
1

WINNTI
ANALYSIS

1

As part of Operation SMN, Novetta analyzed recent versions of the Winnti malware. The samples,
compiled from mid- to late 2014, exhibited minimal functional changes over the previous generations
Kaspersky reported in 2013.1 What is of note, however, is the increased scrutiny found within the Winnti
dropper component that attempts to frustrate analysis of the malware.

Based on multiple active compromises by the Axiom threat group, Novetta was able to capture and
analyze new Winnti malware samples. It should be noted that operators of Winnti that were observed
by Novetta leveraged existing Axiom-specific malware infections (Hikit) to move laterally and install
Winnti in the furtherance of their objectives. It is with high confidence that we assess the operators
of Winnti in these monitored environments were not the same actors who originally installed and
leveraged Hikit.

This report will focus on three different aspects of the Winnti malware: the start-up sequence of
Winnti from the initial infection to steady state, the basics of the Winnti malware, and the command
and control (C2) communication protocol.

FROM INSTALLATION TO EXECUTION
The installation process of Winnti by means of the dropper has changed very little since the Winnti
version 1.1 (as defined by Kaspersky) droppers of July 2012. The samples Novetta obtained from the
active Axiom infection were compiled in mid- to late 2014 and represent what Novetta is referring to
as version 3.0 of the Winnti lineage (in order to prevent muddying the versioning scheme Kaspersky
has already established).

There are four distinct components within the Winnti malware’s installation to execution cycle: a
dropper, a service, an engine, and a worker. The installation that Novetta observed of Winnti on
a victim’s machine requires multiple steps and depends on the dropper, service, and the loader
component in order to accomplish the steps. After a successful infection, the activation of Winnti
on a victim’s machine requires multiple steps as well as coordination between the service, engine,
and worker components. The complexity of the installation and activation processes is significant
and more involved than typical malware installation and activation procedures. This additional
complexity ultimately does not seem to serve a significant purpose other than to perhaps frustrate
analysis by defenders.

1 Kaspersky. “Winnti: More than just a game”. http://kasperskycontenthub.com/wp- content/uploads/sites/43/vlpdfs/winnti-more-than-just-a-
game-130410.pdf. 10 April 2014.

2WINNTI ANALYSIS

INSTALLATION PHASE 1: DROPPER ACTIVITIES

The dropper is, as the name implies, the component responsible for dropping the Winnti malware on
a victim’s machine. The dropper performs the following activities (with version- specific annotation):

1. [version 3.0] The dropper verifies the existence of a single parameter on the command line and
terminates if the parameter is not found. The dropper later uses this parameter as a decryption key.

2. The dropper loads CreateProcessA via a call to GetProcAddress.

3. The dropper extracts an embedded data blob, decrypts the data blob, and decompresses the data
blob into a heap buffer.

The data blob in step 3 begins with a header structure that describes key attributes of the data blob.
The format of the header is as follows:

OFFSET SIZE DESCRIPTION

0x0 8 Magic bytes “Tunnel\0\0”

0x8 2 Unknown

0xA 4 Size of the blob after decompression

0xE 4 Size of the blob prior to decompression (current size in memory)

In order to decrypt the data blob, the dropper will iterate over each of the bytes that follows the header
(up to the value specified in 0xE offset of the header), XOR the bytes by 0x36, and then perform a
nibble swap, ZLib-compressed data immediately follows the header. The dropper will allocate a heap
buffer (with a size specified by the value in offset 0xA of the header) and call the ZLib inflate function.

The decompressed data blob contains a second header, and the blob’s header consists of the following
two entries:

OFFSET SIZE DESCRIPTION

0x0 4 Offset of worker component’s image (generally 0 and unused)

0x4 4 Offset of server component’s image

4. The dropper uses the value in offset 0x4 of the decompressed data blob’s header to determine the
size of the worker component’s size and writes that many bytes of the decompressed data blob,
starting after the header, to a file within %TEMP%. The file has a random name, but the extension is
always .tmp.

5. [version 3.0] The remaining bytes within the decompressed data blob are decrypted using what
appears to be DES encryption and the key the attacker provided via the first argument on the
command line.

