An interesting result about subset sums

Nitu Kitchloo Lior Pachter

November 27, 1993

Abstract

We consider the problem of determining the number of subsets $B \subseteq \{1, 2, ..., n\}$ such that $\sum_{b \in B} b \equiv k \mod n$, where k is a residue class mod n $(0 < k \le n)$. If the number of such subsets is denoted N_n^k then

$$N_n^k = \frac{1}{n} \sum_{\substack{s \mid n \\ s \text{ odd}}} 2^{\frac{n}{s}} \frac{\varphi(s)}{\varphi(\frac{s}{(k,s)})} \mu(\frac{s}{(k,s)}).$$

Here φ denotes the Euler phi function and μ is the Möbius function. This elaborates on a result by Erdős and Heilbronn. We also derive a similar result for finite abelian groups.

1 Introduction

Let $A_n = \{1, 2, ..., n\}$. There have been a number of results in the past about how large a subset $A \subseteq A_n$ has to be so that the sums of the elements of A possess a certain property, [1], [2], [3]. In particular, Erdős and Heilbronn [2] proved the following result:

Let n be a positive integer, a_1, \ldots, a_k distinct residue classes mod n, and N a residue class mod n. Let $F(N; n; a_1, \ldots, a_k)$ denote the number of solutions of the congruence

$$e_1 a_1 + \ldots + e_k a_k \equiv N \mod n$$

where e_1, \ldots, e_k take the values of 0 or 1.

Theorem 1 (Erdős, Heilbronn) Let a_i be nonzero for every i and let p be a prime. Then

$$F(N; p; a_1, \dots, a_k) = 2^k p^{-1}(1 + o(1))$$

if
$$k^3p^{-2} \to \infty$$
 as $p \to \infty$.

We consider the related problem of explicitly determining the number of subsets $A \subseteq A_n$ with the property that the sum of the elements of A is congruent to $k \mod n$. Note that this is equivalent to determining $F(k; n; a_1, \ldots, a_n)$ when $0 < k \le n$. This follows if we accept the convention that the elements of the empty set sum up to $0 \mod n$. We will denote $F(k; n; a_1, \ldots, a_n)$ by N_n^k .

Clearly $N_n^k \geq 1$. This is because for any n, k, the subset $\{k\}$ of A_n has the desired property. Another subset of A_n with this property for $n \geq 3, k = 0$ is the subset $B = \{x \in A_n : gcd(x,n) = 1\}$. This is a well known result.

2 Calculation of N_n^k

Proposition 2 Consider the polynomial $P_n(x)$ defined as follows:

$$P_n(x) = \prod_{j=1}^n (1+x^j) = \sum_{r=0}^{\frac{n(n+1)}{2}} a_{n,r} x^r.$$

Let $\omega_n = e^{\frac{2\pi i}{n}}$ be a primitive nth root of unity. Then

$$N_n^k = \frac{1}{n} \sum_{j=1}^n \omega_n^{-kj} P_n(\omega_n^j).$$

Proof: Notice that each coefficient of x^r in $P_n(x)$ is equal to the number of subsets of A_n that sum to r. N_n^k is the sum over the coefficients of x^r where n divides r - k. Therefore,

$$N_n^k = \sum_{\lambda: \lambda n + k > 0} a_{n, \lambda n + k}. \tag{1}$$

We will prove the proposition using (1) and the following Lemma:

Lemma 3 Let λ be a positive integer. Then $\sum_{j=0}^{n-1} \omega_n^{\lambda j} = 0$ when $n \not| \lambda$ and n when $n \mid \lambda$.

Proof: Consider the equation $x^n - 1 = 0$. We factor this as

$$(x-1)(1+x+x^2+\ldots+x^{n-2}+x^{n-1})=0.$$

Note that ω_n^{λ} is a root of $x^n - 1$ for every λ . Hence it is a root of the second factor if and only if $\omega_n^{\lambda} - 1 \neq 0$. The result follows.

