
The Mathematica® Journal

Polyominoes and
Related Families
Jaime Rangel-Mondragón
Polyominoes are generalizations of dominoes constructed by joining
congruent squares side by side. By describing a polyomino as a list of
Gaussian integers, we generate all different polyominoes of a given size.
This method is extended to the generation of the families of polyiamonds,
polyhexes, and polykites. We also give a method to tile rectangles using
polyominoes and explore the fractal family of rep-tiles.

‡ Introduction
In 1953, when delivering a talk at the Harvard Mathematics Club, mathematician
Solomon Golomb [1] defined a new class of geometric figures he named polyomi-
noes. Polyominoes are generalizations of dominoes [2] and have been extremely
popular since their use in the game of Tetris [3]. They have also enjoyed a
prominent place in the recreational mathematics literature since Martin Gardner
further popularized them in 1957.

A polyomino is any connected figure that can be constructed by joining congru-
ent squares side by side. A polyomino formed by n squares is referred to as an
n-omino. In the first part of this work, we generate all n-ominoes and extend our
method to the corresponding generation of polyiamonds, polyhexes, and poly-
kites [4]. In the second part, we will tessellate rectangles using polyominoes and
introduce the family of rep-tiles.

Some sections of this work are ordered so that we can compare performance
issues among different computer configurations and also calculate timings for a
2003-vintage model 2.4 GHz personal computer using Mathematica 5.

In[1]:= Off@General::"spell", General::"spell1"D
SetOptions@Graphics, AspectRatio Ø AutomaticD;
<< "Graphics‘Colors‘";

‡ The Naive Approach
In this section we generate n-ominoes using a straightforward approach. We
consider all possible 0-1 nä n matrices and select those that are orthogonally
connected, that is, that have no isolated blocks of ones. To check this property
we read the first one and change its sign. We then mark those adjacent to it and
repeatedly spread this changing of signs to those adjacent to them until no
further changes occur. At the end, the new matrix cannot contain a one if the
original matrix represented a connected shape.The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

In this section we generate n-ominoes using a straightforward approach. We
consider all possible 0-1 nä n matrices and select those that are orthogonally
connected, that is, that have no isolated blocks of ones. To check this property
we read the first one and change its sign. We then mark those adjacent to it and
repeatedly spread this changing of signs to those adjacent to them until no
further changes occur. At the end, the new matrix cannot contain a one if the
original matrix represented a connected shape.

In[4]:= connectedQ@nOmino_D := Module@8n, m, i, j, h, k, s = nOmino<,8n, m< = Dimensions@sD;8i, j< = First@Position@s, 1DD;
sPi,jT = -1;

FixedPoint@HDo@If@sPh,kT == 1,
If@HHk > 1L && HsPh,k-1T < 0LL »» HHk < mL && HsPh,k+1T < 0LL »»HHh > 1L && HsPh-1,kT < 0LL »» HHh < nL && HsPh+1,kT < 0LL,

sPh,kT = -1DD, 8k, m<, 8h, n<D;
sL &, sD;

Position@s, 1D == 8<D
In[5]:= connectedQAikjjjjjjj 0 0 1

0 1 0

1 1 1

y{zzzzzzzE
Out[5]= False

The following function provides a canonical form for our matrices. It pushes the
entire configuration up and to the left so that neither the first row nor the first
column are all zero.

In[6]:= standard@m_D := Module@8p = Position@m, 1D, h, ans, n = Length@mD<,
ans = Table@0, 8n<, 8n<D;
h = 8Min@First êü pD, Min@Last êü pD<;
p = H# - h + 81, 1<L & êü p;
Map@HansPFirst@#D,Last@#DT = 1L &, pD;
ansD

In[7]:= standardAi
k
jjjjjjjjjjjjjjjjj

0 0 0 0 0

0 0 1 0 0

0 1 1 1 0

0 0 0 1 1

0 0 0 0 0

y
{
zzzzzzzzzzzzzzzzzE êê MatrixForm

Out[7]//MatrixForm=i
k
jjjjjjjjjjjjjjjjj

0 1 0 0 0

1 1 1 0 0

0 0 1 1 0

0 0 0 0 0

0 0 0 0 0

y
{
zzzzzzzzzzzzzzzzz

Our strategy is to generate all 0-1 nä n matrices (there are 2n2 of them), select
those having n ones that are connected, convert them to canonical form, and,
finally, remove repetitions from this list. For example, for n = 4, out of 65536
possible 4 ä 4 matrices we get only 1820 that have four ones, and, of those, 113
are connected. Only 19 are left when we select those with a different canonical
form.

610 Jaime Rangel-Mondragón

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

In[8]:= TimingA
n = 4;

u = SelectARangeA2n2 E, H Plus üü IntegerDigits@#, 2D ã nL &E;

v = Select@
Map@Partition@IntegerDigits@#, 2, n2 D, nD &, uD, connectedQ@#D &D;

w = Union@standard êü vD;9MatrixForm êü w, 2n2
, Length@uD, Length@vD, Length@wD=E

Out[8]= 91.156 Second,

99i
k
jjjjjjjjjjjj

0 0 1 0

1 1 1 0

0 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

0 1 0 0

0 1 0 0

1 1 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

0 1 0 0

1 1 0 0

0 1 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

0 1 0 0

1 1 0 0

1 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

0 1 0 0

1 1 1 0

0 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

0 1 1 0

1 1 0 0

0 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 0 0 0

1 0 0 0

1 1 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 0 0 0

1 1 0 0

0 1 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 0 0 0

1 1 0 0

1 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 0 0 0

1 1 1 0

0 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 1 0 0

0 1 0 0

0 1 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 1 0 0

0 1 1 0

0 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 1 0 0

1 0 0 0

1 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 1 1 0

0 0 1 0

0 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 1 1 0

0 1 0 0

0 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 1 1 0

1 0 0 0

0 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz=, 65536, 1820, 113, 19==

Although this is the simplest way, it takes nearly an hour to complete for n = 5,
which forces us to look for another approach. If, instead of selecting those binary
numbers having n digits that are 1 out of all 2n2 possible, we generate them

directly (there are
ikjjj n

2
y{zzz of them), we will save a substantial amount of time. The

function bin[n, b] computes all lists of length b having n ones.

In[9]:= bin@n_, l_D := 8< ê; n > l
bin@0, l_D := 8Table@0, 8l<D<
bin@1, 1D := 881<<
bin@n_, l_D := bin@n, lD = Join@Map@Join@80<, #D &, bin@n, l - 1DD,

Map@Join@81<, #D &, bin@n - 1, l - 1DDD

Polyominoes and Related Families 611

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

In[13]:= bin@3, 5D
Out[13]= 880, 0, 1, 1, 1<, 80, 1, 0, 1, 1<, 80, 1, 1, 0, 1<,80, 1, 1, 1, 0<, 81, 0, 0, 1, 1<, 81, 0, 1, 0, 1<, 81, 0, 1, 1, 0<,81, 1, 0, 0, 1<, 81, 1, 0, 1, 0<, 81, 1, 1, 0, 0<<

We get the 63 canonical forms for the case n = 5 more quickly.

In[14]:= Timing@
n = 5;
v = Select@Map@Partition@#, nD &, bin@n, n2 DD, connectedQ@#D &D;
w = Union@standard êü vD;
Length@wDD

Out[14]= 819.719 Second, 63<
However, some of these patterns are still equivalent under rotations and reflec-
tions, so more processing is needed. Although we have substantially reduced the
computing time, we will not pursue this approach any further because there is a
faster and more general alternative.

