy all units
supplied by the duopolists, at a price determined by a market-inverse demand function
which was common information to the subjects. This inverse demand function was
presented to the subjects via an equation and a graph and described in the accompanying
text. Individual subjects could privately use a ‘profit calculator,” built into the network
software, to try out conjectural quantity choices. When a subject enters into the calculator
a hypothetical quantity for himself and one for the other seller in the market, the
calculator reports the price that would result from those quantities according to the
demand function, and also reports what the subject’s own profit would be (but not, of
course, the rival’s profit).

The design characteristics of the eight experiments are summarized in Table 1. Note in
Table 1 that the experiments can be classified into three categories, according to the

Table 1

Experiments

Experiment Duopoly Type Marginal Cost Matching Interior Equilibria
1. SC(1) I: Stable Constant Random 3
2. SC(2) I: Stable Constant Random 1
3. SD(D) I: Stable Decreasing Random 3
4. SD(2) I: Stable Decreasing Random 1
5. UD(h) II: Unstable Decreasing Random 2
6. UD(2) I: Unstable Decreasing Random 1
7. Bdy 1I: Unstable Decreasing Random 2
8. UDF iI: Unstable Decreasing Fixed 2
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duopoly type (Type I (stable) or Type II (unstable)) and the nature of marginal costs
(constant or decreasing). This yields only three categories (SC, SD, and UD), because
Type II duopolies cannot have constant costs.

An important objective in the design of the experiments was that, as nearly as possible,
the interior equilibria be the same in each of the three duopoly markets, SC, SD, and UD,
so that any observed differences in play could not be attributed simply to differences in
the equilibria. This objective, however, runs up against an unavoidable difficulty caused
by the combination of discrete strategy spaces, quadratic payoff (profit) functions, and the
three kinds of duopoly: if the interior equilibrium is unique for each duopoly, then a
subject who deviates from equilibrium play will suffer only an extremely small reduction
in his payoff, compared to the absolute level of his payoff. The only alternative to this is a
design with multiple, adjacent interior equilibria. We therefore conducted two series of
experiments, each series including an SC, an SD, and a UD duopoly market. In Series 1
each duopoly has multiple adjacent interior equilibria: (g,, g,)=(4,9), (5,8), and (6,7) in
SC and SD, with rationalizable strategy sets {4, 5, 6} for Firm 1 and {7, 8, 9} for Firm 2;
and (g, g»)=(6, 8) and (5, 9) in UD. In Series 2 each duopoly has the unique interior
equilibrium (q,, g5)=(3, 5), but the quantities g,=4 and ¢,=6 yield only slightly smaller
payoffs (against one another, or against the equilibrivm quantities), and we therefore refer
to these as ‘flat-maximum’ choices.

Thus, the first six experiments listed in Table 1 are distinguished as Series 1 or Series 2
experiments. The experiments are labeled SC(k), SD(k), and UD(k), where k denotes the
series; S denotes a stable (Type I) duopoly, and U an unstable (Type II) duopoly; and C
indicates that marginal costs were constant, D indicates that they were decreasing.

The remaining two experiments, labeled Bdy and UDF, applied two alternative
treatments to one of the Series 1 experiments, UD(1). The experiment UDF was identical
to UD(1) except that pairs were kept fixed throughout, instead of being randomly
rematched in each market period. This experiment was designed to serve as a benchmark
for the UD experiment: while there is an existing body of experimental research using
Type I duopolies with rivals fixed across time — experiments against which one can compare
our random-matching Type I experiments — there has been no experimental research with
Type H duopolies. Experiment UDF was designed to fill this void and to serve as a basis
for comparison with the results in the random-matching experiment, UD(1).