Now consider

$$P_n(\omega_n^j) = \sum_{k=0}^{\frac{n(n+1)}{2}} a_{n,k} \omega_n^{jk}.$$

Then

$$\sum_{j=1}^{n} \omega_n^{-kj} P_n(\omega_n^j) = \sum_{j=1}^{n} \omega_n^{-kj} \sum_{r=0}^{\frac{n(n+1)}{2}} a_{n,r} \omega_n^{rj}$$

$$= \sum_{r=0}^{\frac{n(n+1)}{2}} a_{n,r} \sum_{j=1}^{n} \omega_n^{(r-k)j}$$

$$= n \sum_{\lambda: \lambda n + k \ge 0} a_{n,\lambda n + k}$$

$$= n(N_n^k).$$

Proposition 4 $P_n(\omega_n^j) = 2^{(n,j)}$ if $\frac{n}{(j,n)}$ is odd and 0 otherwise. Here (n,j) denotes the g.c.d. of n,j $(1 \le j \le n)$.

Proof: We shall first prove two technical lemmas and then combine them to obtain the required result.

Lemma 5

$$P_n(\omega_n^j) = \left[P_{\frac{n}{(n,j)}}(\omega_{\frac{n}{(n,j)}})\right]^{(n,j)}.$$

Proof: Note that

$$P_{n}(\omega_{n}^{j}) = \prod_{r=1}^{n} (1 + [\omega_{n}^{j}]^{r\frac{(n,j)}{(n,j)}})$$
$$= \prod_{r=1}^{n} (1 + [\omega_{n}^{(n,j)}]^{\frac{jr}{(n,j)}}).$$

Now $\omega_n^{(n,j)} = \omega_{\frac{n}{(n,j)}}$. Hence

$$P_n(\omega_n^j) = \prod_{r=1}^n \left(1 + \left[\omega_{\frac{n}{(n,j)}}^{\frac{j}{(n,j)}}\right]^r\right).$$

Furthermore, $(\frac{j}{(n,j)}, \frac{n}{(n,j)}) = 1$ so $\omega_{\frac{n}{(n,j)}}^{\frac{j}{(n,j)}}$ is a primitive $\frac{n}{(n,j)}$ th root of unity. Therefore as r ranges from 1 to n, the factors repeat themselves (n,j) times, i.e.

$$P_{n}(\omega_{n}^{j}) = \left[\prod_{r=1}^{\frac{n}{(n,j)}} \left(1 + \left[\omega_{\frac{n}{(n,j)}}^{\frac{j}{(n,j)}}\right]^{r}\right)\right]^{(n,j)}$$
$$= \left[P_{\frac{n}{(n,j)}}(\omega_{\frac{j}{(n,j)}}^{\frac{j}{(n,j)}})\right]^{(n,j)}.$$

Recalling that $(\frac{j}{(n,j)}, \frac{n}{(n,j)}) = 1$ we notice that $P_{\frac{n}{(n,j)}}(\omega_{\frac{n}{(n,j)}}^{\frac{j}{(n,j)}})$ is just a permutation of the factors in $P_{\frac{n}{(n,j)}}(\omega_{\frac{n}{(n,j)}})$. Hence,

$$P_{\frac{n}{(n,j)}}(\omega_{\frac{n}{(n,j)}}^{\frac{j}{(n,j)}}) = P_{\frac{n}{(n,j)}}(\omega_{\frac{n}{(n,j)}})$$

which gives the result

$$P_n(\omega_n^j) = \left[P_{\frac{n}{(n,j)}}(\omega_{\frac{n}{(n,j)}})\right]^{(n,j)}.$$

Lemma 6 $P_r(\omega_r) = 1 - (-1)^r$.

Proof: Consider the polynomial $x^r - 1$. Then $1, \omega_r, \omega_r^2, \ldots, \omega_r^{r-1}$ are the distinct r roots of this polynomial. Thus

$$x^{r} - 1 = (x - 1)(x - \omega_{r})(x - \omega_{r}^{2}) \cdots (x - \omega_{r}^{r-1}).$$

Substituting x = -1 we get

$$((-1)^r - 1) = (-1)^r (1 + \omega_r)(1 + \omega_r^2) \cdots (1 + \omega_r^r).$$

i.e. $1 - (-1)^r = P_k(\omega_r)$. Now

$$P_n(\omega_n^j) = [P_{\frac{n}{(n,j)}}(\omega_{\frac{n}{(n,j)}})]^{(n,j)}$$

= $[1 - (-1)^{\frac{n}{(n,j)}}]^{(n,j)}$.