‡ Polyominoes
The straightforward approach presented in the previous section has many
disadvantages. The representation of polyominoes as 0-1 matrices is wasteful
because they are very sparse. In this section we consider a polyomino to be a list
of unit squares, where a square is specified by the Cartesian coordinates of its
bottom-left vertex; further, these coordinates will be encapsulated as complex
numbers. So, a polyomino will be a list of Gaussian integers; that is, complex
numbers having integral real and imaginary parts. We thus define the following
type.

In[15]:= polyominoQ@p_D := And üü HHIntegerQ@Re@#DD && IntegerQ@Im@#DDL & êü pL
In this definition we cannot use the pattern _Complex.. because only numbers
with nonzero imaginary parts have head Complex.

To determine whether two figures are equivalent, we consider the action of the
dihedral group D4 = 8e, r, r2 , r3 , f , f r, f r2 , f r3 <, where r rotates the figure by
90± and f turns it over. Given a polyomino, we then have at most eight different
equivalent polyominoes.

If we were using a matrix m to describe the positions of the squares forming a
polyomino, we could perform a 90± rotation with Reverse[Transpose[m]] and
a reflection with Transpose[m].

The following functions act on a given polyomino p; rot and ref correspond to
the transformations r and f. The function cyclic computes the list of the
rotations of p and is used in the construction of D4 produced by the function
dihedral. (In this case cyclic is equal to NestList[rot,p,3].) The function
canonical computes a standard representation of p by removing repetitions and
sorting. The functions liC and polC convert a list of complex numbers into a list
of points to be drawn as lines or as polygons. The arguments of the functions
cyclic and allPieces are not restricted to polyominoes as they will also be
used for the other families.

612 Jaime Rangel-Mondragón

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

The following functions act on a given polyomino p; rot and ref correspond to
the transformations r and f. The function cyclic computes the list of the
rotations of p and is used in the construction of D4 produced by the function
dihedral. (In this case cyclic is equal to NestList[rot,p,3].) The function
canonical computes a standard representation of p by removing repetitions and
sorting. The functions liC and polC convert a list of complex numbers into a list
of points to be drawn as lines or as polygons. The arguments of the functions
cyclic and allPieces are not restricted to polyominoes as they will also be
used for the other families.

In[16]:= rot@p_?polyominoQD := Â p
ref@p_?polyominoQD := H# - 2 Re@#DL & êü p

cyclic@p_D := Module@8i = p, ans = 8p<<,
While@Hi = rot@iDL ∫ p, AppendTo@ans, iDD; ansD

dihedral@p_?polyominoQD := Flatten@8#, ref@#D< & êü cyclic@pD, 1D
canonical@p_?polyominoQD :=
Union@H# - HMin@Re@pDD + Min@Im@pDD ÂLL & êü pD

allPieces@p_D := Union@canonical êü dihedral@pDD
liC@z_D := Line@8Re@#D, Im@#D< & êü zD
polC@z_D := Polygon@8Re@#D, Im@#D< & êü zD
draw@p_?polyominoQ, pr_: AllD :=
Graphics@88DarkKhaki, polC@8#, # + 1, # + 1 + Â, # + Â<D<,

liC@8#, # + 1, # + 1 + Â, # + Â, #<D< & êü p, PlotRange Ø prD
In[25]:= polyomino = 80, 1, 2, Â, 2 + Â, 2 + 2 Â, 3 + 2 Â<;

pol = draw@polyominoD;
Show@polD

From In[25]:=

The function draw generates the graphical object with an optional second
argument specifying the plot range. Note also the change in the representation
of a polyomino; the function canonical places the polyomino in the first quad-
rant touching both axes. Here is an example.

In[28]:= canonical@polyominoD
Out[28]= 80, Â, 1, 2, 2 + Â, 2 + 2 Â, 3 + 2 Â<

The function allpieces computes all eight equivalent figures (or less for some
polyominoes).

Polyominoes and Related Families 613

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

In[29]:= pol = draw@#, 880, 4.1<, 8-0.1, 4<<D & êü allPieces@polyominoD;
Show@GraphicsArray@Partition@pol, 4DDD

From In[29]:=

The following incremental method generates all n-ominoes. Having generated
the set of all Hn - 1L-ominoes, we take each of its members and append a square
to each of its squares in all four possible directions. Once we have this extended
set containing all the n-ominoes, we obtain their canonical representation and
proceed to eliminate the redundant ones.

In[31]:= polyominoes@1D := 880<<
polyominoes@n_D := polyominoes@nD = Module@8f, fig, ans = 8<<,

fig = Map@Hf = #; Map@8f, # + 1, f, # + Â, f, # - 1, f, # - Â< &, fDL &,
polyominoes@n - 1DD;

fig = Partition@Flatten@figD, nD;
f = Select@Union@canonical êü figD, Length@#D ã n &D;
While@f ∫ 8<,
ans = 8ans, First@fD<;
f = Complement@f, allPieces@First@fDDDD;

Partition@Flatten@ansD, nDD
In[33]:= pol = draw@#, 880, 2.1<, 8-0.1, 4<<D & êü polyominoes@4D;

Show@GraphicsArray@polDD
From In[33]:=

We can now compare the time taken to generate all pentominoes with the time it
took in the previous section. Because Mathematica uses dynamic programming to
retain the generated n-ominoes, the time it takes to recompute old values will
only amount to how long it takes to retrieve them and hence would be negligible.
So for a fair comparison, we have to start anew so that all previous values are
cleared. Let us restart the Mathematica kernel and evaluate the following after all
initialization cells are evaluated.

In[1]:= Timing@polyominoes@5D;D
Out[1]= 80.047 Second, Null<
We can now obtain the number of free n-ominoes (free meaning equivalent
under rotation and reflection) ([5, 6] seq. A000105).

614 Jaime Rangel-Mondragón

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

In[2]:= Timing@Table@Length@polyominoes@nDD, 8n, 9<DD
Out[2]= 813.625 Second, 81, 1, 2, 5, 12, 35, 108, 369, 1285<<
As an illustration, let us generate all 108 heptominoes, because it is not until
n = 7 that a hole appears. According to our definition, a polyomino can have one
or many interior holes. Can you spot the one having a hole among the following
heptominoes? (That is the reason we color the squares; otherwise, it would be
impossible to distinguish it.)

In[3]:= pol = draw@#, 88-0.5, 5<, 8-0.5, 7<<D & êü polyominoes@7D;
Show@GraphicsArray@Partition@pol, 12DDD

From In[3]:=

We can also obtain the one-sided (no reflections allowed) or “chiral” polyomi-
noes by running the following cell, which redefines function allPieces, rerun-
ning the previous function polyominoes, and computing the table as was done
before ([5, 6] seq. A000988). At the end of the generation of this table, we have
to recover the original definition of allPieces because it is needed in the next
section. The easiest way is to restart the Mathematica kernel, evaluate the initializa-
tion cells, and continue with the cells in the next section.