The experiment labeled Bdy was motivated by a systematic feature of the UD(1) data:
while the subjects’ choices in experiment UD(1) appear to have been ‘repelled’ by the
unstable interior equilibria, they do not appear to have been ‘attracted’ by the stable
boundary equilibria at which one of the subjects had to choose a quantity of 0. In order to
determine whether this was simply due to subjects’ resistance to choosing the quantity
zero, the Bdy experiment introduced a ‘boundary’ treatment, which moved the extreme,
stable equilibria away from the ¢,=0 boundary of the strategy space.

The demand and cost parameters for each of the eight experiments are given in
Table 2. All prices and costs were quoted to the subjects in experimental dollars (ES$),
which were converted into U.S. dollars for the subjects’ earnings. Each subject was
informed in the instructions of the exchange rate common to all subjects of his type, but
not the rate for subjects of the other type. In SC(1) and all the Series 2 experiments,
exchange rates were set so that the U.S. dollar earnings at the interior Nash equilibria
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Table 2
Design parameters
Series 1 Series 2
Demand: P=60-2Q Demand: P=450-30Q
Marginal costs Marginal costs
Type A Type B Type A Type B
SC(1) MC,=24 MC,=18 SC(2) MC,=100 MCy,=40
SD(1) MC,=max MCp=max SD(2) MC,=max MCy=max
0, 29—q,) (0, 26—-3qy) (0, 170-5q,) (0, 130—5qy)
uD(1) MC,=max MCp=max UD(2) MC,=max MCp=max
(0, 39-3q,) (0, 42-3q,) (0, 275-22.5q,) (0, 305-22.5q;)

Parameters for experiments Bdy and UDF were the same as for UD(1).
All prices and costs are expressed in Experimental Dollars. U.S. dollar exchange rates are given in Table 3.

Table 3

Exchange rates and eamings

Exchange rates® Earnings®

Experiment Type A Type B Low Mean High
1. SC(1) 100 250 $12.18 $14.69 $18.10
2.SC(2) 396 1020 $31.25 $36.64 $42.50
3. SD(1) 100 100 $9.28 $14.41 $21.59
4. SD(2) 216 660 $17.00 $27.61 $40.75
5. UD(1) 100 100 $0.02 $9.59 $23.59
6. UD(2) 90 240 (51.10) $22.21 $58.44
7. Bdy 100 100 $13.25 $21.46 $30.50
8. UDF 100 100 $0.73 $13.16 $34.81

*Experimental dollars per U.S. dollar.
®Does not include $5 show-up fee paid to each subject.

were the same for the two subject types. In the other experiments the exchange rates were
E$100 per U.S. dollar. Table 3 gives the exchange rates in each experiment and the U.S.
dollar amounts that the subjects earned. The experiments lasted 1 % tol -;— hours, including
time for subject sign-in, instructions, and payment of eamnings.

In order to minimize the chance that subjects would become bankrupt during the
course of an experiment, two additional features were included in the design of the
experiments and in the accompanying instructions to the subjects: (a) each subject was
given an initial capital balance of E$500, and (b) no subject could lose more than E$30 in
any period (i.e. a subject’s net profit in each period was max {-30, Revenue—Cost}).
With the exception of the experiment UD(2), no subject ever came close to bankruptcy,
although losses at the maximum E$30 were not uncommon.

The procedures by which subjects were randomly matched were as follows. In the
Series 2 experiments, the matching probabilities in each period t were independent of
history prior to : every configuration of A-B matches was equally likely at every period.
The matching in the Series 1 experiments was carried out so as to ensure that any given
Type A subject would play against each Type B subject exactly once in the first 10
periods, once in the second 10 periods, and once in the third 10 periods, in a random order
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within each of the 10-period blocks, and with an additional provision that prevented any
subject from playing the same other subject in two successive periods (i.e. in periods 10
and 11 or periods 20 and 21). The random matching protocol was explained to the
subjects in non-technical language in the experiment’s instructions. Subjects were never
given any further information from which they could determine who they had been
matched with in any previous period, or who they were matched with in the current period.