This is equal to $2^{(n,j)}$ when $\frac{n}{(n,j)}$ is odd and 0 otherwise.

Proposition 7 Suppose $t|n, \delta = \frac{n}{t}$. Then

$$\sum_{x \in \mathbf{Z}_{\delta}^{\times}} \omega_n^{-ktx} = \frac{\varphi(\delta)}{\varphi(\frac{\delta}{(k,\delta)})} \sum_{x \in \mathbf{Z}_{\frac{\delta}{(k,\delta)}}^{\times}} \omega_{\frac{\delta}{(k,\delta)}}^{x}.$$

Proof: First note that $\omega_n^{tx} = \omega_\delta^x$. Also x and -x are both elements of $\mathbf{Z}_\delta^{\times}$. Therefore

$$\sum_{x \in \mathbf{Z}_{\delta}^{\times}} \omega_n^{-ktx} = \sum_{x \in \mathbf{Z}_{\delta}^{\times}} \omega_{\delta}^{kx}.$$

Now rewrite ω_{δ}^{kx} as $\omega_{\frac{\delta}{(\delta,k)}}^{\frac{k}{(\delta,k)}x}$. Hence

$$\sum_{x \in \mathbf{Z}_{\delta}^{\times}} \omega_{\delta}^{kx} = \sum_{x \in \mathbf{Z}_{\delta}^{\times}} \omega_{\frac{\delta}{(\delta, k)}}^{\frac{k}{(\delta, k)}x}$$

$$= \frac{\varphi(\delta)}{\varphi(\frac{\delta}{(k,\delta)})} \sum_{x \in \mathbf{Z}_{\frac{\delta}{(k,\delta)}}} \omega_{\frac{\delta}{(\delta,k)}}^{\frac{k}{(\delta,k)}x}.$$

This is because $\frac{\varphi(\delta)}{\varphi(\frac{\delta}{(k,\delta)})}$ summands are identical $\forall x \in \mathbf{Z}_{\delta}^{\times}$. Finally, since $(\frac{k}{(\delta,k)}, \frac{\delta}{(\delta,k)}) = 1$ this reduces to

$$\frac{\varphi(\delta)}{\varphi(\frac{\delta}{(k,\delta)})} \sum_{x \in \mathbf{Z}_{\frac{\delta}{(k,\delta)}}} \omega_{\frac{\delta}{(k,\delta)}}^x$$

which completes the proof of the proposition.

Proposition 8

$$\sum_{t \in \mathbf{Z}_n^{\times}} \omega_n^t = \mu(n).$$

Proof: Let $\Phi_n(x)$ denote the *n*th cyclotomic polynomial. Then $\sum_{t \in \mathbf{Z}_n^{\times}} \omega_n^t$ is just the negative of the coefficient of $x^{\varphi(n)-1}$ in $\Phi_n(x)$.

Claim 9 $\Phi_n(x) = \Phi_d(x^m)$ where n = dm and d is the product of all the distinct prime factors of n.

Proof: It is well known that $\Phi_n(x) = \prod_{r|n} (x^{\frac{n}{r}} - 1)^{\mu(r)}$. For a proof of this result see [4], page 353. Now $\Phi_d(x^m) = \prod_{s|d} (x^{\frac{n}{s}} - 1)^{\mu(s)}$. If s|n and s > d then s is divisible by the square of some prime and so $\mu(s) = 0$. Hence the claim.

Claim 10 $\Phi_{pn}(x) = \frac{\Phi_n(x^p)}{\Phi_n(x)}$ if p is a prime that does not divide n.

