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Polyominoes and 
Related Families
Jaime Rangel-Mondragón
Polyominoes  are  generalizations  of  dominoes  constructed  by  joining
congruent  squares  side  by  side.  By  describing  a  polyomino  as  a  list  of
Gaussian  integers,  we  generate  all  different  polyominoes  of  a  given  size.
This method is extended to the generation of the families of polyiamonds,
polyhexes,  and  polykites.  We  also  give  a  method  to  tile  rectangles  using
polyominoes and explore the fractal family of rep-tiles. 

‡ Introduction
In 1953, when delivering a talk at the Harvard Mathematics Club, mathematician
Solomon Golomb [1] defined a new class of geometric figures he named polyomi-
noes.  Polyominoes  are  generalizations  of dominoes  [2]  and have been extremely
popular  since  their  use  in  the  game  of  Tetris  [3].  They  have  also  enjoyed  a
prominent place in the recreational mathematics literature since Martin Gardner
further popularized them in 1957.

A polyomino  is any connected figure that can be constructed by joining congru-
ent  squares  side  by  side.  A  polyomino  formed  by  n  squares  is  referred  to  as  an
n-omino. In the first part of this work, we generate all n-ominoes and extend our
method  to  the  corresponding  generation  of  polyiamonds,  polyhexes,  and  poly-
kites  [4]. In the second part,  we will tessellate  rectangles  using polyominoes  and
introduce the family of rep-tiles.

Some  sections  of  this  work  are  ordered  so  that  we  can  compare  performance
issues  among  different  computer  configurations  and  also  calculate  timings  for  a
2003-vintage model 2.4 GHz personal computer using Mathematica 5.

In[1]:= Off@General::"spell", General::"spell1"D
SetOptions@Graphics, AspectRatio Ø AutomaticD;
<< "Graphics‘Colors‘";

‡ The Naive Approach
In  this  section  we  generate  n-ominoes  using  a  straightforward  approach.  We
consider  all  possible  0-1  nä n  matrices  and  select  those  that  are  orthogonally
connected,  that  is,  that  have  no  isolated  blocks  of  ones.  To check  this  property
we read the first one and change its sign. We then mark those adjacent to it and
repeatedly  spread  this  changing  of  signs  to  those  adjacent  to  them  until  no
further  changes  occur.  At  the  end,  the  new  matrix  cannot  contain  a  one  if  the
original matrix represented a connected shape.The Mathematica  Journal 9:3 © 2005 Wolfram Media, Inc.
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In[4]:= connectedQ@nOmino_D := Module@8n, m, i, j, h, k, s = nOmino<,8n, m< = Dimensions@sD;8i, j< = First@Position@s, 1DD;
sPi,jT = -1;

FixedPoint@HDo@If@sPh,kT == 1,
If@HHk > 1L && HsPh,k-1T < 0LL »» HHk < mL && HsPh,k+1T < 0LL »»HHh > 1L && HsPh-1,kT < 0LL »» HHh < nL && HsPh+1,kT < 0LL,

sPh,kT = -1DD, 8k, m<, 8h, n<D;
sL &, sD;

Position@s, 1D == 8<D
In[5]:= connectedQAikjjjjjjj 0 0 1

0 1 0

1 1 1

y{zzzzzzzE
Out[5]= False

The following function provides a canonical form for our matrices. It pushes the
entire  configuration  up and to  the left  so that  neither  the  first  row nor  the first
column are all zero.

In[6]:= standard@m_D := Module@8p = Position@m, 1D, h, ans, n = Length@mD<,
ans = Table@0, 8n<, 8n<D;
h = 8Min@First êü pD, Min@Last êü pD<;
p = H# - h + 81, 1<L & êü p;
Map@HansPFirst@#D,Last@#DT = 1L &, pD;
ansD

In[7]:= standardAi
k
jjjjjjjjjjjjjjjjj

0 0 0 0 0

0 0 1 0 0

0 1 1 1 0

0 0 0 1 1

0 0 0 0 0

y
{
zzzzzzzzzzzzzzzzzE êê MatrixForm

Out[7]//MatrixForm=i
k
jjjjjjjjjjjjjjjjj

0 1 0 0 0

1 1 1 0 0

0 0 1 1 0

0 0 0 0 0

0 0 0 0 0

y
{
zzzzzzzzzzzzzzzzz

Our  strategy  is  to  generate  all  0-1  nä n  matrices  (there  are  2n2  of  them),  select
those  having  n  ones  that  are  connected,  convert  them  to  canonical  form,  and,
finally,  remove  repetitions  from  this  list.  For  example,  for  n = 4,  out  of  65536
possible  4 ä 4 matrices  we  get  only  1820  that  have  four  ones,  and,  of  those,  113
are  connected.  Only  19  are  left  when  we  select  those  with  a  different  canonical
form.
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In[8]:= TimingA
n = 4;

u = SelectARangeA2n2 E, H Plus üü IntegerDigits@#, 2D ã nL &E;

v = Select@
Map@Partition@IntegerDigits@#, 2, n2 D, nD &, uD, connectedQ@#D &D;

w = Union@standard êü vD;9MatrixForm êü w, 2n2
, Length@uD, Length@vD, Length@wD=E

Out[8]= 91.156 Second,

99i
k
jjjjjjjjjjjj

0 0 1 0

1 1 1 0

0 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

0 1 0 0

0 1 0 0

1 1 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

0 1 0 0

1 1 0 0

0 1 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

0 1 0 0

1 1 0 0

1 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

0 1 0 0

1 1 1 0

0 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

0 1 1 0

1 1 0 0

0 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 0 0 0

1 0 0 0

1 1 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 0 0 0

1 1 0 0

0 1 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 0 0 0

1 1 0 0

1 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 0 0 0

1 1 1 0

0 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 1 0 0

0 1 0 0

0 1 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 1 0 0

0 1 1 0

0 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 1 0 0

1 0 0 0

1 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 1 1 0

0 0 1 0

0 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 1 1 0

0 1 0 0

0 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 1 1 0

1 0 0 0

0 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz,

i
k
jjjjjjjjjjjj

1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

y
{
zzzzzzzzzzzz=, 65536, 1820, 113, 19==

Although this  is  the simplest  way,  it  takes nearly  an hour  to complete for n = 5,
which forces us to look for another approach. If, instead of selecting those binary
numbers  having  n  digits  that  are  1  out  of  all  2n2  possible,  we  generate  them

directly (there are 
ikjjj n

2
y{zzz of them),  we will save a substantial  amount of time. The

function bin[n, b] computes all lists of length b having n ones.

In[9]:= bin@n_, l_D := 8< ê; n > l
bin@0, l_D := 8Table@0, 8l<D<
bin@1, 1D := 881<<
bin@n_, l_D := bin@n, lD = Join@Map@Join@80<, #D &, bin@n, l - 1DD,

Map@Join@81<, #D &, bin@n - 1, l - 1DDD

Polyominoes and Related Families 611

The Mathematica  Journal 9:3 © 2005 Wolfram Media, Inc.



In[13]:= bin@3, 5D
Out[13]= 880, 0, 1, 1, 1<, 80, 1, 0, 1, 1<, 80, 1, 1, 0, 1<,80, 1, 1, 1, 0<, 81, 0, 0, 1, 1<, 81, 0, 1, 0, 1<, 81, 0, 1, 1, 0<,81, 1, 0, 0, 1<, 81, 1, 0, 1, 0<, 81, 1, 1, 0, 0<<

We get the 63 canonical forms for the case n = 5 more quickly.