In[1]:= allPieces@p_?polyominoQD := Union@canonical êü cyclic@pDD
In[2]:= Timing@Table@Length@polyominoes@nDD, 8n, 8<DD

Out[2]= 83.688 Second, 81, 1, 2, 7, 18, 60, 196, 704<<

Polyominoes and Related Families 615

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

‡ Polyiamonds
Polyiamonds are figures built from congruent unit-side equilateral triangles in
the same way that polyominoes are built from squares. Any triangle forming a
polyiamond will be described by a pair 8A, t<, wherein A codifies the complex
coordinates a + b ‰

p ÂÅÅÅÅÅÅÅÅ3 of the leftmost vertex (anchor) of the triangle (we are
assuming one of its sides rests horizontally) and t is its type taken from the set81, -1<, corresponding to whether the apex is pointing up or down. The underly-
ing grid on which to place the triangles is generated by all integral linear combina-
tions of the numbers 1 and ‰

p ÂÅÅÅÅÅÅÅÅ3 . Any triangle 8A, t< has three neighbors adjacent
to it, namely, 8A, -t<, 8A + tv, -t<, and 8A + tHv - uL, -t<. As with polyominoes,
the canonical representation of a polyiamond moves the piece so that its leftmost
vertex touches the origin.

To construct the corresponding equivalent versions of a polyiamond, only
rotations of multiples of 60± are allowed (a rotation of 60± implies the type of a
triangle is changed) so that point Ha, bL gets rotated to point H-b, a + bL. The
reflection of a triangle is achieved simply by sending each of its vertices Ha, bL toH-a - b, bL. (In this representation a reflection gives the reverse negative of a
rotation!) The type of a polyiamond is tested as follows.

In[3]:= polyiamondQ@888_Integer, _Integer<, 1 » -1< ..<D := True
polyiamondQ@_D := False

Here are the polyiamond functions.

In[5]:= rot@p_?polyiamondQD :=88-#P1,2T , Plus üü First@#D< + If@Last@#D ã 1, 8-1, 1<, 80, 0<D,
-Last@#D< & êü p

ref@p_?polyiamondQD := 88-Plus üü First@#D, #P1,2T <, Last@#D< & êü p

dihedral@p_?polyiamondQD := Flatten@8#, ref@#D< & êü cyclic@pD, 1D
canonical@p_?polyiamondQD :=
Sort@Map@8First@#D - 8Min@First@First@#DD & êü pD,

Min@Last@First@#DD & êü pD<, Last@#D< & , pDD
draw@p_?polyiamondQ, pr_: AllD := ModuleA9a, b, v, t, u = ‰

p ÂÅÅÅÅÅÅÅÅ
3 =,

Graphics@888a, b<, t< = #; v = a + b u;8Chartreuse, polC@v + 80, If@t ã 1, u, 1 - uD, 1<D<,

liC@v + 80, If@t ã 1, u, 1 - uD, 1, 0<D< & êü p, PlotRange Ø prDE
Here is an example of a polyiamond and its conversion to canonical form.

616 Jaime Rangel-Mondragón

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

In[10]:= polyiamond = 8880, 0<, 1<, 880, 0<, -1<,881, -1<, 1<, 881, -1<, -1<, 881, 0<, -1<, 882, -1<, 1<<;
pol = draw@polyiamondD;
Show@polD

From In[10]:=

In[13]:= canonical@polyiamondD
Out[13]= 8880, 1<, -1<, 880, 1<, 1<, 881, 0<, -1<,881, 0<, 1<, 881, 1<, -1<, 882, 0<, 1<<

Here we obtain the polyiamonds equivalent to the previous one.

In[14]:= pol = draw@#, 88-0.1, 3.5<, 8-1, 2.7<<D & êü allPieces@polyiamondD;
Show@GraphicsArray@Partition@pol, 6DDD

From In[14]:=

Finally, we generate all nonisomorphic polyiamonds. We make use of the fact
that any triangle 88a, b<, 1< has neighbors 88a, b<, -1<, 88a, b + 1<, -1<, and88a - 1, b + 1<, -1<, and that triangle 88a, b<, -1< has neighbors88a, b<, 1<, 88a, b - 1<, 1<, and 88a + 1, b - 1<, 1<.

Polyominoes and Related Families 617

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

In[16]:= polyiamonds@1D := 88880, 0<, 1<<<
polyiamonds@n_D :=
polyiamonds@nD = Module@8f, A, t, x, y, z, fig, ans = 8<<,

fig = Map@Hf = #; Map@H8A, t< = #; 8f, 8A, -t<, f, 8A + 80, t<, -t<,
f, 8A + 8-t, t<, -t<<L &, fDL &, polyiamonds@n - 1DD;

fig = Partition@Partition@Flatten@figD, 3D ê.8x_Integer, y_, z_< Ø 88x, y<, z<, nD;
f = Union@canonical êü Select@Union êü fig, Length@#D ã n ⅅ
While@f ∫ 8<,
ans = 8ans, First@fD<;
f = Complement@f, allPieces@First@fDDDD;

Partition@Partition@Flatten@ansD, 3D ê.8x_Integer, y_, z_< Ø 88x, y<, z<, nDD
In[18]:= pol = draw@#, 880, 3<, 8-1, 2.6<<D & êü polyiamonds@6D;

Show@GraphicsArray@Partition@pol, 6DDD
From In[18]:=

The number of different polyiamonds is given by the following table ([5, 6], seq.
A000577).

In[20]:= Timing@Table@Length@polyiamonds@nDD, 8n, 8<DD
Out[20]= 80.969 Second, 81, 1, 1, 3, 4, 12, 24, 66<<

‡ Polyhexes
Polyhexes are figures built from congruent unit-length hexagons. We represent a
hexagon forming a polyhex simply by a pair Ha, bL corresponding to the complex
coordinates of its left-bottom corner a + b ‰

p ÂÅÅÅÅÅÅÅÅ3 . For this reason, all the corre-
sponding functions turn out to be straightforward adaptations of their polyia-
mond counterparts.

In[21]:= polyhexeQ@88_Integer, _Integer< ..<D := True
polyhexeQ@_D := False

618 Jaime Rangel-Mondragón

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

In[23]:= rot@p_?polyhexeQD := 8-Last@#D, Plus üü #< & êü p
ref@p_?polyhexeQD := 8-Plus üü #, Last@#D< & êü p

dihedral@p_?polyhexeQD := Flatten@8#, ref@#D< & êü cyclic@pD, 1D
canonical@p_?polyhexeQD :=
Sort@Map@H# - 8Min@First êü pD, Min@Last êü pD<L & , pDD

draw@p_?polyhexeQ, pr_: AllD := ModuleA9a, b, v, t, u = ‰
p ÂÅÅÅÅÅÅÅÅ
3 =,

Graphics@88a, b< = #; v = a + b u; 8CadetBlue,
polC@8v, v + 1, v + 1 + u, v + 2 u, v + 2 u - 1, v + u - 1<D<,

liC@8v, v + 1, v + 1 + u, v + 2 u, v + 2 u - 1, v + u - 1, v<D< & êü
p, PlotRange Ø prDE

In[28]:= polyhex = 880, 0<, 81, 1<, 82, -1<, 83, -3<<;
pol = draw@polyhexD;
Show@polD

From In[28]:=

In[31]:= canonical@polyhexD
Out[31]= 880, 3<, 81, 4<, 82, 2<, 83, 0<<
In[32]:= pol = draw@#, 88-0.5, 6<, 8-0.2, 5.5<<D & êü allPieces@polyhexD;

Show@GraphicsArray@Partition@pol, 6DDD
From In[32]:=

The neighbors of a hexagon Ha, bL are Ha - 1, b - 1L, Ha + 1, b + 2L, Ha + 2, b - 1L,Ha + 1, b + 1L, Ha - 1, b + 2L, and Ha - 2, b + 1L. Thus, we can simulate a hexagonal
cellular space by a rectangular cellular space in which the neighbors are these
nonadjacent ones. The following function generates all polyhexes of a given
order.