6. The dropper generates another randomly named file within %TEMP% with the file extension
of .tmp with the remaining bytes within the decompressed data blob. This file becomes the
service component.

3WINNTI ANALYSIS

The decryption of the service component is a new feature within the version 3.0 lineage of
Winnti and provides the benefit of preventing defenders from attempting to run the dropper
for analysis purposes.

7. [version 3.0] The presence of the MZ magic bytes in the first two bytes of the service component
are verified to ensure that the file was properly decrypted (and by extension, to verify that the
supplied password was correct). If the MZ bytes are not found, the dropper quietly terminates.

8. [version 3.0] The filenames and paths of the service and worker components are appended to the
end of the worker component’s file in a structure 520 byte array. The irst 260 bytes contain the
filename and path of the worker component, and the last 260 bytes contain the filename and path
of the service component. The entire 520 byte array is encrypted by XOR’ing each byte with 0x99.

9. The service component’s file is scanned for the tag Coopre. If this tag is located, the dropper
decrypts the configuration data blob attached to the end of the dropper’s executable and
appends the data to memory immediately followed the Coopre magic byte. The dropper will then
append the filenames and paths of the service and worker components to the end of the worker
component’s file in a structure 520 byte array. The first 260 bytes contain the filename and path
of the worker component, and the last 260 bytes contain the filename and path of the service
component. The entire 520 byte array is encrypted by XOR’ing each byte with 0x99.

10. The dropper instructs the service component to complete the installation by using rundll32 to
activate the service component’s Install [pre-version 3.0] or DlgProc [version 3.0] function.

The service component is self-installing when an attacker (or the dropper) activates the Install
or DlgProc export functions. Install or DlgProc requires the full name and path of the dropper
component. The service component can locate the worker component based on the appended
filename and path strings located at the end of itself. Once the dropper calls CreateProcessA to
activate rundll32, the dropper’s task is complete, and it quietly terminates. At this point, it is up to
the service component to continue to install and, eventually, to activate the Winnti malware.

INSTALLATION PHASE 2: SERVICE ACTIVITIES
The service component is at its core an unsophisticated scaffold whose job is to activate the engine
component. The distinction between pre-version 3.0 Winnti variants and version 3.0 variants is most
evident in the versions’ service components. As a result of the larger difference in procedure between
the pre-version 3.0 and version 3.0 variants, the discussion on the Installation Phase 2 sequence will
focus on only the version 3.0 service component.

The service component has only two functions: activate the installer functionality of the engine
component or respond as a service DLL and activate the engine component’s malware start-up
routines. Both modes of the service component have a common initialization sequence:

1. DllMain, upon activation, manually loads the engine binary into memory.

2. The exports from the engine component (Install, DeleteF, and Workman) are loaded into a
memory structure.

4WINNTI ANALYSIS

2 K. Kleissner. “UAC Bypass for Windows 7 RTM, SP1/ Windows 8 DP, CP all 32-bit for admin with default UAC settings”. http://download.pureftpd.
org/pub/misc/UAC.cpp. Accessed 1 December 2014

The engine component exists as a data blob within the service component. The executable image
of the engine component contains a stripped-down PE/COFF header that is missing several key
attributes, such as the MZ and PE magic bytes as well as the CPU architecture identifier. These missing
pieces require the service component to manually load the engine component’s executable image into
memory. This includes allocating the appropriate memory, loading the sections appropriately, applying
location fix-ups, and loading the necessary imports. The advantage of going to this much effort from
an attacker’s perspective is that the engine, which is responsible for loading the worker, never
touches the disk, thus depriving analysts of a necessary component for analysis when using file-based
artifact collection techniques.

3. The service component determines if the host binary responsible for the service component
is either svchost.exe (if run as a service) or rundll32.dll (if loaded pseudo manually or from
the dropper).

4. If neither host executable is found, the Install function of the engine is activated. Otherwise,
the DllMain function returns with a success status.

5. Within the DlgProc function, the service will verify the non-NULL status of the DeleteF function
pointer. If the function pointer is non-NULL, the DeleteF function (of the engine) is called.