7. Experimental results

In this section we describe the results from the eight experiments. We first ask whether
the subjects’ behavior converged to Nash equilibrium quantity choices, and then we ask
whether the three alternative learning models can successfully account for the period-by-
period play of the subjects. We will be especially interested in whether observed play was
significantly different in the four Type I experiments, where learning theories predict that
play will be at or near the interior equilibria, from play that was observed in the four Type
I experiments, where theory predicts that the interior equilibria will not be played.

7.1. Are Nash equilibrium quantities eventually chosen?
The question whether subjects eventually ‘learn’ to play Nash equilibrium is addressed

in Fig. 3 and Table 4. Both the figure and the table reveal a striking difference between
play in Type I and Type II duopolies. In Fig. 3, each of the line graphs corresponds to one

I 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Fig. 3. Play of interior equilibrium or flat-maximum quantities.
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Table 4

Experimental results: Convergence to equilibrium

Experiment Duopoly type Returns to scale Interior NE or flat*
1. SC(1) I: Stable Constant 70-90%
2. 8C(2) I: Stable Constant 80-85%
3. SD(1) I. Stable Decreasing 65-90%
4. SD(2) I: Stable Decreasing 60-90%
5. UD(1) II: Unstable Decreasing 0-10%
6. UD(2) II: Unstable Decreasing n/a

7. Bdy II: Unstable Decreasing 5-20%
8. UDF II: Unstable Decreasing 5-15%

# Percetage of subjects who played their part of a Nash equilibrium or flat-maximum profile in the last 10
periods.

of the experiments, and the vertical axis (the height of each of the line graphs) measures
the percentage of the 20 subjects in that experiment who played their part of an interior
Nash equilibrium or (in the Series 2 experiments) a flat-maximum quantity. The four line
graphs describing play in the four Type 1 experiments (the SC and SD experiments)
clearly rise over time, and after the first few periods are all well above the 50 percent
level. The three graphs describing play in the Type II experiments, on the other hand, tend
to be declining, and after the first few periods they are all far below the 50 percent level.

The rightmost column of Table 4 gives a summary of play during the last 10 periods of
each experiment. The low and high percentages that appear in this column for each
experiment are the minimum and maximum values of its line graph in Fig. 3 over the last
10 periods of the experiment. Just as in Fig. 3, it is clear in Table 4 that after subjects had
accumulated some experience in the early periods, play in the Type I experiments was
then predominantly at equilibrium or flat-maximum quantities (all these percentages are
60% or higher), but play in the Type II experiments was rarely at equilibrium or flat-
maximum quantities (all percentages are 20% or lower).?

No equilibrium play is reported in Fig. 3 or Table 4 for experiment UD(2) because the
experiment was terminated after nine periods: three of the Type B subjects had gone
bankrupt by that time, and all of the other Type B subjects had lost money. Play thus
seems to have clearly been converging in this experiment to one of the boundary
equilibria, in which the duopoly degenerates into a natural monopoly.

The results of the experiments, as reported in Fig. 3 and Table 4, strongly suggest that
the theoretical stability properties of a Nash equilibrium can serve as an effective
‘refinement,” distinguishing equilibria that subjects can be expected to play from those
that they generally will not play.

7.2. Results from the fixed-matching experiment UDF

The design of experiment UDF differed from that of UD(1) in only one respect: in
UDF the subjects were matched at the beginning of the experiment and the matches then

E Note that there were 37 periods in experiment UDF, so that the figures in Table 4 refer to periods 28-37, not
to periods 21-30 as in the other experiments.
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remained fixed, while in UD(1) the subjects were rematched in each period. As reported
in the last line of Table 4, the 5-15 percent of quantity choices in UDF that are consistent
with an interior Nash equilibrium are similar to the rate of interior equilibrium play.in the
other Type II experiments, in which subjects were rematched in each period, and this rate
of equilibrium play is far below the rate in the Type I experiments reported in the top half
of Table 4.