Polyominoes and Related Families 619

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

The neighbors of a hexagon Ha, bL are Ha - 1, b - 1L, Ha + 1, b + 2L, Ha + 2, b - 1L,Ha + 1, b + 1L, Ha - 1, b + 2L, and Ha - 2, b + 1L. Thus, we can simulate a hexagonal
cellular space by a rectangular cellular space in which the neighbors are these
nonadjacent ones. The following function generates all polyhexes of a given
order.

In[34]:= polyhexes@1D := 8880, 0<<<
polyhexes@n_D := polyhexes@nD = Module@8f, a, b, fig, ans = 8<<,

fig =
Map@Hf = #; Map@H8a, b< = #; 8f, 8a - 1, b - 1<, f, 8a + 1, b - 2<, f,8a + 2, b - 1<, f, 8a + 1, b + 1<, f, 8a - 1, b + 2<,

f, 8a - 2, b + 1<<L &, fDL &, polyhexes@n - 1DD;
fig = Partition@Partition@Flatten@figD, 2D, nD;
f = Union@canonical êü Select@Union êü fig, Length@#D ã n ⅅ
While@f ∫ 8<,
ans = 8ans, First@fD<;
f = Complement@f, allPieces@First@fDDDD;

Partition@Partition@Flatten@ansD, 2D, nDD
In[36]:= pol = draw@#, 88-0.5, 6.2<, 8-0.5, 5.5<<D & êü polyhexes@4D;

Show@GraphicsArray@polDD
From In[36]:=

The number of different polyhexes is given by the following table ([5, 6], seq.
A000228).

In[38]:= Timing@Table@Length@polyhexes@nDD, 8n, 8<DD
Out[38]= 818.891 Second, 81, 1, 3, 7, 22, 82, 333, 1448<<

‡ Polykites
Polykites are figures built from the quadrilaterals forming the following lattice.
On top of this lattice, we have shown the arrangements corresponding to all the
possible shapes for the 1-polykite, 2-polykites, and 3-polykites using different
colors. Larger-order polykites offer a lovely resemblance of faces, birds, and
animal shapes in a way similar to tangrams. Their different balance and aesthetic
properties motivated the author to include their generation as a proper sibling of
polyominoes; however, the other Penrose piece, the Dart, being nonconvex,
resisted all attempts at generating polydarts.

Just as we have two types of triangles forming polyiamonds, we have six types of
kites forming polykites and we will describe them in a similar fashion. The
following comprises an adaptation of the functions we have previously designed.
The type of a polykite is tested as follows.

620 Jaime Rangel-Mondragón

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

Just as we have two types of triangles forming polyiamonds, we have six types of
kites forming polykites and we will describe them in a similar fashion. The
following comprises an adaptation of the functions we have previously designed.
The type of a polykite is tested as follows.

In[39]:= polykiteQ@888_Integer, _Integer<, 1 » 2 » 3 » 4 » 5 » 6< ..<D := True
polykiteQ@_D := False

Here are the polykite functions.

In[41]:= rot@p_?polykiteQD :=88-#P1,2T , Plus üü First@#D<, If@Last@#D ã 6, 1, 1 + Last@#DD< & êü p
ref@p_?polykiteQD := 88-Plus üü First@#D, #P1,2T <,

Switch@Last@#D, 1, 3, 2, 2, 3, 1, 4, 6, 5, 5, 6, 4D< & êü p

dihedral@p_?polykiteQD := Flatten@8#, ref@#D< & êü cyclic@pD, 1D
canonical@p_?polykiteQD :=
Sort@Map@8First@#D - 8Min@First@First@#DD & êü pD,

Min@Last@First@#DD & êü pD<, Last@#D< & , pDD
draw@p_?polykiteQ, pr_: AllD := ModuleA9a, b, v, t, u = ‰

p ÂÅÅÅÅÅÅÅÅ
3 =,

GraphicsA988a, b<, t< = #; v = a + b u;9LightCadmiumRed, polCAv + 90, ut-1 ,
2 Hut + ut-1 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

3
, ut =E=,

liCAv + 90, ut-1,
2 Hut + ut-1 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

3
, ut, 0=E= & êü p, PlotRange Ø prEE

In[46]:= polykite = 8880, 0<, 4<, 880, -2<, 2<, 880, -2<, 1<, 882, -2<, 3<<;
pol = draw@polykiteD;
Show@polD

From In[46]:=

In[49]:= canonical@polykiteD
Out[49]= 8880, 0<, 1<, 880, 0<, 2<, 880, 2<, 4<, 882, 0<, 3<<

Polyominoes and Related Families 621

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

In[50]:= pol = draw@#, 88-0.5, 3.5<, 8-1, 2.8<<D & êü allPieces@polykiteD;
Show@GraphicsArray@Partition@pol, 6DDD

From In[50]:=

The polykite 8A, t< has neighbors depending on its anchor point and its type as
shown in the following Switch instruction.

In[52]:= polykites@1D := 88880, 0<, 1<<<
polykites@n_D :=
polykites@nD = Module@8f, A, t, x, y, z, fig, ans = 8<<,

fig = Map@Hf = #; Map@H8A, t< = #;
Switch@t,
1, 8f, 8A + 82, 0<, 3<,
f, 8A + 80, 2<, 5<, f, 8A, 2<, f, 8A, 6<<,

2, 8f, 8A + 80, 2<, 4<, f, 8A + 2 8-1, 1<, 6<,
f, 8A, 3<, f, 8A, 1<<,

3, 8f, 8A + 2 8-1, 1<, 5<, f, 8A + 8-2, 0<, 1<,
f, 8A, 4<, f, 8A, 2<<,

4, 8f, 8A + 8-2, 0<, 6<, f, 8A + 80, -2<, 2<,
f, 8A, 5<, f, 8A, 3<<,

5, 8f, 8A + 80, -2<, 1<, f, 8A + 2 81, -1<, 3<,
f, 8A, 6<, f, 8A, 4<<,

6, 8f, 8A + 82, 0<, 4<, f, 8A + 2 81, -1<, 2<, f,8A, 1<, f, 8A, 5<<DL &, fDL &, polykites@n - 1DD;
fig = Partition@Partition@Flatten@figD, 3D ê.8x_Integer, y_, z_< Ø 88x, y<, z<, nD;
f = Union@canonical êü Select@Union êü fig, Length@#D ã n ⅅ
While@f ∫ 8<,
ans = 8ans, First@fD<;
f = Complement@f, allPieces@First@fDDDD;

Partition@Partition@Flatten@ansD, 3D ê.8x_Integer, y_, z_< Ø 88x, y<, z<, nDD
In[54]:= pol = draw@#, 88-1, 4<, 8-0.1, 3<<D & êü polykites@4D;

Show@GraphicsArray@Partition@pol, 5DDD
From In[54]:=

622 Jaime Rangel-Mondragón

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

The number of different polykites is given by the following table ([5, 6], seq.
A057786).

In[56]:= Timing@Table@Length@polykites@nDD, 8n, 8<DD
Out[56]= 816.578 Second, 81, 2, 4, 10, 27, 85, 262, 873<<

We invite the reader to generate all six polykites that, besides having beautiful
shapes, present for the first time a hollowed piece. Here is the corresponding
code.

In[57]:= pol = draw@#, 88-1, 5<, 8-1, 3<<D & êü polykites@6D;
Show@GraphicsArray@Partition@pol, 17DDD

In the next part of this work, we will tile rectangles with polyominoes and
introduce the family of rep-tiles, which presents a fascinating way of tiling the
whole plane with specific polyominoes and polyiamonds.

