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Abstract

We consider the problem of determining the number of subsets B C {1,2,...,n}
such that 7, cgb = k mod n, where k is a residue class mod n (0 < k& < n). If the
number of such subsets is denoted N* then

k_ L n e(s) s
= n Z ? S‘9((155)),“((]675))'

Here ¢ denotes the Euler phi function and p is the Mébius function. This elaborates
on a result by Frdés and Heilbronn. We also derive a similar result for finite abelian

groups.
1 Introduction

Let A, = {1,2,...,n}. There have been a number of results in the past about how large a
subset A C A, has to be so that the sums of the elements of A possess a certain property,
[1], [2], [3]- In particular, Erdés and Heilbronn [2] proved the following result:

Let n be a positive integer, aq,...,a; distinct residue classes mod n, and N a residue
class mod n. Let F(N;n;ay,...,a;) denote the number of solutions of the congruence

e1a, + ...+ epar = N mod n
where €y, ..., e, take the values of 0 or 1.
Theorem 1 (Erdés, Heilbronn) Let a; be nonzero for every ¢ and let p be a prime. Then
F(N:pyay,... a;) =2p7H (1 4 o(1))

if k>p™? — o0 as p — 0.



We consider the related problem of explicitly determining the number of subsets A C A,
with the property that the sum of the elements of A is congruent to £ mod n. Note that this
is equivalent to determining F(k;n;as,...,a,) when 0 < k < n. This follows if we accept
the convention that the elements of the empty set sum up to 0 mod n. We will denote
F(k;n;ai,...,a,) by Nk

Clearly N*¥ > 1. This is because for any n,k, the subset {k} of A, has the desired
property. Another subset of A, with this property for n > 3,k = 0 is the subset B = {z €
A, ged(x,n) = 1}. This is a well known result.

2 Calculation of N*

Proposition 2 Consider the polynomial P,(x) defined as follows:

7 n-|-1

P.(x)= H 1—|—:1; Z ap .
7=1

Let w, = 5 be a primitive nth root of unity. Then

17 , ,
Ny == w0 M Pu(w}).

n i3

Proof: Notice that each coefficient of " in P,(x) is equal to the number of subsets of
A, that sum to r. N¥ is the sum over the coefficients of 2" where n divides r — k. Therefore,

Ny= > anpntk (1)

A:An+-k>0
We will prove the proposition using (1) and the following Lemma:
Lemma 3 Let A be a positive inleger. Then 3777, TwM =0 when n fA and n when n|\.

Proof: Consider the equation " — 1 = 0. We factor this as
(:1;—1)(1—|—:1;—|—:1;2—|—...—|—:1;”_2—|—:1;”_1):0.

Note that w? is a root of 2™ — 1 for every . Hence it is a root of the second factor if and
only if w} — 1 # 0. The result follows.

Now consider
n(n+1)
2

ik
Z k2"
k=0



Then

. n(nt1)
Z w;kj P, (w%) = Z w;kj Z anwwy
=1 ] =

= n Z Up An+k

A:An+-k>0
= n(N,).
Proposition 4 P,(wl) = 20 zf(]”—n) is odd and 0 otherwise. Here (n,j) denotes the g.c.d.
of n,j (1<j<n).
Proof: We shall first prove two technical lemmas and then combine them to obtain the
required result.

Lemma 5

Proof: Note that

r=1
— H(l 4 [w( J)](i,rj))
r=1
Now w(™7) = wens Hence
n J
Pty =TT+ ETT)
r=1 e
. _J
Furthermore, ((n]—]) (n”])) =1 so w((nj)) is a primitive o )th root of unity. Therefore as r

ranges from 1 to n, the factors repeat themselves (n, j) times, i.e.

(n,9) J

Po(wy) = [TI O+ w2

s

Recalhng that ((n 5> m) = 1 we notice that P )( (" )
(nnj)( ) Hence, 7

("J




which gives the result

Lemma 6 P, (w,)=1—(-1)".