In spite of the surface similarity in behavior, comparison of the data from experiment
UDF with the data from experiments UD(1) and Bdy indicates that rematching of
subjects is an important design feature in duopoly experiments: there was a significant
incidence of ‘cooperative’ behavior in UDF that did not appear in the other two
experiments, nor in any of the Type I experiments. The most profitable quantity choices
for a pair of cooperating duopolists in this decreasing cost duopoly are for one firm to sell
15 units and the other to sell O units. No side payments were possible during the
experiment (or after, since no subject knew the identity of her rival subject), and therefore
the only way for the subjects to cooperate was to ‘take turns’ operating as monopolists,
with only one subject selling a positive quantity in each period, and for the active seller in
a period to choose a sales level of 15 units. Achieving this cooperation — that is, settling
on a division of the spoils (with what frequency does each subject get to be the
monopolist?) and also attaining the requisite common understanding of who will be
active in which periods — would seem to be a formidable task: the only form of
communication possible was through the subjects’ quantity choices.

A remarkable feature of subjects’ choices in the UDF experiment is evident in the
detailed, disaggregated data, which we provide in Appendix A. By the end of the
experiment, four of the 10 subject pairs were coordinating their play, alternating between
(15, 0) and (0, 15), and a fifth pair seemed to be on the verge of achieving such
coordination. It is interesting to observe how some of the subject pairs managed to
cooperate, given the limited possibility for communication. In Appendix A we describe
several patterns of successful and unsuccessful quantity signalling that can be identified
in the data.

7.3. Do learning models accurately predict the path of play?

The Cournot best-reply model, the Moreno and Walker model, and the model of
fictitious play are all models of ‘learning to play’ Nash equilibrium: they yield
predictions of how duopolists’ quantity choices will be determined by the history of play.
Thus, each model yields a prediction for each subject for each period in each experiment
(after period 1). Table 5 reports full-distribution tests of consistency of the subjects’
choices with the path predictions of the three leaming models. The table reports results
from Kolmogorov—Smirnov (K-S) and Epps—Singleton (E-S) tests for the Moreno and
Walker, Cournot best-reply, and fictitious play models.> At the one percent significance
level, data from all seven random-pairing experiments are inconsistent with the path
predictions of all of the models.

3 See Conover (1980) and Epps and Singleton (1986), respectively, for explanations of these tests.
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Table 5
Full distribution tests of the learning models )
Experiment Model K-S test E-S test
SC(1) FP 10.84 159
MW 7.89 141
BR 8.43 176
SC(2) p 12.22 271
MW 9.42 73
BR 12.34 321
SD(1) Fp 8.30 126
MW 8.06 125
BR 8.06 160
SD(2) FP 11.36 194
MW 9.16 287
BR 10.95 . 259
uD(1) FP 11.17 350
MW 14.66 474
BR 1491 518
UD(2) FP 6.32 381
MW 6.72 307
BR 6.32 31t
Bdy FP 10.63 303
MW 9.67 223

BR o 10.34 463

8. Conclusion

The clearest conclusion to be drawn from these experiments is the difference between
the predictive value of Nash equilibrium in Type I and Type II duopolies. Fig. 3Table 4
reveal this difference in sharp relief. In the four experiments with Type I duopolies (the
SC and SD experiments), in which all three learning models predict convergence to the
interior Nash equilibria, most subjects chose Nash equilibrium quantities after only a few
periods, and deviations from Nash equilibrium play were small. The presence of
decreasing costs in SD(1) and SD(2) had little effect. In contrast, in the four Type II
experiments, in which the learning models predict convergence only to the boundary
Nash equilibria, subjects rarely chose quantities that were part of an interior equilibrium,
and variability in choices across subjects was substantially higher than in the Type I
experiments. Moreover, there is no evidence of movement over time toward interior
equilibrium play in any of the four Type II experiments.