In[14]:= Timing@
n = 5;
v = Select@Map@Partition@#, nD &, bin@n, n2 DD, connectedQ@#D &D;
w = Union@standard êü vD;
Length@wDD

Out[14]= 819.719 Second, 63<
However,  some  of  these  patterns  are  still  equivalent  under  rotations  and reflec-
tions,  so more processing is  needed.  Although we have substantially  reduced the
computing time, we will not pursue this  approach any further because there is  a
faster and more general alternative.

‡ Polyominoes
The  straightforward  approach  presented  in  the  previous  section  has  many
disadvantages.  The  representation  of  polyominoes  as  0-1  matrices  is  wasteful
because they are very sparse. In this section we consider a polyomino to be a list
of  unit  squares,  where  a  square  is  specified  by  the  Cartesian  coordinates  of  its
bottom-left  vertex;  further,  these  coordinates  will  be  encapsulated  as  complex
numbers.  So,  a  polyomino  will  be  a  list  of  Gaussian  integers;  that  is,  complex
numbers  having integral  real  and imaginary  parts.  We thus define the following
type.

In[15]:= polyominoQ@p_D := And üü HHIntegerQ@Re@#DD && IntegerQ@Im@#DDL & êü pL
In  this  definition  we  cannot  use  the  pattern  _Complex..  because  only  numbers
with nonzero imaginary parts have head Complex. 

To determine  whether  two figures  are  equivalent,  we consider  the  action of the
dihedral  group  D4 = 8e, r, r2 , r3 , f , f r, f r2 , f r3 <,  where  r  rotates  the  figure  by
90±  and f  turns it over.  Given a polyomino,  we then have at most eight  different
equivalent polyominoes.

If  we  were  using  a  matrix  m  to  describe  the  positions  of  the  squares  forming  a
polyomino,  we could perform a 90±  rotation  with Reverse[Transpose[m]]  and
a reflection with Transpose[m].

The following functions act on a given polyomino p;  rot and ref  correspond to
the  transformations  r  and  f.  The  function  cyclic  computes  the  list  of  the
rotations  of  p  and  is  used  in  the  construction  of  D4  produced  by  the  function
dihedral.  (In  this  case  cyclic  is  equal  to  NestList[rot,p,3].)  The  function
canonical computes a standard representation of p by removing repetitions and
sorting. The functions liC and polC convert a list of complex numbers into a list
of  points  to  be  drawn  as  lines  or  as  polygons.  The  arguments  of  the  functions
cyclic  and  allPieces  are  not  restricted  to  polyominoes  as  they  will  also  be
used for the other families. 
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In[16]:= rot@p_?polyominoQD := Â p
ref@p_?polyominoQD := H# - 2 Re@#DL & êü p

cyclic@p_D := Module@8i = p, ans = 8p<<,
While@Hi = rot@iDL ∫ p, AppendTo@ans, iDD; ansD

dihedral@p_?polyominoQD := Flatten@8#, ref@#D< & êü cyclic@pD, 1D
canonical@p_?polyominoQD :=
Union@H# - HMin@Re@pDD + Min@Im@pDD ÂLL & êü pD

allPieces@p_D := Union@canonical êü dihedral@pDD
liC@z_D := Line@8Re@#D, Im@#D< & êü zD
polC@z_D := Polygon@8Re@#D, Im@#D< & êü zD
draw@p_?polyominoQ, pr_: AllD :=
Graphics@88DarkKhaki, polC@8#, # + 1, # + 1 + Â, # + Â<D<,

liC@8#, # + 1, # + 1 + Â, # + Â, #<D< & êü p, PlotRange Ø prD
In[25]:= polyomino = 80, 1, 2, Â, 2 + Â, 2 + 2 Â, 3 + 2 Â<;

pol = draw@polyominoD;
Show@polD

From In[25]:=

The  function  draw  generates  the  graphical  object  with  an  optional  second
argument  specifying  the  plot  range.  Note  also  the  change  in  the  representation
of a  polyomino;  the function canonical  places  the polyomino  in the first quad-
rant touching both axes. Here is an example.

In[28]:= canonical@polyominoD
Out[28]= 80, Â, 1, 2, 2 + Â, 2 + 2 Â, 3 + 2 Â<

The function allpieces  computes  all  eight  equivalent  figures  (or  less  for some
polyominoes).

Polyominoes and Related Families 613

The Mathematica  Journal 9:3 © 2005 Wolfram Media, Inc.



In[29]:= pol = draw@#, 880, 4.1<, 8-0.1, 4<<D & êü allPieces@polyominoD;
Show@GraphicsArray@Partition@pol, 4DDD

From In[29]:=

The  following  incremental  method  generates  all  n-ominoes.  Having  generated
the  set of all  Hn - 1L-ominoes,  we take each of  its  members  and append  a square
to each of its squares in all  four possible  directions.  Once we have this extended
set  containing  all  the  n-ominoes,  we  obtain  their  canonical  representation  and
proceed to eliminate the redundant ones.

In[31]:= polyominoes@1D := 880<<
polyominoes@n_D := polyominoes@nD = Module@8f, fig, ans = 8<<,

fig = Map@Hf = #; Map@8f, # + 1, f, # + Â, f, # - 1, f, # - Â< &, fDL &,
polyominoes@n - 1DD;

fig = Partition@Flatten@figD, nD;
f = Select@Union@canonical êü figD, Length@#D ã n &D;
While@f ∫ 8<,
ans = 8ans, First@fD<;
f = Complement@f, allPieces@First@fDDDD;

Partition@Flatten@ansD, nDD
In[33]:= pol = draw@#, 880, 2.1<, 8-0.1, 4<<D & êü polyominoes@4D;

Show@GraphicsArray@polDD
From In[33]:=

We can now compare the time taken to generate all pentominoes with the time it
took in the previous section. Because Mathematica uses dynamic programming to
retain  the  generated  n-ominoes,  the  time  it  takes  to  recompute  old  values  will
only amount to how long it takes to retrieve them and hence would be negligible.
So  for  a  fair  comparison,  we  have  to  start  anew  so  that  all  previous  values  are
cleared. Let us restart the Mathematica  kernel and evaluate the following after all
initialization cells are evaluated.

In[1]:= Timing@polyominoes@5D;D
Out[1]= 80.047 Second, Null<
We  can  now  obtain  the  number  of  free  n-ominoes  (free  meaning  equivalent
under rotation and reflection) ([5, 6] seq. A000105).
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In[2]:= Timing@Table@Length@polyominoes@nDD, 8n, 9<DD
Out[2]= 813.625 Second, 81, 1, 2, 5, 12, 35, 108, 369, 1285<<
As  an  illustration,  let  us  generate  all  108  heptominoes,  because  it  is  not  until
n = 7 that a hole appears. According to our definition, a polyomino can have one
or many interior holes. Can you spot the one having a hole among the following
heptominoes?  (That  is  the  reason  we  color  the  squares;  otherwise,  it  would  be
impossible to distinguish it.)

In[3]:= pol = draw@#, 88-0.5, 5<, 8-0.5, 7<<D & êü polyominoes@7D;
Show@GraphicsArray@Partition@pol, 12DDD

From In[3]:=

We  can  also  obtain  the  one-sided  (no  reflections  allowed)  or  “chiral”  polyomi-
noes  by running  the following  cell,  which redefines  function allPieces,  rerun-
ning  the  previous  function  polyominoes,  and  computing  the  table  as  was  done
before ([5, 6]  seq. A000988).  At  the end of the generation of this  table,  we have
to recover  the original  definition  of  allPieces  because  it  is  needed in the  next
section. The easiest way is to restart the Mathematica kernel, evaluate the initializa-
tion cells, and continue with the cells in the next section.