6. The DlgProc function next verifies that the Install function pointer is non-NULL and, if the
pointer is indeed non-NULL, calls the engine’s Install function after supplying the path of the
service executable.

Once the service component passes control to the engine component’s Install function, the service
component becomes little more than a placeholder. The service component will remain active only so
long as the Install function is active. The engine component then becomes the active component
and will conclude the installation process.

INSTALLATION PHASE 3: ENGINE ACTIVITIES
The engine component exists only in memory and is completely dependent on the service component
remaining active in order to have a process space in which to operate. The installation functionality
for the version 3.0 Winnti malware variants exists within the Install export. When activated, the
Install export requires a full filename and path back to the service binary.

1. The Install function checks if the process responsible for calling the Install function
is explorer.exe. If so, the function uses a variant of the sysprep User Account Control (UAC) bypass.2

2. The current privilege level of the process is verified to be suitable for installing additional binaries.
The test consists of determining if the operating system is newer than Windows XP and if the
process has administrative privileges. If these conditions are met, the dropper is called again from
explorer.exe.

The authors went to great pains to ensure that the installation process had a suitable chance of
performing its function both undetected (by using a UAC bypass) and with suitable privileges. The use
of the sysprep UAC bypass and the verification of process privileges indicate that the authors were at
least aware of the changing security environment in later versions of Windows and were adapting to
ensure the successful propagation of their tools on a victim’s machine.

5WINNTI ANALYSIS

3. The configuration information implanted at the end of the service component is extracted
and decrypted.

The configuration information for the infection typically exists at the very end of the service
configuration. The last DWORD of the file contains an offset from the end of the file to the beginning
of the configuration. The structure of the configuration is as follows:

struct ScheduleEntry
{
 __int16 wDayOfWeek;
 __int16 wStartTime;
 __int16 wEndTime;
};

struct Config
{
 char szC2[100];
 char szCampaignID1[32];
 char szCampaignID2[32];
 char szCampaignIDNumber[24];
 DWORD unknown0;
 DWORD unknown1;
 DWORD unknown2;
 DWORD dwCommMode;
 DWORD dwProxyType;
 char szProxyServer[32];
 char szProxyUser[32];
 char szProxyPassword[32];
 ScheduleEntry arrActivePeriods[7];
 DWORD iReconnectTime;
};

The configuration is encrypted using a rolling XOR with the first byte of the XOR being 0x99.
The XOR increments one byte at a time until a wraparound occurs at 0xFF.

4. The files %SYSDIR%\wmtsk.dll and %SYSDIR%\wmm2.dat are checked to ensure that they do not
exist and that they are not directories. If either condition is not met, an INI file named %SYSDIR%\
otfkyt.dat is generated with the UPDATE section containing File={path to service component
DLL} and the process terminates.

5. A global event named Global\ 5164FDA21542C0EB638BA110F9F3ADAF establishes a poor man’s
mutex, indicating that the installation process is currently ongoing. To give other processes time to
read the event check, a 12-second delay is introduced before continuing the installation process.

6. The service component is copied from the %TEMP% directory to %SYSDIR%\wmtsk.dll, and the
worker component is copied from the %TEMP% directory to %SYSDIR%\wmm2.dat.

7. The timestamps of both wmtsk.dll and wmm2.dat are set to match that of cmd.exe.

8. The original %TEMP% instances of the worker and service DLLs are deleted.

6WINNTI ANALYSIS

9. The configuration is appended to the wmtsk.dll file using the same rolling XOR (starting with
the value 0x99).

The bulk of the installation of Winnti is now complete. The dropped files are now in the correct
location and ready for activation. The final steps of the installation establish the persistence model for
the malware and begin the activation of the malware on the victim’s system.

10. A new service entry is manually added to the registry to ensure the malware will activate upon
reboot of the victim’s machine. The new service is named wind0ws, with a display name of
automaticallyssl and the description of Monitoring of hardwares and automatically
updates the device drivers.