Thus, these experiments strongly suggest that the theoretical stability properties of
a Nash equilibrium can serve as an effective ‘refinement’: it appears to be reasonable
to expect players to eventually play stable equilibria but not unstable ones. While
all but one of our experiments rematched subjects with -one another in every period,
the sharp distinction between the predictive value of Nash equilibrium in Type I
and Type II duopolies might be expected to also hold in games with an unchanging
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set of players if the number of players is large enough to induce reactive, myopic
behavior, as we might expect in a market with several firms, This is clearly a_guestion
for further research.

In the experiment UDF, in which the subject pairings remained fixed throughout the
experiment’s 37 periods, an unexpected phenomenon appeared which seems to be rich
with suggestions for both theoretical and experimental investigation. One of the subjects
in almost every pair recognized that he and his rival would both fare better if they
coordinated their play, one subject in each period selling zero units and the other selling
the monopoly quantity of 15 units, and alternating which subject would be the
monopolist. The experimental design provided the subjects with no means for
communicating with one another to effect this coordination, except via their quantity
choices (each of which was revealed after each play). In nearly every pair, one of the
subjects appears to have used his quantity choices to signal his rival that they ought to
coordinate, and remarkably, several of the pairs, with no more communication than this,
were successful in alternating their play in this way. Appendix A provides data from this
experiment, as well as a discussion of the various patterns of signalling the subjects used,
and their degree of success.

Finally, the three learning models’ predictions of subjects’ period-by-period play
were not supported by the experimental data: two full-distribution tests soundly rejected
all three models as the process by which the data were generated. Thus, while the
equilibria that are stable according to each of these three dynamic models (and stable
under many other dynamics as well) are the ones that were actually played, our
experiments provide no evidence suggesting which dynamic models are reasonable
descriptions of empirical out-of-equilibrium behavior. This too is clearly an important
subject for further research.
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Appendix A
Experiment UDF

As described in Section 7, in the fixed-matching experiment UDF the most profitable
behavior for a pair of subjects was to coordinate their play, with only one subject in each
period choosing a positive quantity. Some of the subject pairs successfully accomplished
such coordination, and in several other pairs one of the subjects seems to have attempted
to choose quantities that would lead his or her rival to cooperate, but without success.
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Several patterns of successful and unsuccessful quantity signalling can be identified in the
detailed data that appear below. N

The pair of subjects #1 and #11 coordinated as follows. Following 14 periods of
moderate gains and losses, subject #11 entered a zero quantity in period 15; this yielded a
profit of 162 for subject #1 who had chosen 9 units. Subject #11 then sold 14 units in
period 16 but subject #1 again sold 9 units, which yielded losses for both subjects.
Subject #11 then continued to alternate between selling O units and 14 units, with no
reciprocal choices by subject #1 until period 20. From period 21 to the last period, 37,
subjects #1 and #11 successfully coordinated. They, and the other subjects, had not been
informed of the number of periods in the experiment.

Subjects #2 and #12 had a relatively easy time coordinating. After losing money in 8
out of the first 9 periods, subject #12 chose zero units in period 10. This yielded a profit
of 148 for subject #2, who sold 2 units. Subject #2 immediately reciprocated by choosing
zero units in period 11 and the coordination was established.

Subjects #3 and #13 coordinated as follows. Following 14 periods of moderate
gains and losses, subject #13 began in period 15 to alternate between 15 and O units.
Subject #3 did not reciprocate in periods 15-17; then entered zero units in period 18
when subject #13 also chose zero. Quantities of (9, 15) yielded losses for both subjects
in period 19. Then, beginning in period 20, subjects #3 and #13 coordinated their
choices.

Subject #15 began to alternate between 15 and O units in period 21. By period 27,
subject #5 had not reciprocated. Following quantity pairs of (15, 15) for the two subjects
in periods 27-29, subject #15 sold 1500 units in period 30. This produced no response
from subject #5 in periods 31 and 32. Then in period 33, subject #15 sold 18,928 units.
This message appeared to get through to subject #5 and coordination was established in
period 34.