In[1]:= allPieces@p_?polyominoQD := Union@canonical êü cyclic@pDD
In[2]:= Timing@Table@Length@polyominoes@nDD, 8n, 8<DD

Out[2]= 83.688 Second, 81, 1, 2, 7, 18, 60, 196, 704<<
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‡ Polyiamonds
Polyiamonds  are  figures  built  from  congruent  unit-side  equilateral  triangles  in
the  same  way  that  polyominoes  are  built  from  squares.  Any  triangle  forming  a
polyiamond  will  be  described  by  a  pair  8A, t<,  wherein  A  codifies  the  complex
coordinates  a + b ‰

p ÂÅÅÅÅÅÅÅÅ3 of  the  leftmost  vertex  (anchor)  of  the  triangle  (we  are
assuming  one  of  its  sides  rests  horizontally)  and  t  is  its  type  taken  from  the  set81, -1<, corresponding to whether the apex is pointing up or down. The underly-
ing grid on which to place the triangles is generated by all integral linear combina-
tions of the numbers 1 and ‰

p ÂÅÅÅÅÅÅÅÅ3 . Any triangle 8A, t< has three neighbors adjacent
to  it,  namely,  8A, -t<,  8A + tv, -t<,  and  8A + tHv - uL, -t<.  As  with  polyominoes,
the canonical representation of a polyiamond moves the piece so that its leftmost
vertex touches the origin.

To  construct  the  corresponding  equivalent  versions  of  a  polyiamond,  only
rotations  of  multiples  of  60±  are  allowed (a  rotation  of  60±  implies  the  type of a
triangle  is  changed)  so  that  point  Ha, bL  gets  rotated  to  point  H-b, a + bL.  The
reflection of a  triangle is  achieved simply by sending each of its vertices Ha, bL  toH-a - b, bL.  (In  this  representation  a  reflection  gives  the  reverse  negative  of  a
rotation!) The type of a polyiamond is tested as follows.

In[3]:= polyiamondQ@888_Integer, _Integer<, 1 » -1< ..<D := True
polyiamondQ@_D := False

Here are the polyiamond functions.

In[5]:= rot@p_?polyiamondQD :=88-#P1,2T , Plus üü First@#D< + If@Last@#D ã 1, 8-1, 1<, 80, 0<D,
-Last@#D< & êü p

ref@p_?polyiamondQD := 88-Plus üü First@#D, #P1,2T <, Last@#D< & êü p

dihedral@p_?polyiamondQD := Flatten@8#, ref@#D< & êü cyclic@pD, 1D
canonical@p_?polyiamondQD :=
Sort@Map@8First@#D - 8Min@First@First@#DD & êü pD,

Min@Last@First@#DD & êü pD<, Last@#D< & , pDD
draw@p_?polyiamondQ, pr_: AllD := ModuleA9a, b, v, t, u = ‰

p ÂÅÅÅÅÅÅÅÅ
3 =,

Graphics@888a, b<, t< = #; v = a + b u;8Chartreuse, polC@v + 80, If@t ã 1, u, 1 - uD, 1<D<,

liC@v + 80, If@t ã 1, u, 1 - uD, 1, 0<D< & êü p, PlotRange Ø prDE
Here is an example of a polyiamond and its conversion to canonical form.

616 Jaime Rangel-Mondragón

The Mathematica  Journal 9:3 © 2005 Wolfram Media, Inc.



In[10]:= polyiamond = 8880, 0<, 1<, 880, 0<, -1<,881, -1<, 1<, 881, -1<, -1<, 881, 0<, -1<, 882, -1<, 1<<;
pol = draw@polyiamondD;
Show@polD

From In[10]:=

In[13]:= canonical@polyiamondD
Out[13]= 8880, 1<, -1<, 880, 1<, 1<, 881, 0<, -1<,881, 0<, 1<, 881, 1<, -1<, 882, 0<, 1<<

Here we obtain the polyiamonds equivalent to the previous one.

In[14]:= pol = draw@#, 88-0.1, 3.5<, 8-1, 2.7<<D & êü allPieces@polyiamondD;
Show@GraphicsArray@Partition@pol, 6DDD

From In[14]:=

Finally,  we  generate  all  nonisomorphic  polyiamonds.  We  make  use  of  the  fact
that  any  triangle  88a, b<, 1<  has  neighbors  88a, b<, -1<, 88a, b + 1<, -1<,  and88a - 1, b + 1<, -1<,  and  that  triangle  88a, b<, -1<  has  neighbors88a, b<, 1<, 88a, b - 1<, 1<, and 88a + 1, b - 1<, 1<.
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In[16]:= polyiamonds@1D := 88880, 0<, 1<<<
polyiamonds@n_D :=
polyiamonds@nD = Module@8f, A, t, x, y, z, fig, ans = 8<<,

fig = Map@Hf = #; Map@H8A, t< = #; 8f, 8A, -t<, f, 8A + 80, t<, -t<,
f, 8A + 8-t, t<, -t<<L &, fDL &, polyiamonds@n - 1DD;

fig = Partition@Partition@Flatten@figD, 3D ê.8x_Integer, y_, z_< Ø 88x, y<, z<, nD;
f = Union@canonical êü Select@Union êü fig, Length@#D ã n &DD;
While@f ∫ 8<,
ans = 8ans, First@fD<;
f = Complement@f, allPieces@First@fDDDD;

Partition@Partition@Flatten@ansD, 3D ê.8x_Integer, y_, z_< Ø 88x, y<, z<, nDD
In[18]:= pol = draw@#, 880, 3<, 8-1, 2.6<<D & êü polyiamonds@6D;

Show@GraphicsArray@Partition@pol, 6DDD
From In[18]:=

The number of different polyiamonds  is given by the following table ([5, 6], seq.
A000577).

In[20]:= Timing@Table@Length@polyiamonds@nDD, 8n, 8<DD
Out[20]= 80.969 Second, 81, 1, 1, 3, 4, 12, 24, 66<<

‡ Polyhexes
Polyhexes are figures built from congruent unit-length hexagons. We represent a
hexagon forming a  polyhex simply  by a pair Ha, bL corresponding  to the complex
coordinates  of  its  left-bottom  corner  a + b ‰

p ÂÅÅÅÅÅÅÅÅ3 .  For  this  reason,  all  the  corre-
sponding  functions  turn  out  to  be  straightforward  adaptations  of  their  polyia-
mond counterparts.