‡ Tiling Rectangles with Polyominoes
In this section, we approach the problem of tiling a rectangle by using pieces
taken from a set of polyominoes. Naturally, the area of the rectangle has to be
equal to the sum of the areas of the individual pieces in the set. Thus, we immedi-
ately know that it would be impossible to fill a rectangle of area 11 with domi-
noes or one of area 10 with triominoes, although it is not immediately apparent
that we could fill a rectangle of arbitrary area (greater than 2) using dominoes
and triominoes.

This section comprises three parts. The first one discusses tiling a rectangle
allowing repetitions of the pieces taken from a given list. The second part will
consider those tilings having no fault lines. Finally, in the last part we will tile
using all pieces of a given set.

The function tess uses the backtrack method to construct all possible tilings of
an n ä m rectangle with pieces taken from a given list poly. The optional argu-
ment justOneSolution is included in case we do not want all solutions. The
function tess uses the recursive function tessAux, which implements the
backtrack mechanism: all possible candidates for the placement of the next piece
are computed and the lexicographically smallest one is chosen. Each piece,
including its rotations and reflections, is placed, and then tessAux is called
recursively. As the method works faster if n > m, their values are swapped before
and after computing the solutions. The function getLines takes a tiling and
computes the endpoints of the horizontal and vertical lines forming the right-
most boundaries of the pieces of the tiling. The function tile displays a graphic
array of the solutions of given width r.

Polyominoes and Related Families 623

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

In[59]:= lexic@p_D := Sort@p,HIm@#1D < Im@#2DL »» HHIm@#1D == Im@#2DL && HRe@#1D § Re@#2DLL &D
tess@8n_, m_<, poly_, justOneSolution_: FalseD :=
Module@8avail, pieces, i, j, ans = 8<, tessAux, na, ma<,

tessAux@partial_D := Module@8f, c, candidates, newp, k<,
candidates = Complement@avail, Flatten@partialDD;
If@candidates ã 8<,
AppendTo@ans, partialD; If@justOneSolution, Throw@1DD,
k = First@lexic@candidatesDD;
Map@Hnewp = k + # - First@#D;

If@HComplement@newp, availD ã 8<L && Hf =
Flatten@8partial, newp<D; Length@fD ã Length@Union@fDDL,

tessAux@Append@partial, newpDDDL &, piecesDDD;8na, ma< = If@n < m, 8m, n<, 8n, m<D;
pieces = lexic êü Union@Flatten@allPieces êü poly, 1DD;
avail = Flatten@Table@i + j Â, 8j, 0, na - 1<, 8i, 0, ma - 1<DD;
Catch@tessAux@8<DD;
If@n < m, Map@m - 1 + Â # &, ansD, ansDD

getLines@tiling_D := Module@8p<,
Partition@Flatten@

Map@Hp = #; Map@8If@Not@MemberQ@p, # + 1DD, 8# + 1, # + 1 + Â<, 8<D,
If@Not@MemberQ@p, # + ÂDD, 8# + Â, # + 1 + Â<, 8<D< &,

pDL &, tilingDD, 2DD
tile@8n_, m_<, poly_, r_, justOneSolution_: FalseD :=
Module@8t, u, g<,
t = tess@8n, m<, poly, justOneSolutionD;
g = Map@Graphics@Append@88LightBlue, Rectangle@80, 0<, 8m, n<D<,

Line@880, n<, 80, 0<, 8m, 0<<D<, liC êü getLines@#DDD &, tD;
Show@GraphicsArray@Partition@If@Mod@Length@tD, rD == 0,

g, Join@g, Table@Graphics@Point@80, 0<DD,8r - Mod@Length@tD, rD<DDD, rDDD;D
For instance, here is how to get all possible ways of tiling a 4ä 3 rectangle with
the L-triomino.

In[63]:= tile@84, 3<, 880, Â, 1<<, 4D
From In[63]:=

Even nonpolyomino pieces are allowed. Consider, for instance, the “number 8”
piece 80, 1 + Â<, that is, two squares touching at a vertex, together with a domino80, 1< in the tiling of a 4 ä2 rectangle. Naturally, two number 8 pieces have to
always be together forming a square in any tiling.

624 Jaime Rangel-Mondragón

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

In[64]:= tile@84, 2<, 880, 1 + Â<, 80, 1<<, 6D
From In[64]:=

Here are all possible tilings of a 2ä 5 rectangle by dominoes.

In[65]:= tile@82, 5<, polyominoes@2D, 4D
From In[65]:=

In general, the number of tilings of 2ä n rectangles by dominoes is well known to
be the Fibonacci numbers.

In[66]:= Timing@Table@Length@tess@82, n<, polyominoes@2DDD, 8n, 15<DD
Out[66]= 82.547 Second,81, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987<<

Here are all possible tilings of a 3 ä 4 rectangle by dominoes and the number of
tilings of 3ä n rectangles, n § 15.

In[67]:= tile@83, 4<, polyominoes@2D, 4D
From In[67]:=

In[68]:= Timing@Table@Length@tess@83, n<, polyominoes@2DDD, 8n, 15<DD
Out[68]= 850.141 Second, 80, 3, 0, 11, 0, 41, 0, 153, 0, 571, 0, 2131, 0, 7953, 0<<

Here is a generating function for these numbers [7].

In[69]:= SeriesA 3 - x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - 4 x + x2

, 8x, 0, 6<E
Out[69]= 3 + 11 x + 41 x2 + 153 x3 + 571 x4 + 2131 x5 + 7953 x6 + O@xD7

Polyominoes and Related Families 625

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

Or, more explicitly [7].

In[70]:=
h̀hhhhhhhhhhh I2 +

è!!!
3 MRange@10D

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3 -

è!!!
3

pxxxxxxxxxxxx
Out[70]= 83, 11, 41, 153, 571, 2131, 7953, 29681, 110771, 413403<

Let us now explore the tiling of a 2ä 12 rectangle with the L-triomino.

In[71]:= tile@82, 9<, 8Last@polyominoes@3DD<, 2D
From In[71]:=

The number of such tilings is somewhat expected.

In[72]:= Timing@
Table@Length@tess@8n, 2<, 8Last@polyominoes@3DD<DD, 8n, 15<DD

Out[72]= 80.312 Second, 80, 0, 2, 0, 0, 4, 0, 0, 8, 0, 0, 16, 0, 0, 32<<
Using the complete set of triominoes, we obtain the following ([5, 6], seq.
A001835).

In[73]:= tile@82, 9<, polyominoes@3D, 4D
From In[73]:=

In[74]:= Timing@Table@Length@tess@82, n<, polyominoes@3DDD, 8n, 15<DD
Out[74]= 82.235 Second, 80, 0, 3, 0, 0, 11, 0, 0, 41, 0, 0, 153, 0, 0, 571<<

626 Jaime Rangel-Mondragón

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

Compare this sequence with the number of tilings of a 3ä n rectangle by
dominoes.

We now consider both sets of dominoes and triominoes together.

In[75]:= tile@82, 5<, Join@polyominoes@2D, polyominoes@3DD, 5D
From In[75]:=

In[76]:= Timing@Table@Length@
tess@82, n<, Join@polyominoes@2D, polyominoes@3DDDD, 8n, 10<DD

Out[76]= 812.141 Second, 81, 2, 6, 17, 43, 108, 280, 727, 1875, 4832<<
Let us now compute the number of ways of tiling an n äm rectangle with domi-
noes. We know that n m has to be even; the symmetry of the problem allows us
to proceed as follows.