The choices of subjects #4 and #14 show what appears to be a failed attempt at
coordination. Subject #4 alternated between O and 15 units in periods 12-14. This
produced no response from subject #14 who routinely sold 13 units. Subject #4 then sent
a strong message by selling 16,959 units in period 15. Both subjects then chose O units in
period 16. The quantity pair of (15, 0) might have started a coordination. But when
subject #14 switched from 0 to 15 in period 18, subject #4 repeated her quantity choice of
15 rather than switching to 0. Subject #4 then repeated the strong message of selling
16,959 units in period 19, but followed this with a choice of 15 units in period 20 rather
than the O units chosen in period 16 after the preceding strong message. Choice of 15
units by both subjects in period 20 produced losses. Subject #4 then repeated the 16,959
message in period 21. Subjects #4 and #14 never successfully coordinated, although
it appears they may have achieved coordination just as the experiment was ending.
When subject #4 was called up individually to be paid (a small amount) at the end
of the experiment, she was very angry with her paired subject (whose identity was
unknown to her).

Subjects #10 and #20 converged to the boundary Nash equilibrium of (0, 15) in period
14. Subject pairs #6 and #16, #7 and #17, #8 and #18, and #9 and #19 did not seem to find
any pure strategy equilibria. It appears that subject pair #8 and #18 may have been about
to coordinate when the experiment ended (Table 6).
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Table 6
Experiment UDF: Fixed Pairs (Action, Opponent’s Action, and Payoff for Each Subject in Each Period)

t Subject #1 Subject #2 Subject #3 Subject #4 Subject #5

Act Opp Pay Act Opp Pay Act Opp Pay Act Opp Pay Act Opp Pay

1 5 12 -20 10 2 135 15 8 -24 4 7 26 15 8 -24
2 2 15 -17 8 10 -12 10 7 3 9 8 18 8 10 -12
3 9 14 -3 10 14 -3 11 9 -1 4 4 50 2 5 23
4 1 4 14 10 10 -25 7 8 21 14 4 102 3 10 3
5 4 12 -14 4 10 2 9 15 -30 5 4 6 10 10 -25
6 12 12 -3 10 10 -25 10 7 35 13 4 104 18 11 -30
7 1 6 10 1 7 3 9 9 0 9 13 -30 7 10 -7
8 1 5 12 10 10 -2 7 9 7 0 13 0 5 15 -30
9 2 14 -13 10 15 -3 8 9 4 10 13 -30 5 0 100
10 2 -2 8 0 148 5 8 2 10 13 -30 10 10 -25
m 12 12 -3 o0 15 0 6 8 21 0 13 0 11 10 -30
2 1 s 77 15 0 26 7 7 3 0 13 0 2 10 3
13 10 s 75 -0 15 0o 8 7 3 15 13 -30 5 0 100
14 10 5 75 15 0 206 9 73 0 13 0 13 14 -30
15 9 0 162 0 15 0 9 15 —301695% 13 -30 15 14 =30
16 14 -30 15 0 206 9 O 162 0 O 0 5 14 -30
17 8 0 148 0 15 0 9 15 -30 15 0 206 15 0 216
18 9 14 -3 15 0 26 0 O 0 15 15 =30 18 15 -30
19 15 0 216 ©0 15 0 9 15 —301695 15 -30 18 15 -30
20 0 14 0 15 0 206 15 0 206 15 15 =30 17 15 =30
20015 0 216 0 15 0 0 15 01695 15 -30 19 15 -30
2 0 15 0 15 0 26 15 0 .216 15 13 =30 19 0 184
22 15 0 206 0 15 0 O 15 0 0O O 0 2 15 =30
24 0 15 0 15 0 206 15 0 216 15 0 216 18 O 198
25 15 0 206 ©0 15 0 O 15 0 15 15 =30 15 15 =30
26 0 15 0 15 0 216 15 0 206 15 15 =30 15 0 216
27 15 0 206 0 15 0 0 15 0 15 15 =30 15 15 -30
22 0 15 0 15 0 206 15 0 216 15 15 =30 15 15 -30
29 15 0 206 0 15 0 ©0 15 0 15 15 =30 15 15 -30
3 0 15 ©0 15 0 206 15 0 216 15 15 -30 15 1500 -30
3315 0 206 0 15 O o 15 0 15 15 -30 15 15 -30
32 0 15 0 15 0 216 15 0 216 15 15 =30 15 15 -30
33 15 0 206 0 15 0 0 15 0 15 15 —30 1518928 ~30
34 0 15 0 15 0 26 15 0 206 O 15 0 0 15 O
3 15 0 206 0 15 O O 15 ©0 15 15 =30 15 0 216
3 10 15 0 15 0 206 15 0 206 15 15 =30 0 15 0
37 15 0 206 0 15 0 ©0 15 0 15 0 216 15 0 216
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Table 6 (Continued)