11. WinExec is used to call the command net start wind0ws.

12. The installation completes by returning control to the service component, which terminates quietly.

The service that the engine component installs runs under the svchost.exe executable as a netsvc.
The engine will directly modify the registry after using the CreateServiceA function to establish the
basics of the new service. The use of direct registry modifications to entries under the LOCAL MACHINE
(HKLM) hive requires elevated privileges, which may explain why the authors went to such great pains
to ensure the installation process occurred in a suitable process space.

ACTIVATION PHASE 1: SERVICE ACTIVITIES
Activation of the Winnti malware begins whenever the service component is activated. Typically,
activation is the result of the registered service (e.g., wind0ws) being activated by either a reboot
of the victim’s machine or by the net start command being issued during the final phase of the
installation process. In either case, the DllMain function is called prior to the ServiceMainEx function
of the service component being called by Windows, thus kicking off the activation of the Winnti
version
3.0 malware.

1. The DllMain function, upon activation, manually loads the engine binary into memory.

2. The exports from the engine component (Install, DeleteF, and Workman) are loaded into a
memory structure.

3. The service component determines if the host binary responsible for the service component
is either svchost.exe (if run as a service) or rundll32.dll (if loaded pseudo-manually or from
the dropper).

4. If neither host executable is found, the Install function of the engine is activated. Otherwise, the
DllMain function returns with a success status.

With the initialization of the service component’s DLL complete, Windows calls the ServiceMainEx
function to activate the service. The ServiceMainEx function, like the DlgProc function, is extremely
lightweight in its functionality.

5. The ServiceMainEx function registers a service handler function to respond to service status
control requests from Windows.

6. The service is set to the Running state.

7WINNTI ANALYSIS

7. An unnamed event is created.

8. The engine’s Workmain function is called with both the path to the host executable (the service
DLL) and the name of the service supplied as parameters.

9. A sleep of 3 seconds occurs before the function waits indefinitely for the unnamed
event to become set.

The ServiceMainEx function does little more than establish a basic scaffold for activating the
Workmain function of the engine component. The service remains active, thus providing a process
space for the engine, until the unnamed event is set. The unnamed event becomes set only after the
service receives the SERVICE_STOP signal from Windows.

After the service component calls the Workmain function of the engine component, the engine
component picks up the baton to complete the next phase of the activation sequence.

ACTIVATION PHASE 2: ENGINE ACTIVITIES
The engine component’s Workmain function, much like the service’s ServiceMainEx function, provides
a scaffolding for the next phase of the activation. In this case, that next phase is dependent on the
worker component.

1. The Workmain function determines if an active activation thread exists within the process. If so, the
Workmain function simply returns to avoid activating two or more concurrent instances of Winnti
under the same process space.

2. The configuration is extracted from the service component based on the filename and path
supplied to the Workmain function from the ServiceMainEx function. If the configuration extraction
fails, the filename and path of the service DLL is gleaned from the ServiceDLL registry value for
the service, and the configuration is extracted from that file.

3. The path to the worker component (e.g., %SYSDIR%\wmm2.dat) is extracted from the service
component’s file.

4. A new thread responsible for the activation of the worker and engine components is generated.

5. The Workmain function returns.

Workmain is a very simple function with a singular purpose: collect the data needed to locate the
necessary components for activating Winnti on the victim’s system. With the necessary information
found, a new thread is generated that allows the service component to decouple from the worker
component’s functionality. Had this not occurred, the service component would not be able to
respond to Windows status requests, and the service would have appeared to be hung, causing
Windows to terminate the service.

The activation thread generated within the Workmain function loads the worker component,
activates the worker component, and provides a thread independent of the service’s thread under
which to execute.

6. The path to the worker component’s file is verified to exist. If the worker component’s file does not
exist, the activation process terminates immediately.

8WINNTI ANALYSIS

7. The worker component is loaded into memory.

8. The worker component’s work_start function is called.

The worker component’s executable image is encrypted. As part of the loading process, the engine
must XOR each byte of the worker component’s file with the value 0x36 and perform a nibble swap.
The worker component’s executable image suffers from the same malformed PE/COFF header that the
engine component’s image exhibits. As a result of the malformed PE/COFF header and the encrypted
file image, the engine must manually load the worker component’s image into memory in exactly the
same manner that the service component loaded the engine component manually into memory.