In[21]:= polyhexeQ@88_Integer, _Integer< ..<D := True
polyhexeQ@_D := False
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In[23]:= rot@p_?polyhexeQD := 8-Last@#D, Plus üü #< & êü p
ref@p_?polyhexeQD := 8-Plus üü #, Last@#D< & êü p

dihedral@p_?polyhexeQD := Flatten@8#, ref@#D< & êü cyclic@pD, 1D
canonical@p_?polyhexeQD :=
Sort@Map@H# - 8Min@First êü pD, Min@Last êü pD<L & , pDD

draw@p_?polyhexeQ, pr_: AllD := ModuleA9a, b, v, t, u = ‰
p ÂÅÅÅÅÅÅÅÅ
3 =,

Graphics@88a, b< = #; v = a + b u; 8CadetBlue,
polC@8v, v + 1, v + 1 + u, v + 2 u, v + 2 u - 1, v + u - 1<D<,

liC@8v, v + 1, v + 1 + u, v + 2 u, v + 2 u - 1, v + u - 1, v<D< & êü
p, PlotRange Ø prDE

In[28]:= polyhex = 880, 0<, 81, 1<, 82, -1<, 83, -3<<;
pol = draw@polyhexD;
Show@polD

From In[28]:=

In[31]:= canonical@polyhexD
Out[31]= 880, 3<, 81, 4<, 82, 2<, 83, 0<<
In[32]:= pol = draw@#, 88-0.5, 6<, 8-0.2, 5.5<<D & êü allPieces@polyhexD;

Show@GraphicsArray@Partition@pol, 6DDD
From In[32]:=

The  neighbors  of  a  hexagon  Ha, bL  are  Ha - 1, b - 1L,  Ha + 1, b + 2L,  Ha + 2, b - 1L,Ha + 1, b + 1L,  Ha - 1, b + 2L,  and Ha - 2, b + 1L.  Thus,  we can simulate  a  hexagonal
cellular  space  by  a  rectangular  cellular  space  in  which  the  neighbors  are  these
nonadjacent  ones.  The  following  function  generates  all  polyhexes  of  a  given
order.
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The  neighbors  of  a  hexagon  Ha, bL  are  Ha - 1, b - 1L,  Ha + 1, b + 2L,  Ha + 2, b - 1L,Ha + 1, b + 1L,  Ha - 1, b + 2L,  and Ha - 2, b + 1L.  Thus,  we can simulate  a  hexagonal
cellular  space  by  a  rectangular  cellular  space  in  which  the  neighbors  are  these
nonadjacent  ones.  The  following  function  generates  all  polyhexes  of  a  given
order.

In[34]:= polyhexes@1D := 8880, 0<<<
polyhexes@n_D := polyhexes@nD = Module@8f, a, b, fig, ans = 8<<,

fig =
Map@Hf = #; Map@H8a, b< = #; 8f, 8a - 1, b - 1<, f, 8a + 1, b - 2<, f,8a + 2, b - 1<, f, 8a + 1, b + 1<, f, 8a - 1, b + 2<,

f, 8a - 2, b + 1<<L &, fDL &, polyhexes@n - 1DD;
fig = Partition@Partition@Flatten@figD, 2D, nD;
f = Union@canonical êü Select@Union êü fig, Length@#D ã n &DD;
While@f ∫ 8<,
ans = 8ans, First@fD<;
f = Complement@f, allPieces@First@fDDDD;

Partition@Partition@Flatten@ansD, 2D, nDD
In[36]:= pol = draw@#, 88-0.5, 6.2<, 8-0.5, 5.5<<D & êü polyhexes@4D;

Show@GraphicsArray@polDD
From In[36]:=

The  number  of  different  polyhexes  is  given  by  the  following  table  ([5,  6],  seq.
A000228).

In[38]:= Timing@Table@Length@polyhexes@nDD, 8n, 8<DD
Out[38]= 818.891 Second, 81, 1, 3, 7, 22, 82, 333, 1448<<

‡ Polykites
Polykites  are  figures  built  from  the  quadrilaterals  forming  the  following  lattice.
On top of this lattice, we have shown the arrangements  corresponding  to all the
possible  shapes  for  the  1-polykite,  2-polykites,  and  3-polykites  using  different
colors.  Larger-order  polykites  offer  a  lovely  resemblance  of  faces,  birds,  and
animal shapes in a way similar to tangrams. Their different balance and aesthetic
properties motivated the author to include their generation as a proper sibling of
polyominoes;  however,  the  other  Penrose  piece,  the  Dart,  being  nonconvex,
resisted all attempts at generating polydarts.

Just as we have two types of triangles forming polyiamonds,  we have six types of
kites  forming  polykites  and  we  will  describe  them  in  a  similar  fashion.  The
following  comprises  an adaptation of the functions we have previously designed.
The type of a polykite is tested as follows.
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Just as we have two types of triangles forming polyiamonds,  we have six types of
kites  forming  polykites  and  we  will  describe  them  in  a  similar  fashion.  The
following  comprises  an adaptation of the functions we have previously designed.
The type of a polykite is tested as follows.

In[39]:= polykiteQ@888_Integer, _Integer<, 1 » 2 » 3 » 4 » 5 » 6< ..<D := True
polykiteQ@_D := False

Here are the polykite functions.

In[41]:= rot@p_?polykiteQD :=88-#P1,2T , Plus üü First@#D<, If@Last@#D ã 6, 1, 1 + Last@#DD< & êü p
ref@p_?polykiteQD := 88-Plus üü First@#D, #P1,2T <,

Switch@Last@#D, 1, 3, 2, 2, 3, 1, 4, 6, 5, 5, 6, 4D< & êü p

dihedral@p_?polykiteQD := Flatten@8#, ref@#D< & êü cyclic@pD, 1D
canonical@p_?polykiteQD :=
Sort@Map@8First@#D - 8Min@First@First@#DD & êü pD,

Min@Last@First@#DD & êü pD<, Last@#D< & , pDD
draw@p_?polykiteQ, pr_: AllD := ModuleA9a, b, v, t, u = ‰

p ÂÅÅÅÅÅÅÅÅ
3 =,

GraphicsA988a, b<, t< = #; v = a + b u;9LightCadmiumRed, polCAv + 90, ut-1 ,
2 Hut + ut-1 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

3
, ut =E=,

liCAv + 90, ut-1,
2 Hut + ut-1 L
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

3
, ut, 0=E= & êü p, PlotRange Ø prEE

In[46]:= polykite = 8880, 0<, 4<, 880, -2<, 2<, 880, -2<, 1<, 882, -2<, 3<<;
pol = draw@polykiteD;
Show@polD

From In[46]:=

In[49]:= canonical@polykiteD
Out[49]= 8880, 0<, 1<, 880, 0<, 2<, 880, 2<, 4<, 882, 0<, 3<<
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In[50]:= pol = draw@#, 88-0.5, 3.5<, 8-1, 2.8<<D & êü allPieces@polykiteD;
Show@GraphicsArray@Partition@pol, 6DDD

From In[50]:=

The polykite  8A, t<  has  neighbors  depending  on its  anchor  point  and  its  type  as
shown in the following Switch instruction.

In[52]:= polykites@1D := 88880, 0<, 1<<<
polykites@n_D :=
polykites@nD = Module@8f, A, t, x, y, z, fig, ans = 8<<,

fig = Map@Hf = #; Map@H8A, t< = #;
Switch@t,
1, 8f, 8A + 82, 0<, 3<,
f, 8A + 80, 2<, 5<, f, 8A, 2<, f, 8A, 6<<,

2, 8f, 8A + 80, 2<, 4<, f, 8A + 2 8-1, 1<, 6<,
f, 8A, 3<, f, 8A, 1<<,

3, 8f, 8A + 2 8-1, 1<, 5<, f, 8A + 8-2, 0<, 1<,
f, 8A, 4<, f, 8A, 2<<,

4, 8f, 8A + 8-2, 0<, 6<, f, 8A + 80, -2<, 2<,
f, 8A, 5<, f, 8A, 3<<,

5, 8f, 8A + 80, -2<, 1<, f, 8A + 2 81, -1<, 3<,
f, 8A, 6<, f, 8A, 4<<,

6, 8f, 8A + 82, 0<, 4<, f, 8A + 2 81, -1<, 2<, f,8A, 1<, f, 8A, 5<<DL &, fDL &, polykites@n - 1DD;
fig = Partition@Partition@Flatten@figD, 3D ê.8x_Integer, y_, z_< Ø 88x, y<, z<, nD;
f = Union@canonical êü Select@Union êü fig, Length@#D ã n &DD;
While@f ∫ 8<,
ans = 8ans, First@fD<;
f = Complement@f, allPieces@First@fDDDD;

Partition@Partition@Flatten@ansD, 3D ê.8x_Integer, y_, z_< Ø 88x, y<, z<, nDD
In[54]:= pol = draw@#, 88-1, 4<, 8-0.1, 3<<D & êü polykites@4D;

Show@GraphicsArray@Partition@pol, 5DDD
From In[54]:=
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The  number  of  different  polykites  is  given  by  the  following  table  ([5,  6],  seq.
A057786).