Subject #10

Opp Pay Act

10
16

Subject #8 Subject #9
Opp Pay Act

Subject #7

Subject #6

Act

Opp Pay

Opp Pay Act

Act

Opp Pay

10
16

-7
=30

30
21

=30
-30
-30

13
13
13

16
1
5

14

10

10

2

10

69

-18

12

11

144
144
-18
-12

9

10
10

10 15
18

10

-11

0 208

15
14
13

13
13
15
11

35

i1

-30
-30
-30

10
10

9
8
10

90
69

155

10

11

10
10
10
10
10
10
10
10

-5

49

71
187

10

11

11

10
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15
15

30
198
198

12
12
12
13
14
14
15
15
14
15-
15
15
13
10

12
13
14
15
16
17
18
19
20
21

-8

100

36
77
49

78
0 214

15
=25

10
10

45

10

214
0 216

40
45

45

6

10
10
10
10
10
10
10
-6

-30
-30
=30
-30
-30
-30
-30
-30

15
15

45

15-
15
15
15
15
50

55
45

10

21

22
23

57

24
25

50
50
50
60
60
50
50
50
50
50
10
75

~5
-5
-18

10
10

11

26
27

77 9 -10

35
68

11

10
10
10
15
15
10
15

28

-25
=25
-30
-30
-30
-30

10
10
10
10
15
10
10

11

29
30
31

68

72
-

-14
-30

12

11

4

32

33

15 =30

8

11

34
35
36

175
-30

63

-30

11

10

6 15

52
-30

11
11

50

5

0 216

15

15

8

37 -
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Table 6 (Continued) o

t  Subject #11 Subject #12 Subject #13 Subject #14 - Subject #15 i

Act- Opp Pay Act Opp Pay Act Opp Pay Act Opp Pay Act Opp Pay f

1 12 5 42 2 10 -3 8 15 -30 7 4 5 8 15 -30
2 15 2 17 10 8 -15 7 10 -28 8 9 —20 10 8 -15
3 14 9 -30 14 10 -30 9 11 -30 4 4 38 5 2 65
4 4 1 62 10 10 -30 8 7 12 4 14 =30 10 3 85
5 12 4 66 10 4 65 15 9 -30 4 5 30 10 10 -30
6 12 12 -30 10 10 -30 7 10 -28 4 13 =30 1 18 -30
7 1 87 7 10 -28 9 9 -27 13 9 —-30 10 7 5
8 5 1 75 10 10 -30 9 7 9 13 0 169 15 5 27
9 14 2 119 15 10 =30 9 8 -9 13 10 -30 0 5 0
10 12 1 138 0 8 0 8 5 4 13 10 -30 10 10 -30
11 12 12 =30 15 0 17 8 6 28 13 0 169 10 11 -30
12 5 11 -25 0o 15 (] 7 7 14 13 0 169 10 2 105
13 5 10 -15 15 0 1 7 8 0 13 15 -30 0 5 0
14 5 10 =15 0 15 0 7 9 -14 13 .0 169 14 13 -30
15 0 9 0 15 0 177 15 9 -30. 1316959 —30 14 15 =30
16 14 9 -30 0 15 0 0 9 0 0 0 0 14 5 35
17 0 8 0 15 0 177 15 9 -30 0 15 0 0 15 0
18 14 9 -30 0o 15 0 0 0 0 15 15 =30 15 18 =30
19 0 15 o 15 0 177 15 9 -30 1516959 -30 15 18 -30
20 14 0 175 0 15 (] 0 15 0 15 15 =30 15 17 =30