In[77]:= u = Table@0, 86<, 86<D;
Do@If@Mod@n m, 2D ã 0,

uPn,mT = uPm,nT = Length@tess@8n, m<, polyominoes@2DDDD,8n, 6<, 8m, n, 6<D;

MatrixForm[u]

Out[79]//MatrixForm=i
k
jjjjjjjjjjjjjjjjjjjjjj

0 1 0 1 0 1

1 2 3 5 8 13

0 3 0 11 0 41

1 5 11 36 95 281

0 8 0 95 0 1183

1 13 41 281 1183 6728

y
{
zzzzzzzzzzzzzzzzzzzzzz

The elements of the diagonal correspond to [5, 6], seq. A004003. Here is the
corresponding result for triominoes [8].

Polyominoes and Related Families 627

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

In[80]:= u = Table@0, 86<, 86<D;
Do@If@Mod@n m, 3D ã 0,

uPn,mT = uPm,nT = Length@tess@8n, m<, polyominoes@3DDDD,8n, 6<, 8m, n, 6<D;

MatrixForm[u]

Out[82]//MatrixForm=i
k
jjjjjjjjjjjjjjjjjjjjjj

0 0 1 0 0 1

0 0 3 0 0 11

1 3 10 23 62 170

0 0 23 0 0 939

0 0 62 0 0 8342

1 11 170 939 8342 80092

y
{
zzzzzzzzzzzzzzzzzzzzzz

The contributions to this result by the individual triominoes are small.

In[83]:= u = Table@0, 86<, 86<D;
Do@If@Mod@n m, 3D ã 0,

uPn,mT = uPm,nT = Length@tess@8n, m<, 8First@polyominoes@3DD<DDD,8n, 6<, 8m, n, 6<D;

MatrixForm[u]

Out[85]//MatrixForm=i
k
jjjjjjjjjjjjjjjjjjjjjj

0 0 1 0 0 1

0 0 1 0 0 1

1 1 2 3 4 6

0 0 3 0 0 13

0 0 4 0 0 22

1 1 6 13 22 64

y
{
zzzzzzzzzzzzzzzzzzzzzz

In[86]:= u = Table@0, 86<, 86<D;
Do@If@Mod@n m, 3D ã 0,

uPn,mT = uPm,nT = Length@tess@8n, m<, 8Last@polyominoes@3DD<DDD,8n, 6<, 8m, n, 6<D;

MatrixForm[u]

Out[88]//MatrixForm=i
k
jjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0

0 0 2 0 0 4

0 2 0 4 0 8

0 0 4 0 0 18

0 0 0 0 0 72

0 4 8 18 72 162

y
{
zzzzzzzzzzzzzzzzzzzzzz

Although there are no 3ä 3 tilings by the L-triomino and only two by the straight
triomino, together they manage to tile in 10 different ways.

628 Jaime Rangel-Mondragón

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

In[89]:= tile@83, 3<, polyominoes@3D, 5D
From In[89]:=

In general, an n ä m Hm, n ¥ 2L rectangle can be tiled with the L-triomino when-
ever m n is divisible by 3, except when one is 3 and the other is odd [9]. Here are
some more general results corresponding to other cases.

Ë An L-tetromino tiles an n ä m rectangle iff n, m > 1 and 8 divides n m.

Ë The T-tetromino tiles an nä m rectangle iff 4 divides both n and m.

Ë If a rectangle can be tiled with k L-tetrominoes, then k is even.

Ë An n äm rectangle can be tiled by the straight p-omino iff p divides n or
p divides m.

The next two examples show the time needed to get one solution versus all
solutions.

In[90]:= Timing@tile@86, 11<, 880, Â, 2 Â, 1 + 2 Â, 3 Â, 1 + 3 Â<<, 4DD
Out[90]= 820.359 Second, Null<
In[91]:= Timing@tile@86, 11<, 880, Â, 2 Â, 1 + 2 Â, 3 Â, 1 + 3 Â<<, 1, TrueDD

Out[91]= 81.219 Second, Null<
· Fault-Free Tilings

As the number of different solutions grows, we would like to consider only those
that have not appeared in smaller instances of the problem. For example, the
tilings of a 4 ä 6 rectangle by the L-triomino include all those appearing when
tiling two separate 2 ä 6 rectangles.

In[92]:= tile@84, 6<, 880, 1, Â<<, 6D
From In[92]:=

In tiling a rectangle, we might generate fault lines. A fault line is any horizontal
or vertical line that divides a tiling so that it can be regarded as the union of the
tilings of two subrectangles [10]. The function tileNF computes all fault-free
tilings of an nä m rectangle by a given set of pieces poly. As before, the graphic
array of the solutions is considered to be of a given width r. It generates the
whole set of tilings and then selects the fault-free tilings, with the help of the
predicate noFaultLineQ. This last function computes the length of the horizon-
tal and vertical lines present in the tiling and verifies that no row or column has
m or n elements, respectively.

Polyominoes and Related Families 629

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

In tiling a rectangle, we might generate fault lines. A fault line is any horizontal
or vertical line that divides a tiling so that it can be regarded as the union of the
tilings of two subrectangles [10]. The function tileNF computes all fault-free
tilings of an nä m rectangle by a given set of pieces poly. As before, the graphic
array of the solutions is considered to be of a given width r. It generates the
whole set of tilings and then selects the fault-free tilings, with the help of the
predicate noFaultLineQ. This last function computes the length of the horizon-
tal and vertical lines present in the tiling and verifies that no row or column has
m or n elements, respectively.

In[93]:= noFaultLineQ@8n_, m_<, tiling_D := Module@8l, h, v, c<,
l = getLines@tilingD;
h = Table@Length@

Select@l, Im@First@#DD == Im@Last@#DD ã c &DD, 8c, n - 1<D;
v = Table@Length@Select@l, Re@First@#DD ã Re@Last@#DD ã c &DD,8c, m - 1<D;
Not@MemberQ@h, mD »» MemberQ@v, nDDD

tileNF@8n_, m_<, poly_, r_D := Module@8t, u, g<,
t = Select@tess@8n, m<, polyD, noFaultLineQ@8n, m<, #D &D;
g = Map@Graphics@Append@88LightBlue, Rectangle@80, 0<, 8m, n<D<,

Line@880, n<, 80, 0<, 8m, 0<<D<, liC êü getLines@#DDD &, tD;
Show@GraphicsArray@Partition@If@Mod@Length@tD, rD == 0,

g, Join@g, Table@Graphics@Point@80, 0<DD,8r - Mod@Length@tD, rD<DDD, rDDD;D
We use this predicate to select the tilings without fault lines appearing in the
previous example.

In[95]:= tileNF@84, 6<, 880, 1, Â<<, 2D
From In[95]:=

A more abundant example shows all fault-free tilings of a 6 ä 7 rectangle using the
L-triomino.

630 Jaime Rangel-Mondragón

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

In[96]:= tileNF@86, 7<, 8Last@polyominoes@3DD<, 5D
From In[96]:=

Do tilings with dominoes always have fault lines? Not always.

In[97]:= Timing@u = Table@0, 87<, 87<D;
Do@If@Mod@n m, 2D ã 0,

uPn,mT = uPm,nT = Length@Select@tess@8n, m<, polyominoes@2DD,
noFaultLineQ@8n, m<, #D &DDD, 8n, 7<, 8m, n, 7<D;

MatrixForm[u] D
Out[97]= 9425.109 Second,

i
k
jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 6 0

0 0 0 0 6 0 124

0 0 0 0 0 124 0

y
{
zzzzzzzzzzzzzzzzzzzzzzzzzzzz

=
Here are the smallest counterexamples.