In[56]:= Timing@Table@Length@polykites@nDD, 8n, 8<DD
Out[56]= 816.578 Second, 81, 2, 4, 10, 27, 85, 262, 873<<

We  invite  the  reader  to  generate  all  six  polykites  that,  besides  having  beautiful
shapes,  present  for  the  first  time  a  hollowed  piece.  Here  is  the  corresponding
code.

In[57]:= pol = draw@#, 88-1, 5<, 8-1, 3<<D & êü polykites@6D;
Show@GraphicsArray@Partition@pol, 17DDD

In  the  next  part  of  this  work,  we  will  tile  rectangles  with  polyominoes  and
introduce  the  family  of  rep-tiles,  which  presents  a  fascinating  way  of  tiling  the
whole plane with specific polyominoes and polyiamonds.

‡ Tiling Rectangles with Polyominoes
In  this  section,  we  approach  the  problem  of  tiling  a  rectangle  by  using  pieces
taken  from  a  set  of  polyominoes.  Naturally,  the  area  of  the  rectangle  has  to  be
equal to the sum of the areas of the individual pieces in the set. Thus, we immedi-
ately  know that  it  would  be  impossible  to  fill  a  rectangle  of  area  11  with  domi-
noes or one  of area 10 with triominoes,  although it is  not immediately  apparent
that  we  could  fill  a  rectangle  of  arbitrary  area  (greater  than  2)  using  dominoes
and triominoes. 

This  section  comprises  three  parts.  The  first  one  discusses  tiling  a  rectangle
allowing  repetitions  of  the  pieces  taken  from  a  given  list.  The  second  part  will
consider  those  tilings  having  no  fault  lines.  Finally,  in  the  last  part  we  will  tile
using all pieces of a given set.

The function tess  uses  the backtrack method to construct all possible  tilings  of
an  n ä m  rectangle  with  pieces  taken  from  a  given  list  poly.  The  optional  argu-
ment  justOneSolution  is  included  in  case  we  do  not  want  all  solutions.  The
function  tess  uses  the  recursive  function  tessAux,  which  implements  the
backtrack mechanism:  all possible  candidates  for the placement of the next piece
are  computed  and  the  lexicographically  smallest  one  is  chosen.  Each  piece,
including  its  rotations  and  reflections,  is  placed,  and  then  tessAux  is  called
recursively. As the method works faster if n > m, their values are swapped before
and  after  computing  the  solutions.  The  function  getLines  takes  a  tiling  and
computes  the  endpoints  of  the  horizontal  and  vertical  lines  forming  the  right-
most boundaries of the pieces of the tiling. The function tile displays a graphic
array of the solutions of given width r. 
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In[59]:= lexic@p_D := Sort@p,HIm@#1D < Im@#2DL »» HHIm@#1D == Im@#2DL && HRe@#1D § Re@#2DLL &D
tess@8n_, m_<, poly_, justOneSolution_: FalseD :=
Module@8avail, pieces, i, j, ans = 8<, tessAux, na, ma<,

tessAux@partial_D := Module@8f, c, candidates, newp, k<,
candidates = Complement@avail, Flatten@partialDD;
If@candidates ã 8<,
AppendTo@ans, partialD; If@justOneSolution, Throw@1DD,
k = First@lexic@candidatesDD;
Map@Hnewp = k + # - First@#D;

If@HComplement@newp, availD ã 8<L && Hf =
Flatten@8partial, newp<D; Length@fD ã Length@Union@fDDL,

tessAux@Append@partial, newpDDDL &, piecesDDD;8na, ma< = If@n < m, 8m, n<, 8n, m<D;
pieces = lexic êü Union@Flatten@allPieces êü poly, 1DD;
avail = Flatten@Table@i + j Â, 8j, 0, na - 1<, 8i, 0, ma - 1<DD;
Catch@tessAux@8<DD;
If@n < m, Map@m - 1 + Â # &, ansD, ansDD

getLines@tiling_D := Module@8p<,
Partition@Flatten@

Map@Hp = #; Map@8If@Not@MemberQ@p, # + 1DD, 8# + 1, # + 1 + Â<, 8<D,
If@Not@MemberQ@p, # + ÂDD, 8# + Â, # + 1 + Â<, 8<D< &,

pDL &, tilingDD, 2DD
tile@8n_, m_<, poly_, r_, justOneSolution_: FalseD :=
Module@8t, u, g<,
t = tess@8n, m<, poly, justOneSolutionD;
g = Map@Graphics@Append@88LightBlue, Rectangle@80, 0<, 8m, n<D<,

Line@880, n<, 80, 0<, 8m, 0<<D<, liC êü getLines@#DDD &, tD;
Show@GraphicsArray@Partition@If@Mod@Length@tD, rD == 0,

g, Join@g, Table@Graphics@Point@80, 0<DD,8r - Mod@Length@tD, rD<DDD, rDDD;D
For  instance,  here  is  how to  get  all  possible  ways  of tiling a  4ä 3 rectangle  with
the L-triomino.

In[63]:= tile@84, 3<, 880, Â, 1<<, 4D
From In[63]:=

Even  nonpolyomino  pieces  are  allowed.  Consider,  for  instance,  the  “number 8”
piece 80, 1 + Â<,  that is, two squares touching at a vertex,  together with a domino80, 1<  in  the  tiling  of  a  4 ä2  rectangle.  Naturally,  two  number  8  pieces  have  to
always be together forming a square in any tiling.
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In[64]:= tile@84, 2<, 880, 1 + Â<, 80, 1<<, 6D
From In[64]:=

Here are all possible tilings of a 2ä 5 rectangle by dominoes.

In[65]:= tile@82, 5<, polyominoes@2D, 4D
From In[65]:=

In general, the number of tilings of 2ä n rectangles by dominoes is well known to
be the Fibonacci numbers.

In[66]:= Timing@Table@Length@tess@82, n<, polyominoes@2DDD, 8n, 15<DD
Out[66]= 82.547 Second,81, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987<<

Here are all  possible  tilings  of  a  3 ä 4 rectangle  by  dominoes  and the  number  of
tilings of 3ä n rectangles, n § 15.

In[67]:= tile@83, 4<, polyominoes@2D, 4D
From In[67]:=

In[68]:= Timing@Table@Length@tess@83, n<, polyominoes@2DDD, 8n, 15<DD
Out[68]= 850.141 Second, 80, 3, 0, 11, 0, 41, 0, 153, 0, 571, 0, 2131, 0, 7953, 0<<

Here is a generating function for these numbers [7].