Proof: Once again we use the fact that $\Phi_n(x) = \prod_{r|n} (x^{\frac{n}{r}} - 1)^{\mu(r)}$. In our case we have

$$\Phi_{pn}(x) = \prod_{r|pn} (x^{\frac{np}{r}} - 1)^{\mu(r)}$$

$$= \prod_{r|pn:p/r} (x^{\frac{np}{r}} - 1)^{\mu(r)} \prod_{r|pn:p/r} (x^{\frac{np}{r}} - 1)^{\mu(r)}$$

$$= \prod_{t|n} (x^{\frac{np}{t}} - 1)^{\mu(t)} \prod_{s|n} (x^{\frac{n}{s}} - 1)^{\mu(sp)}.$$

However μ is a multiplicative function hence $\mu(sp) = -\mu(s)$ so

$$\Phi_{nn}(x) = (\Phi_n(x^p))(\Phi_n(x))^{-1}$$

If $p^2|n$ for some prime p then by Claim 9 the coefficient of $x^{\varphi(n)-1}$ in $\Phi_n(x)$ is 0. So assume that $n = \prod_{i=1}^m p_i$, where the p_i 's are distinct. We now use induction on m and Claim 10 to obtain that $\sum_{t \in \mathbf{Z}_n^{\times}} \omega_n^t = \mu(n)$.

Theorem 11

$$N_n^k = \frac{1}{n} \sum_{\substack{s \mid n \\ s \text{ odd}}} 2^{\frac{n}{s}} \frac{\varphi(s)}{\varphi(\frac{s}{(k,s)})} \mu(\frac{s}{(k,s)}).$$

Proof: Using Proposition 2 we obtain that

$$N_n^k = \frac{1}{n} \sum_{i=1}^n \omega_n^{-kj} P_n(\omega_n^j).$$

Now we use Proposition 4 to obtain

$$N_n^k = \frac{1}{n} \sum_{j: \frac{n}{(j,n)} \circ dd} \omega_n^{-kj} 2^{(j,n)}.$$

Now let (j, n) = t. Then

$$N_n^k = \frac{1}{n} \left(\sum_{t \mid n: \frac{n}{t} \circ dd} 2^t \sum_{x \in \mathbf{Z}_{\frac{n}{t}}^{\times}} \omega_n^{-ktx} \right)$$

since as x ranges over $\mathbf{Z}_{\frac{n}{t}}^{\times}$, tx ranges over the elements r such that (r, n) = t. Applying Proposition 10 we obtain

$$N_n^k = \frac{1}{n} \left(\sum_{t \mid n: \frac{n}{t} \circ dd} 2^t \frac{\varphi(\frac{n}{t})}{\varphi(\frac{n}{(k, \frac{n}{t})})} \sum_{x \in \mathbf{Z} \times \frac{n}{(k, \frac{n}{t})}} \omega_{\frac{n}{(k, \frac{n}{t})}}^x \right).$$

Finally, we use Proposition 7 to conclude that

$$N_n^k = \frac{1}{n} \sum_{t \mid n: \frac{n}{t} \circ dd} 2^t \frac{\varphi(\frac{n}{t})}{\varphi(\frac{\frac{n}{t}}{(k, \frac{n}{t})})} \mu(\frac{\frac{n}{t}}{(k, \frac{n}{t})}).$$

Substituting $s = \frac{n}{t}$ this reduces to

$$N_n^k = \frac{1}{n} \sum_{\substack{s \mid n \\ s \text{ odd}}} 2^{\frac{n}{s}} \frac{\varphi(s)}{\varphi(\frac{s}{(k,s)})} \mu(\frac{s}{(k,s)}).$$

For the case when k = n this formula can easily be simplified to obtain

$$N_n^n = \frac{1}{n} \sum_{\substack{s|n\\s \text{ odd}}} 2^{\frac{n}{s}} \varphi(s).$$

3 A Theorem About Finite Abelian Groups

A natural generalization of the problem discussed in the previous section is a similar problem for finite abelian groups. That is, if G is a finite abelian group of order n, we want to calculate the number of subsets of G whose elements sum up to the identity element $(\overline{0})$ of G.