The work_start function is the true beginning of the Winnti malware. The work_start function
performs the various Remote Administration Tool (RAT) initialization functions of Winnti before
activating the communication subsystem of Winnti. The result of calling the work_start function
is the completed activation of Winnti and placing the system in a steady-state mode of C2 server
requests and response actions. Once the work_start function initializes the Winnti malware, a new
thread is generated to house the Winnti RAT functionality, allowing the work_start function to return
control back to the activation thread within the engine component.

9. Upon completion of the work_start function, the activation thread sleeps for 30 seconds before
entering an infinite loop.

10. The loop begins by verifying that the global event established during the installation process
(Phase 3, step 5) does not exist. If the event exists, the loop is broken, the event is set, the Winnti
malware shuts down by means of a net stop command, and the service and worker component
files are deleted.

11. The presence of the %SYSDIR%\otfkty.dat file is checked, and if the file does not exist, control
returns to the top of the loop (step 10).

12. The %SYSDIR%\otfkty.dat file is read as an INI file, the filename specified by the File variable
under the UPDATE section is read, and the otfkty.dat file is deleted from disk if the file specified
by the File variable exists and is not a directory.

13. If the worker has a work_end export, the work_end function is called.

14. The configuration of %SYSDIR%\wmtsk.dll is loaded into memory.

15. If %SYSDIR%\sysprep\cryptbase.dll exists, the file is deleted.

16. The worker component’s file is deleted from disk.

17. The file specified by otfkty.dat’s File variable is copied to the filename of the worker
component’s file.

18. The timestamp of the new worker component file is set to that of cmd.exe’s timestamp.

19. The file specified by otfkty.dat’s File variable is deleted.is deleted.

20. After sleeping for 3 seconds, the new worker component’s image is loaded into memory, and
the new worker component’s work_start function is executed.

21. Control returns to the start of the loop (step 10).

9WINNTI ANALYSIS

The authors of version 3.0 of Winnti use the engine’s scaffolding to allow for on-the-fly worker
component updating without a need to restart the service. The infinite loop listens for the
indicator that the engine’s Install function is performing an installation (with an existing Winnti
installation, this effectively becomes an update). As part of the installation process by the engine
component’s Install function, the presence of an existing service and worker component’s files
is verified (Installation Phase 3, step 4), resulting in the generation of the %SYSDIR%\otfkty.dat
file. The presence of the otfkty.dat file informs the engine’s activation thread that a new worker
component is available and should be loaded. As a result, the engine cleanly shuts down the existing
worker component by calling its work_end function, deletes the old worker, and replaces the worker
component’s file before loading and executing the new worker component. The beauty of this
approach is that not only does it allow hot patching of the malware but it does so without restarting
the service, which could indicate an erroneous system event to an astute systems administrator.

THE BASICS OF WINNTI’S WORKER
The Winnti worker component is an exercise in over engineering. As with the other components
within the Winnti system, such as the service and the engine, the worker component is a scaffold for
additional functionality. Unlike the service and engine components, the scaffolding provided by the
worker component is substantial and complex, but at its core, the worker component has two primary
functions: communication interface and plugin management.

The communication subsystem of the worker module supports three communication protocols,
but the framework is developed in such a way that adding additional protocols requires little more
than adding a different communication mode module to the source code at compile time. The
communication subsystem in the samples analyzed by Novetta includes three modes: custom TCP
protocol (used when Config.dwCommMode is set to 1), encapsulation within HTTP (used when Config.
dwCommMode is set to 3), and encapsulation within HTTPS (used when Config.dwCommMode is set to
2). To further expand the reach of the HTTP and HTTPS modes, the HTTP and HTTPS modes can
utilize a proxy local (or potentially external) to the victim’s computer. In order to support a variety
of different communication protocols and methods, the communication subsystem relies heavily on
callback functions. For instance, when a communication module (be it the custom TCP protocol, HTTP,
HTTPS, or some other type) initializes, it supplies a series of callback functions to the communication
subsystem. The callback functions provide hooks to the communication subsystem for handing off
important communication events.