In[69]:= SeriesA 3 - x
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
1 - 4 x + x2

, 8x, 0, 6<E
Out[69]= 3 + 11 x + 41 x2 + 153 x3 + 571 x4 + 2131 x5 + 7953 x6 + O@xD7
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Or, more explicitly [7].

In[70]:=
h̀hhhhhhhhhhh I2 +

è!!!
3 MRange@10D

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
3 -

è!!!
3

pxxxxxxxxxxxx
Out[70]= 83, 11, 41, 153, 571, 2131, 7953, 29681, 110771, 413403<

Let us now explore the tiling of a 2ä 12 rectangle with the L-triomino.

In[71]:= tile@82, 9<, 8Last@polyominoes@3DD<, 2D
From In[71]:=

The number of such tilings is somewhat expected.

In[72]:= Timing@
Table@Length@tess@8n, 2<, 8Last@polyominoes@3DD<DD, 8n, 15<DD

Out[72]= 80.312 Second, 80, 0, 2, 0, 0, 4, 0, 0, 8, 0, 0, 16, 0, 0, 32<<
Using  the  complete  set  of  triominoes,  we  obtain  the  following  ([5,  6],  seq.
A001835).

In[73]:= tile@82, 9<, polyominoes@3D, 4D
From In[73]:=

In[74]:= Timing@Table@Length@tess@82, n<, polyominoes@3DDD, 8n, 15<DD
Out[74]= 82.235 Second, 80, 0, 3, 0, 0, 11, 0, 0, 41, 0, 0, 153, 0, 0, 571<<
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Compare  this  sequence  with  the  number  of  tilings  of  a  3ä n  rectangle  by
dominoes.

We now consider both sets of dominoes and triominoes together.

In[75]:= tile@82, 5<, Join@polyominoes@2D, polyominoes@3DD, 5D
From In[75]:=

In[76]:= Timing@Table@Length@
tess@82, n<, Join@polyominoes@2D, polyominoes@3DDDD, 8n, 10<DD

Out[76]= 812.141 Second, 81, 2, 6, 17, 43, 108, 280, 727, 1875, 4832<<
Let us  now compute the number  of ways of tiling an n äm  rectangle with domi-
noes.  We know that  n m  has to be  even;  the symmetry of the problem allows us
to proceed as follows.

In[77]:= u = Table@0, 86<, 86<D;
Do@If@Mod@n m, 2D ã 0,

uPn,mT = uPm,nT = Length@tess@8n, m<, polyominoes@2DDDD,8n, 6<, 8m, n, 6<D;

MatrixForm[u]

Out[79]//MatrixForm=i
k
jjjjjjjjjjjjjjjjjjjjjj

0 1 0 1 0 1

1 2 3 5 8 13

0 3 0 11 0 41

1 5 11 36 95 281

0 8 0 95 0 1183

1 13 41 281 1183 6728

y
{
zzzzzzzzzzzzzzzzzzzzzz

The  elements  of  the  diagonal  correspond  to  [5,  6],  seq.  A004003.  Here  is  the
corresponding result for triominoes [8].
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In[80]:= u = Table@0, 86<, 86<D;
Do@If@Mod@n m, 3D ã 0,

uPn,mT = uPm,nT = Length@tess@8n, m<, polyominoes@3DDDD,8n, 6<, 8m, n, 6<D;

MatrixForm[u]

Out[82]//MatrixForm=i
k
jjjjjjjjjjjjjjjjjjjjjj

0 0 1 0 0 1

0 0 3 0 0 11

1 3 10 23 62 170

0 0 23 0 0 939

0 0 62 0 0 8342

1 11 170 939 8342 80092

y
{
zzzzzzzzzzzzzzzzzzzzzz

The contributions to this result by the individual triominoes are small.

In[83]:= u = Table@0, 86<, 86<D;
Do@If@Mod@n m, 3D ã 0,

uPn,mT = uPm,nT = Length@tess@8n, m<, 8First@polyominoes@3DD<DDD,8n, 6<, 8m, n, 6<D;

MatrixForm[u]

Out[85]//MatrixForm=i
k
jjjjjjjjjjjjjjjjjjjjjj

0 0 1 0 0 1

0 0 1 0 0 1

1 1 2 3 4 6

0 0 3 0 0 13

0 0 4 0 0 22

1 1 6 13 22 64

y
{
zzzzzzzzzzzzzzzzzzzzzz

In[86]:= u = Table@0, 86<, 86<D;
Do@If@Mod@n m, 3D ã 0,

uPn,mT = uPm,nT = Length@tess@8n, m<, 8Last@polyominoes@3DD<DDD,8n, 6<, 8m, n, 6<D;

MatrixForm[u]

Out[88]//MatrixForm=i
k
jjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0

0 0 2 0 0 4

0 2 0 4 0 8

0 0 4 0 0 18

0 0 0 0 0 72

0 4 8 18 72 162

y
{
zzzzzzzzzzzzzzzzzzzzzz

Although there are no 3ä 3 tilings by the L-triomino and only two by the straight
triomino, together they manage to tile in 10 different ways.
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In[89]:= tile@83, 3<, polyominoes@3D, 5D
From In[89]:=

In general,  an n ä m Hm, n ¥ 2L rectangle can be tiled with the L-triomino when-
ever m n is divisible by 3, except when one is 3 and the other is odd [9]. Here are
some more general results corresponding to other cases.

Ë An L-tetromino tiles an n ä m rectangle iff n, m > 1 and 8 divides n m.

Ë The T-tetromino tiles an nä m rectangle iff 4 divides both n and m.

Ë If a rectangle can be tiled with k L-tetrominoes, then k is even. 

Ë An n äm rectangle can be tiled by the straight p-omino iff p divides n or
p divides m.

The  next  two  examples  show  the  time  needed  to  get  one  solution  versus  all
solutions.

In[90]:= Timing@tile@86, 11<, 880, Â, 2 Â, 1 + 2 Â, 3 Â, 1 + 3 Â<<, 4DD
Out[90]= 820.359 Second, Null<
In[91]:= Timing@tile@86, 11<, 880, Â, 2 Â, 1 + 2 Â, 3 Â, 1 + 3 Â<<, 1, TrueDD

Out[91]= 81.219 Second, Null<
· Fault-Free Tilings 

As the number of different solutions grows, we would like to consider only those
that  have  not  appeared  in  smaller  instances  of  the  problem.  For  example,  the
tilings  of  a  4 ä 6  rectangle  by  the  L-triomino  include  all  those  appearing  when
tiling two separate 2 ä 6 rectangles.

In[92]:= tile@84, 6<, 880, 1, Â<<, 6D
From In[92]:=

In tiling a  rectangle,  we might generate  fault  lines. A fault line is  any horizontal
or vertical line that divides a tiling so that it can be regarded as the union of the
tilings  of  two  subrectangles  [10].  The  function  tileNF  computes  all  fault-free
tilings of an nä m rectangle  by a given set of pieces poly.  As before,  the graphic
array  of  the  solutions  is  considered  to  be  of  a  given  width  r.  It  generates  the
whole  set  of  tilings  and  then  selects  the  fault-free  tilings,  with  the  help  of  the
predicate noFaultLineQ. This last function computes the length of the horizon-
tal  and vertical lines present in the tiling and verifies that  no row or column has
m or n elements, respectively.
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In tiling a  rectangle,  we might generate  fault  lines. A fault line is  any horizontal
or vertical line that divides a tiling so that it can be regarded as the union of the
tilings  of  two  subrectangles  [10].  The  function  tileNF  computes  all  fault-free
tilings of an nä m rectangle  by a given set of pieces poly.  As before,  the graphic
array  of  the  solutions  is  considered  to  be  of  a  given  width  r.  It  generates  the
whole  set  of  tilings  and  then  selects  the  fault-free  tilings,  with  the  help  of  the
predicate noFaultLineQ. This last function computes the length of the horizon-
tal  and vertical lines present in the tiling and verifies that  no row or column has
m or n elements, respectively.