For the purposes of this section we will use the following notation: Let \underline{S} denote a k-tuple of numbers, i.e. $\underline{S} = (s_1, s_2, \dots, s_k)$. Given two k-tuples \underline{J} and \underline{N} define

$$\sum_{\substack{0 < \underline{J} \le \underline{N} \\ = \sum_{j_1=1}^{j_1=n_1} \sum_{j_2=1}^{j_2=n_2} \cdots \sum_{j_k=n_k}^{j_k=n_k}}.$$

Will will denote the number of subsets of a finite abelian group G whose elements sum up to $\overline{0}$ by N_G .

Theorem 12 Let $G = \mathbf{Z}_{n_1} \oplus \mathbf{Z}_{n_2} \oplus \ldots \oplus \mathbf{Z}_{n_k}$ be a finite abelian group of order $n = n_1 n_2 \cdots n_k$. Given a k-tuple \underline{J} define $T_J = g.c.d.(\frac{j_1 n}{n_1}, \ldots, \frac{j_k n}{n_k})$ and let $\underline{N} = (n_1, n_2, \ldots, n_k)$. Then

$$N_G = \frac{1}{n} \sum_{\underline{0} < \underline{J} \leq \underline{N}} [1 - (-1)^{\frac{n}{(n,T_J)}}]^{(n,T_J)}.$$

We shall prove this theorem using the same ideas as before.

Proposition 13 Consider the polynomial

$$F(x_1, x_2, \dots, x_k) = \prod_{\underline{0} < \underline{S} < \underline{N}} (1 + x_1^{s_1} x_2^{s_2} \cdots x_k^{s_k}) = \sum_{\underline{\alpha}} a_{\underline{\alpha}} x_1^{\alpha_1} x_2^{\alpha_2} \cdots x_k^{\alpha_k}.$$

Then

$$N_G = \frac{1}{n} \sum_{\underline{0} < \underline{J} \leq \underline{N}} F(\omega_{n_1}^{j_1}, \dots, \omega_{n_k}^{j_k}).$$

Proof: The proof is identical to that of Proposition 2.

Proposition 14

$$F(\omega_{n_1}^{j_1},\ldots,\omega_{n_k}^{j_k}) = [1-(-1)^{\frac{n}{(n,T_J)}}]^{(n,T_J)}.$$

Proof: Note that $\omega_{n_i}^{j_i s_i} = \omega_n^{\frac{j_i s_i n}{n_i}}$. Therefore

$$F(\omega_{n_1}^{j_1}, \dots, \omega_{n_k}^{j_k}) = \prod_{\substack{\underline{0} < \underline{S} \leq \underline{N} \\ 0 < S < N}} (1 + \omega_{n_1}^{j_1 s_1} \omega_{n_2}^{j_2 s_2} \cdots \omega_{n_k}^{j_k s_k})$$

$$= \prod_{\substack{0 < S < N}} (1 + \omega_n^{\sum_i \frac{j_i s_i n}{n_i}}).$$

Consider the exponent in one factor of the above product for a fixed \underline{S} , i.e.

$$\sum_{i} s_i(\frac{j_i n}{n_i}) = T_J(\sum_{i} s_i(\frac{j_i n}{n_i T_J})).$$

Claim 15 For every m $(0 \le m \le n)$ there exists a k-tuple \underline{S} such that

$$T_J(\sum_i s_i(\frac{j_i n}{n_i T_J})) \equiv T_J m \mod n.$$

Proof: Note that g.c.d. $(\frac{j_1 n}{n_1 T_J}, \dots, \frac{j_k n}{n_k T_J}) = 1$ and therefore for any integer m there exists $s_i \in \mathbf{Z}$ such that

$$m = \sum_{i} \frac{s_i j_i n}{n_i T_J}.$$

Equivalently,

$$T_J m = T_J \left(\sum_i \frac{s_i j_i n}{n_i T_J} \right).$$

Now note that if any s_i is replaced by $s_i + n_i$ in the above equation then we still have equality (mod n). Thus every s_i can be chosen to be less than n_i .