21 0 15 0 15 6 177 15 0 177 1516959 —30 15 19 -30
2 15 0 177 0 15 ] 0 15 0 13 15 =30 0o 19 0
232 0 15 0 15 0 177 15 0 177 0 0 0 15 20 =30
24 15 0 177 0 15 0 0o 15 0o o 15 0 0 18 0
25 0 15 0 15 0 177 15 0 177 15 15 -30 15 15 =30
26 15 0 1M 0 15 0 0 15 0 15 15 =30 0 15 0
27 0 15 0 15 0 177 15 0 177 15 15 30 15 15 -30
28 15 0 177 0 15 0 0o 15 0 15 15 =30 15 15 =30
20 °0 15 0 15 0 177 15 0 177 15 15 =30 15 15 =30
30 15 0 177 0 15 0 0 i5 0 15 15 -30 1500 15 =30
31 0 15 0 15 0 177 15 0 177 15 15 30 15 15 -30
3215 0 177 0 15 0 0o 15 0 15 15 -30 15 15 -30
33 0 15 0 15 o 177 15 0 177 15 15 -3018928 15 -30
34 15 0o 177 0o 15 0 0 15 0 15 0 177 15 0 177
3 0 15 0 15 0 177 15 0 177 15 15 =30 0 15 0
36 15 0 177 0 15 0 0 15 0 15 15 -30 15 o 177
37 0 15 0 17 0 15 6 0 15 0

15 0 15 0 177
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Table 6 (Continued)

Suuject #17 dupject #18 Subject #19 Subject #20

vuupLe Ty

Act Oon Pav

Opp Pav

Opp Pay Act Opp Pay Act

Opp Pay Act

Act

~28
-30

10
16

7
14

10
16

42

=30
-30

16

11

13
13
13

~30

10

12

10

39

25

10

22

12
-12

-5

9 12 -30

5

11

=30
-28

10
10

8 10 -30
~20

45
=30

13
13
15
11

7

11

=30
-30
-30

15
14
13
14
10
15
15
15
15
15
15
15
15
15
15
15
15
15

-30
-15

—30

10
10
9

-2
22

10

11

63
45

10

15
35

=25

10

1

175
145

i1

45

~27

-30

12
12
12
13
14
14
15
15
14
15
15
15
13

7

45

12
13
14
15
16
17
18
19
20
21

147
177

45

-5

45

177

14
15
27

-30

5

63

177

-30
-30

10
10

8
10

63

177

0

27

177

39
27

45

177

-30

15
15
15
15
15
15
15

500

63

177

27

-30

-30
-30

45

177

27
=21

63

177

6 10

28

45

22

177
177

27
25

-30
-30
-30
-30

63

23

45

24
25

177

35
35

~30
-30

10
10
-30

10 9
9
10

66

11

177

15
i5
15
15
15
15
15
15
15
15

26
27

177

35

14

14

66

11

177

30
30

45
=30
=30
-30
-30

10
10

28

177

10
10
10
10
15
10
10

132

i1

29

177

35
35

10
15
15
10
15

66
-30

12
1

30
31

177

-5
-5
=27
-30

177

35
35

32
33

177

=30
-30

177

35
45

15

11

177

15

—-30

11

35

177
177

—15 15 0
35 15 0

10
5

132
66

1
4

11
11

36
37
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