Figure 1: Setting Callbacks for the Custom TCP Protocol Communication Mode

Figure 1 illustrates the worker component using the Connection:SetConnectivityCallbacks
function to register callback functions that handle the following series of events.

1. When a new connection occurs (ncOnConnect_callback)

2. When data is received over the network connection (ncOnRecvData_callback)

3. When the connection terminates by the socket closing (ncOnDisconnect_callback)

4. When the other end of the connection disconnects, but has not closed, the connection
(ncOnClientDisconnect_callback)

10WINNTI ANALYSIS

By using callbacks, it is relatively easy for the authors of the Winnti malware to add new
communication protocols without making significant changes to the source code. There is, however,
the question as to why the authors chose to use a callback scheme for this purpose instead of a more
modern object-oriented approach, such as using derived classes in C++.

The callbacks within the communication subsystem cloud an important aspect of the nature of
the communication within Winnti: the communication subsystem is largely asynchronous. The
communication subsystem allocates a thread solely for listening to incoming data, determining to
which channel the data belongs, queuing the data in a series of network queue structures, and alerting
the communication subsystem that the ncOnRecvData_callback (or equivalent) callback should
be called to address the incoming data. This allows the sending of data from the communication
subsystem to decouple the receiving of data from the communication subsystem thereby providing
asynchronous data streams. The fact that the data streams are decoupled does introduce some
complexity, as it is up to the higher layers of the data stream to reassemble the data in the appropriate
form for whatever task to which the data applies. Evidence suggests, however, that despite the fact
that sending and receiving data is asynchronous within the communication subsystem, in practice the
data follows a standard request-and-reply model in which the Winnti malware makes a request over the
network and then waits for a reply before repeating the sequence.

By itself, the worker component does very little. It does not have any built-in RAT functionality such as
file management, remote command shell interaction, network monitoring, or other features common to
malware that falls within the RAT category. Similar to the way that PoisonIvy provides only a framework
and requires at-runtime modules to perform RAT functions, Winnti must load a plugin for each desired
RAT (or class of RAT) feature. These modules, which internally the authors refer to as “Plus” modules,
are basic plugins that the worker component is responsible for maintaining.

It would be a poor design for the malware to request a download of code for each RAT function
that an attacker wishes to use. The amount of extraneous data would be excessive and would make
the malware’s traffic more prone to detection, as plugins are usually a minimum of several tens of
kilobytes each. The authors of Winnti compensate for this by caching plugin modules in memory
and possibly on disk. Whenever a new module is loaded into the victim’s machine by virtue of a
download from the C2 server, the plugin is stored, loaded into memory, and registered with the plugin
subsystem, which allows the communication subsystem to pass requests to the plugins from that
point on. Optionally, as part of the integration of the plugin into the Winnti malware, the attacker can
request that a copy of the plugin be stored within the %PROGRAMFILE%\Microsoft Shared\MSInfo\
en-US\ directory, which will allow the worker component to load the plugin automatically whenever
the Winnti malware restarts; however, storing a plugin is not mandatory. It is entirely possible that the
attacker may specify that the plugin should exist in memory only as long as the malware is active. This
prevents disk based forensics from detecting the plugins and limits the availability of data for analysis
to determine what code may have executed on a victim’s machine.

Plugins are architecture dependent, but the authors of Winnti make no special effort to ensure that
only 64-bit plugins run on 64-bit variants of Winnti or that only 32-bit plugins run on 32-bit variants.
Plugins are DLLs with their PE/COFF headers manipulated (like the engine and worker components)
to make them unloadable by standard Windows Application Programming Interface (API) functions,
therefore requiring that the plugin manager manually load the plugins. A plugin information header
precedes the modified PE/COFF header. The plugin information header (PluginEntry) , as seen
below, contains information defining attributes about the plugin, such as its architecture (64 or 32-
bit), the size of the plugin’s image, the entry point function, the version of the plugin, and, most
importantly, the identification number of the plugin.