Proof: Consider the polynomial " — 1. Then 1,w,,w?,...,w"™! are the distinct r roots
of this polynomial. Thus

" —1l=(z—1)(z —w)(z—w) - (z—w™).
Substituting * = —1 we get
(1) = 1) = (17 (L o) (12 (1 + ).
ie. 1 —(=1)" = Py(w,). Now
Pwl) = [P (e I
= [1— (=0T,

This is equal to 20" when -~ is odd and 0 otherwise.

(n,])

Proposition 7 Suppose t|n, 6 = %. Then

—k 99(5)
Z W, o — - Z w%.
acEZX

vez: sy

i)
(k,6)

Proof: First note that w!* = wf. Also # and —x are both elements of Z}. Therefore

wEZ; wEZ;
_k_ .
Now rewrite wé” as w' %" Hence
[GD)
k.
IRUED o
wEZ; wEZ; 5k)
B 99(5) Z %k)l’
= 5 W5
S‘Q((kﬁ)) JL’EZX(S &,k)
(k,8)
This is because w(w(i) ) summands are identical Vo € Z}. Finally, since (ﬁ, ﬁ) =1 this
(%,6) ) )
reduces to
e(6) v
( s ) Z wﬁ
AES) veze, "
(k,8)

which completes the proof of the proposition.
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Proposition 8

> w, = p(n).

teZy

Proof: Let ®,(x) denote the nth cyclotomic polynomial. Then > tezx w! s just the

negative of the coefficient of (=" in @, (z).

Claim 9 ®,(x) = ®4(2™) where n = dm and d is the product of all the distinct prime
factors of n.

Proof: It is well known that ®,(x) = HTM(Z‘% — 1)#"), For a proof of this result see [4],
page 353. Now ®4(a™) = H5|d(:1;% — 1)"®)_ If s|n and s > d then s is divisible by the square
of some prime and so pu(s) = 0. Hence the claim.

Claim 10 ¢,,(z) = q;"n(f;) if p is a prime that does not divide n.

Proof: Once again we use the fact that ®,(x) = HTM(Z‘% — 1)), In our case we have

Ople) = L% 1)

rlpn
— H (:1;% _ 1)#(7“) H (:1;% _ 1)#(7“)
r|pn:p[r r|pn:p|r
— H(x% _ 1)u(t) H(xﬂ _ 1)#(519)‘
tln s|n
However p is a multiplicative function hence p(sp) = —u(s) so

By () = (L (27))(Pu(2)) ™"

If p?|n for some prime p then by Claim 9 the coefficient of 2#("~" in ®,(x) is 0. So
assume that n =], p;, where the p;’s are distinct. We now use induction on m and Claim
10 to obtain that 3=, 7x w; = p(n).

Theorem 11
1 n @(s) S
Nk = - 25 5 Iu( )
2
sodd

Proof: Using Proposition 2 we obtain that

17 , ,
Ny = =3 w0 M Pu(w}).

i=1



Now we use Proposition 4 to obtain

ko —kjo(in
NS = — Z W, 2Um),
i odd
)

Now let (j,n) =t. Then

Ns _ l Z 2t Z w;km’
n

tln:odd  peZX
¢

since as x ranges over Zé, tx ranges over the elements r such that (r,n) = t. Applying

Proposition 10 we obtain

vy g ) S Wy
n t

|

Finally, we use Proposition 7 to conclude that

I D e LA Sy

! n tln:Fodd S«Q(W) (k7 %)
Substituting s = % this reduces to
1 2 @(s) s
Ni==23 25— pu(—)
2 "
sodd

For the case when k = n this formula can easily be simplified to obtain

n 1 o
s|n

s odd

3 A Theorem About Finite Abelian Groups

A natural generalization of the problem discussed in the previous section is a similar problem
for finite abelian groups. That is, if G is a finite abelian group of order n, we want to calculate
the number of subsets of (G whose elements sum up to the identity element (0) of G.