Polyominoes and Related Families 631

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

In[98]:= tileNF@85, 6<, polyominoes@2D, 3D
From In[98]:=

Fault-free tilings produced by 3-ominoes are also interesting.

In[99]:= Timing@u = Table@0, 86<, 86<D;
Do@If@Mod@n m, 3D ã 0,

uPn,mT = uPm,nT = Length@Select@tess@8n, m<, polyominoes@3DD,
noFaultLineQ@8n, m<, #D &DDD, 8n, 6<, 8m, n, 6<D;

MatrixForm[u] D
Out[99]= 91525.34 Second,

i
k
jjjjjjjjjjjjjjjjjjjjjj

0 0 1 0 0 0

0 0 2 0 0 2

1 2 0 2 2 0

0 0 2 0 0 236

0 0 2 0 0 2060

0 2 0 236 2060 6312

y
{
zzzzzzzzzzzzzzzzzzzzzz=

Like the tilings without restrictions from the previous section, the contributions
of the individual pieces to this total are minuscule.

In[100]:= Timing@u = Table@0, 89<, 89<D;
Do@If@Mod@n m, 3D ã 0, uPn,mT =

uPm,nT = Length@Select@tess@8n, m<, 8First@polyominoes@3DD<D,
noFaultLineQ@8n, m<, #D &DDD, 8n, 9<, 8m, n, 9<D;

MatrixForm[u] D
Out[100]= 91068.3 Second,

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 32

0 0 0 0 0 0 0 0 48

0 0 0 0 0 0 32 48 16

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
=

632 Jaime Rangel-Mondragón

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

In[101]:= Timing@u = Table@0, 86<, 86<D;
Do@If@Mod@n m, 3D ã 0, uPn,mT =

uPm,nT = Length@Select@tess@8n, m<, 8Last@polyominoes@3DD<D,
noFaultLineQ@8n, m<, #D &DDD, 8n, 6<, 8m, n, 6<D;

MatrixForm[u] D
Out[101]= 93. Second,

i
k
jjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0

0 0 2 0 0 0

0 2 0 0 0 0

0 0 0 0 0 2

0 0 0 0 0 8

0 0 0 2 8 2

y
{
zzzzzzzzzzzzzzzzzzzzzz=

The smallest examples of fault-free tilings of squares by each polyomino produce
patterns of striking beauty.

In[102]:= tileNF@89, 9<, 8First@polyominoes@3DD<, 4D
From In[102]:=

In[103]:= tileNF@86, 6<, 8Last@polyominoes@3DD<, 2D
From In[103]:=

Polyominoes and Related Families 633

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

· Jigsaws
Let us now approach the problem of tiling an n ä m rectangle using all the pieces
of a list poly of given polyominoes once and only once. We naturally need to
have Length[Flatten[poly]]=n m. The pieces appearing in poly do not need
to be different and, with the inclusion of several equal ones, we can control their
multiplicity. The functions tessAll and jigsaw, similar to our previous func-
tions tess and tile, provide the necessary changes, which essentially amount to
dropping a piece once used.

In[104]:= tessAll@8n_, m_<, poly_, justOne_: FalseD :=
Module@8avail, i, j, ans = 8<, tessAux, na, ma<,

tessAux@partial_, p_D :=
Module@8f, c, i, candidates, newp, pieces, q, k<,
candidates = Complement@avail, Flatten@partialDD;
If@Hp ã 8<L »» Hcandidates ã 8<L,
AppendTo@ans, partialD; If@justOne, Throw@1DD,
k = First@lexic@candidatesDD;
Do@
q = lexic êü allPieces@pPiT D;
Map@H

newp = k + # - First@#D;
If@HComplement@newp, availD ã 8<L && Hf = Flatten@8partial, newp<D; Length@fD ã Length@Union@fDDL,
tessAux@Append@partial, newpD, Drop@p, 8i<DDDL &, qD, 8i, Length@pD<DDD;

If@Length@Flatten@polyDD < n m, 8<,8na, ma< = If@n < m, 8m, n<, 8n, m<D;
avail = Flatten@Table@i + j Â, 8j, 0, na - 1<, 8i, 0, ma - 1<DD;
Catch@tessAux@8<, polyDD;
If@n < m, Map@m - 1 + Â # &, ansD, ansDDD

jigsaw@8n_, m_<, poly_, r_, justOneSolution_: FalseD :=
Module@8t, u, g<,
t = tessAll@8n, m<, poly, justOneSolutionD;
g = Map@Graphics@Append@88LightBlue, Rectangle@80, 0<, 8m, n<D<,

Line@880, n<, 80, 0<, 8m, 0<<D<, liC êü getLines@#DDD &, tD;
Show@GraphicsArray@Partition@If@Mod@Length@tD, rD == 0,

g, Join@g, Table@Graphics@Point@80, 0<DD,8r - Mod@Length@tD, rD<DDD, rDDD;D
In[106]:= polyominoes@3D

Out[106]= 880, Â, 2 Â<, 80, Â, 1<<
For instance, let us compute all possible tilings that also happen to be fault free
using the set of pentominoes.

634 Jaime Rangel-Mondragón

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

In[107]:= n = 5;
p = n Length@polyominoes@nDD;

s = SelectAMapA9#,
p
ÅÅÅÅ
#

= &, Divisors@pDE, 1 < First@#D § Last@#D &E;

Timing@Map@jigsaw@#, polyominoes@nD, 1, TrueD &, sD;D
From In[107]:=

From In[107]:=

From In[107]:=

From In[107]:=

Out[110]= 8505.328 Second, Null<
We can generate a tiling of the 8 ä 8 square with pentominoes by adding a square
so that the sum of the areas is 64.

Polyominoes and Related Families 635

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

In[111]:= Timing@
jigsaw@88, 8<, Append@polyominoes@5D, 80, 1, Â, 1 + Â<D, 1, TrueDD

From In[111]:=

Out[111]= 8209.859 Second, Null<
Unfortunately, the family of 35 hexominoes cannot tile a rectangle. In dealing
with tilings with heptominoes, we have to consider that one of them has a hole
and so we cannot tile a rectangle without a hole. For instance, in attempting to
tile 12 8 ä 8 squares (I thank the anonymous reviewer for this suggestion) in
which a square has been removed from each one of them (so that their total area
is 756, equal to the area covered by the 108 heptominoes), we just have to change
the variable avail appearing in the function tess to construct the 8 ä 8 - 1
squares appearing on the diagonal of a 96ä 96 square. This general approach
takes too long and calls for another methodology, which the author hopes to
report about in a future work.

‡ Rep-Tiles
If a polyomino can be divided into a finite number of congruent copies similar to
itself, we say that it is a rep-tile, or more specifically, an n-reptile. The so-called
P-pentomino is a 4-reptile as we show later. Rep-tiles are self-similar pieces and
so can be regarded as fractals. It can be proved that they tile the plane in a
nonperiodic way [11], but it was only recently discovered, as reported by Roger
Penrose in his fascinating and insightful book Shadows of the Mind, that there are
three polyominoes that tile the plane only aperiodically [12].