11WINNTI ANALYSIS

struct PluginEntry
{
 DWORD dwPluginID;
 DWORD Version;
 DWORD ArchitectureType;
 DWORD unknown;
 DWORD dwPluginSize;
 DWORD dwEntryFunctionNameHash;
 DWORD fLoaded;
 void *pPluginImage;
 int (__stdcall *pfnEntryPoint)
 (void *incomingData, int (__cdecl

**pfnNetDataSend)(PacketHeader *));
};

The identification number of the plugin (dwPluginID) is the value that allows the communication
subsystem to direct incoming requests to the appropriate plugin. The plugin manager itself supports
only the following three commands from the communication subsystem:

COMMAND ID DESCRIPTION

0x12 Unknown purpose

0x14 Send a list of plugins currently registered to the C2

0x15 Add a new plugin to the active Winnti malware with an option to save the plugin to disk

If a command coming from the communication subsystem does not match one of the plugin
manager’s commands, the RemoteLib:CallPlusList function is called to redirect the data packet to
the appropriate plugin or return an error to the C2 server.

COMMUNICATION SCHEME
Regardless of the communication model currently active for a Winnti instance, the underlying
communication remains constant. Each datagram that originates from or is destined for the C2 server
has the following predefined header structure:

struct PacketHeader
{
 DWORD dwTickCount; WORD cmd;
 DWORD unknown;
 DWORD dwPayloadSize;
 DWORD dwStreamID;
};

The format of the data that follows the
PacketHeader is cmd dependent. The cmd field allows the communication subsystem to route the
request to the appropriate plugin by using the plugin manager to match the cmd value with the
dwPluginId value. The worker component allows a maximum datagram size of 261120 bytes. To
accommodate data streams larger than the maximum datagram size, the stream can be chunked.

12WINNTI ANALYSIS

3 ftp://ftp.openssl.org/source/old/0.9.x/openssl-0.9.8x.tar.gz. 10 May 2012.
4 http://sourceforge.net/projects/sevenzip/files/LZMA%20SDK/lzma922.tar.bz2/download. 18 April 2010. 5 Niall Douglas.
“nedalloc Homepage”. http://www.nedprod.com/programs/portable/nedmalloc/. 5 December 2014.

6 Jean-loup Gailly and Mark Adler. “zlib”. http://zlib.net/. 26 March 2014.
7 WinSim, Inc. “DISKID32 (FREEWARE)”. https://www.winsim.com/diskid32/diskid32.html. Accessed 1 December 2014.
8 WinSim, Inc. “About WinSim”. https://www.winsim.com/index.html. Accessed 1 December 2014.

The dwStreamID value is used to reassemble the streams by appending datagrams with the same
dwStreamID together. The dwPayloadSize field defines the number of bytes within the datagram.
The protocol that the worker component uses to transmit the PacketHeader and the optional payload
of the datagrams can and will add additional complexity to the network traffic. The custom TCP
protocol and the HTTP and HTTPS communication modes each deliver the datagrams differently. The
HTTP and HTTPS communication modes will generate POST requests to the C2 server (typically to /
index.htm) with the datagram (compressed using Zlib) as the body of the POST.

The custom TCP protocol uses a combination of encryption and compression to transfer the
datagrams. The custom TCP protocol uses a stacked approach to transforming the data. First,
the datagram, which makes up the payload of the custom TCP protocol, is typically compressed
with LZMA. The compressed payload is appended to the following header specific to the custom
TCP protocol:

struct TCPProtocolHeader
{
 DWORD magic;
 DWORD flags;
 DWORD dwXORKey;
 QWORD crc64;
 DWORD dwCompressedSize;
 DWORD dwPacketSize;
};

The magic value is 0xACED1984. The flags value will specify if the datagram is compressed or not.
The dwXORKey value is initialized to zero. The crc64 value for the datagram (prior to compression)
is stored in crc64. The size of the compressed payload is recorded in dwCompressedSize while the
original size of the datagram is stored in dwPacketSize.

The final transformation prior to transmission for the custom TCP protocol involves encrypting the
entire packet. A 32-bit value is generated (by calling GetTickCount) and used as the DWORD XOR
key. Each DWORD within the packet is then XOR’d with the key. Given that the dwXORKey field of
the TCPProtocolHeader was initialized to zero and exists on a DWORD boundary, the XOR key is
recorded within the dwXORKey field. A successful decryption is determined by XOR’ing the magic and
dwXORKey fields to produce the 0xACED1984 value.