In[93]:= noFaultLineQ@8n_, m_<, tiling_D := Module@8l, h, v, c<,
l = getLines@tilingD;
h = Table@Length@

Select@l, Im@First@#DD == Im@Last@#DD ã c &DD, 8c, n - 1<D;
v = Table@Length@Select@l, Re@First@#DD ã Re@Last@#DD ã c &DD,8c, m - 1<D;
Not@MemberQ@h, mD »» MemberQ@v, nDDD

tileNF@8n_, m_<, poly_, r_D := Module@8t, u, g<,
t = Select@tess@8n, m<, polyD, noFaultLineQ@8n, m<, #D &D;
g = Map@Graphics@Append@88LightBlue, Rectangle@80, 0<, 8m, n<D<,

Line@880, n<, 80, 0<, 8m, 0<<D<, liC êü getLines@#DDD &, tD;
Show@GraphicsArray@Partition@If@Mod@Length@tD, rD == 0,

g, Join@g, Table@Graphics@Point@80, 0<DD,8r - Mod@Length@tD, rD<DDD, rDDD;D
We  use  this  predicate  to  select  the  tilings  without  fault  lines  appearing  in  the
previous example.

In[95]:= tileNF@84, 6<, 880, 1, Â<<, 2D
From In[95]:=

A more abundant example shows all fault-free tilings of a 6 ä 7 rectangle using the
L-triomino.

630 Jaime Rangel-Mondragón

The Mathematica  Journal 9:3 © 2005 Wolfram Media, Inc.



In[96]:= tileNF@86, 7<, 8Last@polyominoes@3DD<, 5D
From In[96]:=

Do tilings with dominoes always have fault lines? Not always.

In[97]:= Timing@u = Table@0, 87<, 87<D;
Do@If@Mod@n m, 2D ã 0,

uPn,mT = uPm,nT = Length@Select@tess@8n, m<, polyominoes@2DD,
noFaultLineQ@8n, m<, #D &DDD, 8n, 7<, 8m, n, 7<D;

MatrixForm[u] D
Out[97]= 9425.109 Second,

i
k
jjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 6 0

0 0 0 0 6 0 124

0 0 0 0 0 124 0

y
{
zzzzzzzzzzzzzzzzzzzzzzzzzzzz

=
Here are the smallest counterexamples.
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In[98]:= tileNF@85, 6<, polyominoes@2D, 3D
From In[98]:=

Fault-free tilings produced by 3-ominoes are also interesting.

In[99]:= Timing@u = Table@0, 86<, 86<D;
Do@If@Mod@n m, 3D ã 0,

uPn,mT = uPm,nT = Length@Select@tess@8n, m<, polyominoes@3DD,
noFaultLineQ@8n, m<, #D &DDD, 8n, 6<, 8m, n, 6<D;

MatrixForm[u] D
Out[99]= 91525.34 Second,

i
k
jjjjjjjjjjjjjjjjjjjjjj

0 0 1 0 0 0

0 0 2 0 0 2

1 2 0 2 2 0

0 0 2 0 0 236

0 0 2 0 0 2060

0 2 0 236 2060 6312

y
{
zzzzzzzzzzzzzzzzzzzzzz=

Like the tilings  without restrictions  from the previous section,  the contributions
of the individual pieces to this total are minuscule.

In[100]:= Timing@u = Table@0, 89<, 89<D;
Do@If@Mod@n m, 3D ã 0, uPn,mT =

uPm,nT = Length@Select@tess@8n, m<, 8First@polyominoes@3DD<D,
noFaultLineQ@8n, m<, #D &DDD, 8n, 9<, 8m, n, 9<D;

MatrixForm[u] D
Out[100]= 91068.3 Second,

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 32

0 0 0 0 0 0 0 0 48

0 0 0 0 0 0 32 48 16

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
=
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In[101]:= Timing@u = Table@0, 86<, 86<D;
Do@If@Mod@n m, 3D ã 0, uPn,mT =

uPm,nT = Length@Select@tess@8n, m<, 8Last@polyominoes@3DD<D,
noFaultLineQ@8n, m<, #D &DDD, 8n, 6<, 8m, n, 6<D;

MatrixForm[u] D
Out[101]= 93. Second,

i
k
jjjjjjjjjjjjjjjjjjjjjj

0 0 0 0 0 0

0 0 2 0 0 0

0 2 0 0 0 0

0 0 0 0 0 2

0 0 0 0 0 8

0 0 0 2 8 2

y
{
zzzzzzzzzzzzzzzzzzzzzz=

The smallest examples of fault-free tilings of squares by each polyomino produce
patterns of striking beauty.

In[102]:= tileNF@89, 9<, 8First@polyominoes@3DD<, 4D
From In[102]:=

In[103]:= tileNF@86, 6<, 8Last@polyominoes@3DD<, 2D
From In[103]:=
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· Jigsaws
Let us now approach the problem of tiling an n ä m rectangle using all the pieces
of  a  list  poly  of  given  polyominoes  once  and  only  once.  We  naturally  need  to
have  Length[Flatten[poly]]=n  m.  The  pieces  appearing  in  poly  do  not  need
to be different and, with the inclusion of several equal ones, we can control their
multiplicity.  The  functions  tessAll  and  jigsaw,  similar  to  our  previous  func-
tions tess and tile, provide the necessary changes, which essentially amount to
dropping a piece once used.

In[104]:= tessAll@8n_, m_<, poly_, justOne_: FalseD :=
Module@8avail, i, j, ans = 8<, tessAux, na, ma<,

tessAux@partial_, p_D :=
Module@8f, c, i, candidates, newp, pieces, q, k<,
candidates = Complement@avail, Flatten@partialDD;
If@Hp ã 8<L »» Hcandidates ã 8<L,
AppendTo@ans, partialD; If@justOne, Throw@1DD,
k = First@lexic@candidatesDD;
Do@
q = lexic êü allPieces@pPiT D;
Map@H

newp = k + # - First@#D;
If@HComplement@newp, availD ã 8<L && Hf = Flatten@8partial, newp<D; Length@fD ã Length@Union@fDDL,
tessAux@Append@partial, newpD, Drop@p, 8i<DDDL &, qD, 8i, Length@pD<DDD;

If@Length@Flatten@polyDD < n m, 8<,8na, ma< = If@n < m, 8m, n<, 8n, m<D;
avail = Flatten@Table@i + j Â, 8j, 0, na - 1<, 8i, 0, ma - 1<DD;
Catch@tessAux@8<, polyDD;
If@n < m, Map@m - 1 + Â # &, ansD, ansDDD

jigsaw@8n_, m_<, poly_, r_, justOneSolution_: FalseD :=
Module@8t, u, g<,
t = tessAll@8n, m<, poly, justOneSolutionD;
g = Map@Graphics@Append@88LightBlue, Rectangle@80, 0<, 8m, n<D<,