636 Jaime Rangel-Mondragón

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

In[112]:= Ppentomino@n_D := repP@82, 0<, 80, 0<, 80, 6<, nD
repP@a_, b_, c_, 1D :=9LineA9a, b, c, c + 2 Ha - bL,

6 a - 4 b + c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

3
, a +

c - b
ÅÅÅÅÅÅÅÅÅÅÅ

3
, a=E=

repP@a_, b_, c_, n_D :=

JoinArepPA a + c
ÅÅÅÅÅÅÅÅÅÅÅ

2
,

b + c
ÅÅÅÅÅÅÅÅÅÅÅ

2
, b, n - 1E, repPAc +

a - b
ÅÅÅÅÅÅÅÅÅÅÅ

2
, c,

b + c
ÅÅÅÅÅÅÅÅÅÅÅ

2
, n - 1E,

repPA a + c
ÅÅÅÅÅÅÅÅÅÅÅ

2
,

3 a + b + 2 c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

6
,

6 a - 4 b + c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

3
, n - 1E,

repPA 3 a - 2 b + 5 c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

6
, c +

a - b
ÅÅÅÅÅÅÅÅÅÅÅ

2
, c + 2 Ha - bL, n - 1EE

In[115]:= Show@Graphics@Ppentomino@5DDD
From In[115]:=

The following L-triomino is also a 4-reptile and therefore also a 4n -reptile for all
n > 0.

In[116]:= Ltriomino@n_D := repL@82, 0<, 80, 0<, 80, 2<, nD
repL@a_, b_, c_, 1D := 9LineA9a, b, c, c +

a - b
ÅÅÅÅÅÅÅÅÅÅÅ

2
,

a + c
ÅÅÅÅÅÅÅÅÅÅÅ

2
, a +

c - b
ÅÅÅÅÅÅÅÅÅÅÅ

2
, a=E=

repL@a_, b_, c_, n_D :=

JoinArepLA a + b
ÅÅÅÅÅÅÅÅÅÅÅ

2
, b,

b + c
ÅÅÅÅÅÅÅÅÅÅÅ

2
, n - 1E, repLA a + b

ÅÅÅÅÅÅÅÅÅÅÅ
2

, a, a +
c - b
ÅÅÅÅÅÅÅÅÅÅÅ

2
, n - 1E,

repLA 3 a + c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4
,

2 b + a + c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4
,

a + 3 c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4
, n - 1E,

repLA b + c
ÅÅÅÅÅÅÅÅÅÅÅ

2
, c, c +

a - b
ÅÅÅÅÅÅÅÅÅÅÅ

2
, n - 1EE

Polyominoes and Related Families 637

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

In[119]:= Show@Graphics@Ltriomino@5DDD
From In[119]:=

The value of c, given as an argument to the function repL, can be computed from

those of a and b from c = a +
ikjjj 0 1

-1 0
y{zzz.Hb - aL. Giving it explicitly lets us distort

the piece at will.

In[120]:= Show@Graphics@repL@82, 0<, 80, 0<, 81, 2<, 5DDD
From In[120]:=

· The Sphinx
Rep-tiles also arise in the shape of polyiamonds. The sphinx is one of the most
widely known 4-reptile polyiamonds.

638 Jaime Rangel-Mondragón

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

In[121]:= sphinx@n_D := sphA80, 0<, 812, 0<, 98, 4
è!!!

3 =, nE
sph@a_, b_, c_, 1D := 9LineA9a, b, c,

2 a + b + 3 c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

6
,

4 a - b + 3 c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

6
, a=E=

sph@a_, b_, c_, n_D := JoinAsphA a + b
ÅÅÅÅÅÅÅÅÅÅÅ

2
, a,

4 a - b + 3 c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

6
, n - 1E,

sphAb,
a + b
ÅÅÅÅÅÅÅÅÅÅÅ

2
,

a + 2 b + 3 c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

6
, n - 1E, sphA 3 b + c

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4

, c,
2 a + b + 3 c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

6
, n - 1E,

sphA 4 a - b + 3 c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

6
,

a + 2 b + 3 c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

6
,

a + b
ÅÅÅÅÅÅÅÅÅÅÅ

2
, n - 1EE

In[124]:= Show@Graphics@sphinx@4DDD
From In[124]:=

As indicated at the end of the previous section, more challenges are still present
in the world of polyominoes. Even the seemingly simple task of finding out the
number of tilings of an n ä m rectangle using dominoes poses considerable
difficulties (e.g., problem 7.51 in [7]). We can only guess as to the difficulty of
these problems in the worlds inhabited by polyiamonds, polyhexes, and polykites.
The advantages provided by the development of sophisticated languages like
Mathematica yield a promising future for further investigations of this fascinating
topic.

‡ Acknowledgments
This work was completed while the author was a visiting scholar at Wolfram
Research, Inc., whose assistance and enthusiastic support is gratefully acknowl-
edged. I would also like to thank the University of Queretaro in Mexico for their
continuous support.

‡ References
[1] S. W. Golomb, Polyominoes: Puzzles, Patterns, Problems, and Packings, 2nd ed.,

Princeton, NJ: Princeton University Press, 1996.

[2] Eric W. Weisstein. “Polyomino.” From MathWorld—A Wolfram Web Resource.
http://mathworld.wolfram.com/Polyomino.html

Polyominoes and Related Families 639

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

[3] “The Poly Pages.” (Feb 6, 2004) www.geocities.com/alclarke0/index.htm.

[4] M. Gardner, Time Travel and Other Mathematical Bewilderments, New York: W. H.
Freeman & Co., 1987 pp. 175–187.

[5] N. J. A. Sloane. “The On-Line Encyclopedia of Integer Sequences.” (Sep 2, 2004)
www.research.att.com/~njas/sequences.

[6] N. J. A. Sloane and S. Plouffe, The Encyclopedia of Integer Sequences, San Diego:
Academic Press, 1995.

[7] R. L. Graham, O. Ptashnik, and D. E. Knuth, Concrete Mathematics: A Foundation for
Computer Science, Reading, MA: Addison-Wesley, 1989.

[8] T. P. Chu and R. Johnsonbaugh, “Tiling Boards with Triominoes,” Journal of Recre-
ational Mathematics, 18, 1985–1986 pp. 183–193.

[9] G. E. Martin, Polyominoes: A Guide to Puzzles and Problems in Tiling, Washington,
DC: The Mathematical Association of America, 1996.

[10] D. A. Klarner, “Polyominoes” Handbook of Discrete and Computational Geometry,
Boca Raton, FL: CRC Press, 1997 pp. 225–239.

[11] B. Brunbaum and G. C. Shephard, Tilings and Patterns, New York: W. H. Freeman &
Co., 1987.

[12] R. Penrose, Shadows of the Mind: A Search for the Missing Science of Consciousness,
Oxford: Oxford University Press, 1994.

About the Author
Jaime Rangel-Mondragón earned M.Sc. and Ph.D. degrees in applied mathematics
and computation from the University College of North Wales in Bangor, Great
Britain. He has held research positions in the School of Computer Science at UCNW,
the College of Mexico, the Center of Research and Advanced Studies, the Monterrey
Institute of Technology, and the University of Queretaro in Mexico, where he is
presently a member of the Computer Science faculty. As a prolific contributor to
MathSource, his current research interests include recreational mathematics, combinat-
orics, the theory of computing, computational geometry, and functional languages.

Jaime Rangel-Mondragón
Facultad de Informática
Universidad Autónoma de Querétaro
Mexico
jrangel@uaq.mx

640 Jaime Rangel-Mondragón

The Mathematica Journal 9:3 © 2005 Wolfram Media, Inc.