CODE REUSE
The authors of Winnti are clearly proponents of the open-source software movement, as large chunks
of the worker binary consist of open-source software packages. The authors statically linked in the
OpenSSL library (version 0.9.8x),3 the LZMA compression library,4 the nedalloc memory allocation
library,5 and the Zlib library (version 1.2.7).6 As for the part of the code that generates the unique
identifier for the victim’s computer, the authors of the worker component lifted the code DISKID32,7
which is an open-source utility for reading the manufacturer data from a hard drive. The DISKID32
package is a surprisingly obscure piece of software from a company in Texas that writes an industrial
process simulator that has “over 1,000 active users.”8

13WINNTI ANALYSIS

The basis for the worker component is a library called RemoteLib. Some earlier variants of
version 3.0 of Winnti contain debugging output that references the RemoteLib library. RemoteLib
does not appear to be a publically available piece of software but does appear to be actively
maintained, as evident by the gradual refinements seen between the 32-bit and 64-bit variants
of version 3.0 of Winnti.

The compilation of the full OpenSSL library into the worker component solely for implementing HTTPS
results in a significant size increase. Approximately 60 percent of the worker component is made up of
OpenSSL functions when only a small fraction (less than 1 percent) of the OpenSSL library is actually
used by the worker component.

DETECTION
Detecting Winnti via standard IDS signatures or network traffic inspection is not a straightforward
process whenever the malware is configured to use HTTPS or the custom TCP protocol due to the
use of encryption. However, more advanced network based behavioral analytic capabilities as well as
host-based indicators do exist that can alert a security team or systems administrator to the presence
of Winnti.

The version 3.0 variants of Winnti attempt to install themselves as a service with the
following characteristics:

SERVICE NAME WIND0WS

SERVICE
DISPLAY NAME automaticallyssl

SERVICE
DESCRIPTION Monitoring of hardwares and automatically updates the device drivers

From a file system perspective, it is possible to identify Winnti infections by looking for the following
filenames:

• %SYSDIR%\otfkty.dat

• %SYSDIR%\wmtsk.dll

• %SYSDIR%\wmm2.dat

Given that Winnti will alter the time stamp of files to match that of the victim’s cmd.exe file, looking for
files with the exact same time as the victim’s cmd.exe may identify other foreign files on the victim’s
system that warrant inspection and possible isolation.

Novetta established the following YARA signatures for detecting the various components of version
3.0 of the Winnti malware; administrators are advised to use these signatures to help detect and
remediate active version 3.0 Winnti infections.

14WINNTI ANALYSIS

rule Winnti_Dropper
{
 meta:
 copyright = “Novetta Solutions”
 author = “Novetta Advanced Research Group”
 strings:
 $runner = “%s\\rundll32.exe \”%s\”, DlgProc %s”
 $inflate = “Copyright 1995-2005 Mark Adler”

 condition:
 $runner and $inflate

}

rule Winnti_service
{
 meta:
 copyright = “Novetta Solutions”
 author = “Novetta Advanced Research Group”

 strings:
 $newmem = “new memory failed!”
 $value = “can not find value %d\n”
 $onevalue = “find one value %d\n”
 $nofile = “Can not open the file (error %d)”

 condition:
 3 of ($newmem, $value, $onevalue, $nofile)

}

rule Winnti_engine {
 meta:
 copyright = “Novetta Solutions”
 author = “Novetta Advanced Research Group”

 strings:
 $api1 = “SHCreateItemFromParsingName” $datfile = “otfkty.dat”
 $workstart = “work_start”
 $workend = “work_end”

 condition:
 ($api1 or $datfile) and ($workstart and $workend)
}

rule Winnti_worker
{
 meta:
 copyright = “Novetta Solutions”
 author = “Novetta Advanced Research Group”

 strings:
 $pango = “pango-basic-win32.dll”
 $tango = “tango.dll”
 $dat = “%s\\%d%d.dat”
 $cryptobase = “%s\\sysprep\\cryptbase.dll”

 condition:
 $pango and $tango and $dat and $cryptobase

}