For the purposes of this section we will use the following notation: Let S denote a k-tuple
of numbers, i.e. S = (s1,82,...,5;). Given two k-tuples J and NN define

2

o< <N
J1=n1 j2=n2 JE=ng
=1 j2=1 Je=1
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Will will denote the number of subsets of a finite abelian group G whose elements sum up

to 0 by Ng.

Theorem 12 LetG =272, ©Z,, D ... an be a finite abelian group of ordern = nyng - - - ny.
Given a k-tuple J define Ty :g.c.d.(%, cee %) and let N = (nq,na,...,ng). Then

1
Ng =

n

> [ (-ymEme,
o< < N

We shall prove this theorem using the same ideas as before.

Proposition 13 Consider the polynomial

Flay,ag,..x) = 1 (W+afaei---apf) =) ageitad? - aph,
0<S <N &
Then |
NG:g Yoo Pl W),
0<J <N

Proof: The proof is identical to that of Proposition 2.

Proposition 14

P, . wl) =1 = ()],

nyot”

JiSn

Proof: Note that w/i® =w,"™ . Therefore

Flwh,cowt) = JI (4wimep™ o)
o< S< N
o< S< N

Consider the exponent in one factor of the above product for a fixed 5, i.e.

(X = T ().

7 K3

Claim 15 For every m (0 < m < n) there exists a k-tuple S such that

TJ(Z Sl(njzgj)) = Tym mod n.
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Proof: Note that g.c.d.( jl; by jk; ) = 1 and therefore for any integer m there exists
ni+g Nty
s; € Z such that

5iJ:n
= Z 1, TJ

Equivalently,

S 'm
TJm = TJ(Z n]T )
; L J

Now note that if any s; is replaced by s; +n; in the above equation then we still have equality
(mod n). Thus every s; can be chosen to be less than n;.
Therefore by the above claim we obtain

Jisin n—1

I[I +w ™) = [Ta+wl™)
0<S <N m=0
= P.(w}’)

= [1— (=ymmjet)

and so we have proved the proposition.
Proof (main theorem): The theorem now follows immediately by combining Propositions

13 and 14:

1 , ,
NG = g Z F(w%ll, '7(“17]12)

4 Further Results

Another problem related to the calculation of N* is the calculation of Ny, where 0 <

m < w N}, is defined to be the number of subsets B C {1,2,...,n} such that
>sep b =0 mod m. We Remark that N7, is easily obtained when m/|n.

Proposition 16 Let n,m be positive integers with m|n. Then

:_ZQS

s|m

sodd

Proof: Using Lemma 3 and the same proof as given in Proposition 2 we obtain that:

m

2 Fulen,)

1
m



Now 1+ (w/, )™ =1+ (w],)" so the factors in P,(w},) repeat themselves % times. Therefore
Po(w! ) = [Py(w!)]m. Now we proceed as before to get

1 n
N' = — 3 25 (s).
= T2l

sodd

Snevily, [5] has proposed the following conjecture:

. n(nt1
Conjecture 17 The sequence {N],.},,2 is monotonically decreasing.

We also mention an interesting connection between our problem and two other counting
problems in combinatorics. Let (), denote the number of circular sequences of 0’s and
1’s, where two sequences obtained by a rotation are considered the same. This problem is
discussed in [6], page 75. The solution is

1 n
Co==> o(t)2r.
n tln

This is indentical in form to our formula for N except that in our case we sum over all ¢|n
where t is odd. Another related problem is the calculation of the number of monic irreducible
polynomials of degree n over a field of ¢ elements where ¢ is prime ([6], page 116). If the
number of such polynomials is denoted M? then

1 n
M} = 52#(65)6101-

d|n

For ¢ = 2 this has the exact same form as our formula for N* where (k,n) = 1. Once again,
the only difference is that our sum is over d|n such that d is odd.
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