Line@880, n<, 80, 0<, 8m, 0<<D<, liC êü getLines@#DDD &, tD;
Show@GraphicsArray@Partition@If@Mod@Length@tD, rD == 0,

g, Join@g, Table@Graphics@Point@80, 0<DD,8r - Mod@Length@tD, rD<DDD, rDDD;D
In[106]:= polyominoes@3D

Out[106]= 880, Â, 2 Â<, 80, Â, 1<<
For instance,  let  us  compute all  possible  tilings  that  also  happen to be fault  free
using the set of pentominoes.
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In[107]:= n = 5;
p = n Length@polyominoes@nDD;

s = SelectAMapA9#,
p
ÅÅÅÅ
#

= &, Divisors@pDE, 1 < First@#D § Last@#D &E;

Timing@Map@jigsaw@#, polyominoes@nD, 1, TrueD &, sD;D
From In[107]:=

From In[107]:=

From In[107]:=

From In[107]:=

Out[110]= 8505.328 Second, Null<
We can generate a tiling of the 8 ä 8 square with pentominoes by adding a square
so that the sum of the areas is 64. 
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In[111]:= Timing@
jigsaw@88, 8<, Append@polyominoes@5D, 80, 1, Â, 1 + Â<D, 1, TrueDD

From In[111]:=

Out[111]= 8209.859 Second, Null<
Unfortunately,  the  family  of  35  hexominoes  cannot  tile  a  rectangle.  In  dealing
with tilings  with  heptominoes,  we have  to consider  that  one  of  them has  a  hole
and  so we cannot  tile  a  rectangle  without  a  hole.  For  instance,  in attempting to
tile  12  8 ä 8  squares  (I  thank  the  anonymous  reviewer  for  this  suggestion)  in
which a square has been removed from each one of them (so that their total area
is 756, equal to the area covered by the 108 heptominoes), we just have to change
the  variable  avail  appearing  in  the  function  tess  to  construct  the  8 ä 8 - 1
squares  appearing  on  the  diagonal  of  a  96ä 96  square.  This  general  approach
takes  too  long  and  calls  for  another  methodology,  which  the  author  hopes  to
report about in a future work.

‡ Rep-Tiles
If a polyomino can be divided into a finite number of congruent copies similar to
itself,  we say that  it  is  a  rep-tile,  or  more specifically,  an n-reptile.  The so-called
P-pentomino is  a 4-reptile as we show later. Rep-tiles  are self-similar  pieces and
so  can  be  regarded  as  fractals.  It  can  be  proved  that  they  tile  the  plane  in  a
nonperiodic  way [11],  but  it  was only  recently  discovered,  as  reported  by Roger
Penrose in his fascinating and insightful book Shadows of the Mind, that there are
three polyominoes that tile the plane only aperiodically [12].
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In[112]:= Ppentomino@n_D := repP@82, 0<, 80, 0<, 80, 6<, nD
repP@a_, b_, c_, 1D :=9LineA9a, b, c, c + 2 Ha - bL,

6 a - 4 b + c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

3
, a +

c - b
ÅÅÅÅÅÅÅÅÅÅÅ

3
, a=E=

repP@a_, b_, c_, n_D :=

JoinArepPA a + c
ÅÅÅÅÅÅÅÅÅÅÅ

2
,

b + c
ÅÅÅÅÅÅÅÅÅÅÅ

2
, b, n - 1E, repPAc +

a - b
ÅÅÅÅÅÅÅÅÅÅÅ

2
, c,

b + c
ÅÅÅÅÅÅÅÅÅÅÅ

2
, n - 1E,

repPA a + c
ÅÅÅÅÅÅÅÅÅÅÅ

2
,

3 a + b + 2 c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

6
,

6 a - 4 b + c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

3
, n - 1E,

repPA 3 a - 2 b + 5 c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

6
, c +

a - b
ÅÅÅÅÅÅÅÅÅÅÅ

2
, c + 2 Ha - bL, n - 1EE

In[115]:= Show@Graphics@Ppentomino@5DDD
From In[115]:=

The following L-triomino is also a 4-reptile and therefore also a 4n -reptile for all
n > 0.

In[116]:= Ltriomino@n_D := repL@82, 0<, 80, 0<, 80, 2<, nD
repL@a_, b_, c_, 1D := 9LineA9a, b, c, c +

a - b
ÅÅÅÅÅÅÅÅÅÅÅ

2
,

a + c
ÅÅÅÅÅÅÅÅÅÅÅ

2
, a +

c - b
ÅÅÅÅÅÅÅÅÅÅÅ

2
, a=E=

repL@a_, b_, c_, n_D :=

JoinArepLA a + b
ÅÅÅÅÅÅÅÅÅÅÅ

2
, b,

b + c
ÅÅÅÅÅÅÅÅÅÅÅ

2
, n - 1E, repLA a + b

ÅÅÅÅÅÅÅÅÅÅÅ
2

, a, a +
c - b
ÅÅÅÅÅÅÅÅÅÅÅ

2
, n - 1E,

repLA 3 a + c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4
,

2 b + a + c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4
,

a + 3 c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

4
, n - 1E,

repLA b + c
ÅÅÅÅÅÅÅÅÅÅÅ

2
, c, c +

a - b
ÅÅÅÅÅÅÅÅÅÅÅ

2
, n - 1EE
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In[119]:= Show@Graphics@Ltriomino@5DDD
From In[119]:=

The value of c, given as an argument to the function repL, can be computed from

those  of  a  and b  from  c = a +
ikjjj 0 1

-1 0
y{zzz.Hb - aL.  Giving  it  explicitly  lets  us  distort

the piece at will.

In[120]:= Show@Graphics@repL@82, 0<, 80, 0<, 81, 2<, 5DDD
From In[120]:=

· The Sphinx
Rep-tiles  also  arise  in the  shape  of  polyiamonds.  The sphinx is  one  of  the  most
widely known 4-reptile polyiamonds.
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In[121]:= sphinx@n_D := sphA80, 0<, 812, 0<, 98, 4 
è!!!

3 =, nE
sph@a_, b_, c_, 1D := 9LineA9a, b, c,

2 a + b + 3 c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

6
,

4 a - b + 3 c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

6
, a=E=

sph@a_, b_, c_, n_D := JoinAsphA a + b
ÅÅÅÅÅÅÅÅÅÅÅ

2
, a,

4 a - b + 3 c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

6
, n - 1E,

sphAb,
a + b
ÅÅÅÅÅÅÅÅÅÅÅ

2
,

a + 2 b + 3 c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

6
, n - 1E, sphA 3 b + c

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4

, c,
2 a + b + 3 c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

6
, n - 1E,

sphA 4 a - b + 3 c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

6
,

a + 2 b + 3 c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

6
,

a + b
ÅÅÅÅÅÅÅÅÅÅÅ

2
, n - 1EE

In[124]:= Show@Graphics@sphinx@4DDD
From In[124]:=

As indicated  at the end of  the previous  section, more challenges are still  present
in the  world of  polyominoes.  Even the  seemingly  simple  task of  finding out  the
number  of  tilings  of  an  n ä m  rectangle  using  dominoes  poses  considerable
difficulties  (e.g.,  problem  7.51  in  [7]).  We  can  only  guess  as  to  the  difficulty  of
these problems in the worlds inhabited by polyiamonds, polyhexes, and polykites.
The  advantages  provided  by  the  development  of  sophisticated  languages  like
Mathematica  yield a promising future for further investigations of this fascinating
topic.
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