Therefore by the above claim we obtain

$$\prod_{\underline{0} < \underline{S} \leq \underline{N}} (1 + \omega_n^{\sum_i \frac{j_i s_i n}{n_i}}) = \prod_{m=0}^{n-1} (1 + \omega_n^{T_J m})$$

$$= P_n(\omega_n^{T_J})$$

$$= [1 - (-1)^{\frac{n}{(n,T_J)}}]^{(n,T_J)}$$

and so we have proved the proposition.

Proof (main theorem): The theorem now follows immediately by combining Propositions 13 and 14:

$$N_{G} = \frac{1}{n} \sum_{\underline{0} < \underline{J} \leq \underline{N}} F(\omega_{n_{1}}^{j_{1}}, \dots, \omega_{n_{k}}^{j_{k}})$$

$$= \frac{1}{n} \sum_{\underline{0} < J < N} [1 - (-1)^{\frac{n}{(n,T_{J})}}]^{(n,T_{J})}.$$

4 Further Results

Another problem related to the calculation of N_n^k is the calculation of $N_{n,m}^n$ where $0 < m < \frac{n(n+1)}{2}$. $N_{n,m}^n$ is defined to be the number of subsets $B \subseteq \{1,2,\ldots,n\}$ such that $\sum_{b \in B} b \equiv 0 \mod m$. We Remark that $N_{n,m}^n$ is easily obtained when m|n.

Proposition 16 Let n, m be positive integers with m|n. Then

$$N_{n,m}^{n} = \frac{1}{m} \sum_{\substack{s \mid m \\ s \text{ odd}}} 2^{\frac{n}{s}} \varphi(s).$$

Proof: Using Lemma 3 and the same proof as given in Proposition 2 we obtain that:

$$N_{n,m}^n = \frac{1}{m} \sum_{j=1}^m P_n(\omega_m^j).$$

Now $1 + (\omega_m^j)^{m+i} = 1 + (\omega_m^j)^i$ so the factors in $P_n(\omega_m^j)$ repeat themselves $\frac{n}{m}$ times. Therefore $P_n(\omega_m^j) = [P_m(\omega_m^j)]^{\frac{n}{m}}$. Now we proceed as before to get

$$N_{n,m}^{n} = \frac{1}{m} \sum_{\substack{s \mid m \\ s \text{ odd}}} 2^{\frac{n}{s}} \varphi(s).$$

Snevily, [5] has proposed the following conjecture:

Conjecture 17 The sequence $\{N_{n,m}^n\}_{m=1}^{\frac{n(n+1)}{2}}$ is monotonically decreasing.

We also mention an interesting connection between our problem and two other counting problems in combinatorics. Let C_n denote the number of circular sequences of 0's and 1's, where two sequences obtained by a rotation are considered the same. This problem is discussed in [6], page 75. The solution is

$$C_n = \frac{1}{n} \sum_{t|n} \varphi(t) 2^{\frac{n}{t}}.$$

This is indentical in form to our formula for N_n^n except that in our case we sum over all t|n where t is odd. Another related problem is the calculation of the number of monic irreducible polynomials of degree n over a field of q elements where q is prime ([6], page 116). If the number of such polynomials is denoted M_n^q then

$$M_n^q = \frac{1}{n} \sum_{d|n} \mu(d) q^{\frac{n}{d}}.$$

For q=2 this has the exact same form as our formula for N_n^k where (k,n)=1. Once again, the only difference is that our sum is over d|n such that d is odd.

References

- [1] N. Alon and G. Freiman, On sums of a subset of a set of integers, *Combinatorica*, 8(4) (1988), 297-306.
- [2] P. Erdős and H. Heilbronn, On the addition of residue classes mod p, Acta Arithmetica, 9 (1964), 149-159.
- [3] J. Olson, An additive theorem modulo p, J. Combinatorial Theory, 5 (1968), 45-52.
- [4] R. Dean, Classical Abstract Algebra, Harper and Row, Publishers, New York, 1990.
- [5] H. Snevily, personal communication.
- [6] J.H. van Lint and R.M. Wilson, A Course in Combinatorics, Cambridge University Press 1992.

Nitu Kitchloo

 $Department\ of\ Mathematics\\ MIT\\ Cambridge,\ MA$

Lior Pachter

Department of Mathematics Caltech Pasadena, CA